JP2019065633A - Earthquake design method of shaft - Google Patents

Earthquake design method of shaft Download PDF

Info

Publication number
JP2019065633A
JP2019065633A JP2017193786A JP2017193786A JP2019065633A JP 2019065633 A JP2019065633 A JP 2019065633A JP 2017193786 A JP2017193786 A JP 2017193786A JP 2017193786 A JP2017193786 A JP 2017193786A JP 2019065633 A JP2019065633 A JP 2019065633A
Authority
JP
Japan
Prior art keywords
shaft
shear
shaft body
defect
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017193786A
Other languages
Japanese (ja)
Other versions
JP6972870B2 (en
Inventor
山本 修一
Shuichi Yamamoto
修一 山本
佐藤 清
Kiyoshi Sato
清 佐藤
賢一 久末
Kenichi Hisasue
賢一 久末
喬博 秀島
Takahiro Hideshima
喬博 秀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017193786A priority Critical patent/JP6972870B2/en
Publication of JP2019065633A publication Critical patent/JP2019065633A/en
Application granted granted Critical
Publication of JP6972870B2 publication Critical patent/JP6972870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an earthquake design method of a shaft capable of rationally performing seismic design on a shaft having a defect portion in a shaft body planned to be built in the ground.SOLUTION: An earthquake design method for a shaft for constructing a shaft having a defect portion in a shaft body in the ground has a step of modeling in two dimensions as a vertical beam having equivalent rigidity in the vertical direction of the shaft body, and calculating an earthquake response value, a step of estimating the shear capacity of the shaft body, and a step of evaluating the aseismatic performance by comparing the estimated shear resistance with the response value. The shear strength of the shaft body is estimated based on the reduction rate preset according to the aperture rate calculated based on the elevation of the shaft body projected on the short side of the shaft body and the maximum length in the direction parallel to the short side at the defect portion, and the shear strength of the entire cross section in plan view with no defect portion in the shaft body.SELECTED DRAWING: Figure 1

Description

本発明は、立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法に関する。   The present invention relates to a seismic design method of a shaft for constructing a shaft having a defect in the shaft body in the ground.

従来より、地中構造物である円筒状の立坑を構築するべく耐震設計を行う際には、例えば特許文献1に記載されているように立坑本体を2次元でモデル化し、応答変位法や2次元FEM解析により地震時の応答を確認した後に耐震性能を照査し、立坑本体に生じる断面力等の応答値が立坑の耐力等の許容値以下となるように、部材を決定する方法が用いられている。   Conventionally, when aseismatic design is performed to construct a cylindrical vertical shaft which is an underground structure, the vertical shaft body is modeled in two dimensions as described in, for example, Patent Document 1, and the response displacement method or 2 After confirming the seismic response by dimensional FEM analysis, the seismic performance is checked, and a method is used to determine the members so that the response value such as cross sectional force generated in the shaft becomes less than the tolerance of the shaft. ing.

特開2008−133595号公報JP 2008-133595 A

しかし、立坑本体に欠損部を有する場合には、耐震性能を照査するための照査方法が確立されていない。現状では立坑本体の応答を確認する際、欠損部を有する部位(立坑本体を平面視断面からみて、欠損部を含む立坑本体の軸心から放射方向45度の範囲)を外力が伝達されない部位とみなし、これらを除外した欠損部が存在しない部位のみで応答値を算出する。そして、この応答値を上回るよう、欠損部を有する部位のせん断耐力を決定する。   However, when there is a defect in the shaft main body, a control method has not been established to check the seismic performance. At present, when confirming the response of the shaft main body, a portion having a defect (a range of 45 degrees in a radial direction from the axis of the shaft main body including the defect when viewing the shaft main body from a plan view cross section) The response value is calculated only in the part where there is no defect which is regarded and excluded. Then, the shear resistance of the portion having the defect portion is determined so as to exceed this response value.

このため、立坑本体における欠損部を有する部位に対して合理的な設計を行うことが難しく、欠損部周囲の補強構造は、過剰に部材厚が厚くなったり、せん断補強筋が過密配筋となるなど、経済性に劣る構造となっていた。   For this reason, it is difficult to rationally design a portion having a defect in the shaft main body, and in the reinforcement structure around the defect, the thickness of the member becomes excessively large or the shear reinforcement becomes over-dense rebar. The structure was inferior to the economy.

また、立坑本体に対して欠損部を同一深度に対向して設ける場合、上述したように、欠損部を有する部位は外力が伝達されない部材とみなして除外するため、モデル化するとせん断力に抵抗する部位が存在しない状態となる。このため、立坑を貫通するようにトンネルを設置するべく、立坑に対してトンネルとの接合部となる開口を同一深度に対向して設けようとすると、現行の耐震設計方法では対応することができず、立坑に接合するトンネルについて深度を変えて設置するなどの対策を取らざるを得ない。   In addition, when the defect portion is provided opposite to the same depth to the shaft main body, as described above, the portion having the defect portion is considered as a member to which the external force is not transmitted and excluded, so it resists shear force if it is modeled. There will be no site. For this reason, in order to set up a tunnel so as to penetrate the shaft, if it is attempted to provide an opening at the same depth as the junction with the tunnel with respect to the shaft, the current seismic design method can cope with it. There is no choice but to take measures such as changing the depth of the tunnel to be connected to the shaft.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、地盤中に構築予定の立坑本体に欠損部を有する立坑について合理的に耐震設計を行うことが可能な、立坑の地震時設計方法を提供することである。   The present invention has been made in view of such problems, and the main object of the present invention is to make it possible to rationally design a shaft having a defect portion in a shaft main body planned to be built in the ground. It is to provide an earthquake design method.

かかる目的を達成するため、本発明の立坑の地震時設計方法は、立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法であって、前記立坑本体の鉛直方向について、等価な剛性を有する鉛直方向のはりとして二次元でモデル化し、地震時の応答値を算定する工程と、前記立坑本体のせん断耐力を推定する工程と、推定した該せん断耐力と前記応答値とを比較して、耐震性能を評価する工程と、を有し、前記立坑本体のせん断耐力は、該立坑本体を投影した立面図上の、前記立坑本体の短辺と前記欠損部における前記短辺に平行な方向の最大長さと、に基づいて開口率を算定し、該開口率に対応してあらかじめ設定された低減率と、前記立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と、に基づいて推定することを特徴とする。   In order to achieve the above object, the seismic design method of a shaft of the present invention is a seismic design method of a shaft for constructing a shaft having a defect portion in the shaft body in the ground, wherein the vertical of the shaft body is vertical. Modeling in two dimensions as a vertical beam with equivalent rigidity, and calculating the response value at the time of earthquake, calculating the shear strength of the shaft body, and the estimated shear strength and the response Evaluating the aseismatic performance by comparing the values with each other, and the shear resistance of the shaft main body is determined by the short side of the shaft main body and the defect on an elevation view of the shaft main body projected. The aperture ratio is calculated based on the maximum length in the direction parallel to the short side, and the reduction ratio set in advance corresponding to the aperture ratio, and the entire plan view cross section in a state where there is no defect in the shaft main body Based on the shear strength of the Characterized in that it.

