JP6972870B2 - How to design a shaft during an earthquake - Google Patents

How to design a shaft during an earthquake Download PDF

Info

Publication number
JP6972870B2
JP6972870B2 JP2017193786A JP2017193786A JP6972870B2 JP 6972870 B2 JP6972870 B2 JP 6972870B2 JP 2017193786 A JP2017193786 A JP 2017193786A JP 2017193786 A JP2017193786 A JP 2017193786A JP 6972870 B2 JP6972870 B2 JP 6972870B2
Authority
JP
Japan
Prior art keywords
shaft
shaft body
defect
shear
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017193786A
Other languages
Japanese (ja)
Other versions
JP2019065633A (en
Inventor
修一 山本
清 佐藤
賢一 久末
喬博 秀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017193786A priority Critical patent/JP6972870B2/en
Publication of JP2019065633A publication Critical patent/JP2019065633A/en
Application granted granted Critical
Publication of JP6972870B2 publication Critical patent/JP6972870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法に関する。 The present invention relates to a method for designing a shaft at the time of an earthquake for constructing a shaft having a defect in the main body of the shaft in the ground.

従来より、地中構造物である円筒状の立坑を構築するべく耐震設計を行う際には、例えば特許文献1に記載されているように立坑本体を2次元でモデル化し、応答変位法や2次元FEM解析により地震時の応答を確認した後に耐震性能を照査し、立坑本体に生じる断面力等の応答値が立坑の耐力等の許容値以下となるように、部材を決定する方法が用いられている。 Conventionally, when performing seismic design to construct a cylindrical shaft that is an underground structure, for example, as described in Patent Document 1, the shaft body is modeled in two dimensions, and the response displacement method or 2 A method is used in which the seismic performance is checked after confirming the response during an earthquake by two-dimensional FEM analysis, and the members are determined so that the response value such as the cross-sectional force generated in the shaft body is less than the allowable value such as the bearing capacity of the shaft. ing.

特開2008−133595号公報Japanese Unexamined Patent Publication No. 2008-133595

しかし、立坑本体に欠損部を有する場合には、耐震性能を照査するための照査方法が確立されていない。現状では立坑本体の応答を確認する際、欠損部を有する部位(立坑本体を平面視断面からみて、欠損部を含む立坑本体の軸心から放射方向45度の範囲)を外力が伝達されない部位とみなし、これらを除外した欠損部が存在しない部位のみで応答値を算出する。そして、この応答値を上回るよう、欠損部を有する部位のせん断耐力を決定する。 However, when the shaft body has a defect, a verification method for verifying seismic performance has not been established. At present, when confirming the response of the shaft body, the part having the defect (the range of 45 degrees in the radial direction from the axis of the shaft body including the defect when the shaft body is viewed from the plan view) is regarded as the part where the external force is not transmitted. Deemed, the response value is calculated only in the part where there is no defective part excluding these. Then, the shear strength of the portion having the defect is determined so as to exceed this response value.

このため、立坑本体における欠損部を有する部位に対して合理的な設計を行うことが難しく、欠損部周囲の補強構造は、過剰に部材厚が厚くなったり、せん断補強筋が過密配筋となるなど、経済性に劣る構造となっていた。 For this reason, it is difficult to make a rational design for the part of the shaft body that has a defect, and the reinforcement structure around the defect has an excessively thick member or the shear reinforcement becomes overcrowded. The structure was inferior in economic efficiency.

また、立坑本体に対して欠損部を同一深度に対向して設ける場合、上述したように、欠損部を有する部位は外力が伝達されない部材とみなして除外するため、モデル化するとせん断力に抵抗する部位が存在しない状態となる。このため、立坑を貫通するようにトンネルを設置するべく、立坑に対してトンネルとの接合部となる開口を同一深度に対向して設けようとすると、現行の耐震設計方法では対応することができず、立坑に接合するトンネルについて深度を変えて設置するなどの対策を取らざるを得ない。 Further, when the defective portion is provided facing the same depth with respect to the shaft main body, as described above, the portion having the defective portion is regarded as a member to which the external force is not transmitted and excluded. Therefore, when modeled, it resists the shearing force. The part does not exist. For this reason, in order to install a tunnel so as to penetrate the shaft, if an opening that is a joint with the tunnel is provided facing the shaft at the same depth, the current seismic design method can cope with it. Instead, we have no choice but to take measures such as installing different depths for the tunnels that join the shaft.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、地盤中に構築予定の立坑本体に欠損部を有する立坑について合理的に耐震設計を行うことが可能な、立坑の地震時設計方法を提供することである。 The present invention has been made in view of the above problems, and a main object thereof is to provide a shaft having a defect in the main body of the shaft to be constructed in the ground, which can be rationally seismically designed. It is to provide a design method at the time of an earthquake.

かかる目的を達成するため、本発明の立坑の地震時設計方法は、立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法であって、前記立坑本体の鉛直方向について、等価な剛性を有する鉛直方向のはりとして二次元でモデル化し、地震時の応答値を算定する工程と、前記立坑本体のせん断耐力を推定する工程と、推定した該せん断耐力と前記応答値とを比較して、耐震性能を評価する工程と、を有し、前記立坑本体のせん断耐力は、該立坑本体を投影した立面図上の、前記立坑本体の短辺と前記欠損部における前記短辺に平行な方向の最大長さと、に基づいて開口率を算定し、該開口率に対応してあらかじめ設定された低減率と、前記立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と、に基づいて推定することを特徴とする。 In order to achieve such an object, the shaft earthquake design method of the present invention is a shaft earthquake design method for constructing a shaft having a defect in the shaft body in the ground, and is vertical of the shaft body. The direction is modeled in two dimensions as a vertical beam with equivalent rigidity, and the step of calculating the response value at the time of an earthquake, the step of estimating the shear strength of the shaft body, and the estimated shear strength and the response. It has a step of evaluating the seismic performance by comparing with the value, and the shear strength of the shaft body is measured at the short side of the shaft body and the defect portion on the elevation view on which the shaft body is projected. The opening ratio is calculated based on the maximum length in the direction parallel to the short side, the reduction rate set in advance corresponding to the opening ratio, and the entire plan view cross section with no defect in the shaft body. It is characterized by estimating based on the shear strength of.

また、本発明の立坑の地震時設計方法は、前記低減率が、前記立坑本体に前記欠損部の無い状態に対する前記欠損部を有する状態のせん断耐力の比率を耐力比とし、該耐力比を前記開口率を変えて複数算定しておき、該開口率と前記耐力比との関係から設定されることを特徴とする。 Further, in the method for designing a shaft at the time of an earthquake of the present invention, the reduction ratio is the ratio of the proof stress of the state where the shaft has the defect to the state where the shaft has no defect, and the resistance ratio is the ratio. It is characterized in that a plurality of calculations are made by changing the aperture ratio and set from the relationship between the aperture ratio and the proof stress ratio.

