JP6972640B2 - Heat treatment method - Google Patents

Heat treatment method Download PDF

Info

Publication number
JP6972640B2
JP6972640B2 JP2017089604A JP2017089604A JP6972640B2 JP 6972640 B2 JP6972640 B2 JP 6972640B2 JP 2017089604 A JP2017089604 A JP 2017089604A JP 2017089604 A JP2017089604 A JP 2017089604A JP 6972640 B2 JP6972640 B2 JP 6972640B2
Authority
JP
Japan
Prior art keywords
infrared
heated
heat treatment
work
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017089604A
Other languages
Japanese (ja)
Other versions
JP2017201058A (en
Inventor
貴文 溝尻
優 向井
光昭 三玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Publication of JP2017201058A publication Critical patent/JP2017201058A/en
Application granted granted Critical
Publication of JP6972640B2 publication Critical patent/JP6972640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属板を加熱処理する加熱処理方法に関するものである。 The present invention relates to a heat treatment method for heat-treating a metal plate.

従来、鋼板を高強度に加工する手段としてホットプレス(ダイクエンチ)がある。これは、鋼板を高温に加熱し、高温域でプレス加工する技術であり、特に鋼板を変態温度(約900℃)以上でプレス加工し、金型で急速に冷却することによってプレス圧がかかった状態で変態を生じさせることにより、高強度のプレス加工品を製造する技術である。
鋼板を高温に加熱する手段としては、赤外線の照射による加熱手段が期待されている。例えば、特許文献1には、鋼板の一面に赤外線を照射する直管型の加熱ランプが多数設けられ、鋼板の輪郭形状に応じて各々の加熱ランプの出力強度を調整することによって、所望の領域を高温に加熱する手段が開示されている。
Conventionally, there is a hot press (diquenching) as a means for processing a steel sheet with high strength. This is a technology that heats a steel plate to a high temperature and presses it in a high temperature range. In particular, the steel plate is pressed at a transformation temperature (about 900 ° C) or higher, and the press pressure is applied by rapidly cooling it with a die. It is a technology to manufacture high-strength stamped products by causing transformation in the state.
As a means for heating a steel sheet to a high temperature, a heating means by irradiation with infrared rays is expected. For example, in Patent Document 1, a large number of straight tube type heating lamps that irradiate one surface of a steel sheet with infrared rays are provided, and the output intensity of each heating lamp is adjusted according to the contour shape of the steel sheet to obtain a desired region. Is disclosed as a means of heating to a high temperature.

また、プレス加工品の生産性や品質を向上させるために、厚みの異なる部分を有する鋼板(以下、「差厚鋼板」ともいう。)をプレス加工する技術が提案されている(例えば、特許文献2参照)。このように差厚鋼板に対してプレス加工を行うことができると、溶接工程が不要となって生産時間を大きく短縮することができる。 Further, in order to improve the productivity and quality of stamped products, a technique for pressing steel sheets having portions having different thicknesses (hereinafter, also referred to as "differential thickness steel sheets") has been proposed (for example, Patent Documents). 2). If the difference thickness steel sheet can be pressed in this way, the welding process becomes unnecessary and the production time can be greatly shortened.

しかしながら、特許文献1や特許文献2に開示されたプレス加工の方法においては、差厚鋼板を一様に加熱処理するときに、鋼板の厚みによって到達する加熱温度が異なり易く、鋼板全体を均質に所望の温度に加熱することが難しい、という問題がある。
また、差厚鋼板に限らず、輪郭が特殊な形状の鋼板を加熱する際にも、一様に加熱処理するときに部分的な温度ムラが生じ易く、このような温度ムラがプレス加工時の鋼板の品質に影響を及ぼしてしまう、という問題もある。
However, in the press working method disclosed in Patent Document 1 and Patent Document 2, when the differential thickness steel sheet is uniformly heat-treated, the heating temperature reached tends to differ depending on the thickness of the steel sheet, and the entire steel sheet is uniformly heat-treated. There is a problem that it is difficult to heat to a desired temperature.
Further, not only when heating a steel sheet having a special contour, but also when heating a steel sheet having a special contour, partial temperature unevenness is likely to occur during uniform heat treatment, and such temperature unevenness is likely to occur during press working. There is also the problem that it affects the quality of the steel sheet.

特開2014−149133号公報Japanese Unexamined Patent Publication No. 2014-149133 特開2005−138112号公報Japanese Unexamined Patent Publication No. 2005-138112

本発明は、以上のような事情に基づいてなされたものであって、その目的は、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって加熱対象物を加熱処理する加熱処理方法において、加熱対象物が差厚鋼板や輪郭が特殊な形状の鋼板などの異形状のものである場合においても、その全体を均質に所望の温度に加熱することができる加熱処理方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is in a heat treatment method for heat-treating a heated object by a heating means that evenly radiates infrared rays in a direction toward the heated object. In order to provide a heat treatment method capable of uniformly heating the entire object to a desired temperature even when the object to be heated has an irregular shape such as a differential thickness steel plate or a steel plate having a special contour. be.

本発明の加熱処理方法は、金属よりなる加熱対象物の被照射面において、前記加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分に、赤外線吸収処理として赤外線吸収剤を含有する塗料を塗布した塗布膜を形成し、かつ、前記加熱対象物の被照射面における、前記加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分とは異なる、前記加熱対象物における赤外線の照射による昇温速度が相対的に大きい部分に、赤外線反射処理を施した後に、加熱ランプからの赤外線を前記加熱対象物に向かう方向に均等に照射することにより、当該加熱対象物を加熱処理する加熱処理方法であって、
前記塗料は、樹脂を含有しない溶剤に前記赤外線吸収剤が分散されてなる水性の塗料であることを特徴とする。
In the heat treatment method of the present invention, an infrared absorber is contained as an infrared absorption treatment in a portion of the irradiated surface of the object to be heated made of metal where the rate of temperature rise due to irradiation of infrared rays is relatively small. Infrared rays in the heated object that form a coating film coated with the paint and are different from the portion of the irradiated surface of the heated object in which the rate of temperature rise due to infrared irradiation in the heated object is relatively small. After applying infrared reflection treatment to the portion where the rate of temperature rise due to irradiation is relatively high , the heating target is heat-treated by evenly irradiating the infrared rays from the heating lamp in the direction toward the heating target. It is a heat treatment method
The coating material is characterized by being a water-based coating material in which the infrared absorber is dispersed in a solvent containing no resin.

本発明の加熱処理方法においては、前記赤外線吸収処理が、前記加熱対象物における相対的に厚みが大きい部分に係る被照射面に対して行われることが好ましい。 In the heat treatment method of the present invention, it is preferable that the infrared absorption treatment is performed on the irradiated surface of the relatively thick portion of the object to be heated.

本発明の加熱処理方法においては、前記赤外線反射処理が、前記加熱対象物における相対的に厚みが小さい部分に係る被照射面に対して行われることが好ましい。 In the heat treatment method of the present invention, it is preferable that the infrared reflection treatment is performed on the irradiated surface of the relatively small portion of the object to be heated.

