JP6969933B2 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
JP6969933B2
JP6969933B2 JP2017162448A JP2017162448A JP6969933B2 JP 6969933 B2 JP6969933 B2 JP 6969933B2 JP 2017162448 A JP2017162448 A JP 2017162448A JP 2017162448 A JP2017162448 A JP 2017162448A JP 6969933 B2 JP6969933 B2 JP 6969933B2
Authority
JP
Japan
Prior art keywords
valve
flow path
valve body
holes
guide portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017162448A
Other languages
Japanese (ja)
Other versions
JP2019039512A (en
Inventor
哲 中野
侑也 木原
裕 堀田
荘吾 後藤
翔太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyota Motor Corp
Original Assignee
JTEKT Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyota Motor Corp filed Critical JTEKT Corp
Priority to JP2017162448A priority Critical patent/JP6969933B2/en
Publication of JP2019039512A publication Critical patent/JP2019039512A/en
Application granted granted Critical
Publication of JP6969933B2 publication Critical patent/JP6969933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Check Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Description

本発明は、弁装置に関する。 The present invention relates to a valve device.

従来、燃料電池車に用いられる高圧水素ガス等の圧力調整を行う減圧弁(レギュレータ)がある(例えば、特許文献1)。こうした減圧弁では、ボディにおける一次ポートと二次ポートとの間に弁機構(開閉弁)が設けられており、二次ポート側の圧力に応じて弁機構の弁体が弁座に対して接離することで、その開き量(開度)が変化する。これにより、一次ポートから流入した高圧の水素ガスを減圧し、二次ポートから送出する水素ガスの圧力が所定圧を超えないようにしている。 Conventionally, there is a pressure reducing valve (regulator) for adjusting the pressure of high-pressure hydrogen gas or the like used in a fuel cell vehicle (for example, Patent Document 1). In such a pressure reducing valve, a valve mechanism (opening / closing valve) is provided between the primary port and the secondary port in the body, and the valve body of the valve mechanism contacts the valve seat according to the pressure on the secondary port side. By separating them, the opening amount (opening) changes. As a result, the high-pressure hydrogen gas flowing in from the primary port is depressurized so that the pressure of the hydrogen gas sent out from the secondary port does not exceed a predetermined pressure.

特開2006−185103号公報(第1図等)Japanese Unexamined Patent Publication No. 2006-185103 (Fig. 1, etc.)

ところで、例えば上記特許文献1の減圧弁では、有底円筒状の弁体が収容されるガス流路内に円環状の底体(支持部材)が固定されており、一次ポートから流入するガスは、該底体の中央に形成された貫通孔を介してガス流路内の弁体が収容される空間(弁室)に流れ込む。そのため、弁体には、貫通孔を介して流入するガスの流れによって弁座方向に推し進める力(推進力)が作用し易く、弁体が弁座に着座する際に大きな荷重が作用するおそれがある。 By the way, for example, in the pressure reducing valve of Patent Document 1, an annular bottom body (support member) is fixed in a gas flow path in which a bottomed cylindrical valve body is housed, and the gas flowing in from the primary port is discharged. The gas flows into the space (valve chamber) in which the valve body is accommodated in the gas flow path through the through hole formed in the center of the bottom body. Therefore, a force (propulsive force) that pushes toward the valve seat is likely to be applied to the valve body by the flow of gas flowing in through the through hole, and a large load may be applied when the valve body is seated on the valve seat. be.

なお、このような問題は、弁機構から減圧したガスを送出する減圧弁に限らず、例えば弁機構によりガスの流出を止める逆止弁等の弁装置においても同様に生じ得る。
本発明の目的は、弁座に過大な荷重が作用することを抑制できる弁装置を提供することにある。
It should be noted that such a problem may occur not only in a pressure reducing valve that sends out decompressed gas from the valve mechanism, but also in a valve device such as a check valve that stops the outflow of gas by the valve mechanism.
An object of the present invention is to provide a valve device capable of suppressing an excessive load from acting on a valve seat.