上記の立坑の地震時設計方法によれば、立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と開口率に対応してあらかじめ設定された低減率とに基づいて、欠損部を有する立坑本体のせん断耐力を推定する。 According to the above-mentioned method for designing a shaft at the time of an earthquake, the shaft has a defect based on the shear strength of the entire cross section in a plan view with no defect and a preset reduction ratio corresponding to the aperture ratio. Estimate the shear strength of the shaft body.

これにより、欠損部を有する立坑本体に対して、立坑本体の外径に対する欠損部の開口径に応じた適切なせん断耐力を設定できるため、立坑について合理的な設計を行うことが可能となる。 As a result, it is possible to set an appropriate shear strength according to the opening diameter of the defective portion with respect to the outer diameter of the shaft main body for the shaft main body having the defective portion, so that the shaft can be rationally designed.

また、欠損部が1つのみ存在する場合だけでなく2つ存在する際にも、立坑本体にせん断耐力を確保できるため、いわゆる両側開口といった、立坑本体に設けようとする2つの欠損部を同一深度に対向して配置したい場合であっても、立坑本体の耐震性能を評価することが可能となる。このため、立坑と接合する予定のトンネルについて、線形の選択肢を広げることが可能となる。 Further, since the shear strength can be secured in the shaft body not only when there is only one defect but also when there are two defects, the two defects to be provided in the shaft body, such as so-called double-sided openings, are the same. Even when it is desired to arrange the shaft facing the depth, it is possible to evaluate the seismic performance of the shaft body. This makes it possible to expand the linear options for tunnels that will be joined to the shaft.

本発明によれば、地盤中に構築予定の立坑本体に欠損部を有する立坑について、立坑本体の外径に対する欠損部の開口径に応じた、適切なせん断耐力を設定して、合理的な設計を行うことが可能となる。 According to the present invention, for a shaft having a defect in the shaft body to be constructed in the ground, an appropriate shear strength is set according to the opening diameter of the defect with respect to the outer diameter of the shaft body, and a rational design is made. Can be done.

本発明の実施の形態における立坑の地震時設計方法のフロー図である。It is a flow chart of the design method at the time of an earthquake of a shaft in embodiment of this invention. 本発明の実施の形態における立坑本体と鉛直方向はりモデルを示す図である。It is a figure which shows the shaft body and the vertical beam model in embodiment of this invention. 本発明の実施の形態における立坑本体の3次元の解析モデルを示す図である。It is a figure which shows the 3D analysis model of the shaft body in embodiment of this invention. 本発明の実施の形態における立坑本体の3次元非線形解析を実施する際の検討ケースを示す図である。It is a figure which shows the examination case at the time of carrying out the 3D nonlinear analysis of the shaft body in embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際の最大荷重時におけるせん断応力分布を示す図である。It is a figure which shows the shear stress distribution at the time of the maximum load when the shearing force is applied to the shaft body in embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際のコンクリートの損傷状況を示す図である。It is a figure which shows the damage state of the concrete when the shearing force is applied to the shaft body in the embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際のせん断補強筋の降伏状況を示す図である。It is a figure which shows the yield state of the shear reinforcing bar when the shearing force is applied to the shaft body in embodiment of this invention. 本発明の実施の形態における立坑本体の外径に対する欠損部の大きさを4段階に変えた場合の解析モデルを示す図である。It is a figure which shows the analysis model at the time of changing the size of the defect part with respect to the outer diameter of the shaft body in 4 steps in embodiment of this invention. 本発明の実施の形態における立坑本体の3次元非線形解析を検討ケース1(基準ケース)で実施した際の開口率と耐力比の関係を示す図である。It is a figure which shows the relationship between the aperture ratio and the proof stress ratio when the 3D nonlinear analysis of the shaft body in the embodiment of this invention is carried out in the study case 1 (reference case). 本発明の実施の形態における立坑本体の3次元非線形解析を検討ケース1〜5で実施した際の開口率と耐力比の関係を示す図である。It is a figure which shows the relationship between the aperture ratio and the proof stress ratio when the 3D nonlinear analysis of the shaft body in the embodiment of this invention was carried out in study cases 1-5.

本発明の立坑の地震時設計方法は、立坑本体に欠損部を有する立坑を地盤中に構築しようとする際に好適な設計方法である。その手順は、従来の設計方法と同様に、立坑本体の鉛直方向について、構造解析を行って耐震性能を照査した後に、立坑本体の水平方向について、構造解析を実施し耐震性能を評価するものであるが、本発明は、耐震性能の照査方法に特徴を有する方法である。 The method for designing a shaft at the time of an earthquake of the present invention is a suitable design method when attempting to construct a shaft having a defect in the shaft body in the ground. The procedure is the same as the conventional design method, in which structural analysis is performed in the vertical direction of the shaft body to check the seismic performance, and then structural analysis is performed in the horizontal direction of the shaft body to evaluate the seismic performance. However, the present invention is a method characterized by a method for verifying seismic performance.

以下に、図1で示すフロー図の流れに従って、立坑の地震時設計方法を図2〜図9を参照しつつ詳述する。 Hereinafter, according to the flow of the flow chart shown in FIG. 1, the method of designing the shaft at the time of an earthquake will be described in detail with reference to FIGS. 2 to 9.

図2(a)で示すように、立坑1は、断面円形の筒状体よりなる立坑本体2を地盤中の鉛直方向に延在するよう構築する鉄筋コンクリート造の地下構造物であり、シールドトンネルの発進もしくは到達立坑、地下駅舎の躯体、洞道に連絡する立坑等に使用される。 As shown in FIG. 2A, the shaft 1 is a reinforced concrete underground structure constructed so as to extend the shaft body 2 having a cylindrical body having a circular cross section in the vertical direction in the ground, and is a shield tunnel. It is used for starting or reaching shafts, underground station building structures, shafts connecting to tunnels, etc.

また、立坑本体2の下端部近傍には、2つの欠損部3が同一深度で対向するようにして設けられている。これら欠損部3は円形孔状の閉合した開口に形成されており、トンネル、下水管、電力線や通信線の洞道等、地盤中で横方向に延在する線状地下構造物との接合部として機能する。 Further, in the vicinity of the lower end portion of the shaft main body 2, two defective portions 3 are provided so as to face each other at the same depth. These defects 3 are formed in a circular hole-shaped closed opening, and are joints with linear underground structures extending laterally in the ground, such as tunnels, sewage pipes, power line and communication line caverns, etc. Functions as.

<STEP1:立坑本体の鉛直方向の構造解析>
上述した立坑1の立坑本体2について、鉛直方向の構造解析を実施するにあたっては、まず、立坑本体2の設計条件(例えば、立坑本体2の部材厚、配筋、コンクリートの圧縮強度、欠損部3の大きさや位置等)を設定する。
<STEP 1: Vertical structural analysis of the shaft body>
In carrying out the structural analysis of the shaft body 2 of the shaft 1 described above in the vertical direction, first, the design conditions of the shaft body 2 (for example, the member thickness of the shaft body 2, the reinforcing bar arrangement, the compressive strength of the concrete, and the defective portion 3) are first performed. Set the size, position, etc. of

次に、立坑本体2を二次元でモデル化し、立坑本体2に欠損部3が無いものと仮定して、応答変位法や二次元FEM解析等により応答値、具体的には地震時の変位および断面力(曲げモーメント、せん断)を算出する。 Next, the shaft body 2 is modeled in two dimensions, and assuming that the shaft body 2 has no defect portion 3, the response value, specifically, the displacement at the time of an earthquake and the displacement by the response displacement method, the two-dimensional FEM analysis, etc. Calculate the section force (bending moment, shear).