本発明の加熱処理方法は、加熱対象物の被照射面の一部に赤外線吸収処理を施した後に、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって加熱処理(以下、「本加熱処理」ともいう。)するものである。従って、加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分に係る被照射面に赤外線吸収処理を施すことによって、当該部分における赤外線の吸収量が未処理領域よりも増大して赤外線の照射による昇温速度が大きくなるよう調整される。その結果、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときの加熱対象物についての昇温速度の分布を、当該加熱対象物の厚みや輪郭、当該加熱対象物の表面の反射率などによらずに略均等にすることができるので、全体を均質に所望の温度に加熱することができる。
また、本発明の別の加熱処理方法は、加熱対象物の被照射面の一部に赤外線反射処理を施した後に、赤外線を加熱対象物に向かう方向に均等に放射する加熱手段によって本加熱処理するものである。従って、加熱対象物における赤外線の照射による昇温速度が相対的に大きい部分に係る被照射面に赤外線反射処理を施すことによって、当該部分における加熱ランプからの赤外線の吸収量が未処理領域よりも低減されて赤外線の照射による昇温速度が小さくなるよう調整される。その結果、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときの加熱対象物についての昇温速度の分布を、当該加熱対象物の厚みや輪郭、当該加熱対象物の表面の反射率などによらずに略均等にすることができるので、全体を均質に所望の温度に加熱することができる。
本発明において、「均質に所望の温度に加熱することができる」とは、加熱対象物における所望の範囲について、加熱手段から加熱対象物に向かう方向に均等に放射された赤外線が照射されたときに、所定の時間内に本加熱処理の目的とする温度範囲まで昇温させ、当該温度範囲内の本加熱処理温度で本加熱処理を行うことができることを意味する。
In the heat treatment method of the present invention, after applying infrared absorption treatment to a part of the irradiated surface of the object to be heated, heat treatment is performed by a heating means that evenly radiates infrared rays in the direction toward the object to be heated (hereinafter, "the present invention". It is also called "heat treatment"). Therefore, by applying the infrared absorption treatment to the irradiated surface of the heated object where the rate of temperature rise due to the irradiation of infrared rays is relatively small, the amount of infrared rays absorbed in the portion is increased as compared with the untreated region, and the infrared rays are absorbed. The temperature rise rate due to the irradiation of infrared rays is adjusted to be large. As a result, the distribution of the temperature rise rate for the heating object when the infrared rays radiated evenly in the direction from the heating means toward the heating object is irradiated is the thickness and contour of the heating object, and the heating object. Since it can be made substantially uniform regardless of the reflectance of the surface of the surface, the whole can be uniformly heated to a desired temperature.
Further, in another heat treatment method of the present invention, after applying infrared reflection treatment to a part of the irradiated surface of the object to be heated, the present heat treatment is performed by a heating means that evenly radiates infrared rays in the direction toward the object to be heated. It is something to do. Therefore, by applying the infrared reflection treatment to the irradiated surface of the heated object where the rate of temperature rise due to the irradiation of infrared rays is relatively high, the amount of infrared rays absorbed from the heating lamp in the portion is higher than that in the untreated region. It is adjusted so that it is reduced and the rate of temperature rise due to infrared irradiation is reduced. As a result, the distribution of the temperature rise rate for the heating object when the infrared rays radiated evenly in the direction from the heating means toward the heating object is irradiated is the thickness and contour of the heating object, and the heating object. Since it can be made substantially uniform regardless of the reflectance of the surface of the surface, the whole can be uniformly heated to a desired temperature.
In the present invention, "can be uniformly heated to a desired temperature" means that the desired range of the object to be heated is irradiated with infrared rays uniformly emitted from the heating means toward the object to be heated. In addition, it means that the temperature can be raised to the target temperature range of the main heat treatment within a predetermined time, and the main heat treatment can be performed at the main heat treatment temperature within the temperature range.

本発明の加熱処理方法の加熱対象物における光吸収処理領域の一例を示す斜視図である。It is a perspective view which shows an example of the light absorption treatment region in the heating object of the heat treatment method of this invention. 本発明の加熱処理方法の加熱対象物における光吸収処理領域の別の一例を示す斜視図である。It is a perspective view which shows another example of the light absorption treatment region in the heating object of the heat treatment method of this invention. 本発明の加熱処理方法の加熱対象物における光吸収処理領域および光反射処理領域の一例を示す斜視図である。It is a perspective view which shows an example of the light absorption treatment region and the light reflection treatment region in the heating object of the heat treatment method of this invention. 加熱対象物の形状の具体例を示す平面図である。It is a top view which shows the specific example of the shape of the object to be heated. 実験例1に用いた差厚鋼板を示す斜視図である。It is a perspective view which shows the differential thickness steel plate used in Experimental Example 1. FIG. 実験例1の結果を示すグラフである。It is a graph which shows the result of Experimental Example 1.

以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.

本発明の加熱処理方法は、加熱対象物(以下、「ワーク」ともいう。)に加熱ランプによる面状光源から赤外線を照射することにより、当該ワークを加熱処理(本加熱処理)する方法である。
そして、この本加熱処理に先行して、ワークの被照射面の一部(以下、「補償領域」とする。)に赤外線吸収処理および/または赤外線反射処理を行う。
本発明において、ワークの被照射面とは、加熱ランプからの赤外線が照射される面をいう。具体的には、例えば加熱ランプがワークの上面に対向して設けられた状態において赤外線が放射される場合には、ワークの上面および側周面をいう。
The heat treatment method of the present invention is a method of heat-treating a work (this heat treatment) by irradiating an object to be heated (hereinafter, also referred to as “work”) with infrared rays from a planar light source using a heating lamp. ..
Then, prior to this heat treatment, an infrared absorption treatment and / or an infrared reflection treatment is performed on a part of the irradiated surface of the work (hereinafter referred to as “compensation area”).
In the present invention, the irradiated surface of the work means the surface irradiated with infrared rays from the heating lamp. Specifically, for example, when infrared rays are radiated in a state where the heating lamp is provided facing the upper surface of the work, it means the upper surface and the side peripheral surface of the work.

赤外線吸収処理は、具体的には、例えば、ワークの被照射面の補償領域に赤外線吸収剤を含有する赤外線吸収膜を形成すること、あるいは、ワークそのものを本加熱処理温度よりも低い温度で予め加熱すること、または、薬品を塗布する酸化処理によって被照射面の色状態を黒化させることによって、赤外線の吸収率を補償領域以外の未処理領域よりも高くすることなどによって行うことができる。 Specifically, in the infrared absorption treatment, for example, an infrared absorption film containing an infrared absorber is formed in the compensation region of the irradiated surface of the work, or the work itself is preliminarily heated at a temperature lower than the main heat treatment temperature. This can be done by heating or by blackening the color state of the irradiated surface by an oxidation treatment of applying a chemical, so that the absorption rate of infrared rays is higher than that of the untreated region other than the compensation region.

