JP6972978B2 - Manufacturing method of copper terminal material - Google Patents

Manufacturing method of copper terminal material Download PDF

Info

Publication number
JP6972978B2
JP6972978B2 JP2017229794A JP2017229794A JP6972978B2 JP 6972978 B2 JP6972978 B2 JP 6972978B2 JP 2017229794 A JP2017229794 A JP 2017229794A JP 2017229794 A JP2017229794 A JP 2017229794A JP 6972978 B2 JP6972978 B2 JP 6972978B2
Authority
JP
Japan
Prior art keywords
layer
fired
less
fired layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229794A
Other languages
Japanese (ja)
Other versions
JP2019099849A (en
Inventor
隆二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017229794A priority Critical patent/JP6972978B2/en
Publication of JP2019099849A publication Critical patent/JP2019099849A/en
Application granted granted Critical
Publication of JP6972978B2 publication Critical patent/JP6972978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子として有用な白金、パラジウム等の貴金属を含有する被膜が設けられた銅端子材の製造方法に関する。 The present invention relates to a method for manufacturing a copper terminal material provided with a coating containing a precious metal such as platinum or palladium, which is useful as a terminal for a connector used for connecting electrical wiring of an automobile or a consumer device.

従来、自動車や民生機器などの電気配線の接続に用いられるコネクタ用端子が知られている。このようなコネクタ用端子として用いられる端子材として、銅又は銅合金基材の表面にニッケルやコバルト等の金属により構成されるめっき層が下地層として形成され、該下地層の上面に錫等の金属メッキ層が形成された端子材が開示されている(例えば、特許文献1参照)。
この特許文献1に記載の端子材では、ニッケルやコバルト等のめっき層が銅又は銅合金基材の表面に形成されていることから、表面に位置する錫等の金属メッキ層に銅又は銅合金基材の銅成分が拡散することを抑制している。
Conventionally, connector terminals used for connecting electrical wiring of automobiles and consumer devices are known. As a terminal material used as such a terminal for a connector, a plating layer made of a metal such as nickel or cobalt is formed as a base layer on the surface of a copper or copper alloy base material, and tin or the like is formed on the upper surface of the base layer. A terminal material on which a metal plating layer is formed is disclosed (see, for example, Patent Document 1).
In the terminal material described in Patent Document 1, since a plating layer such as nickel or cobalt is formed on the surface of a copper or copper alloy base material, copper or a copper alloy is formed on a metal plating layer such as tin located on the surface. It suppresses the diffusion of the copper component of the base material.

また、端子材の接点箇所の信頼性を向上させるため、金や銀等の貴金属を接点箇所に部分めっきする方法が提案されている(例えば、特許文献2参照)。 Further, in order to improve the reliability of the contact points of the terminal material, a method of partially plating the contact points with a precious metal such as gold or silver has been proposed (see, for example, Patent Document 2).

特開平8−7960号公報Japanese Unexamined Patent Publication No. 8-7960 特開2000−87289号公報Japanese Unexamined Patent Publication No. 2000-87289

しかしながら、特許文献1に記載の端子材では、ニッケルやコバルトなどの下地層を形成しているので、工程が煩雑である。この下地層はめっき法を用いて形成されることから、めっき廃液の処理が必要であること等、環境負荷の低減への対策が必要となる。また、特許文献2に記載の部分めっき方法では、金や銀等の貴金属を接点箇所に部分めっきする際にマスキングなどの工程や装置が複雑になる他、シアン等の毒物の使用や廃液の処理が必要になる等、環境負荷の低減への対策が必要となる。 However, in the terminal material described in Patent Document 1, since a base layer such as nickel or cobalt is formed, the process is complicated. Since this base layer is formed by using a plating method, it is necessary to take measures to reduce the environmental load, such as the need to treat the plating waste liquid. Further, in the partial plating method described in Patent Document 2, processes and devices such as masking are complicated when a precious metal such as gold or silver is partially plated at a contact point, and poisonous substances such as cyanide are used and waste liquid is treated. It is necessary to take measures to reduce the environmental load, such as the need for.

本発明は、このような事情に鑑みてなされたもので、銅又は銅合金からなる端子材の被膜形成において廃液等の処理を不要にできる銅端子材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a copper terminal material, which can eliminate the need for treatment of waste liquid or the like in forming a film of a terminal material made of copper or a copper alloy. ..

本発明の銅端子材は、Cu又はCu合金からなる基材の表面の一部にAu−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金のいずれかを主成分とする焼成層が形成されており、前記焼成層中のPt又はPdの濃度が前記焼成層の全膜厚のうち前記焼成層の表面から厚さの1/10以下の範囲において0質量%以上40質量%以下であり、かつ、前記焼成層の全膜厚のうち前記基材との界面から1/10以下の範囲において90質量%以上100質量%以下である。 In the copper terminal material of the present invention, a part of the surface of a base material made of Cu or Cu alloy is fired with any one of Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy as a main component. A layer is formed, and the concentration of Pt or Pd in the fired layer is 0% by mass or more and 40% by mass in the range of 1/10 or less of the thickness from the surface of the fired layer in the total thickness of the fired layer. It is 90% by mass or more and 100% by mass or less in the range of 1/10 or less from the interface with the base material in the total thickness of the fired layer.

ここで、焼成層における全膜厚のうち基材との界面から1/10以下の範囲におけるPt又はPdの濃度が90質量%未満であると焼成層へのCu成分の拡散防止効果が低減する。一方、焼成層における全膜厚のうち表面から1/10以下の範囲におけるPt又はPdの濃度が、40質量%を超えると、相対的にAuの濃度が低く、なるため、接触抵抗が増加して接点信頼性が低下するおそれがある。
これに対し、本発明では、焼成層の全膜厚のうち基材との界面から1/10以下の範囲におけるPt又はPdの濃度が90質量%以上であるので、基材のCu成分が焼成層に拡散することを上記基材との界面から1/10以下の範囲内で抑制でき、Cu成分の拡散防止効果を向上できる。一方、焼成層の全膜厚のうち焼成層の表面から1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であることから、相対的にAuの濃度が高いので、銅端子材がコネクタとして用いられる場合に、接点箇所の接触抵抗を低減させることができ、接点信頼性を高めることができる。
Here, if the concentration of Pt or Pd in the range of 1/10 or less of the total film thickness of the fired layer from the interface with the substrate is less than 90% by mass, the effect of preventing the diffusion of the Cu component into the fired layer is reduced. .. On the other hand, when the concentration of Pt or Pd in the range of 1/10 or less from the surface of the total film thickness in the fired layer exceeds 40% by mass, the concentration of Au becomes relatively low, so that the contact resistance increases. The contact reliability may decrease.
On the other hand, in the present invention, the concentration of Pt or Pd in the range of 1/10 or less from the interface with the base material in the total thickness of the fired layer is 90% by mass or more, so that the Cu component of the base material is fired. Diffusion to the layer can be suppressed within a range of 1/10 or less from the interface with the base material, and the diffusion prevention effect of the Cu component can be improved. On the other hand, since the concentration of Pt or Pd in the range of 1/10 or less from the surface of the fired layer in the total thickness of the fired layer is 0% by mass or more and 40% by mass or less, the concentration of Au is relatively high. When the copper terminal material is used as a connector, the contact resistance at the contact point can be reduced and the contact reliability can be improved.