本実施の形態では、立坑本体2を二次元でモデル化するにあたり、図2(b)で示すように、全体が等価な剛性を有する複数のはり要素を鉛直方向に連続させたはりとしてモデル化している。このときに設定する剛性として、一般には単位幅あたりの立坑本体2の壁により求まる剛性を採用するが、本実施の形態では、図2(c)で示すような、立坑本体2の平面視断面全体の剛性に設定する。 In the present embodiment, when modeling the shaft body 2 in two dimensions, as shown in FIG. 2 (b), a plurality of beam elements having equivalent rigidity as a whole are modeled as a beam in which a plurality of beam elements are continuously connected in the vertical direction. ing. As the rigidity to be set at this time, the rigidity obtained by the wall of the shaft body 2 per unit width is generally adopted, but in the present embodiment, the plan view cross section of the shaft body 2 as shown in FIG. 2 (c) is adopted. Set to the overall rigidity.

なお、図2(b)(c)で示すBB断面のような、欠損部3が位置する高さ範囲については、AA断面のような欠損部3が存在しない平面視断面全体の剛性を、BB断面の剛性に設定し、立坑本体2のモデルに欠損部3が無いものと仮定している。 Regarding the height range in which the defective portion 3 is located, such as the BB cross section shown in FIGS. 2 (b) and 2 (c), the rigidity of the entire plan view cross section in which the defective portion 3 does not exist as in the AA cross section is determined by BB. The rigidity of the cross section is set, and it is assumed that the model of the shaft body 2 has no defective portion 3.

このような鉛直方向はりモデルを用いて算定された応答値は、欠損部3の無い状態の立坑本体2における平面視断面全体の応答値となるが、後述する<STEP3>にて耐震性能照査を行う際に用いる許容値については、欠損部3の影響を考慮した立坑本体2における平面視断面全体の許容値を用いる。 The response value calculated using such a vertical beam model is the response value of the entire vertical cross section of the shaft body 2 without the defect portion 3, but the seismic performance is checked in <STEP 3> described later. As the permissible value used in this case, the permissible value of the entire plan view cross section of the shaft main body 2 in consideration of the influence of the defective portion 3 is used.

そこで、<STEP2>では、立坑本体2の許容値のなかでも平面視断面全体のせん断耐力Vd’の算定方法を説明する。 Therefore, in <STEP2>, a method of calculating the shear strength Vd'of the entire cross section in a plan view will be described among the allowable values of the shaft body 2.

<STEP2:立坑本体のせん断耐力Vd’の推定>
欠損部3を有する立坑本体2のせん断耐力Vd’を推定する際には、まず、図2(d)で示すように、立坑本体2を鉛直方向に投影した立面図から、立坑本体2の短辺r0とこの短辺r1に平行な方向の欠損部3の最大長さr1とを算出する。これら立坑本体2の短辺r0と欠損部3の最大長さr1とに基づいて、数式(1)から開口率Rを算定する。
R=r1/r0 ・・・・(1)
0:立坑本体2における立面図上の短辺
1:短辺r0と平行な方向における欠損部3の最大長さ
<STEP2: Estimating the shear strength Vd'of the shaft body>
When estimating the shear strength Vd'of the shaft body 2 having the defective portion 3, first, as shown in FIG. 2 (d), the shaft body 2 is projected from the elevation in the vertical direction. The short side r 0 and the maximum length r 1 of the defective portion 3 in the direction parallel to the short side r 1 are calculated. The aperture ratio R is calculated from the mathematical formula (1) based on the short side r 0 of the shaft body 2 and the maximum length r 1 of the defective portion 3.
R = r 1 / r 0 ... (1)
r 0 : Short side on the elevation of the shaft body 2
r 1 : Maximum length of defect 3 in the direction parallel to the short side r 0

なお、本実施の形態では、立坑本体2が断面円形の筒状体であるとともに、欠損部3が円形であるため、立坑本体2の外径が立面図上における立坑本体2の短辺r0に相当し、欠損部3の開口径が欠損部3の最大長さr1に相当する。また、数式(1)は、立坑本体2に欠損部3が2つ存在する場合であり、欠損部3が1つの場合には、上記数式(1)の開口率Rを2で除すればよい。 In the present embodiment, since the shaft body 2 is a tubular body having a circular cross section and the defect portion 3 is circular, the outer diameter of the shaft body 2 is the short side r of the shaft body 2 on the elevation view. It corresponds to 0, and the opening diameter of the defective portion 3 corresponds to the maximum length r 1 of the defective portion 3. Further, the mathematical formula (1) is a case where two defective portions 3 are present in the shaft main body 2, and when there is one defective portion 3, the aperture ratio R of the above mathematical formula (1) may be divided by 2. ..

次に、立坑本体2に欠損部3が無い状態の平面視断面全体のせん断耐力Vdを算定する(数式(2)を参照)。
Vd=Vc+Vs ・・・・(2)
Vd:欠損部3の無い立坑本体2のせん断耐力
Vc:コンクリートの受け持つせん断力
Vs:せん断補強筋の受け持つせん断力
Next, the shear strength Vd of the entire cross section in a plan view with no defect 3 in the shaft body 2 is calculated (see mathematical formula (2)).
Vd = Vc + Vs ... (2)
Vd: Shear strength of the shaft body 2 without the defect 3.
Vc: Shear force of concrete
Vs: Shear force of the shear reinforcement

そのうえで、欠損部3が無い状態の平面視断面全体のせん断耐力Vdに、開口率Rに対応してあらかじめ設定された低減率Dを掛け合わせる。こうして算定された算定値を、欠損部3を有する立坑本体2のせん断耐力Vd’として推定する(数式(3)を参照)。
Vd’=D×Vd ・・・・(3)
Vd’:欠損部を有する立坑本体のせん断耐力
D :開口率Rに対応して設定された低減率
Then, the shear strength Vd of the entire cross section in a plan view without the defective portion 3 is multiplied by the reduction ratio D set in advance corresponding to the aperture ratio R. The calculated value thus calculated is estimated as the shear strength Vd'of the shaft body 2 having the defective portion 3 (see mathematical formula (3)).
Vd'= D × Vd ・ ・ ・ ・ (3)
Vd': Shear strength of the shaft body with a defect
D: Reduction rate set corresponding to the aperture ratio R