赤外線吸収剤としては、赤外線吸収率が60%以上である材質のものを用いることが好ましく、具体的には、金属単体や、金属酸化物、金属窒化物、金属ホウ化物および金属炭化物などの金属化合物を用いることができる。
赤外線吸収膜としては、赤外線吸収剤を含有する塗料を塗布した塗布膜や、赤外線吸収剤のメッキによる膜または蒸着膜、赤外線吸収剤によるフィルムやテープなどが挙げられる。
赤外線吸収剤を含有する塗料としては、例えば赤外線吸収剤をナノ粒子状にして溶媒に混合したものを用いることができる。具体的には、赤外線吸収剤を分散した例えばシリコーン樹脂系塗料、アクリル樹脂系塗料、ウレタン樹脂系塗料、フッ素樹脂系塗料などを用いることができる。また、樹脂を含有しない溶剤に赤外線吸収剤が分散されてなる水性の塗料も用いることができる。また、本加熱処理温度の高さによっては、これらの溶液や溶液を含む半乾燥状態や粒子間をつなぐバインダーを赤外線吸収剤として用いてもよい。
これらの塗料のうち、ワークの材質や本加熱処理温度に応じて、適宜選定することができる。
As the infrared absorber, it is preferable to use a material having an infrared absorption rate of 60% or more, and specifically, a metal alone or a metal such as a metal oxide, a metal nitride, a metal boride and a metal carbide. Compounds can be used.
Examples of the infrared absorbing film include a coating film coated with a paint containing an infrared absorber, a film or a vapor-deposited film plated with an infrared absorber, and a film or tape made of an infrared absorber.
As the coating material containing the infrared absorber, for example, a paint obtained by converting the infrared absorber into nanoparticles and mixing it with a solvent can be used. Specifically, for example, a silicone resin-based paint, an acrylic resin-based paint, a urethane resin-based paint, a fluororesin-based paint, or the like in which an infrared absorber is dispersed can be used. Further, a water-based paint in which an infrared absorber is dispersed in a solvent containing no resin can also be used. Further, depending on the height of the heat treatment temperature, a semi-dry state containing these solutions or solutions or a binder connecting particles may be used as an infrared absorber.
Of these paints, they can be appropriately selected according to the material of the work and the main heat treatment temperature.

ワークそのものを本加熱処理温度よりも低い温度に予め加熱する予備加熱は、例えば大気中で行われ、ワークの材質によっても異なるが、例えばワークが鋼板である場合、約400℃に加熱することによって行うことができる。
予備加熱による赤外線吸収処理は、例えばワークが差厚鋼板である場合に好適に行うことができる。具体的には、例えば面積が大きい鋼板(大面積鋼板)上に面積が小さい鋼板(小面積鋼板)を積層させたワーク(差厚鋼板)において、スポット溶接を行う前に厚みが重なり合って昇温され難い小面積鋼板のみについて予備加熱を行うことにより、小面積鋼板のみに赤外線吸収処理を行うことができる。あるいは、スポット溶接後に、加熱手段における小面積鋼板に対応する加熱ランプのみを点灯することにより、小面積鋼板のみに赤外線吸収処理を行うことができる。
Preheating that preheats the work itself to a temperature lower than the main heat treatment temperature is performed, for example, in the atmosphere and varies depending on the material of the work. For example, when the work is a steel plate, it is heated to about 400 ° C. It can be carried out.
The infrared absorption treatment by preheating can be preferably performed, for example, when the work is a differential thickness steel plate. Specifically, for example, in a work (difference thickness steel plate) in which a steel plate having a small area (small area steel plate) is laminated on a steel plate having a large area (large area steel plate), the thicknesses overlap before spot welding to raise the temperature. By preheating only the small-area steel sheet that is difficult to do, the infrared absorption treatment can be performed only on the small-area steel sheet. Alternatively, after spot welding, the infrared absorption treatment can be performed only on the small area steel sheet by lighting only the heating lamp corresponding to the small area steel sheet in the heating means.

予備加熱による赤外線吸収処理を行うことにより、赤外線吸収剤を含有する赤外線吸収膜を形成する必要がない。また、当該赤外線吸収膜の材料とワークの材料との間の反応性を考慮する必要がなく、さらに、本加熱処理後に赤外線吸収膜の材料がワーク上に残留する場合にはこれを除去する必要がないことなどの利点を得ることができる。 By performing the infrared absorption treatment by preheating, it is not necessary to form an infrared absorption film containing an infrared absorber. Further, it is not necessary to consider the reactivity between the material of the infrared absorbing film and the material of the work, and further, if the material of the infrared absorbing film remains on the work after the main heat treatment, it is necessary to remove it. You can get advantages such as no.

赤外線反射処理は、具体的には、例えば、金属、金属酸化物、金属窒化物、金属ホウ化物、金属炭化物などの金属化合物によって赤外線反射率の高い赤外線反射膜を形成することや、メッキ処理を施すこと、または、表面を例えば研磨などによって表面粗さを変化させて鏡面化することなどによって行うことができる。
赤外線反射膜は、例えば赤外線反射率が70%以上である膜であることが好ましく、具体的には、例えばアルミメッキや金メッキなどのメッキによる膜であることが好ましい。
Specifically, the infrared reflection treatment includes forming an infrared reflective film having a high infrared reflectance from a metal compound such as a metal, a metal oxide, a metal nitride, a metal boride, or a metal carbide, or performing a plating treatment. It can be applied, or the surface can be mirrored by changing the surface roughness by, for example, polishing.
The infrared reflective film is preferably, for example, a film having an infrared reflectance of 70% or more, and specifically, a film obtained by plating such as aluminum plating or gold plating.

ワークの被照射面の補償領域における赤外線吸収処理および/または赤外線反射処理は、本加熱処理の開始、すなわち赤外線の照射の開始から例えば1分間後に、ワーク全体が本加熱処理温度(例えば1000℃±50℃)に到達するよう、施されることが好ましい。 Infrared absorption treatment and / or infrared reflection treatment in the compensation area of the irradiated surface of the work is performed, for example, one minute after the start of the main heat treatment, that is, the start of the infrared irradiation, and the entire work is subjected to the main heat treatment temperature (for example, 1000 ° C. ±). It is preferably applied so as to reach 50 ° C.).