さらに、Cu又はCu合金からなる基材の表面に下地層及び貴金属層の2層を形成する従来の構成に比べて、基材の表面の一部に焼成層を1層形成するだけの簡単な構成で、Cu成分の拡散を抑制し、かつ接点信頼性を高めることができる。また、めっき法を用いることなく被膜を形成できるので、めっき法を用いて下地層や貴金属層を形成する際に生じる廃液を処理する必要がないため、環境負荷を低減できる。 Further, as compared with the conventional configuration in which two layers of a base layer and a noble metal layer are formed on the surface of a base material made of Cu or a Cu alloy, it is as simple as forming one fired layer on a part of the surface of the base material. With the configuration, it is possible to suppress the diffusion of Cu components and improve the contact reliability. Further, since the film can be formed without using the plating method, it is not necessary to treat the waste liquid generated when the underlayer or the noble metal layer is formed by the plating method, so that the environmental load can be reduced.

本発明の銅端子材の好ましい態様としては、前記焼成層中のPt又はPdの濃度が前記焼成層の表面から前記基材との界面にかけて漸次増加しているとよい。
上記態様では、銅端子材がコネクタとして用いられる場合、接点箇所となる焼成層がその使用により摩耗するが、摩耗による表面の組成の変化が小さいので、接触抵抗が急激に増加して、接点信頼性が低下する等の不具合が生じることを抑制できる。
As a preferred embodiment of the copper terminal material of the present invention, it is preferable that the concentration of Pt or Pd in the fired layer is gradually increased from the surface of the fired layer to the interface with the base material.
In the above aspect, when the copper terminal material is used as a connector, the fired layer as the contact point is worn by its use, but since the change in the surface composition due to the wear is small, the contact resistance sharply increases and the contact reliability is increased. It is possible to suppress the occurrence of problems such as deterioration of sex.

本発明の銅端子材の好ましい態様としては、前記焼成層の空隙率が20%以下であるとよい。
焼成層の空隙率が20%を超えている場合、焼成層の強度が低下する。これに対し、上記態様では、焼成層の空隙率が20%以下であるので、焼成層の強度を高めることができる。
As a preferred embodiment of the copper terminal material of the present invention, the porosity of the fired layer is preferably 20% or less.
When the porosity of the fired layer exceeds 20%, the strength of the fired layer decreases. On the other hand, in the above aspect, since the porosity of the fired layer is 20% or less, the strength of the fired layer can be increased.

本発明の銅端子材の好ましい態様としては、前記焼成層の膜厚は、0.5μm以上3.0μm以下であるとよい。
焼成層の膜厚が0.5μm以下であると、基材からのCu成分の拡散を防止する効果が乏しくなることから上記接点信頼性が低下し、膜厚が3.0μmを超えると焼結性が低下し焼成層の空隙率が上昇する。
これに対し、上記態様では、焼成層の膜厚が0.5μm以上3.0μm以下であるため、基材からのCu成分の拡散を確実に抑制し、かつ、空隙率の上昇を抑制できるので、焼成層の接点信頼性を高めることができる。
As a preferred embodiment of the copper terminal material of the present invention, the film thickness of the fired layer is preferably 0.5 μm or more and 3.0 μm or less.
When the film thickness of the fired layer is 0.5 μm or less, the effect of preventing the diffusion of Cu components from the substrate is poor, so that the contact reliability is lowered, and when the film thickness exceeds 3.0 μm, sintering is performed. The property decreases and the porosity of the fired layer increases.
On the other hand, in the above aspect, since the film thickness of the fired layer is 0.5 μm or more and 3.0 μm or less, the diffusion of Cu components from the substrate can be reliably suppressed and the increase in porosity can be suppressed. , The contact reliability of the fired layer can be improved.

本発明の銅端子材の製造方法は、Cu又はCu合金からなる基材の表面の一部にPt及びPdの少なくとも一種の粉末を主成分として含む第1塗布材を塗布して乾燥させた第1塗布層を形成して、前記第1塗布層の上にAu及びAgの少なくとも一種の粉末を主成分として含む第2塗布材を塗布して乾燥させた第2塗布層を形成し、これら前記第1塗布層及び前記第2塗布層にレーザ光を照射することにより、前記第1塗布層及び前記第2塗布層を焼成して焼成層を形成しており、前記焼成層は、前記焼成層中のPt又はPdの濃度が前記焼成層の全膜厚のうち前記焼成層の表面から厚さの1/10以下の範囲において0質量%以上40質量%以下であり、かつ、前記Pt又はPdの濃度が前記焼成層の表面から前記基材との界面にかけて漸次増加し、前記焼成層の全膜厚のうち前記基材との界面から1/10以下の範囲において90質量%以上100質量%以下であり、前記焼成層の空隙率が20%以下、前記焼成層の膜厚が0.5μm以上3.0μm以下である。
このような構成によれば、基材との界面近傍の領域のPt又はPdの濃度が高まり、焼成層の表面近傍の領域のAu又はAgの濃度が高まるので、焼成層へのCu成分の拡散を抑制することで接点信頼性を高めることができる銅端子材を、めっき法等を用いることなく提供できる。
この場合、前記レーザ光は、固体レーザ、ファイバーレーザ、半導体レーザもしくはガスレーザであり、波長が1070nm、前記第2塗布材表面における単位面積当たりの照射エネルギーが1.5×10 J/cm となるように照射されるとよい。
In the method for producing a copper terminal material of the present invention, a first coating material containing at least one powder of Pt and Pd as a main component is applied to a part of the surface of a base material made of Cu or a Cu alloy and dried. form one coating layer, to form a second coating layer was dried by applying a second coating material containing at least one kind of powder as the main component of the first 1 Au and Ag on the coating layer, those wherein By irradiating the first coating layer and the second coating layer with laser light, the first coating layer and the second coating layer are fired to form a fired layer, and the fired layer is the fired layer. The concentration of Pt or Pd in the fired layer is 0% by mass or more and 40% by mass or less in the range of 1/10 or less of the thickness from the surface of the fired layer in the total thickness of the fired layer, and the Pt or Pd is contained. Concentration gradually increases from the surface of the fired layer to the interface with the base material, and 90% by mass or more and 100% by mass in the range of 1/10 or less from the interface with the base material in the total thickness of the fired layer. The void ratio of the fired layer is 20% or less, and the film thickness of the fired layer is 0.5 μm or more and 3.0 μm or less.
According to such a configuration, the concentration of Pt or Pd in the region near the interface with the substrate is increased, and the concentration of Au or Ag in the region near the surface of the fired layer is increased, so that the Cu component is diffused into the fired layer. It is possible to provide a copper terminal material that can improve contact reliability by suppressing the above, without using a plating method or the like.
In this case, the laser beam is a solid-state laser, fiber laser, a semiconductor laser or gas laser, wavelength 1070 nm, irradiation energy per unit area in the second coating material the surface of a 1.5 × 10 3 J / cm 2 It is good to be irradiated so as to be.