なお、低減率Dは、開口率Rに対応して設定される数量であり、欠損部3が無い状態の平面視断面全体のせん断耐力Vdに対する欠損部3を有する立坑本体2のせん断耐力Vd’の比である耐力比(Vd’/Vd)と、開口率Rとの関係から導き出した数式(4)により求めることができる。低減率Dの算定方法については、後述する。
D=α(1−R)+β・・・・(4)
α、β:せん断耐力を評価するためのパラメータ
The reduction ratio D is a quantity set corresponding to the aperture ratio R, and is the shear strength Vd'of the shaft body 2 having the defect portion 3 with respect to the shear strength Vd of the entire plan view cross section without the defect portion 3. It can be obtained by the mathematical formula (4) derived from the relationship between the yield strength ratio (Vd'/ Vd), which is the ratio of the above, and the aperture ratio R. The calculation method of the reduction rate D will be described later.
D = α (1-R) + β ... (4)
α, β: Parameters for evaluating shear strength

<STEP3:耐震性能照査>
この後、耐震性能照査として従来より実施されている立坑の耐震設計方法と同様に、曲げモーメントおよびせん断力各々について、<STEP1>で算定した応答値と立坑2の許容値を比較する。このとき、本実施の形態では立坑本体2を、複数のはり要素を鉛直方向に連続させたはりとしてモデル化していることから、せん断力の耐震性能照査において、はり要素各々で、発生する応答値である断面力と許容値であるせん断耐力との照査を行う。
<STEP3: Seismic performance check>
After that, the response values calculated in <STEP 1> and the permissible values of the shaft 2 are compared for each of the bending moment and the shear force, in the same manner as the seismic design method of the shaft, which has been conventionally carried out as a seismic performance check. At this time, since the shaft body 2 is modeled as a beam in which a plurality of beam elements are continuously connected in the vertical direction in the present embodiment, the response value generated in each beam element in the seismic performance verification of the shear force is performed. Check the cross-sectional force, which is the allowable value, and the shear strength, which is the allowable value.

そして、鉛直方向に連続するはり要素のうち、欠損部3が設けられる高さ位置のはり要素に対して照査を行う際に、許容値として<STEP2>で推定したせん断耐力Vd’を採用する。 Then, among the beam elements continuous in the vertical direction, the shear strength Vd'estimated in <STEP2> is adopted as an allowable value when checking the beam element at the height position where the defect portion 3 is provided.

上記の耐震性能照査にて、地震後に立坑本体2としての安全性および機能が維持できないと判定した場合には、立坑本体2の設計条件を設定する工程に戻り、適宜設計条件を変更して上記の検討を繰り返す。一方、立坑2としての安全性および機能が維持できると判定した場合には、立坑本体2の水平方向の構造解析を行う。 If it is determined in the above seismic performance check that the safety and function of the shaft body 2 cannot be maintained after the earthquake, the process returns to the process of setting the design conditions of the shaft body 2 and the design conditions are changed as appropriate. Repeat the examination of. On the other hand, if it is determined that the safety and function of the shaft 2 can be maintained, a horizontal structural analysis of the shaft body 2 is performed.

<STEP4および5:水平方向の構造解析および耐震性能照査>
立坑本体2における水平方向の構造解析および耐震性能の照査は、従来より実施されている耐震設計方法と同様の手順により実施すればよく、立坑本体2における欠損部3が存在しない一般部、および欠損部3が位置する開口部の各々について、2次元でフレーム解析を行って応答値である断面力を算定する。
<STEP 4 and 5: Horizontal structural analysis and seismic performance verification>
Horizontal structural analysis and seismic performance verification of the shaft body 2 may be performed by the same procedure as the conventional seismic design method, and the general part and the defect in the shaft body 2 where the defect 3 does not exist and the defect For each of the openings in which the part 3 is located, a two-dimensional frame analysis is performed to calculate the cross-sectional force which is the response value.

この後、耐震性能照査として、曲げモーメントおよびせん断力各々について、算定した応答値と立坑本体2の許容値を比較する。これら耐震性能照査にて、立坑本体2としての安全性および機能が維持できないと判定した場合、立坑本体2の設計条件を設定する工程に戻り、適宜設計条件を変更して立坑本体2における鉛直方向の構造解析から検討を繰り返す。一方で、立坑本体2としての安全性および機能が維持できると判定した場合には、現行の設計条件にて立坑本体2が決定される。 After that, as a seismic performance check, the calculated response value and the allowable value of the shaft body 2 are compared for each of the bending moment and the shearing force. If it is determined in these seismic performance checks that the safety and function of the shaft body 2 cannot be maintained, the process returns to the process of setting the design conditions of the shaft body 2, and the design conditions are changed as appropriate in the vertical direction of the shaft body 2. Repeat the examination from the structural analysis of. On the other hand, if it is determined that the safety and function of the shaft main body 2 can be maintained, the shaft main body 2 is determined under the current design conditions.

上記の立坑の地震時設計方法によれば、欠損部3を有する立坑本体2に対して、開口率Rに応じた適切なせん断耐力を設定できるため、立坑1に合理的な設計を行うことが可能となる。 According to the above-mentioned method for designing a shaft at the time of an earthquake, it is possible to set an appropriate shear strength according to the aperture ratio R for the shaft body 2 having the defective portion 3, so that the shaft 1 can be rationally designed. It will be possible.

また、欠損部3が1つのみ存在する場合だけでなく2つ存在する際にも、立坑本体2にせん断耐力Vd’を確保できるため、いわゆる両側開口といった、立坑本体2に対して2つの欠損部3を同一深度に対向して設けたい場合であっても、立坑本体2の耐震性能を評価することが可能となる。これにより、立坑1と接合する予定のトンネルについて、線形の選択肢を広げることが可能となる。 Further, since the shear strength Vd'can be secured in the shaft body 2 not only when there is only one defect 3 but also when there are two, there are two defects with respect to the shaft body 2 such as so-called double-sided openings. Even when it is desired to provide the portions 3 facing each other at the same depth, it is possible to evaluate the seismic performance of the shaft main body 2. This makes it possible to expand the linear options for the tunnel to be joined to the shaft 1.

次に、低減率Dを導き出した手順と最適な低減率Dを算定方法について、以下に詳述する。 Next, the procedure for deriving the reduction rate D and the method for calculating the optimum reduction rate D will be described in detail below.

<低減率Dの算定方法>
まず、立坑本体2に欠損部3を有する立坑1について、図3で示すように、立坑本体2を構成するコンクリート、主鉄筋、および配力鉄筋をそれぞれ3次元でモデル化し、せん断破壊までの挙動を3次元非線形解析により把握する。なお、本実施の形態では、3次元非線形解析として、材料非線形有限要素解析を採用している。
<Calculation method of reduction rate D>
First, for the shaft 1 having the defective portion 3 in the shaft body 2, as shown in FIG. 3, the concrete, the main reinforcing bar, and the distribution reinforcing bar constituting the shaft body 2 are modeled in three dimensions, respectively, and the behavior until shear failure. Is grasped by three-dimensional nonlinear analysis. In this embodiment, the material nonlinear finite element analysis is adopted as the three-dimensional nonlinear analysis.