また、本発明の立坑の地震時設計方法は、前記低減率が、前記立坑本体に前記欠損部の無い状態に対する前記欠損部を有する状態のせん断耐力の比率を耐力比とし、該耐力比を前記開口率を変えて複数算定しておき、該開口率と前記耐力比との関係から設定されることを特徴とする。   Further, in the earthquake designing method of a shaft according to the present invention, the reduction ratio is a ratio of a shear strength in a state having the defect portion to a state without the defect portion in the shaft main body as a force resistance ratio, A plurality of aperture ratios are changed and calculated, and the characteristics are set based on the relationship between the aperture ratio and the proof stress ratio.

上記の立坑の地震時設計方法によれば、立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と開口率に対応してあらかじめ設定された低減率とに基づいて、欠損部を有する立坑本体のせん断耐力を推定する。   According to the above-described seismic design method of the shaft, the fractured portion is provided based on the shear resistance and the reduction ratio set in advance corresponding to the aperture ratio of the entire cross section in plan view in a state where the shaft has no fractured portion. Estimate the shear strength of the shaft body.

これにより、欠損部を有する立坑本体に対して、立坑本体の外径に対する欠損部の開口径に応じた適切なせん断耐力を設定できるため、立坑について合理的な設計を行うことが可能となる。   As a result, since it is possible to set an appropriate shear resistance according to the opening diameter of the defect portion with respect to the outer diameter of the shaft main body with respect to the shaft main body having the defect portion, it is possible to rationally design the shaft.

また、欠損部が1つのみ存在する場合だけでなく2つ存在する際にも、立坑本体にせん断耐力を確保できるため、いわゆる両側開口といった、立坑本体に設けようとする2つの欠損部を同一深度に対向して配置したい場合であっても、立坑本体の耐震性能を評価することが可能となる。このため、立坑と接合する予定のトンネルについて、線形の選択肢を広げることが可能となる。   Further, not only when there is only one defect but also when there are two, it is possible to secure shear resistance in the shaft main body, so the two defect parts to be provided in the shaft main body, such as so-called double-sided openings, are identical Even in the case where it is desired to be disposed opposite to the depth, it is possible to evaluate the seismic performance of the shaft body. This makes it possible to expand the linear options for tunnels to be joined to the shaft.

本発明によれば、地盤中に構築予定の立坑本体に欠損部を有する立坑について、立坑本体の外径に対する欠損部の開口径に応じた、適切なせん断耐力を設定して、合理的な設計を行うことが可能となる。   According to the present invention, for a shaft having a defect portion in the shaft main body to be constructed in the ground, an appropriate shear resistance is set according to the opening diameter of the defect portion with respect to the outer diameter of the shaft body, and rational design It is possible to do

本発明の実施の形態における立坑の地震時設計方法のフロー図である。It is a flowchart of the earthquake design method of the shaft in the embodiment of the present invention. 本発明の実施の形態における立坑本体と鉛直方向はりモデルを示す図である。It is a figure which shows the vertical axis | shaft main body in embodiment of this invention, and a vertical direction beam model. 本発明の実施の形態における立坑本体の3次元の解析モデルを示す図である。It is a figure which shows the three-dimensional analysis model of the shaft main body in embodiment of this invention. 本発明の実施の形態における立坑本体の3次元非線形解析を実施する際の検討ケースを示す図である。It is a figure which shows the examination case at the time of implementing three-dimensional non-linear analysis of the shaft main body in embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際の最大荷重時におけるせん断応力分布を示す図である。It is a figure which shows shear stress distribution at the time of the maximum load at the time of making a shear force act on the shaft body in embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際のコンクリートの損傷状況を示す図である。It is a figure which shows the damage condition of concrete at the time of applying a shear force to the shaft main body in embodiment of this invention. 本発明の実施の形態における立坑本体にせん断力を作用させた際のせん断補強筋の降伏状況を示す図である。It is a figure which shows the yield condition of the shear reinforcing bar at the time of applying a shear force to the shaft main body in embodiment of this invention. 本発明の実施の形態における立坑本体の外径に対する欠損部の大きさを4段階に変えた場合の解析モデルを示す図である。It is a figure which shows the analysis model at the time of changing the magnitude | size of the defect | deletion part with respect to the outer diameter of the shaft main body in embodiment of this invention to four steps. 本発明の実施の形態における立坑本体の3次元非線形解析を検討ケース1(基準ケース)で実施した際の開口率と耐力比の関係を示す図である。It is a figure which shows the relationship between the opening ratio at the time of implementing three-dimensional non-linear analysis of the shaft main body in embodiment of this invention in examination case 1 (reference case), and a proof stress ratio. 本発明の実施の形態における立坑本体の3次元非線形解析を検討ケース1〜5で実施した際の開口率と耐力比の関係を示す図である。It is a figure which shows the relationship between the opening ratio at the time of implementing three-dimensional non-linear analysis of the shaft main body in embodiment of this invention by examination case 1-5, and a proof stress ratio.

本発明の立坑の地震時設計方法は、立坑本体に欠損部を有する立坑を地盤中に構築しようとする際に好適な設計方法である。その手順は、従来の設計方法と同様に、立坑本体の鉛直方向について、構造解析を行って耐震性能を照査した後に、立坑本体の水平方向について、構造解析を実施し耐震性能を評価するものであるが、本発明は、耐震性能の照査方法に特徴を有する方法である。   The seismic design method of a shaft of the present invention is a design method suitable for constructing a shaft having a defect in the shaft body in the ground. The procedure is to evaluate the seismic performance by carrying out a structural analysis in the horizontal direction of the shaft body after conducting structural analysis and checking the seismic performance in the vertical direction of the shaft body as in the conventional design method. Although present, the present invention is a method characterized by a check method of seismic performance.

以下に、図1で示すフロー図の流れに従って、立坑の地震時設計方法を図2〜図9を参照しつつ詳述する。   In the following, according to the flow of the flow chart shown in FIG. 1, the method of designing the shaft during earthquake will be described in detail with reference to FIGS.

図2(a)で示すように、立坑1は、断面円形の筒状体よりなる立坑本体2を地盤中の鉛直方向に延在するよう構築する鉄筋コンクリート造の地下構造物であり、シールドトンネルの発進もしくは到達立坑、地下駅舎の躯体、洞道に連絡する立坑等に使用される。   As shown in FIG. 2 (a), the vertical shaft 1 is a reinforced concrete underground structure constructed so as to extend a vertical shaft body 2 consisting of a cylindrical body with a circular cross-section in the vertical direction in the ground. It is used for starting or reaching shaft, frame of underground station building, shaft connecting to cave and so on.

また、立坑本体2の下端部近傍には、2つの欠損部3が同一深度で対向するようにして設けられている。これら欠損部3は円形孔状の閉合した開口に形成されており、トンネル、下水管、電力線や通信線の洞道等、地盤中で横方向に延在する線状地下構造物との接合部として機能する。   Further, in the vicinity of the lower end portion of the shaft main body 2, two defected portions 3 are provided so as to face each other at the same depth. These defects 3 are formed in a circular hole-like closed opening, and a junction with a linear underground structure extending laterally in the ground, such as a tunnel, a sewage pipe, a power line or a tunnel of a communication line. Act as.