本発明によれば、焼成層への基材からのCu成分の拡散を抑制することで接点信頼性を向上させ、また、この銅端子材の被膜形成において廃液等の処理を不要にできる。 According to the present invention, the contact reliability can be improved by suppressing the diffusion of the Cu component from the base material into the fired layer, and the treatment of waste liquid or the like can be eliminated in the film formation of the copper terminal material.

本発明の一実施形態に係る銅端子材を模式的に示す断面図である。It is sectional drawing which shows typically the copper terminal material which concerns on one Embodiment of this invention. 上記実施形態の銅端子材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the copper terminal material of the said embodiment. 上記実施形態の基材上に第1塗布材が塗布された状態を示す断面図である。It is sectional drawing which shows the state which the 1st coating material was applied on the substrate of the said embodiment. 上記実施形態の第1塗布層上に第2塗布材が塗布された状態を示す断面図である。It is sectional drawing which shows the state which the 2nd coating material was coated on the 1st coating layer of the said embodiment. 上記銅端子材の製造途中において第1及び第2塗布層にレーザ光を照射している状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which the 1st and 2nd coating layers are irradiated with a laser beam in the process of manufacturing the said copper terminal material.

以下、本発明の一実施形態について説明する。
<銅端子材の構成>
実施形態の銅端子材1は、図1に断面を模式的に示したように、CuまたはCu合金からなる基材2上の一部に、焼成層3が積層されている。
基材2は、CuまたはCu合金からなるものであれば、特に、その組成が限定されるものではない。
Hereinafter, an embodiment of the present invention will be described.
<Composition of copper terminal material>
In the copper terminal material 1 of the embodiment, as shown schematically in the cross section in FIG. 1, the fired layer 3 is laminated on a part of the base material 2 made of Cu or a Cu alloy.
The composition of the base material 2 is not particularly limited as long as it is made of Cu or a Cu alloy.

焼成層3は、厚さが0.5μm以上3.0μm以下であり、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金の少なくともいずれかを主成分とする貴金属層である。焼成層3は、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金の少なくともいずれかを主成分とする金属層であるから、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金に他の金属等が含まれた焼成層3としてもよい。
いずれの場合も、焼成層3全体としての厚さが0.5μm以上3.0μm以下である。この焼成層3の厚さが0.5μm未満では、基材2からのCu成分の拡散を防止する効果が乏しく、厚さが3.0μmを超えるとプレス加工時に割れが生じ易い。また、焼成層3の厚さが3.0μmを超えると、焼結性が低下し、焼成層3の空隙率が上昇するからである。
また、焼成層3の空隙率は、0%以上20%以下に設定されている。これは、焼成層3の空隙率が20%を超えると、空隙が多くなることで抵抗が大きくなり、焼成層3の接点信頼性が低下するからである。なお、空隙率は、焼成層3の全体積中の空隙の体積比率である。
The fired layer 3 is a noble metal layer having a thickness of 0.5 μm or more and 3.0 μm or less and containing at least one of Au-Pt alloy, Ag-Pt alloy, Au-Pd alloy and Ag-Pd alloy as a main component. be. Since the fired layer 3 is a metal layer containing at least one of Au-Pt alloy, Ag-Pt alloy, Au-Pd alloy and Ag-Pd alloy as a main component, Au-Pt alloy, Ag-Pt alloy and Au. The fired layer 3 in which the −Pd alloy and the Ag—Pd alloy contain other metals and the like may be used.
In either case, the thickness of the fired layer 3 as a whole is 0.5 μm or more and 3.0 μm or less. If the thickness of the fired layer 3 is less than 0.5 μm, the effect of preventing the diffusion of Cu components from the base material 2 is poor, and if the thickness exceeds 3.0 μm, cracks are likely to occur during press working. Further, when the thickness of the fired layer 3 exceeds 3.0 μm, the sinterability is lowered and the porosity of the fired layer 3 is increased.
The porosity of the fired layer 3 is set to 0% or more and 20% or less. This is because when the porosity of the fired layer 3 exceeds 20%, the number of voids increases, the resistance increases, and the contact reliability of the fired layer 3 decreases. The porosity is the volume ratio of the voids in the total volume of the fired layer 3.

例えば、焼成層3がAu−Pt合金又はAg−Pt合金を主成分とする場合には、その組成は、Au−(30質量%〜90質量%)Pt、又はAg−(50質量%〜90質量%)Ptであることが好ましい。また、焼成層3がAu−Pd合金又はAg−Pd合金を主成分とする場合には、その組成は、Au−(35質量%〜90質量%)Pd、又はAg−(75質量%〜90質量%)Ptであることが好ましい。また、Au又はAgの成分比率と、Pt又はPdの成分比率との和は、金属成分中の95質量%以上であることが好ましい。これらの成分比率にすることにより、基材2からの焼成層3へのCu成分の拡散を抑制させることにより、焼成層3の接触抵抗の変化を抑制でき、接点信頼性をより高めることができる。なお、焼成層3は、ルテニウム、オスミウム、ロジウム及びイリジウムの少なくともいずれかを成分比率5質量%未満の範囲で含んでいてもよい。 For example, when the fired layer 3 contains Au-Pt alloy or Ag-Pt alloy as a main component, the composition thereof is Au- (30% by mass to 90% by mass) Pt or Ag- (50% by mass to 90%). Mass%) Pt is preferable. When the fired layer 3 contains Au-Pd alloy or Ag-Pd alloy as a main component, the composition thereof is Au- (35% by mass to 90% by mass) Pd or Ag- (75% by mass to 90%). Mass%) Pt is preferable. Further, the sum of the component ratio of Au or Ag and the component ratio of Pt or Pd is preferably 95% by mass or more in the metal component. By setting these component ratios, the diffusion of the Cu component from the base material 2 to the fired layer 3 can be suppressed, the change in the contact resistance of the fired layer 3 can be suppressed, and the contact reliability can be further improved. .. The fired layer 3 may contain at least one of ruthenium, osmium, rhodium and iridium in a component ratio of less than 5% by mass.