本解析を実施するにあたって、立坑本体2の断面形状は円形筒状とするとともに、欠損部3の形状は円形孔状の開口に設定し、その設計条件は、図4の検討ケースに示すとおりとした。また、立坑本体2を3次元でモデル化するに際し、曲げ破壊が先行しないよう解析モデル頂部の鉛直方向の変位を拘束するとともに、底面を固定した。 In carrying out this analysis, the cross-sectional shape of the shaft body 2 was set to a circular cylinder, and the shape of the defect 3 was set to a circular hole-shaped opening, and the design conditions were as shown in the study case of FIG. bottom. In addition, when modeling the shaft body 2 in three dimensions, the vertical displacement of the top of the analysis model was constrained and the bottom surface was fixed so that bending fracture did not precede.

上記と同様の手順で、立坑本体2に欠損部3が無い状態の立坑1aについてもせん断破壊までの挙動を把握するべく、3次元非線形解析を行った。図5(a)(b)に、立坑1、1a各々の立坑本体2に対して欠損部3の開口面と平行する方向に荷重が作用する場合の、立坑本体2と欠損部3の中央位置水平断面における、最大荷重時のせん断応力分布を示す。 In the same procedure as above, a three-dimensional nonlinear analysis was performed for the shaft 1a in the state where the shaft body 2 has no defect 3 in order to understand the behavior up to the shear failure. 5 (a) and 5 (b) show the central positions of the shaft body 2 and the defect 3 when a load acts on each of the shafts 1 and 1a in a direction parallel to the opening surface of the defect 3. The shear stress distribution at the maximum load in the horizontal cross section is shown.

立坑本体2においてせん断応力の卓越する個所は、欠損部3が無い状態の立坑1aでは図5(a)を見ると、せん断変形に応じて斜めに分布しているのに対し、欠損部3を有する立坑1では図5(b)をみると、欠損部3より上側で斜めに、下側で欠損部3の左右にせん断応力が流れている様子がわかる。 In the shaft body 2 where the shear stress is predominant, in the shaft 1a without the defect portion 3, when looking at FIG. 5A, the location where the shear stress is predominant is distributed diagonally according to the shear deformation, whereas the defect portion 3 is distributed. Looking at FIG. 5B in the shaft 1 having the shaft 1, it can be seen that shear stress is flowing diagonally above the defect portion 3 and to the left and right of the defect portion 3 below the defect portion 3.

また、欠損部3の中央位置水平断面においてせん断応力は、欠損部3が無い状態の立坑1aでは図5(a)をみると、立坑本体2の荷重作用方向と平行する範囲において大きくなっている様子がわかる。一方、欠損部3を有する立坑1では図5(b)をみると、立坑本体2の荷重作用方向と直交する範囲で大きくなっている様子がわかる。 Further, the shear stress in the horizontal cross section at the center position of the defect portion 3 is large in the range parallel to the load acting direction of the shaft body 2 in FIG. 5A in the shaft 1a without the defect portion 3. You can see the situation. On the other hand, in FIG. 5B in the shaft 1 having the defective portion 3, it can be seen that the shaft 1 has an increase in the range orthogonal to the load acting direction of the shaft main body 2.

このように欠損部3を有する立坑本体2において、せん断力は、立坑本体2における欠損部3の上部付近を介して、欠損部3に隣接する立坑本体2の荷重作用方向と直交する範囲に伝達されている。したがって、立坑本体2に対面する状態で2つの欠損部3が同一深度に存在する場合にも、立坑本体2全体でせん断耐力を確保できるものといえる。 In the shaft body 2 having the defect portion 3 in this way, the shearing force is transmitted to a range orthogonal to the load acting direction of the shaft body 2 adjacent to the defect portion 3 via the vicinity of the upper portion of the shaft body 3 in the shaft body 2. Has been done. Therefore, it can be said that the shear strength can be ensured for the entire shaft body 2 even when the two defective portions 3 are present at the same depth while facing the shaft body 2.

次に、図6(a)(b)に、立坑本体2におけるせん断破壊に至る最大荷重時のコンクリートの損傷状況を、図7(a)(b)に、立坑1の立坑本体2におけるせん断破壊に至る最大荷重時の水平鉄筋の損傷状況を、それぞれ示す。 Next, FIGS. 6 (a) and 6 (b) show the state of concrete damage at the maximum load leading to shear failure in the shaft body 2, and FIGS. 7 (a) and 7 (b) show the state of shear failure in the shaft body 2 of the shaft 1. The damage status of the horizontal reinforcing bar at the maximum load up to is shown.

コンクリートの損傷状況について、欠損部3が無い状態の立坑1aでは図6(a)をみると、立坑本体2全体がせん断変形している。一方、欠損部3を有する立坑1では図6(b)をみると、欠損部3付近に変形が集中し欠損部3周辺でコンクリートの圧縮軟化を生じている様子がわかる。 Regarding the state of concrete damage, in the shaft 1a without the defective portion 3, when looking at FIG. 6A, the entire shaft body 2 is sheared and deformed. On the other hand, in FIG. 6B in the shaft 1 having the defective portion 3, it can be seen that the deformation is concentrated in the vicinity of the defective portion 3 and the concrete is compressed and softened around the defective portion 3.

また、せん断補強筋の損傷状況について、欠損部3が無い状態の立坑1aでは図7(a)をみると、立坑本体2全体にせん断変形に応じて斜めに降伏範囲が分布している。一方、欠損部3を有する立坑1では図7(b)をみると、欠損部3付近にせん断変形に応じた降伏範囲の分布を生じている様子がわかる。 Regarding the damage status of the shear reinforcing bar, in the shaft 1a without the defective portion 3, when looking at FIG. 7A, the yield range is diagonally distributed in the entire shaft main body 2 according to the shear deformation. On the other hand, in FIG. 7B in the shaft 1 having the defective portion 3, it can be seen that the distribution of the yield range according to the shear deformation is generated in the vicinity of the defective portion 3.

これにより、欠損部3を有する立坑1の立坑本体2は、コンクリートや鉄筋が欠損している欠損部3周辺にせん断変形が集中することにより、欠損部3が無い状態の立坑1aの立坑本体2と比較して、せん断耐力Vd’が低下することものといえる。 As a result, the shaft body 2 of the shaft 1 having the defect portion 3 has the shaft body 2 of the shaft 1a in a state where there is no defect portion 3 due to the concentration of shear deformation around the defect portion 3 in which the concrete or the reinforcing bar is defective. It can be said that the shear strength Vd'is lowered as compared with the above.

次に、開口率Rとせん断耐力Vd’との関係を把握するべく、立坑本体2に欠損部3を有する立坑1について、図8(a)〜(d)で示すように、先に説明した欠損部3の最大長さr1に相当する、欠損部3の開口径を4段階に変えた、開口率Rの異なる4つの立坑1を準備した。そして、これらと欠損部3が無い状態の立坑1aに対して、せん断破壊までの挙動を上記と同様の手順で3次元非線形解析にて把握し、荷重変位関係におけるせん断破壊に至る最大荷重を把握する。 Next, in order to understand the relationship between the aperture ratio R and the shear strength Vd', the shaft 1 having the defect portion 3 in the shaft body 2 has been described above as shown in FIGS. 8 (a) to 8 (d). Four shafts 1 having different aperture ratios R, in which the opening diameter of the defective portion 3 was changed in four stages, corresponding to the maximum length r 1 of the defective portion 3, were prepared. Then, for the shaft 1a without these and the defective portion 3, the behavior up to the shear failure is grasped by the three-dimensional nonlinear analysis by the same procedure as above, and the maximum load leading to the shear failure in the load displacement relationship is grasped. do.