<STEP1:立坑本体の鉛直方向の構造解析>
上述した立坑1の立坑本体2について、鉛直方向の構造解析を実施するにあたっては、まず、立坑本体2の設計条件(例えば、立坑本体2の部材厚、配筋、コンクリートの圧縮強度、欠損部3の大きさや位置等)を設定する。
<STEP 1: Vertical structural analysis of shaft body>
In order to carry out structural analysis in the vertical direction of the shaft body 2 of the shaft 1 described above, first, design conditions of the shaft body 2 (for example, member thickness of the shaft body 2, reinforcement, concrete compressive strength, defect 3 Set the size and position of

次に、立坑本体2を二次元でモデル化し、立坑本体2に欠損部3が無いものと仮定して、応答変位法や二次元FEM解析等により応答値、具体的には地震時の変位および断面力(曲げモーメント、せん断)を算出する。   Next, the shaft body 2 is modeled in two dimensions, and assuming that the shaft body 2 has no defect 3, the response value by the response displacement method or two-dimensional FEM analysis etc. Calculate the cross-sectional force (bending moment, shear).

本実施の形態では、立坑本体2を二次元でモデル化するにあたり、図2(b)で示すように、全体が等価な剛性を有する複数のはり要素を鉛直方向に連続させたはりとしてモデル化している。このときに設定する剛性として、一般には単位幅あたりの立坑本体2の壁により求まる剛性を採用するが、本実施の形態では、図2(c)で示すような、立坑本体2の平面視断面全体の剛性に設定する。   In the present embodiment, in modeling the shaft body 2 in two dimensions, as shown in FIG. 2 (b), modeling is carried out as a beam in which a plurality of beam elements having overall equivalent stiffness are made continuous in the vertical direction. ing. Generally, the rigidity determined by the wall of the vertical shaft body 2 per unit width is adopted as the rigidity set at this time, but in the present embodiment, a plan view cross section of the vertical shaft body 2 as shown in FIG. Set to overall stiffness.

なお、図2(b)(c)で示すBB断面のような、欠損部3が位置する高さ範囲については、AA断面のような欠損部3が存在しない平面視断面全体の剛性を、BB断面の剛性に設定し、立坑本体2のモデルに欠損部3が無いものと仮定している。   2 (b) and 2 (c), the rigidity of the entire cross section in plan view in which the defect portion 3 such as the AA cross section does not exist is BB The rigidity of the cross section is set, and it is assumed that there is no defect 3 in the model of the shaft main body 2.

このような鉛直方向はりモデルを用いて算定された応答値は、欠損部3の無い状態の立坑本体2における平面視断面全体の応答値となるが、後述する<STEP3>にて耐震性能照査を行う際に用いる許容値については、欠損部3の影響を考慮した立坑本体2における平面視断面全体の許容値を用いる。   The response value calculated using such a vertical direction beam model is the response value of the entire plane view cross section of the vertical shaft 2 in the state without the defective portion 3, but check the seismic performance check in <STEP 3> described later. As the allowable value used when performing this, the allowable value of the entire planar view cross section of the shaft main body 2 in consideration of the influence of the defect portion 3 is used.

そこで、<STEP2>では、立坑本体2の許容値のなかでも平面視断面全体のせん断耐力Vd’の算定方法を説明する。   Therefore, in <STEP 2>, among the allowable values of the shaft main body 2, a method of calculating the shear resistance Vd 'of the entire cross section in plan view will be described.

<STEP2:立坑本体のせん断耐力Vd’の推定>
欠損部3を有する立坑本体2のせん断耐力Vd’を推定する際には、まず、図2(d)で示すように、立坑本体2を鉛直方向に投影した立面図から、立坑本体2の短辺r0とこの短辺r1に平行な方向の欠損部3の最大長さr1とを算出する。これら立坑本体2の短辺r0と欠損部3の最大長さr1とに基づいて、数式(1)から開口率Rを算定する。
R=r1/r0 ・・・・(1)
0:立坑本体2における立面図上の短辺
1:短辺r0と平行な方向における欠損部3の最大長さ
<Step 2: Estimation of Shear Strength Vd 'of Shaft Main Body>
In order to estimate the shear strength Vd 'of the shaft body 2 having the defect portion 3, first, as shown in FIG. 2 (d), from the elevation view of the shaft body 2 projected in the vertical direction, It calculates the maximum length r 1 of the parallel direction of the defect portion 3 in the short side r 1 of the short side r 0 Toko. Based on the short side r 0 of shafts body 2 and the maximum length r 1 of the defect 3, calculates the opening ratio R from equation (1).
R = r 1 / r 0 (1)
r 0 : short side on elevation view of shaft body 2
r 1 : maximum length of defect 3 in the direction parallel to short side r 0

なお、本実施の形態では、立坑本体2が断面円形の筒状体であるとともに、欠損部3が円形であるため、立坑本体2の外径が立面図上における立坑本体2の短辺r0に相当し、欠損部3の開口径が欠損部3の最大長さr1に相当する。また、数式(1)は、立坑本体2に欠損部3が2つ存在する場合であり、欠損部3が1つの場合には、上記数式(1)の開口率Rを2で除すればよい。 In the present embodiment, since the shaft main body 2 is a cylindrical body having a circular cross section and the defect portion 3 is circular, the outer diameter of the shaft main body 2 is the short side r of the shaft main body 2 on the elevation view corresponds to 0, the opening diameter of the defect portion 3 corresponds to the maximum length r 1 of the defect 3. In addition, Formula (1) is a case where there are two defects 3 in the shaft main body 2, and when there is only one defect 3, it is sufficient to divide the opening ratio R of Equation (1) by 2 .

次に、立坑本体2に欠損部3が無い状態の平面視断面全体のせん断耐力Vdを算定する(数式(2)を参照)。
Vd=Vc+Vs ・・・・(2)
Vd:欠損部3の無い立坑本体2のせん断耐力
Vc:コンクリートの受け持つせん断力
Vs:せん断補強筋の受け持つせん断力
Next, the shear resistance Vd of the whole plane view cross section in the state where there is no fracture portion 3 in the shaft main body 2 is calculated (see Formula (2)).
Vd = Vc + Vs (2)
Vd: Shear strength of shaft 2 without defect 3
Vc: Shear force of concrete
Vs: Shear force received by shear reinforcement

そのうえで、欠損部3が無い状態の平面視断面全体のせん断耐力Vdに、開口率Rに対応してあらかじめ設定された低減率Dを掛け合わせる。こうして算定された算定値を、欠損部3を有する立坑本体2のせん断耐力Vd’として推定する(数式(3)を参照)。
Vd’=D×Vd ・・・・(3)
Vd’:欠損部を有する立坑本体のせん断耐力
D :開口率Rに対応して設定された低減率
In addition, the shear resistance Vd of the entire plan view cross section in the state without the defective portion 3 is multiplied by the reduction ratio D set in advance corresponding to the opening ratio R. The calculated value thus calculated is estimated as the shear resistance Vd ′ of the shaft main body 2 having the defect portion 3 (see Equation (3)).
Vd '= D × Vd (3)
Vd ': Shear strength of shaft with defect
D: Reduction rate set corresponding to the aperture ratio R