ワークの被照射面における赤外線吸収処理および/または赤外線反射処理は、例えば当該ワークの厚みや輪郭に応じて行われる。具体的には、赤外線吸収処理は、相対的に赤外線の照射による昇温速度が小さい領域、例えば相対的に厚みが大きい部分に係る被照射面に対して行われる。また、赤外線反射処理は、相対的に赤外線の照射による昇温速度が大きい領域、例えば相対的に厚みが小さい部分に係る被照射面に対して行われる。
本発明において、「赤外線の照射による昇温速度」とは、加熱ランプによる面状光源からワークに向かう方向に均等な強度分布で放射された赤外線がワークに照射されたときの、ワークの温度上昇に係る昇温速度をいう。
具体的に説明すると、図1に示されるように、例えば矩形の平板状のワークW1においては、ワークW1の当該ワークW1が伸びる面方向の中央部領域15は、それ以外の端部領域17に比べて赤外線の照射による昇温速度が小さい。これは、ワークW1の端部領域17においては、ワークW1の上面に加えて側周面にも赤外線が照射されるためである。従って、当該中央部領域15に係る被照射面に赤外線吸収処理を施して光吸収処理領域(図1において網線を付して示す。)Ab1を形成する。
また、図2に示されるように、例えば1枚の鋼板であって、厚みが大きい部分25と厚みが小さい部分27とを有する差厚鋼板であるワークW2においては、相対的に厚みが大きい部分25は厚みが小さい部分27に比べて、ワークW2の上面に係る単位面積当たりの体積の熱容量が大きいため、赤外線の照射による昇温速度が小さい。従って、当該厚みが大きい部分25に係る被照射面に赤外線吸収処理を施して光吸収処理領域(図2において網線を付して示す。)Ab2を形成する。
The infrared absorption treatment and / or the infrared reflection treatment on the irradiated surface of the work is performed, for example, according to the thickness and contour of the work. Specifically, the infrared absorption treatment is performed on the irradiated surface in a region where the rate of temperature rise due to the irradiation of infrared rays is relatively small, for example, a portion having a relatively large thickness. Further, the infrared reflection treatment is performed on the irradiated surface in a region where the rate of temperature rise due to the irradiation of infrared rays is relatively high, for example, a portion having a relatively small thickness.
In the present invention, the "heat rising rate due to infrared irradiation" is the temperature rise of the work when the work is irradiated with infrared rays radiated with an even intensity distribution in the direction from the planar light source by the heating lamp toward the work. Refers to the rate of temperature rise related to.
Specifically, as shown in FIG. 1, for example, in a rectangular flat plate-shaped work W1, the central region 15 of the work W1 in the plane direction in which the work W1 extends is the other end region 17. Compared to this, the rate of temperature rise due to infrared irradiation is small. This is because, in the end region 17 of the work W1, infrared rays are irradiated not only to the upper surface of the work W1 but also to the side peripheral surface. Therefore, the irradiated surface related to the central region 15 is subjected to infrared absorption treatment to form a light absorption treatment region (shown with a mesh line in FIG. 1) Ab1.
Further, as shown in FIG. 2, for example, in the work W2, which is a single steel plate and is a differential thickness steel plate having a thick portion 25 and a small thickness portion 27, a portion having a relatively large thickness. Since the heat capacity of the volume per unit area of the upper surface of the work W2 is larger in 25 than in the portion 27 having a small thickness, the rate of temperature rise due to infrared irradiation is small. Therefore, the irradiated surface of the thick portion 25 is subjected to infrared absorption treatment to form a light absorption treatment region (shown with a mesh line in FIG. 2) Ab2.

また、1つのワークにおいて、その厚みに応じて赤外線吸収処理および赤外線反射処理の両方が行われてもよい。
具体的には、互いに形状が異なる下層ワーク10および上層ワーク20が積層された差厚鋼板であるワークW3においては、2枚の積層部分30は単層部分40に比べて赤外線の照射による昇温速度が小さい。従って、図3(a)に示されるように、当該積層部分30に係る被照射面、すなわち上層ワーク20の加熱ランプに対向する表面(図3(a)において上面)に赤外線吸収処理を施して光吸収処理領域(図3(a)において網線を付して示す。)Ab3を形成する。
一方、単層部分40においては積層部分30に比べて赤外線の照射による昇温速度が大きい。従って、図3(a)に示されるように、当該単層部分40に係る被照射面、すなわち下層ワーク10の加熱ランプに対向する表面(図3(a)において上面)に赤外線反射処理を施して光反射処理領域(図3(a)において斜線を付して示す。)Re1を形成する。
Further, in one work, both infrared absorption treatment and infrared reflection treatment may be performed depending on the thickness thereof.
Specifically, in the work W3 which is a differential steel plate in which the lower work 10 and the upper work 20 having different shapes are laminated, the temperature of the two laminated portions 30 is higher than that of the single layer portion 40 by irradiation with infrared rays. The speed is low. Therefore, as shown in FIG. 3A, the irradiated surface of the laminated portion 30, that is, the surface of the upper work 20 facing the heating lamp (upper surface in FIG. 3A) is subjected to infrared absorption treatment. A light absorption processing region (shown with a mesh line in FIG. 3A) Ab3 is formed.
On the other hand, in the single layer portion 40, the rate of temperature rise due to the irradiation of infrared rays is higher than that in the laminated portion 30. Therefore, as shown in FIG. 3A, the irradiated surface of the single layer portion 40, that is, the surface of the lower layer work 10 facing the heating lamp (upper surface in FIG. 3A) is subjected to infrared reflection treatment. The light reflection processing region (shown with diagonal lines in FIG. 3A) Re1 is formed.

また、ワークW3においては、その輪郭に応じて赤外線吸収処理および赤外線反射処理が行われてもよい。具体的には、ワークW3の積層部分30の当該ワークW3が伸びる面方向の中央部領域は端部領域に比べて赤外線の照射による昇温速度が小さい。従って、図3(b)に示されるように、当該中央部領域に係る被照射面、すなわち上層ワーク20の加熱ランプに対向する表面(図3(b)において上面)における中央領域に赤外線吸収処理を施して光吸収処理領域(図3(b)2おいて網線を付して示す。)Ab4を形成する。
また、輪郭が長方形の短辺から連続して伸びる三角形状の突出部41を有する全体が五角形のワークW3においては、当該突出部41は、赤外線の照射による昇温速度が大きい。これは、側周面(肉厚部分)にも加熱ランプからの赤外線が照射されるので、ワークW3の突出部41においては表面(上面)からの加熱に対して側周面からの加熱の割合が大きくなるためである。従って、図3(b)に示されるように、単層部分40に係る被照射面であって、かつ、突出部41に係る被照射面、すなわち突出部41の加熱ランプに対向する表面(図3(b)において上面)に赤外線反射処理を施して光反射処理領域(図3(b)において斜線を付して示す。)Re2を形成する。また、下層ワーク10のワークW3が伸びる面方向の端部領域は中央部領域に比べて赤外線の照射による昇温速度が大きい。従って、図3(b)に示されるように、下層ワーク10の側周面に赤外線反射処理を施して光反射処理領域(図3(b)において斜線を付して示す。)Re3を形成する。
Further, in the work W3, infrared absorption processing and infrared reflection processing may be performed according to the contour thereof. Specifically, in the central region of the laminated portion 30 of the work W3 in the plane direction in which the work W3 extends, the rate of temperature rise due to infrared irradiation is smaller than that in the end region. Therefore, as shown in FIG. 3B, the infrared absorption treatment is performed on the irradiated surface related to the central region, that is, the central region on the surface of the upper work 20 facing the heating lamp (upper surface in FIG. 3B). (Shown with a mesh line in FIG. 3 (b) 2) Ab4 is formed.
Further, in the work W3 having a triangular protruding portion 41 whose contour extends continuously from the short side of the rectangle and which is entirely pentagonal, the protruding portion 41 has a high rate of temperature rise due to infrared irradiation. This is because the infrared rays from the heating lamp are also irradiated to the side peripheral surface (thick portion), so that the ratio of the heating from the side peripheral surface to the heating from the surface (upper surface) in the protruding portion 41 of the work W3. This is because Therefore, as shown in FIG. 3B, the surface of the irradiated surface related to the single layer portion 40 and facing the heating lamp of the projected portion 41, that is, the surface of the irradiated portion 41 (FIG. 3). Infrared reflection processing is applied to the upper surface of 3 (b) to form a light reflection processing region (indicated by a diagonal line in FIG. 3 (b)) Re2. Further, the temperature rise rate of the lower work 10 in the end region in the plane direction in which the work W3 extends has a higher rate of temperature rise due to infrared irradiation than in the central region. Therefore, as shown in FIG. 3 (b), the side peripheral surface of the lower work 10 is subjected to infrared reflection processing to form a light reflection processing region (shown with diagonal lines in FIG. 3 (b)) Re3. ..