さらに、焼成層3においては、焼成層3がAu−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金のいずれを主成分とする場合でも、該焼成層3中のPt又はPdの濃度が焼成層3の全膜厚のうち焼成層の表面から厚さの1/10以下の範囲(図1におけるL1の範囲)において0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲(図1におけるL2の範囲)において90質量%以上100質量%以下に設定されている。 Further, in the fired layer 3, even if the fired layer 3 contains any of Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy as a main component, Pt or Pd in the fired layer 3 The concentration of is 0% by mass or more and 40% by mass or less in the range of 1/10 or less of the thickness from the surface of the firing layer (range of L1 in FIG. 1) in the total thickness of the firing layer 3 and the firing layer. It is set to 90% by mass or more and 100% by mass or less in the range of 1/10 or less (range of L2 in FIG. 1) from the interface with the base material 2 in the total film thickness of 3.

この焼成層3は、コネクタとして用いられる銅端子材1の接点信頼性を高める機能を有し、焼成層3において全膜厚のうち表面から1/10以下の範囲においてPt又はPdの濃度が40質量%を超えている場合、接触抵抗の初期抵抗値が増加して接点信頼性が低下するおそれがある。一方、焼成層3において全膜厚のうち基材2との界面から1/10以下の範囲において、Pt又はPdの濃度が90%未満である場合、基材2からのCu成分の拡散を上記界面近傍にて抑制することができないからである。このため、本実施形態では、上記焼成層3の全膜厚のうち表面から1/10の範囲及び焼成層3の全膜厚のうち基材2との界面から1/10の範囲以外の範囲、すなわち、焼成層3の全膜厚のうち表面から1/10を超え、かつ、焼成層3の全膜厚のうち表面から9/10未満の範囲については、Au又はAg及びPt又はPdの濃度は問わない。 The fired layer 3 has a function of enhancing the contact reliability of the copper terminal material 1 used as a connector, and the concentration of Pt or Pd in the fired layer 3 is 40 in the range of 1/10 or less from the surface of the total film thickness. If it exceeds% by mass, the initial resistance value of the contact resistance may increase and the contact reliability may decrease. On the other hand, when the concentration of Pt or Pd is less than 90% in the range of 1/10 or less of the total film thickness from the interface with the base material 2 in the fired layer 3, the diffusion of the Cu component from the base material 2 is described above. This is because it cannot be suppressed near the interface. Therefore, in the present embodiment, the range other than the range of 1/10 from the surface of the total film thickness of the fired layer 3 and the range of 1/10 of the total film thickness of the fired layer 3 from the interface with the substrate 2. That is, in the range of more than 1/10 of the total film thickness of the fired layer 3 from the surface and less than 9/10 of the total film thickness of the fired layer 3, Au or Ag and Pt or Pd. The concentration does not matter.

次に、この銅端子材1の製造方法について説明する。
まず、基材2として、銅または銅合金からなる板材を用意し、図2に示す工程順で銅端子材1を製造する。
まず、この板材に脱脂、酸洗等をすることによって表面を清浄にする前処理を行う(前処理工程)。
次に、焼成層3のための塗布材として、例えば、金属粉末に溶剤を混合した第1塗布材4を、図3に示すように、基材2の表面の一部に塗布する(第1塗布材塗布工程)。この第1塗布材4に含まれる金属粉末は、例えば、Pt又はPdを主成分として含む金属粉末である。また、溶剤としては、水、エタノール、イソプロピルアルコール等のアルコール系溶剤、トルエン、ドデカン、n−デカン、テトラデカン、AF−ソルベント等の炭化水素系溶剤等を単独もしくは混合して用いることが好適である。このような金属粉末を含む第1塗布材4の粘度は、1mPa・s以上1000mPa・s未満であり、この第1塗布材4の塗布は、例えば、インクジェット方式のプリンタ等により実行される。
なお、本実施形態では、上記金属粉末を含む第1塗布材4をプリンタにより塗布することとしたが、例えば、上記金属粉末を含む粘度が1Pa・s以上100Pa・s以下の塗布材(ペースト)をディスペンサ等により塗布してもよい。この際、ペーストに含まれるバインダもしくはレオロジー調整剤は、まず、バインダとしては、400℃以下での熱分解性が良好な高分子材料であることが好ましく、例えば、アクリル樹脂、ウレタン樹脂やポリアクリル酸、ポリビニルピロリドン、ポリエチレンイミン等を用いることが好適である。また、レオロジー調整剤としては、溶剤中で自己会合し、少量で溶剤の粘度を増加させることが可能な材料であることが好ましく、例えば、12−ヒドロキシステアリン酸、硬化ひまし油、ベンジリデンソルビトール及びその誘導体、ラウロイル−L−グルタミン酸−α、γ−ジブチルアミド等を用いることが好適である。
Next, a method for manufacturing the copper terminal material 1 will be described.
First, a plate material made of copper or a copper alloy is prepared as the base material 2, and the copper terminal material 1 is manufactured in the order of the steps shown in FIG.
First, a pretreatment for cleaning the surface is performed by degreasing, pickling, etc. on this plate material (pretreatment step).
Next, as a coating material for the fired layer 3, for example, a first coating material 4 in which a solvent is mixed with a metal powder is applied to a part of the surface of the base material 2 as shown in FIG. 3 (first coating material). Coating material coating process). The metal powder contained in the first coating material 4 is, for example, a metal powder containing Pt or Pd as a main component. Further, as the solvent, it is preferable to use water, an alcohol solvent such as ethanol and isopropyl alcohol, a hydrocarbon solvent such as toluene, dodecane, n-decane, tetradecane and AF-solvent alone or in combination. .. The viscosity of the first coating material 4 containing such a metal powder is 1 mPa · s or more and less than 1000 mPa · s, and the coating of the first coating material 4 is performed by, for example, an inkjet printer or the like.
In the present embodiment, the first coating material 4 containing the metal powder is applied by a printer. For example, the coating material (paste) containing the metal powder and having a viscosity of 1 Pa · s or more and 100 Pa · s or less is used. May be applied by a dispenser or the like. At this time, the binder or rheology adjuster contained in the paste is preferably a polymer material having good thermal decomposability at 400 ° C. or lower, for example, acrylic resin, urethane resin or polyacrylic acid. It is preferable to use an acid, polyvinylpyrrolidone, polyethyleneimine or the like. The rheology adjuster is preferably a material that self-associates in a solvent and can increase the viscosity of the solvent in a small amount. For example, 12-hydroxystearic acid, hardened castor oil, benzylidene sorbitol and its derivatives thereof. , Lauroyl-L-glutamic acid-α, γ-dibutylamide and the like are preferably used.