なお、低減率Dは、開口率Rに対応して設定される数量であり、欠損部3が無い状態の平面視断面全体のせん断耐力Vdに対する欠損部3を有する立坑本体2のせん断耐力Vd’の比である耐力比(Vd’/Vd)と、開口率Rとの関係から導き出した数式(4)により求めることができる。低減率Dの算定方法については、後述する。
D=α(1−R)+β・・・・(4)
α、β:せん断耐力を評価するためのパラメータ
The reduction rate D is a quantity set corresponding to the opening rate R, and the shear strength Vd ′ of the shaft main body 2 having the deficient portion 3 with respect to the shear resistance Vd of the entire cross section in a plan view without the deficient portion 3 It can obtain | require by Numerical formula (4) derived from the relationship between the proof stress ratio (Vd '/ Vd) which is ratio of, and the aperture ratio R. FIG. The method of calculating the reduction rate D will be described later.
D = α (1-R) + β (4)
α, β: Parameters for evaluating shear resistance

<STEP3:耐震性能照査>
この後、耐震性能照査として従来より実施されている立坑の耐震設計方法と同様に、曲げモーメントおよびせん断力各々について、<STEP1>で算定した応答値と立坑2の許容値を比較する。このとき、本実施の形態では立坑本体2を、複数のはり要素を鉛直方向に連続させたはりとしてモデル化していることから、せん断力の耐震性能照査において、はり要素各々で、発生する応答値である断面力と許容値であるせん断耐力との照査を行う。
<Step 3: Seismic performance check>
After that, as in the seismic design method for a shaft conventionally implemented as a seismic performance check, the response value calculated in <STEP 1> and the allowable value of the shaft 2 are compared for each of the bending moment and the shear force. At this time, in the present embodiment, since the shaft body 2 is modeled as a beam in which a plurality of beam elements are made continuous in the vertical direction, in the seismic performance check of shear force, the response value generated in each beam element Check the cross-sectional force and the shear resistance which is the allowable value.

そして、鉛直方向に連続するはり要素のうち、欠損部3が設けられる高さ位置のはり要素に対して照査を行う際に、許容値として<STEP2>で推定したせん断耐力Vd’を採用する。   And when checking with respect to the beam element of the height position in which the defect | deletion part 3 is provided among the beam elements which continue in a perpendicular direction, shear resistance Vd 'estimated by <STEP2> is employ | adopted as a tolerance.

上記の耐震性能照査にて、地震後に立坑本体2としての安全性および機能が維持できないと判定した場合には、立坑本体2の設計条件を設定する工程に戻り、適宜設計条件を変更して上記の検討を繰り返す。一方、立坑2としての安全性および機能が維持できると判定した場合には、立坑本体2の水平方向の構造解析を行う。   If the above seismic performance check determines that the safety and function of the shaft 2 can not be maintained after an earthquake, the process returns to the process of setting the design conditions of the shaft 2 and the design conditions are changed as needed. Repeat the examination of. On the other hand, when it is determined that the safety and function as the shaft 2 can be maintained, structural analysis in the horizontal direction of the shaft body 2 is performed.

<STEP4および5:水平方向の構造解析および耐震性能照査>
立坑本体2における水平方向の構造解析および耐震性能の照査は、従来より実施されている耐震設計方法と同様の手順により実施すればよく、立坑本体2における欠損部3が存在しない一般部、および欠損部3が位置する開口部の各々について、2次元でフレーム解析を行って応答値である断面力を算定する。
<STEP 4 and 5: Horizontal structural analysis and seismic performance check>
The structural analysis in the horizontal direction and verification of seismic performance in the shaft main body 2 may be carried out according to the same procedure as the conventional seismic design method, and the general part where the defect 3 does not exist in the shaft main body 2 and the defect For each of the openings where the unit 3 is located, frame analysis is performed in two dimensions to calculate a cross-sectional force which is a response value.

この後、耐震性能照査として、曲げモーメントおよびせん断力各々について、算定した応答値と立坑本体2の許容値を比較する。これら耐震性能照査にて、立坑本体2としての安全性および機能が維持できないと判定した場合、立坑本体2の設計条件を設定する工程に戻り、適宜設計条件を変更して立坑本体2における鉛直方向の構造解析から検討を繰り返す。一方で、立坑本体2としての安全性および機能が維持できると判定した場合には、現行の設計条件にて立坑本体2が決定される。   After that, as the seismic performance check, the calculated response value and the tolerance value of the shaft main body 2 are compared for each of the bending moment and the shear force. If it is determined that the safety and function as the shaft main body 2 can not be maintained in these seismic performance checks, the process returns to the process of setting the design conditions of the shaft main body 2, and the design conditions are changed as appropriate. Repeat the examination from the structural analysis of. On the other hand, when it is determined that the safety and function as the shaft main body 2 can be maintained, the shaft main body 2 is determined under the current design conditions.

上記の立坑の地震時設計方法によれば、欠損部3を有する立坑本体2に対して、開口率Rに応じた適切なせん断耐力を設定できるため、立坑1に合理的な設計を行うことが可能となる。   According to the above-described earthquake shaft design method of the shaft, since it is possible to set an appropriate shear resistance according to the opening ratio R to the shaft main body 2 having the defect portion 3, rational design can be performed on the shaft 1 It becomes possible.

また、欠損部3が1つのみ存在する場合だけでなく2つ存在する際にも、立坑本体2にせん断耐力Vd’を確保できるため、いわゆる両側開口といった、立坑本体2に対して2つの欠損部3を同一深度に対向して設けたい場合であっても、立坑本体2の耐震性能を評価することが可能となる。これにより、立坑1と接合する予定のトンネルについて、線形の選択肢を広げることが可能となる。   Further, not only when there is only one defect 3 but also when there are two, since the shear strength Vd 'can be secured in the shaft body 2, two defects such as so-called double-sided openings can be obtained with respect to the shaft body 2. Even in the case where the part 3 is to be provided opposite to the same depth, it is possible to evaluate the seismic performance of the shaft body 2. This makes it possible to expand the linear options for the tunnel to be joined to the shaft 1.

次に、低減率Dを導き出した手順と最適な低減率Dを算定方法について、以下に詳述する。   Next, the procedure for deriving the reduction rate D and the method of calculating the optimum reduction rate D will be described in detail below.

<低減率Dの算定方法>
まず、立坑本体2に欠損部3を有する立坑1について、図3で示すように、立坑本体2を構成するコンクリート、主鉄筋、および配力鉄筋をそれぞれ3次元でモデル化し、せん断破壊までの挙動を3次元非線形解析により把握する。なお、本実施の形態では、3次元非線形解析として、材料非線形有限要素解析を採用している。
<Method of calculating reduction rate D>
First, for the shaft 1 having the fractured portion 3 in the shaft body 2, as shown in FIG. 3, the concrete constituting the shaft body 2, the main rebar, and the distribution rebar are each modeled in three dimensions, and the behavior up to the shear failure By 3D nonlinear analysis. In the present embodiment, material non-linear finite element analysis is adopted as three-dimensional non-linear analysis.

本解析を実施するにあたって、立坑本体2の断面形状は円形筒状とするとともに、欠損部3の形状は円形孔状の開口に設定し、その設計条件は、図4の検討ケースに示すとおりとした。また、立坑本体2を3次元でモデル化するに際し、曲げ破壊が先行しないよう解析モデル頂部の鉛直方向の変位を拘束するとともに、底面を固定した。   In carrying out this analysis, the cross-sectional shape of the shaft main body 2 is a circular cylinder, and the shape of the defect 3 is set to a circular hole-like opening, and the design conditions are as shown in the study case of FIG. did. In addition, when modeling the shaft body 2 in three dimensions, the vertical displacement of the top of the analytical model was restrained so that the bending failure did not precede, and the bottom surface was fixed.