また、ワークの被照射面の補償領域における赤外線吸収処理および/または赤外線反射処理は、ワークの表面の反射率に応じて行われてもよい。
例えばワークの表面の光沢性が高い場合には、ワークの被照射面の全面に赤外線吸収処理を施して光吸収処理領域を形成することによって赤外線の照射による昇温速度を大きくすることができる。
また、互いに形状が異なる下層ワークおよび上層ワークが積層された差厚鋼板であって、例えば上層ワークの光沢性が下層ワークよりも高い場合などにおいては、当該上層ワークの被照射面に赤外線吸収処理を施して光吸収処理領域を形成することもできる。
Further, the infrared absorption treatment and / or the infrared reflection treatment in the compensation region of the irradiated surface of the work may be performed according to the reflectance of the surface of the work.
For example, when the surface of the work has a high gloss, the rate of temperature rise due to the irradiation of infrared rays can be increased by applying the infrared absorption treatment to the entire surface of the irradiated surface of the work to form a light absorption treatment region.
Further, in a differential steel plate in which lower work and upper work having different shapes are laminated, for example, when the gloss of the upper work is higher than that of the lower work, the irradiated surface of the upper work is subjected to infrared absorption treatment. Can also be applied to form a light absorption processing region.

〔ワーク〕
本発明の加熱処理方法において本加熱処理されるワークは、略平板状の金属よりなるものであって、例えば鋼板とされる。
本発明において「鋼板」とは鉄を主成分とする板材を指す。例えば、炭素含有量が2質量%以下の鋼の板等が対象として含まれる。
ワークの詳細な形状については限定されず、厚みが均一な平板状の鋼板であっても差厚鋼板であってもよく、また、輪郭が長方形や正方形のものであっても輪郭が特殊な形状のものであってもよい。
具体的には、長方形の輪郭のワークWa(図4(a))、平行四辺形の輪郭を有して鋭角の角部42を有するワークWb(図4(b))、平行四辺形の輪郭における一角が円弧状に切り欠かれた、輪郭に曲線を有するワークWcもの(図4(c))、辺の長さが互いに異なる輪郭のワークWd,We(図4(d)や図4(e))、穴45を有するワークWf(図4(f))などや、これらの異なる2種を積層させた、厚みの異なる部分を有する差厚鋼板などが挙げられる。
差厚鋼板としては、例えば図2に示されるような厚みが大きい部分25と厚みが小さい部分27とを有する1枚の鋼板からなるワークW2や、図3に示されるように、互いに形状が異なる下層ワーク10および上層ワーク20が積層された差厚鋼板であるワークW3が挙げられる。
〔work〕
In the heat treatment method of the present invention, the work to be heat-treated is made of a substantially flat metal, and is, for example, a steel plate.
In the present invention, the "steel plate" refers to a plate material containing iron as a main component. For example, a steel plate having a carbon content of 2% by mass or less is included as a target.
The detailed shape of the work is not limited, and it may be a flat steel plate having a uniform thickness or a differential thickness steel plate, and even if the contour is rectangular or square, the contour has a special shape. It may be.
Specifically, a work Wa having a rectangular contour (FIG. 4 (a)), a work Wb having a parallelogram contour and having an acute-angled corner 42 (FIG. 4 (b)), and a parallelogram contour. Work Wc having a curved contour with one corner cut out in an arc shape (FIG. 4 (c)), workpieces Wd, We with contours having different side lengths (FIG. 4 (d) and FIG. 4 (FIG. 4)). e)), a work Wf having a hole 45 (FIG. 4 (f)), and a differential thickness steel plate having a portion having a different thickness obtained by laminating two different types thereof.
As the difference thickness steel plate, for example, a work W2 made of one steel plate having a thick portion 25 and a thin portion 27 as shown in FIG. 2 and a work W2 having different shapes as shown in FIG. Examples thereof include work W3, which is a differential steel plate in which a lower work 10 and an upper work 20 are laminated.

〔熱処理装置〕
本発明の加熱処理方法を行う加熱手段としては、例えば、処理室を有し、この処理室内において支持部上に支持されるワークの被照射面と対向するよう設けられた面状光源である光照射部を備える熱処理装置を用いることができる。
この熱処理装置は、光照射部からワークに向かって赤外線を一定方向に均等に放射することにより、ワークを被照射面から加熱して本加熱処理するものである。
[Heat treatment equipment]
As the heating means for performing the heat treatment method of the present invention, for example, light which is a planar light source having a treatment chamber and being provided in the treatment chamber so as to face the irradiated surface of the work supported on the support portion. A heat treatment apparatus provided with an irradiation unit can be used.
This heat treatment apparatus heats the work from the irradiated surface by uniformly radiating infrared rays from the light irradiation unit toward the work in a certain direction to perform the main heat treatment.

〔光照射部〕
光照射部は、例えばワークが伸びる面方向に沿って縦横に並設された複数の点光源型の加熱ランプ(以下、「点状ランプ」ともいう。)よりなるものとすることができる。
点状ランプの各々は、隣接する点状ランプの距離が全て等間隔となるよう設置されていることが好ましい。
点状ランプとしては、例えばシングルエンド型のフィラメントランプを用いることができる。
シングルエンド型のフィラメントランプは、例えば球欠体状のバルブを備え、当該バルブの割平面が封止部によって封止され、バルブ内に、その両端部が各々内部リードを介してソケット内に設けられた2つの電極に接続されたフィラメントが収容されたものである。
[Light irradiation unit]
The light irradiation unit may be composed of, for example, a plurality of point light source type heating lamps (hereinafter, also referred to as “point lamps”) arranged vertically and horizontally along the plane direction in which the work extends.
It is preferable that each of the point lamps is installed so that the distances of the adjacent point lamps are all evenly spaced.
As the point lamp, for example, a single-ended filament lamp can be used.
The single-ended filament lamp is provided with, for example, a spherically chipped bulb, the split plane of the bulb is sealed by a sealing portion, and both ends thereof are provided in the socket via an internal lead. It contains a filament connected to the two electrodes.