本実施の形態では、この最大荷重をせん断耐力Vd’、Vdとして取り扱うこととし、その結果を、図9で示すような横軸に開口率R、縦軸に耐力比(Vd’/Vd)を取ったグラフにプロットした。 In the present embodiment, this maximum load is treated as shear strength Vd'and Vd, and the results are obtained by representing the aperture ratio R on the horizontal axis and the proof stress ratio (Vd'/ Vd) on the vertical axis as shown in FIG. It was plotted on the graph taken.

図9のグラフを見ると、開口率Rが大きくなるにしたがって耐力比(Vd’/Vd)が低下しており、開口率Rと耐力比(Vd’/Vd)との間に線形関係を見て取ることができる。そこで、耐力比(Vd’/Vd)を開口率Rに基づく一次関数で表し、これを低減率Dとした(前出の(4)を参照)。これにより、開口率Rに対応した低減率Dを、数式(4)に適宜開口率Rに相当する数量を代入することで算出することができる。 Looking at the graph of FIG. 9, the proof stress ratio (Vd'/ Vd) decreases as the aperture ratio R increases, and the linear relationship between the aperture ratio R and the proof stress ratio (Vd'/ Vd) can be seen. be able to. Therefore, the proof stress ratio (Vd'/ Vd) is expressed by a linear function based on the aperture ratio R, and this is defined as the reduction ratio D (see (4) above). Thereby, the reduction ratio D corresponding to the aperture ratio R can be calculated by appropriately substituting the quantity corresponding to the aperture ratio R into the mathematical formula (4).

また、発明者らは、欠損部3を有する立坑本体2において、せん断耐力Vd’が少なくとも立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度および開口の数量の影響を受けるとの知見を得ている。そこで、これら4点について適宜設計条件を変更した立坑本体2の解析モデルを準備し、上記と同様の手順で3次元非線形解析を実施して、せん断破壊に至る最大荷重からせん断耐力Vd’を把握し、その結果を図10で示すグラフにプロットした。 Further, the inventors have found that in the shaft body 2 having the defect portion 3, the shear strength Vd'is affected by at least the member thickness of the shaft body 2, the shear reinforcing bar ratio, the compressive strength of concrete, and the number of openings. Is getting. Therefore, we prepared an analysis model of the shaft body 2 with the design conditions changed as appropriate for these four points, and performed a three-dimensional nonlinear analysis in the same procedure as above to grasp the shear strength Vd'from the maximum load leading to shear failure. The results were plotted in the graph shown in FIG.

具体的には、図8(a)〜(d)で示す4種の立坑1各々について、図4の検討ケース1〜5までの8つの設計条件で3次元非線形解析を実施した。各検討ケースは、ケース1を基準とし、ケース2−1と2−2は部材厚、ケース3−1と3−2はせん断補強筋比、ケース4−1と4−2でコンクリートの圧縮強度をそれぞれ変更した。 Specifically, three-dimensional nonlinear analysis was carried out for each of the four types of shafts 1 shown in FIGS. 8 (a) to 8 (d) under the eight design conditions of the study cases 1 to 5 in FIG. Each study case is based on Case 1, Cases 2-1 and 2-2 are member thicknesses, Cases 3-1 and 3-2 are shear reinforcement ratios, and Cases 4-1 and 4-2 are concrete compressive strengths. Was changed respectively.

また、ケース5は、基準となるケース1と部材厚、せん断補強筋比およびコンクリート強度が同一であるが、欠損部3を1つのみとしている。なお、上記のすべての設計条件において耐力比(Vd’/Vd)を算出するべく、欠損部3が無いものと仮定した立坑本体2についてもせん断耐力Vdを算出している。 Further, the case 5 has the same member thickness, shear reinforcement ratio and concrete strength as the reference case 1, but has only one defective portion 3. In addition, in order to calculate the yield strength ratio (Vd'/ Vd) under all the above design conditions, the shear strength Vd is also calculated for the shaft body 2 assuming that there is no defect portion 3.

図10のグラフを見ると、ケース2〜5のいずれの場合においても、開口率Rと耐力比(Vd’/Vd)との間におおむね線形関係を有する様子がわかる。また、基準のケース1に対してケース2〜5は各々で傾きが異なることから、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、および欠損部3の数量各々が、耐力比(Vd’/Vd)に影響を与えている様子も確認できる。さらに、ケース2〜4のなかでも、せん断補強筋比の数量を変えたケース3−1とケース3−2では線形の傾きの差が顕著に表れており、せん断補強筋比が耐力比(Vd’/Vd)に大きな影響を与えている様子がわかる。 Looking at the graph of FIG. 10, it can be seen that in any of the cases 2 to 5, there is a generally linear relationship between the aperture ratio R and the proof stress ratio (Vd'/ Vd). Further, since the inclinations of the cases 2 to 5 are different from those of the standard case 1, the member thickness of the shaft body 2, the shear reinforcement ratio, the compressive strength of the concrete, and the quantity of the defective portion 3 each have a proof stress ratio. It can also be confirmed that (Vd'/ Vd) is affected. Furthermore, among Cases 2 to 4, the difference in linear inclination is remarkable between Case 3-1 and Case 3-2 in which the quantity of the shear reinforcement ratio is changed, and the shear reinforcement ratio is the proof stress ratio (Vd). It can be seen that it has a great influence on'/ Vd).

したがって、低減率Dを設定する際には、構築しようとする立坑1における立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量等に応じて、パラメータであるα及びβ(前出の数式(4)を参照)を適宜調整し、立坑2の設計条件に応じて最適な低減率Dを設定するとよい。なお、α及びβの調整方法はいずれでもよいが、例えば、αもしくはβを目的変数とし、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量を説明変数として重回帰分析を行い、低減率Dを設定することも考えられる。 Therefore, when setting the reduction rate D, it is a parameter α according to the member thickness of the shaft body 2 in the shaft 1 to be constructed, the shear reinforcement ratio, the compressive strength of concrete, the quantity of the defective portion 3, and the like. And β (see the above equation (4)) may be appropriately adjusted to set the optimum reduction rate D according to the design conditions of the shaft 2. The adjustment method of α and β may be either, but for example, α or β is set as the objective variable, and the member thickness of the shaft body 2, the shear reinforcing bar ratio, the compressive strength of concrete, and the quantity of the defective portion 3 are used as explanatory variables. It is also conceivable to perform multiple regression analysis and set the reduction rate D.