そして、第1塗布材4を乾燥させて第1塗布層4´を形成した後、図4に示すように、第1塗布層4´上に第2塗布材5を塗布する(第2塗布材塗布工程)。この第2塗布材5に含まれる金属粉末は、例えば、Au又はAgを主成分として含む金属粉末である。このような成分比率の金属粉末を含む第2塗布材5の粘度は、1mPa・s以上1000mPa・s未満であり、この第2塗布材5の塗布は、第1塗布材4と同様、インクジェット方式のプリンタ等により実行される。 Then, after the first coating material 4 is dried to form the first coating layer 4', the second coating material 5 is applied on the first coating layer 4'as shown in FIG. 4 (second coating material). Coating process). The metal powder contained in the second coating material 5 is, for example, a metal powder containing Au or Ag as a main component. The viscosity of the second coating material 5 containing the metal powder having such a component ratio is 1 mPa · s or more and less than 1000 mPa · s, and the coating of the second coating material 5 is an inkjet method similar to the first coating material 4. It is executed by the printer of.

このようにして第1塗布層4´上に第2塗布材5を塗布し、乾燥させて第2塗布層5´を形成した後、図5に示すように、その第1及び第2塗布層4´,5´の表面にレーザ光Lを所定時間(例えば、0.01〜1秒間)照射して、第1及び第2塗布層4´,5´を加熱する。このレーザ光Lは、照射面内(第2塗布層5´の表面内)に均一なレーザ光であり、このレーザ光Lの焦点サイズは0.5〜5mm角に設定されている。この焼成層3が形成される部分のサイズが、レーザ光Lの焦点サイズよりも小さい場合は、レーザ光Lを走査(スキャン)することなく照射する。それに対して、焼成層3が形成される部分のサイズが、レーザ光Lの焦点サイズよりも大きい場合は、ガルバノミラー等のスキャニングミラーを使用し、焼成層3が形成される部分全体に、レーザ光Lを走査(スキャン)して照射する(レーザ光照射工程)。
レーザ光としては、固体レーザ、ファイバーレーザ、半導体レーザ(LD)もしくはガスレーザを用いることができる。レーザ光の波長は、400nm以上11μm以下の範囲であり、第2塗布材5表面における単位面積当たりの照射エネルギーが1.0×10J/cm以上1.0×10J/cm以下となるように照射する。
In this way, the second coating material 5 is applied onto the first coating layer 4'and dried to form the second coating layer 5', and then the first and second coating layers are formed as shown in FIG. The surface of 4', 5'is irradiated with laser light L for a predetermined time (for example, 0.01 to 1 second) to heat the first and second coating layers 4', 5'. The laser beam L is a uniform laser beam in the irradiation surface (inside the surface of the second coating layer 5'), and the focal size of the laser beam L is set to 0.5 to 5 mm square. When the size of the portion where the fired layer 3 is formed is smaller than the focal size of the laser beam L, the laser beam L is irradiated without being scanned. On the other hand, when the size of the portion where the firing layer 3 is formed is larger than the focal size of the laser beam L, a scanning mirror such as a galvano mirror is used, and the laser is applied to the entire portion where the firing layer 3 is formed. The light L is scanned and irradiated (laser light irradiation step).
As the laser beam, a solid-state laser, a fiber laser, a semiconductor laser (LD) or a gas laser can be used. The wavelength of the laser beam is in the range of 400 nm or more and 11 μm or less, and the irradiation energy per unit area on the surface of the second coating material 5 is 1.0 × 10 2 J / cm 2 or more and 1.0 × 10 6 J / cm 2. Irradiate as follows.

レーザ光は波長の揃った高エネルギー密度の光を局所的に集光することが可能という特徴を有していることから、レーザ光を使用することにより、複雑な工程を必要とすることなく、短時間に、第1塗布層4´及び第2塗布層5´を焼成させ、第1塗布層4´及び第2塗布層5´のそれぞれに含まれる金属成分が合金化し、該合金を主成分とする焼成層3を形成することができる。
このようにして、第1塗布層4´及び第2塗布層5´にレーザ光照射工程を施すことにより、第1塗布材4がPt又はPd粉末を主成分として含み、かつ第2塗布材5がAu粉末を主成分として含む場合、焼成層3の全膜厚のうち表面から厚さの1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲において90質量%以上100質量%以下のAu−Pt合金又はAu−Pd合金を主成分とする焼成層3が形成される。
また、第1塗布材4がPt又はPd粉末を主成分として含み、第2塗布材5がAg粉末を主成分として含む場合、焼成層3の全膜厚のうち表面から厚さの1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲において90質量%以上100質量%以下のAu−Pt合金又はAu−Pd合金を主成分とする焼成層3が形成される。
なお、このような第1塗布層4´及び第2塗布層5´にレーザ光Lが照射されると、第1塗布層4´と第2塗布層5´との界面近傍が合金化されるため、焼成層3は、該焼成層3の表面から基材2との界面にかけてPt又はPdの濃度が漸次増加するものとなる。
Laser light has the characteristic of being able to locally focus light with high energy density with the same wavelength. Therefore, by using laser light, complicated steps are not required. In a short time, the first coating layer 4'and the second coating layer 5'are fired, and the metal components contained in each of the first coating layer 4'and the second coating layer 5'are alloyed, and the alloy is used as the main component. The fired layer 3 can be formed.
By performing the laser light irradiation step on the first coating layer 4'and the second coating layer 5'in this way, the first coating material 4 contains Pt or Pd powder as a main component, and the second coating material 5 is used. When Au powder is contained as a main component, the concentration of Pt or Pd in the range of 1/10 or less of the thickness from the surface of the total thickness of the fired layer 3 is 0% by mass or more and 40% by mass or less, and The fired layer 3 containing 90% by mass or more and 100% by mass or less of the Au-Pt alloy or Au-Pd alloy as a main component in the range of 1/10 or less from the interface with the base material 2 in the total thickness of the fired layer 3. It is formed.
When the first coating material 4 contains Pt or Pd powder as a main component and the second coating material 5 contains Ag powder as a main component, 1/10 of the total thickness of the fired layer 3 from the surface to the thickness. The concentration of Pt or Pd in the following range is 0% by mass or more and 40% by mass or less, and 90% by mass or more in the range of 1/10 or less from the interface with the base material 2 in the total thickness of the fired layer 3. A fired layer 3 containing 100% by mass or less of Au-Pt alloy or Au-Pd alloy as a main component is formed.
When the laser beam L is applied to the first coating layer 4'and the second coating layer 5', the vicinity of the interface between the first coating layer 4'and the second coating layer 5'is alloyed. Therefore, in the fired layer 3, the concentration of Pt or Pd gradually increases from the surface of the fired layer 3 to the interface with the base material 2.