光照射部は、例えば複数の棒状の加熱ランプ(以下、「棒状ランプ」ともいう。)が、各々のランプ中心軸がワークの伸びる面と平行となるように一平面内に位置された状態で、互いに離間して並設されているものであってもよい。
棒状ランプの各々は、隣接する棒状ランプの距離が全て等間隔となるよう設置されていることが好ましい。
棒状ランプとしては、例えばダブルエンド型のフィラメントランプを用いることができる。
ダブルエンド型のフィラメントランプは、例えば両端部が封止部によって封止された直管状のバルブを備え、当該バルブ内にフィラメントが同軸方向に伸びた状態で収容され、当該フィラメントの両端がそれぞれ封止部を介して2つの電極に接続されたものである。
The light irradiation unit is, for example, in a state where a plurality of rod-shaped heating lamps (hereinafter, also referred to as “rod-shaped lamps”) are positioned in one plane so that the central axis of each lamp is parallel to the surface on which the work extends. , They may be arranged side by side so as to be separated from each other.
It is preferable that each of the rod-shaped lamps is installed so that the distances of the adjacent rod-shaped lamps are all evenly spaced.
As the rod-shaped lamp, for example, a double-ended filament lamp can be used.
A double-ended filament lamp is provided with, for example, a straight tubular bulb whose both ends are sealed by a sealing portion, and the filament is housed in the bulb in a coaxially extended state, and both ends of the filament are sealed. It is connected to two electrodes via a stop.

本発明の加熱処理方法においては、まず、ワークの厚みや輪郭、当該ワークの表面の反射率などに応じて、ワークの被照射面の一部に対して、上述のように赤外線吸収処理および/または赤外線反射処理を施す。これにより、ワークの全体が、所定の時間内に本加熱処理の目的とする温度範囲内に昇温されるものとされる。その後、ワークの被照射面の全面に光照射部からワークに向かう一定方向に均等な強度分布で放射された赤外線が照射され、所定の時間内に本加熱処理の目的とする温度範囲まで昇温され、当該本加熱処理の目的とする温度範囲内の本加熱処理温度に維持されて本加熱処理が行われる。
本加熱処理温度は、例えば1000℃±50℃とされる。
なお、赤外線吸収処理において形成される、赤外線吸収剤を含有する塗料を塗布した塗布膜は、塗料の種類によっても異なるが、本加熱処理温度で加熱することによって加熱分解させて消失させることもできる。
In the heat treatment method of the present invention, first, depending on the thickness and contour of the work, the reflectance of the surface of the work, etc., a part of the irradiated surface of the work is subjected to infrared absorption treatment and / or as described above. Alternatively, infrared reflection processing is applied. As a result, the entire work is warmed up within the target temperature range of the main heat treatment within a predetermined time. After that, the entire surface of the irradiated surface of the work is irradiated with infrared rays radiated with an even intensity distribution in a certain direction from the light irradiation part toward the work, and the temperature rises to the target temperature range of the main heat treatment within a predetermined time. Then, the main heat treatment is performed while being maintained at the main heat treatment temperature within the target temperature range of the main heat treatment.
The main heat treatment temperature is, for example, 1000 ° C. ± 50 ° C.
The coating film to which the paint containing the infrared absorber is applied, which is formed in the infrared absorbing treatment, may be heat-decomposed and disappeared by heating at the main heat treatment temperature, although it depends on the type of the paint. ..

以上のような加熱処理方法は、ワークの被照射面の一部に赤外線吸収処理および/または赤外線反射処理を施した後に、赤外線をワークに向かう方向に均等に放射する熱処理装置によって本加熱処理するものである。従って、ワークにおける赤外線の照射による昇温速度が相対的に小さい部分に係る被照射面に赤外線吸収処理を施すことによって、および/または、ワークにおける赤外線の照射による昇温速度が相対的に大きい部分に係る被照射面に赤外線反射処理を施すことによって、各部分における赤外線の吸収量がそれぞれ制御されて所定の時間内に本加熱処理の目的とする温度範囲まで昇温される。その結果、ワークについての赤外線の照射による昇温速度の分布を、当該ワークの厚みや輪郭、当該ワークの表面の反射率などによらずに略均等にすることができる。換言すると、赤外線の照射による昇温速度の分布の不均一を是正することができる。従って、全体を均質に所望の温度に加熱することができる。 In the heat treatment method as described above, a part of the irradiated surface of the work is subjected to infrared absorption treatment and / or infrared reflection treatment, and then the main heat treatment is performed by a heat treatment apparatus that evenly radiates infrared rays in the direction toward the work. It is a thing. Therefore, by applying the infrared absorption treatment to the irradiated surface related to the portion of the work where the temperature rise rate due to infrared irradiation is relatively small, and / or the portion where the temperature rise rate due to infrared irradiation in the work is relatively high. By applying the infrared reflection treatment to the irradiated surface according to the above, the amount of infrared rays absorbed in each portion is controlled and the temperature is raised to the target temperature range of the main heat treatment within a predetermined time. As a result, the distribution of the temperature rising rate of the work due to the irradiation of infrared rays can be made substantially uniform regardless of the thickness and contour of the work, the reflectance of the surface of the work, and the like. In other words, it is possible to correct the non-uniformity of the distribution of the temperature rise rate due to the irradiation of infrared rays. Therefore, the whole can be uniformly heated to a desired temperature.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、種々の変更を加えることができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made.

以下、本発明の効果を確認するために行った実験例について説明するが、本発明はこれに限定されるものではない。 Hereinafter, experimental examples performed to confirm the effects of the present invention will be described, but the present invention is not limited thereto.

<実験例1>
図5に示すように、縦100mm×横200mm×厚み2mmの矩形の鋼板(大面積鋼板(1))の一面(上面)上に、縦50mm×横50mm×厚み2mmの矩形の鋼板(小面積鋼板(2))を、一角が一致するよう積層させた差厚鋼板(3)を用意した。
この差厚鋼板(3)の小面積鋼板(2)の、大面積鋼板(1)と接触された面と反対の面(上面)の全面に、シリコーン樹脂を含有する塗料「耐熱耐候マーカー 黒」(オキツモ社製)を塗布して塗布膜を形成した。これを加熱対象物〔A1〕とする。
一方、比較用として上記の塗料を塗布していない差厚鋼板(3)を用意し、これそのものを加熱対象物〔B〕とする。
<Experimental Example 1>
As shown in FIG. 5, a rectangular steel plate (small area) having a length of 50 mm, a width of 50 mm, and a thickness of 2 mm is placed on one surface (upper surface) of a rectangular steel plate (large area steel plate (1)) having a length of 100 mm, a width of 200 mm, and a thickness of 2 mm. A differential thickness steel plate (3) was prepared by laminating the steel plates (2)) so that the corners match.
A paint "heat resistant weather resistant marker black" containing a silicone resin on the entire surface (upper surface) of the small area steel plate (2) of the differential thickness steel plate (3) opposite to the surface in contact with the large area steel plate (1). (Manufactured by Okitsumo Co., Ltd.) was applied to form a coating film. This is the object to be heated [A1].
On the other hand, for comparison, a differential thickness steel plate (3) to which the above paint is not applied is prepared, and this itself is used as a heating object [B].