上記と同様の手順で、立坑本体2に欠損部3が無い状態の立坑1aについてもせん断破壊までの挙動を把握するべく、3次元非線形解析を行った。図5(a)(b)に、立坑1、1a各々の立坑本体2に対して欠損部3の開口面と平行する方向に荷重が作用する場合の、立坑本体2と欠損部3の中央位置水平断面における、最大荷重時のせん断応力分布を示す。   A three-dimensional non-linear analysis was performed to grasp the behavior up to the shear failure also for the vertical shaft 1a in a state in which there is no defect portion 3 in the vertical shaft body 2 in the same procedure as described above. 5 (a) and 5 (b), when a load acts on the vertical shaft 2 of each of the vertical shafts 1 and 1a in a direction parallel to the opening surface of the defect 3, the central position of the vertical shaft 2 and the defect 3 The shear stress distribution at the maximum load in the horizontal cross section is shown.

立坑本体2においてせん断応力の卓越する個所は、欠損部3が無い状態の立坑1aでは図5(a)を見ると、せん断変形に応じて斜めに分布しているのに対し、欠損部3を有する立坑1では図5(b)をみると、欠損部3より上側で斜めに、下側で欠損部3の左右にせん断応力が流れている様子がわかる。   In the shaft 1a where the shear stress is predominant in the shaft main body 2, in the shaft 1a in the absence of the defect portion 3 as shown in FIG. 5 (a), the defect portion 3 is distributed obliquely according to the shear deformation. In the shaft 1 having a shaft 1, it can be seen that shear stress flows obliquely to the upper side of the defect 3 and to the left and right of the defect 3 at the lower side from FIG. 5 (b).

また、欠損部3の中央位置水平断面においてせん断応力は、欠損部3が無い状態の立坑1aでは図5(a)をみると、立坑本体2の荷重作用方向と平行する範囲において大きくなっている様子がわかる。一方、欠損部3を有する立坑1では図5(b)をみると、立坑本体2の荷重作用方向と直交する範囲で大きくなっている様子がわかる。   Further, in the vertical shaft 1a in the absence of the broken portion 3, the shear stress in the central position horizontal cross section of the broken portion 3 is large in a range parallel to the load acting direction of the vertical shaft 2 as seen in FIG. I understand how. On the other hand, in the shaft 1 having the deficient portion 3, it can be seen from FIG. 5B that the shaft 1 is enlarged in a range orthogonal to the load acting direction of the shaft body 2.

このように欠損部3を有する立坑本体2において、せん断力は、立坑本体2における欠損部3の上部付近を介して、欠損部3に隣接する立坑本体2の荷重作用方向と直交する範囲に伝達されている。したがって、立坑本体2に対面する状態で2つの欠損部3が同一深度に存在する場合にも、立坑本体2全体でせん断耐力を確保できるものといえる。   Thus, in the shaft body 2 having the defect portion 3, the shear force is transmitted to the range orthogonal to the load acting direction of the shaft body 2 adjacent to the defect portion 3 via the vicinity of the upper portion of the defect portion 3 in the shaft body 2 It is done. Therefore, it can be said that the shear resistance can be secured in the entire shaft main body 2 even when the two defect portions 3 exist at the same depth in a state of facing the shaft main body 2.

次に、図6(a)(b)に、立坑本体2におけるせん断破壊に至る最大荷重時のコンクリートの損傷状況を、図7(a)(b)に、立坑1の立坑本体2におけるせん断破壊に至る最大荷重時の水平鉄筋の損傷状況を、それぞれ示す。   Next, in FIGS. 6 (a) and 6 (b), the state of damage to concrete at maximum load leading to shear failure in the shaft main body 2 is shown in FIGS. 7 (a) and (b). The damage status of the horizontal rebar at maximum load is shown respectively.

コンクリートの損傷状況について、欠損部3が無い状態の立坑1aでは図6(a)をみると、立坑本体2全体がせん断変形している。一方、欠損部3を有する立坑1では図6(b)をみると、欠損部3付近に変形が集中し欠損部3周辺でコンクリートの圧縮軟化を生じている様子がわかる。   Regarding the damage condition of the concrete, in the shaft 1a in the state where there is no defect portion 3, looking at FIG. 6 (a), the entire shaft body 2 is sheared and deformed. On the other hand, in the shaft 1 having the deficient portion 3, it can be seen from FIG. 6 (b) that deformation concentrates in the vicinity of the deficient portion 3 and causes compression and softening of concrete around the deficient portion 3.

また、せん断補強筋の損傷状況について、欠損部3が無い状態の立坑1aでは図7(a)をみると、立坑本体2全体にせん断変形に応じて斜めに降伏範囲が分布している。一方、欠損部3を有する立坑1では図7(b)をみると、欠損部3付近にせん断変形に応じた降伏範囲の分布を生じている様子がわかる。   Further, regarding the damage state of the shear reinforcing bars, in the shaft 1a in the state without the defect portion 3, looking at FIG. 7A, the yield range is distributed diagonally in the entire shaft body 2 according to the shear deformation. On the other hand, in the shaft 1 having the defect portion 3, it can be seen from FIG. 7B that a distribution of a yield range corresponding to the shear deformation is generated in the vicinity of the defect portion 3.

これにより、欠損部3を有する立坑1の立坑本体2は、コンクリートや鉄筋が欠損している欠損部3周辺にせん断変形が集中することにより、欠損部3が無い状態の立坑1aの立坑本体2と比較して、せん断耐力Vd’が低下することものといえる。   As a result, the shaft main body 2 of the shaft 1 having the defect portion 3 is a shaft main body 2 of the shaft 1 a in a state without the defect portion 3 due to concentration of shear deformation around the defect portion 3 where the concrete and rebar are deficient. It can be said that the shear resistance Vd 'is lowered compared to the above.

次に、開口率Rとせん断耐力Vd’との関係を把握するべく、立坑本体2に欠損部3を有する立坑1について、図8(a)〜(d)で示すように、先に説明した欠損部3の最大長さr1に相当する、欠損部3の開口径を4段階に変えた、開口率Rの異なる4つの立坑1を準備した。そして、これらと欠損部3が無い状態の立坑1aに対して、せん断破壊までの挙動を上記と同様の手順で3次元非線形解析にて把握し、荷重変位関係におけるせん断破壊に至る最大荷重を把握する。 Next, in order to understand the relationship between the opening ratio R and the shear resistance Vd ′, the shaft 1 having the defect portion 3 in the shaft main body 2 is described above as shown in FIGS. 8 (a) to 8 (d). Four shafts 1 having different opening ratios R, in which the opening diameter of the defect 3 was changed to four stages corresponding to the maximum length r 1 of the defect 3 were prepared. Then, with respect to the vertical shaft 1a in a state without these and the defect portion 3, the behavior up to the shear failure is grasped by the three-dimensional non-linear analysis in the same procedure as above, and the maximum load leading to the shear fracture in the load displacement relationship is grasped Do.

本実施の形態では、この最大荷重をせん断耐力Vd’、Vdとして取り扱うこととし、その結果を、図9で示すような横軸に開口率R、縦軸に耐力比(Vd’/Vd)を取ったグラフにプロットした。   In the present embodiment, this maximum load is treated as shear resistance Vd 'and Vd, and the result is shown in FIG. 9 with the opening ratio R on the horizontal axis and the proof ratio (Vd' / Vd) on the vertical axis. It was plotted on the graph taken.