このようにして基材2の表面の一部に焼成層3が形成された銅端子材1に対してプレス加工等を施し、接点として用いられる部分に焼成層3が配置される端子を形成する。
この端子は、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲においてPt又はPdの濃度が90質量%以上100質量%以下であるので、基材2からの銅の焼成層3への拡散を有効に防止することができ、優れた耐熱性を維持することができる。例えば、200℃の温度に長時間(〜1000時間)晒しても、基材2の銅が焼成層3に拡散することを抑制できる。
また、焼成層3の全膜厚のうち表面から1/10以下の範囲においてAu又はAgの濃度が高いので、接点箇所の接触抵抗を低減させることができ、接点信頼性を高めることができる。このため、本実施形態では、銅又は銅合金からなる基材2の表面に下地層及び貴金属層の2層を形成する従来の構成に比べて、基材2の表面の一部に焼成層3を1層形成するだけの簡単な構成で、銅成分の拡散を抑制し、かつ接点信頼性を高めることができる。
また、めっき法を用いることなく貴金属を含む被膜を形成できることから、めっき法を用いて下地層や貴金属層を形成する際に生じる廃液を処理する必要がないため、環境負荷を低減できる。
In this way, the copper terminal material 1 having the fired layer 3 formed on a part of the surface of the base material 2 is press-processed to form a terminal on which the fired layer 3 is arranged at a portion used as a contact. ..
In this terminal, the concentration of Pt or Pd is 90% by mass or more and 100% by mass or less in the range of 1/10 or less from the interface with the base material 2 in the total thickness of the fired layer 3, so that the terminal is from the base material 2. It is possible to effectively prevent the diffusion of copper into the fired layer 3, and it is possible to maintain excellent heat resistance. For example, even if it is exposed to a temperature of 200 ° C. for a long time (up to 1000 hours), it is possible to prevent the copper of the base material 2 from diffusing into the fired layer 3.
Further, since the concentration of Au or Ag is high in the range of 1/10 or less from the surface of the total film thickness of the fired layer 3, the contact resistance at the contact point can be reduced and the contact reliability can be improved. Therefore, in the present embodiment, the fired layer 3 is partially formed on the surface of the base material 2 as compared with the conventional structure in which two layers of the base layer and the noble metal layer are formed on the surface of the base material 2 made of copper or a copper alloy. With a simple structure of forming only one layer, it is possible to suppress the diffusion of the copper component and improve the contact reliability.
Further, since the film containing the noble metal can be formed without using the plating method, it is not necessary to treat the waste liquid generated when the underlayer or the noble metal layer is formed by the plating method, so that the environmental load can be reduced.

また、接点箇所となる焼成層3がその使用により摩耗するが、Pt又はPdの濃度が表面から基材2との界面にかけて漸次増加していることから、摩耗による表面の組成の変化が小さいので、接触抵抗が急激に増加して、接点信頼性が低下する等の不具合が生じることを抑制できる。
さらに、焼成層3の空隙率が20%以下であるので、焼成層3の強度を高めることができる。また、焼成層3の膜厚が0.5μm以上3.0μm以下であるため、基材2からのCuの拡散を確実に抑制し、かつ、空隙率の上昇を抑制できるので、焼成層3の接点信頼性を高めることができる。
Further, the fired layer 3 as the contact point is worn by its use, but since the concentration of Pt or Pd gradually increases from the surface to the interface with the base material 2, the change in the surface composition due to the wear is small. It is possible to prevent problems such as a sharp increase in contact resistance and a decrease in contact reliability.
Further, since the porosity of the fired layer 3 is 20% or less, the strength of the fired layer 3 can be increased. Further, since the film thickness of the fired layer 3 is 0.5 μm or more and 3.0 μm or less, the diffusion of Cu from the base material 2 can be surely suppressed and the increase in the porosity can be suppressed. Contact reliability can be improved.

その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 In addition, the detailed configuration is not limited to the configuration of the embodiment, and various changes can be made without departing from the spirit of the present invention.

基材として、表1に示すCDA(Copper Development Association)合金番号の厚さ0.25mmの材料を使用した。前処理として、電解脱脂(NaOH水溶液60g/リットルを用いて、液温60℃、電流密度2.5ASD(A/dm2)、脱脂時間60秒間)及び酸洗(硫酸10%水溶液、液温25℃、浸漬時間30秒間)を行った。 As the base material, a material having a thickness of 0.25 mm having a CDA (Copper Development Association) alloy number shown in Table 1 was used. As pretreatment, electrolytic degreasing (using 60 g / liter of NaOH aqueous solution, liquid temperature 60 ° C., current density 2.5 ASD (A / dm2), degreasing time 60 seconds) and pickling (10% aqueous sulfuric acid solution, liquid temperature 25 ° C.) , Immersion time 30 seconds).

また、焼成層は、基材上に塗布材を塗布し、この塗布材にレーザ光を照射することにより形成した。この塗布材に含まれる貴金属の成分比率及び膜厚は、表1に示す通りである。
レーザ光の照射は、焼成層が形成される箇所の所定のエリアに対して、レーザ光の波長が1070nm、ペースト表面における単位面積当たりの照射エネルギーが1.5×10J/cmとなるように照射を行った。尚、焦点サイズよりも焼成層が形成されるエリアが大きい場合は、上記レーザ光をスキャンすることによりエリア全体に照射した。
Further, the fired layer was formed by applying a coating material on the base material and irradiating the coating material with a laser beam. The composition ratio and film thickness of the noble metal contained in this coating material are as shown in Table 1.
In the irradiation of the laser light, the wavelength of the laser light is 1070 nm and the irradiation energy per unit area on the paste surface is 1.5 × 10 3 J / cm 2 with respect to a predetermined area where the fired layer is formed. Irradiation was performed as follows. When the area where the fired layer was formed was larger than the focal size, the entire area was irradiated by scanning the laser beam.