これらの加熱対象物〔A1〕,〔B〕を、点光源型のフィラメントランプ(定格電力7000W、外径13mm)が、ランプ間配列ピッチ18mmで加熱対象物が伸びる面方向に沿って縦横に並設された熱処理装置を用いて本加熱処理を行った。
そして、各加熱対象物〔A1〕,〔B〕の被照射面における、小面積鋼板(2)の上面における隣接する2辺からそれぞれ10mm離間した位置、小面積鋼板(2)が積層されていない大面積鋼板(1)の上面における隣接する2辺からそれぞれ10mm離間した位置のそれぞれの時間に対する温度を熱電対(4,5)によってそれぞれ測定した。結果を図6に示す。
図6において、加熱対象物〔A1〕の小面積鋼板(2)の表面についての結果を太い実線(A1−2)で示し、加熱対象物〔A1〕の大面積鋼板(1)の表面についての結果を太い破線(A1−1)で示す。また、加熱対象物〔B〕の小面積鋼板(2)の表面についての結果を細い実線(B−2)で示し、加熱対象物〔B〕の大面積鋼板(1)の表面についての結果を細い破線(B−1)で示す。
また、本加熱処理中の温度変化について、表1に示す。
These heating objects [A1] and [B] are arranged vertically and horizontally along the plane direction in which the point light source type filament lamp (rated power 7000W, outer diameter 13mm) has an arrangement pitch between lamps of 18mm and the heating object extends. This heat treatment was performed using the heat treatment equipment provided.
Further, the small area steel sheets (2) are not laminated at positions separated from two adjacent sides on the upper surface of the small area steel sheets (2) on the irradiated surfaces of the objects to be heated [A1] and [B] by 10 mm, respectively. The temperature for each time at a position 10 mm apart from two adjacent sides on the upper surface of the large-area steel sheet (1) was measured by a thermocouple (4, 5), respectively. The results are shown in FIG.
In FIG. 6, the result for the surface of the small area steel plate (2) of the object to be heated [A1] is shown by a thick solid line (A1-2), and the result for the surface of the large area steel plate (1) of the object to be heated [A1] is shown. The result is shown by a thick broken line (A1-1). Further, the results on the surface of the small-area steel plate (2) of the object to be heated [B] are shown by a thin solid line (B-2), and the results on the surface of the large-area steel plate (1) of the object to be heated [B] are shown. It is shown by a thin broken line (B-1).
Table 1 shows the temperature changes during the main heat treatment.

<実験例2>
縦50mm×横50mm×厚み2mmの矩形の鋼板(小面積鋼板(2))を、点光源型のフィラメントランプ(定格電力7000W、外径13mm)が、ランプ間配列ピッチ18mmで加熱対象物が伸びる面方向に沿って縦横に並設された熱処理装置を用いて、600℃まで予備加熱した。その後、縦100mm×横200mm×厚み2mmの矩形の鋼板(大面積鋼板(1))の一面(上面)上に、一角が一致するよう積層させた。これを加熱対象物〔A2〕とする。
<Experimental Example 2>
A rectangular steel plate (small area steel plate (2)) with a length of 50 mm, a width of 50 mm, and a thickness of 2 mm is used as a point light source type filament lamp (rated power: 7000 W, outer diameter: 13 mm). Preheating was performed to 600 ° C. using heat treatment devices arranged vertically and horizontally along the plane direction. Then, it was laminated on one surface (upper surface) of a rectangular steel plate (large area steel plate (1)) having a length of 100 mm, a width of 200 mm, and a thickness of 2 mm so that one corner coincided. This is the object to be heated [A2].

この加熱対象物〔A2〕を、上記の熱処理装置を用いて本加熱処理を行った。
そして、加熱対象物〔A2〕の被照射面における、小面積鋼板(2)の上面における隣接する2辺からそれぞれ10mm離間した位置、小面積鋼板(2)が積層されていない大面積鋼板(1)の上面における隣接する2辺からそれぞれ10mm離間した位置のそれぞれの時間に対する温度を熱電対(4,5)によってそれぞれ測定した。本加熱処理中の温度変化について0.5秒間刻みで測定し、小面積鋼板が950℃以上の温度域に達した時点の「小面積鋼板の温度」および「大面積鋼板の温度」の温度を表1に示す。
This heat treatment object [A2] was subjected to the main heat treatment using the above heat treatment apparatus.
Then, the large-area steel plate (1) on which the small-area steel plate (2) is not laminated is located at a position 10 mm apart from the two adjacent sides on the upper surface of the small-area steel plate (2) on the irradiated surface of the object to be heated [A2]. ), The temperature for each time at a position 10 mm apart from the two adjacent sides on the upper surface was measured by a thermocouple (4, 5), respectively. The temperature change during this heat treatment is measured in 0.5 second increments, and the temperatures of "small area steel sheet temperature" and "large area steel sheet temperature" when the small area steel sheet reaches the temperature range of 950 ° C or higher are measured. It is shown in Table 1.

Figure 0006972640
Figure 0006972640

図6のグラフから明らかなように、赤外線吸収処理を行った加熱対象物〔A1〕においては、小面積鋼板(2)の温度が、加熱対象物〔B〕における小面積鋼板(2)と比較して急激に上昇することが確認された。また、表1から明らかなように、この加熱対象物〔A1〕においては、小面積鋼板(2)の温度が950℃前後に達した時点の大面積鋼板(3)の温度との差(温度差183℃)は、赤外線吸収処理を行わなかった加熱対象物〔B〕(温度差224℃)よりも小さくなることが確認された。
さらに、加熱対象物〔A1〕,〔A2〕においては、950℃前後に達するまでの加熱時間も、比較用の加熱対象物〔B〕に比べて短縮されることが確認された。
予備加熱による赤外線吸収処理を行った加熱対象物〔A2〕についても、同様の傾向が確認された。
As is clear from the graph of FIG. 6, in the heated object [A1] subjected to the infrared absorption treatment, the temperature of the small area steel plate (2) is compared with that of the small area steel plate (2) in the heated object [B]. It was confirmed that the temperature rose sharply. Further, as is clear from Table 1, in this object to be heated [A1], the difference (temperature) from the temperature of the large area steel sheet (3) when the temperature of the small area steel sheet (2) reaches around 950 ° C. It was confirmed that the difference of 183 ° C.) was smaller than that of the heated object [B] (temperature difference of 224 ° C.) without the infrared absorption treatment.
Further, it was confirmed that the heating time of the heated object [A1] and [A2] until reaching around 950 ° C. was shorter than that of the comparative heated object [B].
The same tendency was confirmed for the heated object [A2] that had been subjected to the infrared absorption treatment by preheating.