図9のグラフを見ると、開口率Rが大きくなるにしたがって耐力比(Vd’/Vd)が低下しており、開口率Rと耐力比(Vd’/Vd)との間に線形関係を見て取ることができる。そこで、耐力比(Vd’/Vd)を開口率Rに基づく一次関数で表し、これを低減率Dとした(前出の(4)を参照)。これにより、開口率Rに対応した低減率Dを、数式(4)に適宜開口率Rに相当する数量を代入することで算出することができる。   Looking at the graph in FIG. 9, the proof stress ratio (Vd '/ Vd) decreases as the aperture ratio R increases, and a linear relationship between the aperture ratio R and the proof stress ratio (Vd' / Vd) is observed be able to. Therefore, the resistance ratio (Vd '/ Vd) is expressed by a linear function based on the aperture ratio R, and this is defined as the reduction ratio D (see (4) above). Thereby, the reduction rate D corresponding to the aperture ratio R can be calculated by substituting the quantity corresponding to the aperture ratio R into the equation (4) as appropriate.

また、発明者らは、欠損部3を有する立坑本体2において、せん断耐力Vd’が少なくとも立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度および開口の数量の影響を受けるとの知見を得ている。そこで、これら4点について適宜設計条件を変更した立坑本体2の解析モデルを準備し、上記と同様の手順で3次元非線形解析を実施して、せん断破壊に至る最大荷重からせん断耐力Vd’を把握し、その結果を図10で示すグラフにプロットした。   The inventors also found that, in the shaft body 2 having the defect portion 3, the shear resistance Vd 'is at least affected by the member thickness of the shaft body 2, the shear reinforcement ratio, the compressive strength of concrete, and the number of openings. You are getting Therefore, prepare an analysis model of shaft body 2 with design conditions changed appropriately for these four points, and carry out three-dimensional non-linear analysis in the same procedure as above, and grasp shear resistance Vd 'from the maximum load leading to shear failure The results are plotted in the graph shown in FIG.

具体的には、図8(a)〜(d)で示す4種の立坑1各々について、図4の検討ケース1〜5までの8つの設計条件で3次元非線形解析を実施した。各検討ケースは、ケース1を基準とし、ケース2−1と2−2は部材厚、ケース3−1と3−2はせん断補強筋比、ケース4−1と4−2でコンクリートの圧縮強度をそれぞれ変更した。   Specifically, for each of the four types of shafts 1 shown in FIGS. 8A to 8D, a three-dimensional non-linear analysis was performed under eight design conditions up to examination cases 1 to 5 in FIG. Each study case is based on case 1, cases 2-1 and 2-2 are member thickness, cases 3-1 and 3-2 are shear reinforcement ratio, and case 4-1 and 4-2 are compressive strength of concrete I changed each.

また、ケース5は、基準となるケース1と部材厚、せん断補強筋比およびコンクリート強度が同一であるが、欠損部3を1つのみとしている。なお、上記のすべての設計条件において耐力比(Vd’/Vd)を算出するべく、欠損部3が無いものと仮定した立坑本体2についてもせん断耐力Vdを算出している。   Moreover, Case 5 has the same member thickness, shear reinforcement ratio, and concrete strength as Case 1 as a reference, but has only one defective portion 3. In addition, in order to calculate a proof stress ratio (Vd '/ Vd) in all the above-mentioned design conditions, the shear proof stress Vd is calculated also about the shaft main body 2 which assumed that there is no defect part 3.

図10のグラフを見ると、ケース2〜5のいずれの場合においても、開口率Rと耐力比(Vd’/Vd)との間におおむね線形関係を有する様子がわかる。また、基準のケース1に対してケース2〜5は各々で傾きが異なることから、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、および欠損部3の数量各々が、耐力比(Vd’/Vd)に影響を与えている様子も確認できる。さらに、ケース2〜4のなかでも、せん断補強筋比の数量を変えたケース3−1とケース3−2では線形の傾きの差が顕著に表れており、せん断補強筋比が耐力比(Vd’/Vd)に大きな影響を与えている様子がわかる。   It can be seen from the graph of FIG. 10 that there is a substantially linear relationship between the aperture ratio R and the proof stress ratio (Vd ′ / Vd) in any of the cases 2 to 5. In addition, since cases 2 to 5 have different inclinations with respect to case 1 of the standard, the member thickness of the shaft main body 2, the shear reinforcement ratio, the compressive strength of concrete, and the number of defective portions 3 each have a proof stress ratio. It can also be confirmed that it affects (Vd '/ Vd). Furthermore, among Cases 2 to 4, in Case 3-1 and Case 3-2, in which the quantity of shear reinforcement ratio is changed, the difference in linear inclination appears remarkably, and the shear reinforcement ratio is the proof stress ratio (Vd It can be seen that the '/ Vd) is greatly affected.

したがって、低減率Dを設定する際には、構築しようとする立坑1における立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量等に応じて、パラメータであるα及びβ(前出の数式(4)を参照)を適宜調整し、立坑2の設計条件に応じて最適な低減率Dを設定するとよい。なお、α及びβの調整方法はいずれでもよいが、例えば、αもしくはβを目的変数とし、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量を説明変数として重回帰分析を行い、低減率Dを設定することも考えられる。   Therefore, when setting the reduction rate D, the parameter α according to the member thickness of the shaft main body 2 in the shaft 1 to be constructed, the shear reinforcement ratio, the compressive strength of concrete, the number of defects 3 etc. And β (see equation (4) above) may be adjusted as appropriate, and the optimum reduction rate D may be set according to the design conditions of the shaft 2. Although any adjustment method of α and β may be used, for example, with α or β as the objective variable, the member thickness of the shaft main body 2, shear reinforcement ratio, the compressive strength of concrete, and the number of defects 3 as the explanatory variables It is also conceivable to set the reduction rate D by performing multiple regression analysis.

こうして、立坑本体2のせん断耐力Vd’を数式(3)(4)を用いて算定するにあたり、構築しようとする立坑本体2の部材厚、せん断補強鉄筋比、コンクリートの圧縮強度、欠損部3の数量等、立坑2の設計条件に応じて最適な低減率Dを用いることにより、立坑1をより合理的に設計することが可能となる。   Thus, in calculating the shear resistance Vd 'of the shaft main body 2 using the equations (3) and (4), the member thickness of the shaft main body 2 to be constructed, the shear reinforcement ratio, the compressive strength of concrete, and the loss portion 3 By using the optimal reduction rate D according to the design conditions of the shaft 2 such as the number, it becomes possible to design the shaft 1 more rationally.

なお、本実施の形態において、ケース2−1と2−2で用いた立坑本体2の部材厚は、既往の大深度立坑の部材厚(1.0〜2.5m)を含み、ケース3−1と3−2で用いたせん断補強筋比は、コンクリート標準示方書で定められている最小及び最大値を含む。また、ケース4−1と4−2で用いたコンクリート強度は、高強度コンクリートの適用を考慮し、それぞれ検討ケースを設定している。   In the present embodiment, the member thickness of the shaft main body 2 used in the cases 2-1 and 2-2 includes the member thickness (1.0 to 2.5 m) of the previous deep shaft, and the case 3-3 is used. The shear reinforcement ratio used in 1 and 3-2 includes the minimum and maximum values defined in the concrete standard specification. Moreover, the concrete strength used by case 4-1 and 4-2 considers the application of high strength concrete, and sets the examination case each.