(焼成層の空隙率)
焼成層の空隙率は、焼成層が形成された端子材の断面をクロスセクションポリッシャ加工により断面を研磨したサンプルを、電子顕微鏡(SEM)を用いて、倍率が5000倍での観察により得られた画像より、焼成層中の空隙の総面積を、空隙を含む焼成層の面積で除した値の百分率を空隙率とした。
(Porosity of fired layer)
The porosity of the fired layer was obtained by observing a sample obtained by polishing the cross section of the terminal material on which the fired layer was formed by cross-section polisher processing using an electron microscope (SEM) at a magnification of 5000 times. From the image, the porosity was defined as the percentage of the value obtained by dividing the total area of the voids in the fired layer by the area of the fired layer including the voids.

(膜厚及び膜厚バラつき)
焼成層の膜厚及び膜厚バラつきは、焼成層が形成された端子材の断面をクロスセクションポリッシャ加工により断面を研磨したサンプルを、電子顕微鏡(SEM)を用いて、倍率が1000倍での観察により得られた画像より、焼成層の膜厚を任意に5か所測定し、5か所の膜厚の平均値を膜厚とし、標準偏差の値を膜厚バラつきとした。
(Film thickness and film thickness variation)
For the film thickness and film thickness variation of the fired layer, observe the sample obtained by polishing the cross section of the terminal material on which the fired layer was formed by cross-section polisher processing at a magnification of 1000 times using an electron microscope (SEM). The film thickness of the fired layer was arbitrarily measured at 5 points, the average value of the film thicknesses at the 5 points was taken as the film thickness, and the standard deviation value was taken as the film thickness variation.

(焼成層の合金濃度の評価方法)
焼成層の合金の成分比率(濃度傾斜)は、焼成層が形成されたCu又はCu合金からなる端子材の断面をクロスセクションポリッシャ加工により断面研磨したサンプルを、電子線マイクロアナライザ(EPMA)を用いて、倍率が1000倍での観察により、Cu又はCu合金材界面と垂直方向に、各合金成分に関してライン分析して得られたプロファイルより、焼成層の全膜厚のうち該焼成層の表面から1/10以下の範囲のPt又はPdの濃度の平均値、及び焼成層の全膜厚のうち該焼成層の基材との界面から1/10以下の範囲のPt又はPdの濃度の平均値を求めた。
(Evaluation method of alloy concentration of fired layer)
For the composition ratio (concentration gradient) of the alloy of the fired layer, a sample obtained by polishing the cross section of the terminal material made of Cu or Cu alloy on which the fired layer was formed by cross-section polisher processing was used with an electron beam microanalyzer (EPMA). From the profile obtained by line analysis of each alloy component in the direction perpendicular to the Cu or Cu alloy material interface by observation at a magnification of 1000 times, from the surface of the fired layer among the total thickness of the fired layer. The average value of the concentration of Pt or Pd in the range of 1/10 or less, and the average value of the concentration of Pt or Pd in the range of 1/10 or less from the interface of the fired layer with the substrate in the total thickness of the fired layer. Asked.

(初期抵抗及び接触抵抗変化率の評価方法)
最表面の焼成層の接触抵抗は、JCBA−T323に準拠し、4端子接触抵抗試験機を用いて、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。まず、焼成層形成直後の初期の接触抵抗を測定した後、熱処理として、恒温槽を用いて、大気雰囲気中、200℃、1000時間保持後、再度接触抵抗を測定した。
初期抵抗値については、5mΩ未満のものを「〇」とし、5mΩ以上10mΩ以下のものを「△」とし、10mΩより大きいものを「×」とした。
また、接触抵抗変化率については、初期の測定から200℃、1000時間保持後の測定値の変化率が、10%未満のものを「◎」とし、10%以上、20%未満のものを「○」とし、20%以上、25%未満のものを「△」とし、25%以上のものを「×」とした。
これらの結果を表1に示す。
(Evaluation method of initial resistance and contact resistance change rate)
The contact resistance of the fired layer on the outermost surface was measured in accordance with JCBA-T323 using a 4-terminal contact resistance tester in a sliding manner (1 mm) at a load of 0.98 N. First, the initial contact resistance immediately after the formation of the fired layer was measured, and then the contact resistance was measured again after holding at 200 ° C. for 1000 hours in an air atmosphere using a constant temperature bath as a heat treatment.
Regarding the initial resistance value, those with less than 5 mΩ were designated as “◯”, those with 5 mΩ or more and 10 mΩ or less were designated as “Δ”, and those larger than 10 mΩ were designated as “×”.
Regarding the rate of change in contact resistance, the rate of change in the measured value after holding at 200 ° C for 1000 hours from the initial measurement is "◎", and the rate of change of 10% or more and less than 20% is "◎". ◯ ”, those with 20% or more and less than 25% were marked with“ Δ ”, and those with 25% or more were marked with“ × ”.
These results are shown in Table 1.

Figure 0006972978
Figure 0006972978

表1の結果からわかるように、Cu又はCu合金からなる基材の表面の一部に、Au−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金を主成分とする焼成層において、全膜厚のうち表面から1/10以下の範囲においてPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、全膜厚のうち基材との界面から1/10以下の範囲において90質量%以上100質量%以下である焼成層は、初期抵抗値及び接触抵抗変化率のいずれもが全て「△」以上であり、接点信頼性が高いことがわかった。特に、膜厚が0.5μm以上3.0μm以下の実施例では、初期抵抗及び接触抵抗変化率のいずれもが「〇」以上であり、接点信頼性が特に高いことがわかった。 As can be seen from the results in Table 1, a fired layer containing Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy as main components on a part of the surface of the base material made of Cu or Cu alloy. The concentration of Pt or Pd is 0% by mass or more and 40% by mass or less in the range of 1/10 or less from the surface of the total thickness, and 1/10 or less of the total thickness from the interface with the substrate. In the range of 90% by mass or more and 100% by mass or less, both the initial resistance value and the contact resistance change rate were all "Δ" or more, and it was found that the contact reliability was high. In particular, in the examples having a film thickness of 0.5 μm or more and 3.0 μm or less, both the initial resistance and the contact resistance change rate were “◯” or more, and it was found that the contact reliability was particularly high.