1 大面積鋼板
2 小面積鋼板
3 差厚鋼板
4,5 熱電対
10 下層ワーク
15 中央部領域
17 端部領域
20 上層ワーク
25 厚みが大きい部分
27 厚みが小さい部分
30 積層部分
40 単層部分
41 突出部
42 角部
45 穴
Ab1,Ab2,Ab3,Ab4 光吸収処理領域
Re1,Re2,Re3 光反射処理領域
W1,W2,W3,Wa,Wb,Wc,Wd,We,Wf ワーク

1 Large area steel plate 2 Small area steel plate 3 Difference thickness steel plate 4, 5 Thermocouple 10 Lower layer work 15 Central area 17 End area 20 Upper layer work 25 Thick part 27 Thin part 30 Laminated part 40 Single layer part 41 Projection Part 42 Corner 45 Holes Ab1, Ab2, Ab3, Ab4 Light absorption processing area Re1, Re2, Re3 Light reflection processing area W1, W2, W3, Wa, Wb, Wc, Wd, We, Wf Work

Claims (5)

金属よりなる加熱対象物の被照射面において、前記加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分に、赤外線吸収処理として赤外線吸収剤を含有する塗料を塗布した塗布膜を形成し、かつ、前記加熱対象物の被照射面における、前記加熱対象物における赤外線の照射による昇温速度が相対的に小さい部分とは異なる、前記加熱対象物における赤外線の照射による昇温速度が相対的に大きい部分に、赤外線反射処理を施した後に、加熱ランプからの赤外線を前記加熱対象物に向かう方向に均等に照射することにより、当該加熱対象物を加熱処理する加熱処理方法であって、
前記塗料は、樹脂を含有しない溶剤に前記赤外線吸収剤が分散されてなる水性の塗料であることを特徴とする加熱処理方法。
On the irradiated surface of the object to be heated made of metal, a coating film coated with a paint containing an infrared absorber is formed as an infrared absorption treatment on the portion of the object to be heated where the rate of temperature rise due to infrared irradiation is relatively small. However, the rate of temperature rise due to infrared irradiation on the object to be heated is relative to the portion of the irradiated surface of the object to be heated, which is different from the portion where the rate of temperature rise due to infrared irradiation of the object to be heated is relatively small. A heat treatment method for heat-treating a heated object by uniformly irradiating a large portion with infrared rays from a heating lamp in a direction toward the heated object.
A heat treatment method, wherein the paint is a water-based paint in which the infrared absorber is dispersed in a solvent containing no resin.
前記加熱対象物が、鋼板であることを特徴とする請求項1に記載の加熱処理方法。 The heat treatment method according to claim 1, wherein the object to be heated is a steel plate. 前記赤外線吸収処理が、前記加熱対象物における相対的に厚みが大きい部分に係る被照射面に対して行われることを特徴とする請求項1または請求項2に記載の加熱処理方法。 The heat treatment method according to claim 1 or 2, wherein the infrared absorption treatment is performed on an irradiated surface related to a portion of the object to be heated having a relatively large thickness. 前記赤外線反射処理が、前記加熱対象物における相対的に厚みが小さい部分に係る被照射面に対して行われることを特徴とする請求項1〜請求項3のいずれかに記載の加熱処理方法。 The heat treatment method according to any one of claims 1 to 3, wherein the infrared reflection treatment is performed on an irradiated surface related to a portion of the object to be heated having a relatively small thickness. 前記加熱処理後に、前記加熱対象物に残留する前記塗布膜を除去することを特徴とする請求項1〜請求項4のいずれかに記載の加熱処理方法。 The heat treatment method according to any one of claims 1 to 4, wherein the coating film remaining on the object to be heated is removed after the heat treatment.
JP2017089604A 2016-04-28 2017-04-28 Heat treatment method Active JP6972640B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090244 2016-04-28
JP2016090244 2016-04-28

Publications (2)

Publication Number Publication Date
JP2017201058A JP2017201058A (en) 2017-11-09
JP6972640B2 true JP6972640B2 (en) 2021-11-24

Family

ID=60264658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089604A Active JP6972640B2 (en) 2016-04-28 2017-04-28 Heat treatment method

Country Status (1)

Country Link
JP (1) JP6972640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP7260765B2 (en) * 2019-03-29 2023-04-19 日本製鉄株式会社 Method for manufacturing hot press-formed product, and steel plate
CN114260376B (en) * 2021-12-23 2024-03-08 哈尔滨工业大学 Differential plate contact heating temperature uniformity control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292498A (en) * 2006-04-21 2007-11-08 Jfe Steel Kk Oxide film thickness measuring method, and instrument therefor
EP2463395B1 (en) * 2009-08-06 2019-10-30 Nippon Steel Corporation Steel sheet for radiation heating, method of manufacturing the same, and steel processed product having portion with different strength and method of manufacturing the same
WO2013145229A1 (en) * 2012-03-29 2013-10-03 アイシン高丘株式会社 Metal processing method and metal article processed thereby
JP6311955B2 (en) * 2012-07-24 2018-04-18 日立金属株式会社 Mold quenching method
JP2017082262A (en) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 Heat treatment method of metal component

Also Published As

Publication number Publication date
JP2017201058A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6972640B2 (en) Heat treatment method
US20150048075A1 (en) Curing System
JP7170142B2 (en) 3D metal printing method and apparatus for such method
CN103912848B (en) A kind of fluorescent powder color wheel utilizing diffuse-reflectance substrate to carry out optical design and preparation method thereof
DE19938807A1 (en) Uniform short wave IR heating equipment for glass and/or glass-ceramic, e.g. for ceramicizing or heating prior to shaping, includes an arrangement for indirect incidence of most of the IR radiation
CN1254448C (en) Method and appts. for evenly heating glass and/or glass ceramics by using red infrared radiation
JP2012144773A (en) Metal plate for radiation transfer heating and method for producing the same, and metal worked product with different strength parts and method for producing the same
EP0760468B1 (en) Infrared light source
CN102040331A (en) Method of notching brittle material, method of making member having notch, and method of making display device
JP2004273125A (en) Heating apparatus
US20050221017A1 (en) Method of heat treating coatings by using microwave
JPS63305965A (en) Method for drying or baking film
CN108137395A (en) Contain the method for the stack of thin body of indium top layer for short annealing
KR101643925B1 (en) A laser heat treatment method of steel sheets
TW202015896A (en) Internal light extraction layers cured by near infrared radiation
US20030061726A1 (en) Method for drying coatings on substrates for lamps
CN205406505U (en) Electrostatic chuck device
JP6750295B2 (en) Light heating method
JP2021070607A (en) Method for producing ceramic sintered compact
CN1645532A (en) Copper-based non-silver electric contacts with brazing filler metal coating and production thereof
JP2017060907A (en) Curing method for ultraviolet curable coating material
CN212542354U (en) Infrared quartz lamp with gold-plated reflecting film layer
JPS58118112A (en) Heat treating device for semiconductor material
TWI637805B (en) Laser processing system and method for metallic surface
JP2017190470A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151