したがって、図10のグラフにおいて、開口率Rと耐力比(Vd’/Vd)の関係を示す線形が、ケース1〜5の全てのプロットを含む位置、つまりこれらのプロットより下側に位置するようにα及びβを決定し、低減率Dを設定する。こうすると、少なくとも、立坑本体2の部材厚、せん断補強筋比、コンクリートの圧縮強度、欠損部3の数量について、安全側に立ったせん断耐力Vd’を設定することができる。   Therefore, in the graph of FIG. 10, the line showing the relationship between the aperture ratio R and the proof stress ratio (Vd '/ Vd) is located at a position including all the plots of Cases 1 to 5, that is, below the plots. And α are determined, and the reduction rate D is set. In this way, it is possible to set the shear resistance Vd 'on the safe side at least with respect to the member thickness of the shaft body 2, the shear reinforcing bar ratio, the compressive strength of concrete, and the number of defects 3.

図10のグラフに示す破線は、α=1、β=0であり、少なくともα≦1、β≧0の範囲でα及びβを設定すると、欠損部3を有する立坑本体2のせん断耐力Vd’について安全な耐震性能照査を行うことが可能となる。なお、α=1およびβ=0を採用した場合、数式(3)及び数式(4)から、欠損部3を有する立坑本体2のせん断耐力Vd’は、下記の数式(5)に開口率Rを代入することにより推定できる。
Vd’=(1−R)×Vd・・・・(5)
The broken lines shown in the graph of FIG. 10 are α = 1 and β = 0, and if α and β are set in the range of at least α ≦ 1 and β ≧ 0, the shear strength Vd ′ of the shaft main body 2 having the defect portion 3 It is possible to conduct a safe seismic performance check. Incidentally, when α = 1 and β = 0 are adopted, the shear resistance Vd ′ of the shaft main body 2 having the defect portion 3 is calculated by the following equation (5) from the equation (3) and the equation (4). It can be estimated by substituting.
Vd '= (1-R) x Vd (5)

なお、従来の耐震設計法では、1つの欠損部3を有する立坑本体2のせん断耐力Vd’を算定する際、上述した数式(2)を準用する。この場合には、立坑本体2のうち欠損部3が存在する部位(立坑本体2の平面視断面からみて、欠損部3を含む立坑本体2の軸心から放射方向45度の範囲(図5(b)を参照))をせん断伝達部材として取り扱わない。このため、コンクリート受け持つせん断力Vcを数式(6)にて設定する場合に、腹部幅bwを半分にして算定することとなる。
Vc=(τalwz) ・・・・(6)
τal:コンクリートの短期許容せん断応力度
w :部材断面の腹部の幅
z=d/1.15
:全圧縮応力の作用点から引張鉄筋断面の図心までの距離
In the conventional seismic design method, when calculating the shear resistance Vd ′ of the shaft main body 2 having one defect portion 3, the above-mentioned equation (2) is applied mutatis mutandis. In this case, a portion of the shaft main body 2 where the defect portion 3 exists (a range of 45 degrees in a radial direction from the axis of the shaft main body 2 including the defect portion 3 when viewed from a plan view cross section of the shaft Do not treat b)) as a shear transfer member. For this reason, when setting the shear force Vc which has concrete reception with Numerical formula (6), the abdominal part width bw will be halved and it will calculate.
Vc = (τ al b w z) (6)
τ al : Short-term allowable shear stress of concrete
b w : Abdominal width of the member cross section
z = d / 1.15
: Distance from the point of application of total compressive stress to the centroid of the tensile bar cross section

すると、コンクリートの受け持つせん断力Vcの数量が過小評価されるため、立坑本体2の部材厚を変更することなく必要なせん断耐力Vd’を確保しようとすると、せん断補強筋の受け持つせん断力Vsを大きくせざるを得ず、せん断補強筋が過密配筋となって不経済となっていた。   Then, since the number of shear forces Vc received by concrete is underestimated, if it is attempted to secure the necessary shear resistance Vd 'without changing the member thickness of the shaft main body 2, the shear force Vs received by the shear reinforcements is made large. However, the shear reinforcement bars became overconsolidated and uneconomical.

しかし、本実施の地震時設計方法では、立坑本体2全体でせん断耐力体Vd’を確保することから、コンクリート受け持つせん断力Vcを過小評価することなく適切に評価でき、従来の耐震設計方法と比較してせん断補強筋の受け持つせん断力Vsを小さくできる。これにより、せん断補強筋の配筋量を減らして合理的で経済的な設計をすることが可能となる。   However, in the earthquake design method of the present embodiment, since the shear loadable body Vd 'is secured in the entire shaft main body 2, the shear force Vc possessed by the concrete can be appropriately evaluated without underestimation, and comparison with the conventional seismic design method Thus, the shear force Vs received by the shear reinforcement can be reduced. This makes it possible to reduce the amount of reinforcement of the shear reinforcing bars and to make a rational and economical design.

本発明の立坑の地震時設計方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The seismic design method of a shaft of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、本実施の形態では、立坑本体2の断面形状に円筒を採用したが、必ずしもこれに限定されるものではなく、筒状体であれば角筒等いずれでもよい。   For example, in the present embodiment, a cylinder is adopted for the cross-sectional shape of the vertical shaft main body 2, but the present invention is not necessarily limited to this, and any cylindrical tube etc. may be used as long as it is a cylindrical body.

また、欠損部3の形状は必ずしも円形の孔状に限定されるものではなく、閉合していれば馬蹄形等いずれの形状であってもよい。さらに、欠損部3の配置位置は、立坑本体2の下端部近傍であれば、いわゆる片側開口といった立坑本体2に欠損部3を1つ設ける場合や、両側開口といった2つの欠損部3を立坑本体2の同一深度に対向して設ける場合のいずれでもよい。   Further, the shape of the defect portion 3 is not necessarily limited to the shape of a circular hole, and may be any shape such as a horseshoe if it is closed. Furthermore, if the arrangement position of the defect portion 3 is in the vicinity of the lower end portion of the shaft main body 2, the case where one defect portion 3 is provided in the shaft main body 2 such as so-called one side opening or two defect portions 3 such as both side openings It may be either of the cases where it is provided opposite to the same depth of 2.

加えて、本実施の形態では、<STEP1>において欠損部3の無い状態の立坑本体2における平面視断面全体の応答値を算定したが、必ずしもこれに限定するものではない。例えば、欠損部3を有する立坑本体2について開口率Rに対応した平面視断面全体の応答値を算定し、その断面力を<STEP3>の耐震性能照査に用いてもよい。   In addition, in the present embodiment, although the response value of the entire planar view cross section of the shaft main body 2 in the state without the defective portion 3 is calculated in <STEP 1>, the present invention is not necessarily limited thereto. For example, the response value of the entire plan view cross section corresponding to the opening ratio R may be calculated for the shaft main body 2 having the defect portion 3 and the cross sectional force may be used for the seismic performance check of <STEP 3>.