1 銅端子材
2 基材
3 焼成層
4 第1塗布材
4´ 第1塗布層
5 第2塗布材
5´ 第2塗布層
L レーザ光
1 Copper terminal material 2 Base material 3 Firing layer 4 First coating material 4'First coating layer 5 Second coating material 5'Second coating layer L Laser light

Claims (2)

Cu又はCu合金からなる基材の表面の一部にPt及びPdの少なくとも一種の粉末を主成分として含む第1塗布材を塗布して乾燥させた第1塗布層を形成して、前記第1塗布層の上にAu及びAgの少なくとも一種の粉末を主成分として含む第2塗布材を塗布して乾燥させた第2塗布層を形成し、これら前記第1塗布層及び前記第2塗布層にレーザ光を照射することにより、前記第1塗布層及び前記第2塗布層を焼成して焼成層を形成しており、
前記焼成層は、前記焼成層中のPt又はPdの濃度が前記焼成層の全膜厚のうち前記焼成層の表面から厚さの1/10以下の範囲において0質量%以上40質量%以下であり、かつ、前記Pt又はPdの濃度が前記焼成層の表面から前記基材との界面にかけて漸次増加し、前記焼成層の全膜厚のうち前記基材との界面から1/10以下の範囲において90質量%以上100質量%以下であり、前記焼成層の空隙率が20%以下、前記焼成層の膜厚が0.5μm以上3.0μm以下であることを特徴とする銅端子材の製造方法。
A first coating material containing at least one powder of Pt and Pd as a main component was applied to a part of the surface of a base material made of Cu or a Cu alloy to form a first coating layer and dried to form the first coating layer. A second coating material containing at least one powder of Au and Ag as a main component was applied onto the coating layer and dried to form a second coating layer, which was applied to the first coating layer and the second coating layer. By irradiating the laser beam, the first coating layer and the second coating layer are fired to form a fired layer .
In the fired layer, the concentration of Pt or Pd in the fired layer is 0% by mass or more and 40% by mass or less in the range of 1/10 or less of the thickness from the surface of the fired layer in the total thickness of the fired layer. The concentration of Pt or Pd gradually increases from the surface of the fired layer to the interface with the base material, and the total thickness of the fired layer is in the range of 1/10 or less from the interface with the base material. 90% by mass or more and 100% by mass or less, the void ratio of the fired layer is 20% or less, and the film thickness of the fired layer is 0.5 μm or more and 3.0 μm or less. Method.
前記レーザ光は、固体レーザ、ファイバーレーザ、半導体レーザもしくはガスレーザであり、波長が1070nm、前記第2塗布材表面における単位面積当たりの照射エネルギーが1.5×10The laser beam is a solid-state laser, a fiber laser, a semiconductor laser or a gas laser, has a wavelength of 1070 nm, and has an irradiation energy of 1.5 × 10 per unit area on the surface of the second coating material. 3 J/cmJ / cm 2 となるように照射されることを特徴とする請求項1に記載の銅端子材の製造方法。The method for manufacturing a copper terminal material according to claim 1, wherein the copper terminal material is irradiated so as to be.
JP2017229794A 2017-11-30 2017-11-30 Manufacturing method of copper terminal material Active JP6972978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229794A JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229794A JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Publications (2)

Publication Number Publication Date
JP2019099849A JP2019099849A (en) 2019-06-24
JP6972978B2 true JP6972978B2 (en) 2021-11-24

Family

ID=66976193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229794A Active JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Country Status (1)

Country Link
JP (1) JP6972978B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207193A (en) * 1987-02-23 1988-08-26 トヨタ自動車株式会社 Hybrid ic
JPH04167507A (en) * 1990-10-31 1992-06-15 Nec Corp Multilayer ceramic capacitor and manufacture thereof
JPH0528868A (en) * 1991-07-22 1993-02-05 Daido Steel Co Ltd Electronic contact member and band material for it
JPH0917262A (en) * 1995-06-30 1997-01-17 Copal Electron Co Ltd Electric contact
JP2002198624A (en) * 2000-12-27 2002-07-12 Kyocera Corp Circuit board
JP2006286338A (en) * 2005-03-31 2006-10-19 Mitsuboshi Belting Ltd Manufacturing method of silver-palladium alloy thin film
JP2011192947A (en) * 2010-03-17 2011-09-29 Hitachi Cable Ltd Manufacturing method for sintered layer, and structure
JP5914693B2 (en) * 2012-11-19 2016-05-11 田中貴金属工業株式会社 Ag-containing layer and sliding contact material having Ag-containing layer
JP5760060B2 (en) * 2013-09-27 2015-08-05 株式会社茨城技研 Metal film forming method, metal film forming product manufacturing method and manufacturing apparatus
JP2017082296A (en) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 Method for forming metal film
JP6399494B2 (en) * 2015-11-20 2018-10-03 株式会社 M&M研究所 Method for producing metal film-formed product

Also Published As

Publication number Publication date
JP2019099849A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6495172B2 (en) Metal plating coated stainless steel and method for producing metal plating coated stainless steel
DE112007000680B4 (en) Noble metal plating of titanium components
US20170033486A1 (en) Terminal pair and connector pair including terminal pair
DE102015100665A1 (en) A method of forming a copper layer on a semiconductor body using a printing process
JP2014510408A (en) Sheet assembly with aluminum-based electrode
KR20100108266A (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
EP2690196A1 (en) Method for processing thin cu plate
JP2017155166A (en) Joining composition
KR102156016B1 (en) Conductive material for connecting parts
JP6972978B2 (en) Manufacturing method of copper terminal material
JP7024358B2 (en) Manufacturing method of copper terminal material
JP5665749B2 (en) Post-treatment composition for increasing the corrosion resistance of a metal or metal alloy surface
JP5966874B2 (en) Structure, electronic component including the same, and printed wiring board
JP6347385B2 (en) Copper material joining method
JP6399494B2 (en) Method for producing metal film-formed product
JP6443777B1 (en) Method for producing metal film-formed product
JP4611419B2 (en) Copper alloy tin plating strip with excellent solder wettability and insertability
Yamaguchi et al. On-demand infrared laser sintering of gold nanoparticle paste for electrical contacts
JP2020149770A (en) Metal plating terminal and manufacturing method thereof
JP6825401B2 (en) Manufacturing method of copper terminal material with precious metal layer
JP6942479B2 (en) Copper terminal material and its manufacturing method
JP6794863B2 (en) Copper terminal material and its manufacturing method
JP6809265B2 (en) Manufacturing method of copper terminal material with precious metal layer
JP7101756B2 (en) Plating film and plating coating member
JP2006124812A (en) Ceramic substrate and plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250