こうして、立坑本体2のせん断耐力Vd’を数式(3)(4)を用いて算定するにあたり、構築しようとする立坑本体2の部材厚、せん断補強鉄筋比、コンクリートの圧縮強度、欠損部3の数量等、立坑2の設計条件に応じて最適な低減率Dを用いることにより、立坑1をより合理的に設計することが可能となる。 In this way, when calculating the shear strength Vd'of the shaft body 2 using the mathematical formulas (3) and (4), the member thickness of the shaft body 2 to be constructed, the shear reinforcing bar ratio, the compressive strength of concrete, and the defect portion 3 By using the optimum reduction rate D according to the design conditions of the shaft 2 such as the quantity, the shaft 1 can be designed more rationally.

なお、本実施の形態において、ケース2−1と2−2で用いた立坑本体2の部材厚は、既往の大深度立坑の部材厚(1.0〜2.5m)を含み、ケース3−1と3−2で用いたせん断補強筋比は、コンクリート標準示方書で定められている最小及び最大値を含む。また、ケース4−1と4−2で用いたコンクリート強度は、高強度コンクリートの適用を考慮し、それぞれ検討ケースを設定している。 In the present embodiment, the member thickness of the shaft body 2 used in Cases 2-1 and 2-2 includes the member thickness (1.0 to 2.5 m) of the existing deep shaft, and Case 3-. The shear reinforcement ratios used in 1 and 3-2 include the minimum and maximum values specified in the concrete standard specification. As for the concrete strength used in cases 4-1 and 4-2, examination cases are set in consideration of the application of high-strength concrete.

したがって、図10のグラフにおいて、開口率Rと耐力比(Vd’/Vd)の関係を示す線形が、ケース1〜5の全てのプロットを含む位置、つまりこれらのプロットより下側に位置するようにα及びβを決定し、低減率Dを設定する。こうすると、少なくとも、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量について、安全側に立ったせん断耐力Vd’を設定することができる。 Therefore, in the graph of FIG. 10, the alignment showing the relationship between the aperture ratio R and the proof stress ratio (Vd'/ Vd) is located at the position including all the plots of Cases 1 to 5, that is, below these plots. Α and β are determined, and the reduction ratio D is set. By doing so, at least, the shear strength Vd'standing on the safe side can be set with respect to the member thickness of the shaft main body 2, the shear reinforcing bar ratio, the compressive strength of concrete, and the number of defective portions 3.

図10のグラフに示す破線は、α=1、β=0であり、少なくともα≦1、β≧0の範囲でα及びβを設定すると、欠損部3を有する立坑本体2のせん断耐力Vd’について安全な耐震性能照査を行うことが可能となる。なお、α=1およびβ=0を採用した場合、数式(3)及び数式(4)から、欠損部3を有する立坑本体2のせん断耐力Vd’は、下記の数式(5)に開口率Rを代入することにより推定できる。
Vd’=(1−R)×Vd・・・・(5)
The broken line shown in the graph of FIG. 10 is α = 1, β = 0, and when α and β are set in the range of at least α ≦ 1 and β ≧ 0, the shear strength Vd'of the shaft body 2 having the defect portion 3 is set. It will be possible to carry out a safe seismic performance check. When α = 1 and β = 0 are adopted, from the mathematical formulas (3) and (4), the shear strength Vd'of the shaft body 2 having the defective portion 3 is calculated by the following mathematical formula (5) as the aperture ratio R. Can be estimated by substituting.
Vd'= (1-R) x Vd ... (5)

なお、従来の耐震設計法では、1つの欠損部3を有する立坑本体2のせん断耐力Vd’を算定する際、上述した数式(2)を準用する。この場合には、立坑本体2のうち欠損部3が存在する部位(立坑本体2の平面視断面からみて、欠損部3を含む立坑本体2の軸心から放射方向45度の範囲(図5(b)を参照))をせん断伝達部材として取り扱わない。このため、コンクリート受け持つせん断力Vcを数式(6)にて設定する場合に、腹部幅bwを半分にして算定することとなる。
Vc=(τalwz) ・・・・(6)
τal:コンクリートの短期許容せん断応力度
w :部材断面の腹部の幅
z=d/1.15
:全圧縮応力の作用点から引張鉄筋断面の図心までの距離
In the conventional seismic design method, the above-mentioned mathematical formula (2) is applied mutatis mutandis when calculating the shear strength Vd'of the shaft body 2 having one defective portion 3. In this case, the portion of the shaft body 2 where the defect 3 is present (when viewed from the plan view of the shaft body 2, the range of 45 degrees in the radial direction from the axis of the shaft body 2 including the defect 3 (FIG. 5 (FIG. 5). b))) is not treated as a shear transfer member. Therefore, when the shearing force Vc in charge of concrete is set by the mathematical formula (6), the abdominal width bw is halved for calculation.
Vc = (τ al b w z) ・ ・ ・ ・ (6)
τ al : Short-term allowable shear stress of concrete
b w : Width of the abdomen of the member cross section
z = d / 1.15
: Distance from the point of action of total compressive stress to the center of gravity of the tensile reinforcing bar cross section

すると、コンクリートの受け持つせん断力Vcの数量が過小評価されるため、立坑本体2の部材厚を変更することなく必要なせん断耐力Vd’を確保しようとすると、せん断補強筋の受け持つせん断力Vsを大きくせざるを得ず、せん断補強筋が過密配筋となって不経済となっていた。 Then, since the quantity of the shear force Vc that the concrete is responsible for is underestimated, if the required shear strength Vd'is to be secured without changing the member thickness of the shaft body 2, the shear force Vs that the shear reinforcing bar is responsible for is increased. There was no choice but to make the shear reinforcements overcrowded, which was uneconomical.

しかし、本実施の地震時設計方法では、立坑本体2全体でせん断耐力体Vd’を確保することから、コンクリート受け持つせん断力Vcを過小評価することなく適切に評価でき、従来の耐震設計方法と比較してせん断補強筋の受け持つせん断力Vsを小さくできる。これにより、せん断補強筋の配筋量を減らして合理的で経済的な設計をすることが可能となる。 However, in the earthquake design method of this implementation, since the shear force Vd'is secured in the entire shaft body 2, the shear force Vc in charge of concrete can be appropriately evaluated without underestimating, which is compared with the conventional seismic design method. Therefore, the shearing force Vs of the shear reinforcing bar can be reduced. This makes it possible to reduce the amount of reinforcement of the shear reinforcing bars and design a rational and economical design.

本発明の立坑の地震時設計方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The method for designing a shaft at the time of an earthquake of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.

例えば、本実施の形態では、立坑本体2の断面形状に円筒を採用したが、必ずしもこれに限定されるものではなく、筒状体であれば角筒等いずれでもよい。 For example, in the present embodiment, a cylinder is adopted as the cross-sectional shape of the shaft main body 2, but the present invention is not necessarily limited to this, and any cylindrical body such as a square cylinder may be used.