1 立坑
1a 立坑
2 立坑本体
3 欠損部
1 shaft 1a shaft 2 shaft body 3 defect part

Claims (2)

立坑本体に欠損部を有する立坑を地盤中に構築するための、立坑の地震時設計方法であって、
前記立坑本体の鉛直方向について、等価な剛性を有する鉛直方向のはりとして二次元でモデル化し、地震時の応答値を算定する工程と、
前記立坑本体のせん断耐力を推定する工程と、
推定した該せん断耐力と前記応答値とを比較して、耐震性能を評価する工程と、を有し、
前記立坑本体のせん断耐力は、該立坑本体を投影した立面図上の、前記立坑本体の短辺と前記欠損部における前記短辺に平行な方向の最大長さと、に基づいて開口率を算定し、該開口率に対応してあらかじめ設定された低減率と、前記立坑本体に欠損部が無い状態の平面視断面全体のせん断耐力と、に基づいて推定することを特徴とする立坑の地震時設計方法。
A seismic design method for a shaft for constructing a shaft having a defect in the shaft body in the ground,
Modeling in two dimensions as a vertical beam having equivalent rigidity in the vertical direction of the shaft body, and calculating an earthquake response value;
Estimating the shear capacity of the shaft body;
Evaluating the aseismatic performance by comparing the estimated shear resistance with the response value;
The shear strength of the shaft body is calculated on the basis of the short side of the shaft body and the maximum length in the direction parallel to the short side at the defect on an elevation view of the shaft body projected. During an earthquake of the shaft, which is estimated based on the reduction ratio previously set according to the aperture ratio, and the shear resistance of the whole cross section in plan view with no defect in the shaft body. How to design.
請求項1に記載の立坑の地震時設計方法であって、
前記低減率が、
前記立坑本体における前記欠損部の無い状態に対する前記欠損部を有する状態のせん断耐力の比率を耐力比とし、該耐力比を前記開口率を変えて複数算定しておき、
該開口率と前記耐力比との関係から設定されることを特徴とする立坑の地震時設計方法。
The earthquake seismic design method of a shaft according to claim 1, wherein
The reduction rate is
The ratio of the shear resistance of the state having the deficient portion to the state without the deficient portion in the shaft main body is defined as a fulcrums ratio, and the plurality of the fulcrums are calculated by changing the aperture ratio,
It is set from the relationship between the aperture ratio and the resistance ratio, and the earthquake design method of the shaft.
JP2017193786A 2017-10-03 2017-10-03 How to design a shaft during an earthquake Active JP6972870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193786A JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193786A JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Publications (2)

Publication Number Publication Date
JP2019065633A true JP2019065633A (en) 2019-04-25
JP6972870B2 JP6972870B2 (en) 2021-11-24

Family

ID=66340364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193786A Active JP6972870B2 (en) 2017-10-03 2017-10-03 How to design a shaft during an earthquake

Country Status (1)

Country Link
JP (1) JP6972870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826200A (en) * 2019-10-22 2020-02-21 北京市水文地质工程地质大队(北京市地质环境监测总站) Evaluation method and evaluation device for water-flooding heat recovery capacity of hydrothermal geothermal field
CN114193635A (en) * 2021-12-23 2022-03-18 国泰新点软件股份有限公司 Method and device for cutting beam in building engineering
CN116305413A (en) * 2023-01-19 2023-06-23 安徽省交通控股集团有限公司 Wedge-shaped section combined shear design method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397168B1 (en) * 1999-07-30 2002-05-28 Xerxes Corporation Seismic evaluation method for underground structures
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP2008133595A (en) * 2006-11-27 2008-06-12 Tokyo Institute Of Technology Safety evaluation system and safety evaluation method for underground structure
JP2014063403A (en) * 2012-09-21 2014-04-10 Fujitsu Fip Corp Structure analysis system, structure analysis method and program
JP2018059323A (en) * 2016-10-05 2018-04-12 株式会社大林組 Shaft, and design method for vertical shaft during earthquake

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397168B1 (en) * 1999-07-30 2002-05-28 Xerxes Corporation Seismic evaluation method for underground structures
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP2008133595A (en) * 2006-11-27 2008-06-12 Tokyo Institute Of Technology Safety evaluation system and safety evaluation method for underground structure
JP2014063403A (en) * 2012-09-21 2014-04-10 Fujitsu Fip Corp Structure analysis system, structure analysis method and program
JP2018059323A (en) * 2016-10-05 2018-04-12 株式会社大林組 Shaft, and design method for vertical shaft during earthquake

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826200A (en) * 2019-10-22 2020-02-21 北京市水文地质工程地质大队(北京市地质环境监测总站) Evaluation method and evaluation device for water-flooding heat recovery capacity of hydrothermal geothermal field
CN110826200B (en) * 2019-10-22 2023-04-07 北京市水文地质工程地质大队(北京市地质环境监测总站) Evaluation method and evaluation device for water-flooding heat recovery capacity of hydrothermal geothermal field
CN114193635A (en) * 2021-12-23 2022-03-18 国泰新点软件股份有限公司 Method and device for cutting beam in building engineering
CN114193635B (en) * 2021-12-23 2024-03-12 国泰新点软件股份有限公司 Method and device for cutting middle beam of constructional engineering
CN116305413A (en) * 2023-01-19 2023-06-23 安徽省交通控股集团有限公司 Wedge-shaped section combined shear design method and device

Also Published As

Publication number Publication date
JP6972870B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
Morrison et al. An innovative seismic performance enhancement technique for steel building moment resisting connections
JP2019065633A (en) Earthquake design method of shaft
Villar-Salinas et al. Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing
CN206070790U (en) A kind of anti-buckling steel plate seismic structural wall, earthquake resistant wall of ribbed stiffener
CN109208610B (en) Dynamic adjusting method for pre-stress of lateral support for excavation of close-connection large-load bias foundation pit
CN104405043A (en) Connecting structure for rectangular concrete-filled steel tubular column and reinforced concrete beam
KR102045790B1 (en) Method for performing structural design of composite beams, and computer-readable storage medium
Mohsenian et al. A study on the effects of vertical mass irregularity on seismic performance of tunnel-form structural system
Mohsenian et al. Effect of steel coupling beam on the seismic reliability and R-factor of box-type buildings
KR20180089065A (en) 3-dimensional strut-tie modeling method
JP3797869B2 (en) Seismic design method for structures
TW201643302A (en) Cylindrical iron wire cage
CN108166503A (en) Supporting construction maximum distortion ability approximate calculation method and system
Martins et al. Investigation of structural fragility for risk-targeted hazard assessment
CN106825337A (en) A kind of processing technology for the production of precast stair steel reinforcement cage
O’Reilly et al. Implications of a more refined damage estimation approach in the assessment of RC frames
CN115455523A (en) Surrounding rock stability evaluation method and device
KR101274380B1 (en) Behavior-analysis method for mechanical joint composite pile and mechanical joint composite pile manufactured by the same
CN108875131A (en) Asymmetric girder steel quadrate steel pipe column node shears evaluation method
JP6915254B2 (en) Shaft and shaft earthquake design method
JP2012211440A (en) Reinforcement structure and reinforcement method for existing reinforced concrete wall
CN206655222U (en) Continuous underground wall structure and its connector
Altheeb et al. Analytical modelling of strain penetration deformation in reinforced concrete members
Stamatopoulos Assessment of strength and measures to upgrade a telecommunication steel tower
Zhang et al. System reliability assessment of 3D steel frames designed per AISC LRFD specifications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150