また、欠損部3の形状は必ずしも円形の孔状に限定されるものではなく、閉合していれば馬蹄形等いずれの形状であってもよい。さらに、欠損部3の配置位置は、立坑本体2の下端部近傍であれば、いわゆる片側開口といった立坑本体2に欠損部3を1つ設ける場合や、両側開口といった2つの欠損部3を立坑本体2の同一深度に対向して設ける場合のいずれでもよい。 Further, the shape of the defect portion 3 is not necessarily limited to a circular hole shape, and may be any shape such as a horseshoe shape as long as it is closed. Further, if the position of the defective portion 3 is near the lower end portion of the shaft main body 2, one defective portion 3 is provided in the vertical shaft main body 2 such as a so-called one-sided opening, or two defective portions 3 such as double-sided openings are provided in the vertical shaft main body. Either of the cases where the two are provided facing the same depth may be used.

加えて、本実施の形態では、<STEP1>において欠損部3の無い状態の立坑本体2における平面視断面全体の応答値を算定したが、必ずしもこれに限定するものではない。例えば、欠損部3を有する立坑本体2について開口率Rに対応した平面視断面全体の応答値を算定し、その断面力を<STEP3>の耐震性能照査に用いてもよい。 In addition, in the present embodiment, the response value of the entire plan view cross section of the shaft main body 2 without the defective portion 3 is calculated in <STEP 1>, but the response value is not necessarily limited to this. For example, the response value of the entire vertical cross section corresponding to the aperture ratio R of the shaft main body 2 having the defective portion 3 may be calculated and the cross-sectional force may be used for the seismic performance verification of <STEP 3>.

1 立坑
1a 立坑
2 立坑本体
3 欠損部
1 Shaft 1a Shaft 2 Shaft body 3 Missing part

Claims (2)

立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法であって、
前記立坑本体の鉛直方向について、等価な剛性を有する鉛直方向のはりとして二次元でモデル化し、地震時の応答値を算定する工程と、
前記立坑本体のせん断耐力を推定する工程と、
推定した該せん断耐力と前記応答値とを比較して、耐震性能を評価する工程と、を有し、
前記立坑本体のせん断耐力は、該立坑本体を投影した立面図上の、前記立坑本体の短辺と前記欠損部における前記短辺に平行な方向の最大長さと、に基づいて開口率を算定し、該開口率に対応してあらかじめ設定された低減率と、前記立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と、に基づいて推定することを特徴とする立坑の地震時設計方法。
It is a method of designing a shaft at the time of an earthquake to construct a shaft with a defect in the main body of the shaft in the ground.
The process of two-dimensionally modeling the vertical direction of the shaft body as a vertical beam with equivalent rigidity and calculating the response value at the time of an earthquake.
The process of estimating the shear strength of the shaft body and
It has a step of comparing the estimated shear strength with the response value to evaluate seismic performance.
The shear strength of the shaft body is calculated based on the short side of the shaft body and the maximum length of the defect in the direction parallel to the short side on the elevation view of the shaft body. However, at the time of an earthquake in the shaft, it is estimated based on a reduction rate preset corresponding to the aperture ratio and the shear strength of the entire plan view cross section in a state where the shaft body has no defect. Design method.
請求項1に記載の立坑の地震時設計方法であって、
前記低減率が、
前記立坑本体における前記欠損部の無い状態に対する前記欠損部を有する状態のせん断耐力の比率を耐力比とし、該耐力比を前記開口率を変えて複数算定しておき、
該開口率と前記耐力比との関係から設定されることを特徴とする立坑の地震時設計方法。
The method for designing a shaft at the time of an earthquake according to claim 1.
The reduction rate is
The ratio of the shear strength in the state of having the defect to the state without the defect in the shaft body is defined as the yield strength ratio, and a plurality of the proof stress ratios are calculated by changing the aperture ratio.
A method for designing a shaft at the time of an earthquake, which is set from the relationship between the aperture ratio and the proof stress ratio.
JP2017193786A 2017-10-03 2017-10-03 How to design a shaft during an earthquake Active JP6972870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193786A JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193786A JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Publications (2)

Publication Number Publication Date
JP2019065633A JP2019065633A (en) 2019-04-25
JP6972870B2 true JP6972870B2 (en) 2021-11-24

Family

ID=66340364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193786A Active JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Country Status (1)

Country Link
JP (1) JP6972870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826200B (en) * 2019-10-22 2023-04-07 北京市水文地质工程地质大队(北京市地质环境监测总站) Evaluation method and evaluation device for water-flooding heat recovery capacity of hydrothermal geothermal field
CN114193635B (en) * 2021-12-23 2024-03-12 国泰新点软件股份有限公司 Method and device for cutting middle beam of constructional engineering
CN116305413B (en) * 2023-01-19 2024-05-31 安徽省交通控股集团有限公司 Wedge-shaped section combined shear design method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397168B1 (en) * 1999-07-30 2002-05-28 Xerxes Corporation Seismic evaluation method for underground structures
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP5229852B2 (en) * 2006-11-27 2013-07-03 国立大学法人東京工業大学 Safety evaluation system and safety evaluation method for underground structures
JP5923421B2 (en) * 2012-09-21 2016-05-24 富士通エフ・アイ・ピー株式会社 Structure analysis system, structure analysis method, and program
JP6915254B2 (en) * 2016-10-05 2021-08-04 株式会社大林組 Shaft and shaft earthquake design method

Also Published As

Publication number Publication date
JP2019065633A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN109610650B (en) Method for calculating bending resistance bearing capacity and bending moment-corner curve of steel pipe concrete column-steel beam cross-core bolt connection node
JP6972870B2 (en) How to design a shaft during an earthquake
CN103225310B (en) Structural design method for load-bearing section of miniature anti-slip compound pile
CN204112504U (en) A kind of new steel structure bean column node adopting top-seat-angle steel to be connected with extended end plate
CN106567475A (en) Steel and concrete composite shear wall and construction method thereof
TWI494486B (en) Combined steel sheet pile, diaphragm wall, and method of reutilizing combined steel sheet pile
CN107614812B (en) Building element
TW201643302A (en) Cylindrical iron wire cage
JP2018145790A (en) Design method of pile head joint and allowable bending moment calculation method
CN106825337A (en) A kind of processing technology for the production of precast stair steel reinforcement cage
JP5525475B2 (en) Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall
CN108086528B (en) Vertical steel plate connecting structure of prefabricated shear wall, manufacturing and assembling method
JP6070118B2 (en) Retaining wall structure, method for constructing retaining wall structure
KR101274380B1 (en) Behavior-analysis method for mechanical joint composite pile and mechanical joint composite pile manufactured by the same
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab
JP6915254B2 (en) Shaft and shaft earthquake design method
JP2021143576A (en) Concrete member and segment
RU2556052C2 (en) Flood gate
JP3809183B2 (en) Design method for concrete structures
JP2020094478A (en) Earthquake proof repair method of existing structure
KR101798007B1 (en) Frame used in building
JP2019112905A (en) Structure in construction of exterior wall panel and construction method of exterior wall panel
JP6336310B2 (en) Hybrid beam
KR101547539B1 (en) Shear reinforcement system for the joint structure of column and slab
CN214657165U (en) Connecting structure of underground frame foundation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150