上記課題を解決する弁装置は、ガス流路が形成されたボディと、前記ガス流路の途中に設けられた弁座と、前記ガス流路内における前記弁座の上流側に収容され、該弁座に対して接離可能な弁体と、前記弁体の上流側に設けられ、該弁体の後退位置を規定する支持部材とを備え、前記弁体は、前記弁座の弁孔を閉塞可能な頭部、及び該弁体の軸線方向に沿った移動を案内する案内部を有し、前記案内部には、前記ガス流路の内周面との間にガスが流通可能な流通空間を形成する流路形成部と、前記ガス流路の内周面に摺接する摺接部とが周方向に並んで形成され、前記支持部材には、該支持部材の上流側と下流側とを連通する複数の貫通孔が形成され、前記複数の貫通孔の少なくとも一つは、前記弁体が前記軸線周りの任意の位相にある状態で、該貫通孔における下流側の開口の中心が前記流通空間を軸方向に投影した領域に含まれるように形成された。 The valve device for solving the above problems is accommodated in a body in which a gas flow path is formed, a valve seat provided in the middle of the gas flow path, and an upstream side of the valve seat in the gas flow path. The valve body includes a valve body that can be brought into contact with and detached from the valve seat, and a support member that is provided on the upstream side of the valve body and defines a retracted position of the valve body. The valve body has a valve hole of the valve seat. It has a head that can be closed and a guide portion that guides the movement of the valve body along the axial direction, and the guide portion is a flow that allows gas to flow between the guide portion and the inner peripheral surface of the gas flow path. A flow path forming portion that forms a space and a sliding contact portion that is in sliding contact with the inner peripheral surface of the gas flow path are formed side by side in the circumferential direction, and the support member has an upstream side and a downstream side of the support member. A plurality of through holes are formed, and at least one of the plurality of through holes is such that the center of the opening on the downstream side in the through hole is the center of the through hole in a state where the valve body is in an arbitrary phase around the axis. It was formed so as to be included in the area where the flow space is projected in the axial direction.

上記構成によれば、弁体が軸線周りの任意の位相にある状態で、各貫通孔の少なくとも一つにおける下流側の開口の中心が流通空間を軸方向に投影した領域に含まれるため、該貫通孔を介して流入するガスは、流通空間に流れ込み易い。つまり、例えば支持部材の中央に貫通孔を形成する場合に比べ、各貫通孔を介して流入するガスのうち、弁体の摺接部に当たることで該弁体を弁座方向に推し進める力(推進力)として作用し易いガスの流量が減少すると同時に、流通空間に直接流れ込んで弁体に対して前記推進力として作用し難いガスの流量が増加する。そのため、全体として弁体が各貫通孔を介して流入したガスの流れによって発生する前記推進力が従来よりも減じられ、弁体が弁座に着座する際に大きな荷重が作用することを抑制できる。 According to the above configuration, when the valve body is in an arbitrary phase around the axis, the center of the opening on the downstream side in at least one of the through holes is included in the region where the flow space is projected in the axial direction. The gas flowing in through the through hole easily flows into the distribution space. That is, compared to the case where a through hole is formed in the center of the support member, for example, a force (propulsion) that pushes the valve body toward the valve seat by hitting the sliding contact portion of the valve body among the gas flowing through each through hole. At the same time as the flow rate of the gas that easily acts as a force) decreases, the flow rate of the gas that flows directly into the flow space and does not easily act as a propulsive force on the valve body increases. Therefore, as a whole, the propulsive force generated by the flow of gas flowing into the valve body through each through hole is reduced as compared with the conventional case, and it is possible to suppress the action of a large load when the valve body is seated on the valve seat. ..

上記弁装置において、前記貫通孔の数は前記流通空間の数よりも多いことが好ましい。
上記構成によれば、弁体が軸線周りの任意の位相にある状態で、貫通孔の少なくとも一つにおける下流側の開口の中心が流通空間を軸方向に投影した領域に含まれる構成を容易に実現できる。
In the valve device, the number of through holes is preferably larger than the number of flow spaces.
According to the above configuration, with the valve body in any phase around the axis, the configuration in which the center of the downstream opening in at least one of the through holes is included in the region where the flow space is projected axially is easily configured. realizable.

上記弁装置において、前記弁体と前記支持部材との間に設けられ、該弁体を前記弁座側に付勢する付勢部材を備え、前記案内部は、前記付勢部材の一部を収容可能な筒状に形成され、前記各貫通孔における下流側の開口は、前記軸線方向視で、前記案内部の内周面がなす円よりも径方向外側に位置するように形成されることが好ましい。 In the valve device, a urging member provided between the valve body and the support member and urging the valve body to the valve seat side is provided, and the guide portion is a part of the urging member. It is formed in a cylindrical shape that can be accommodated, and the opening on the downstream side in each of the through holes is formed so as to be located radially outside the circle formed by the inner peripheral surface of the guide portion in the axial direction. Is preferable.

上記構成によれば、各貫通孔を介して流入するガスが筒状に形成された案内部の内側に流れ込むことを抑制できるため、ガスの流れによって発生する推進力がより減じられる。
上記弁装置において、前記各貫通孔における下流側の開口は、前記弁体の一部及び前記ボディにおける前記ガス流路の周縁部の双方と軸方向に対向するように形成されることが好ましい。
According to the above configuration, it is possible to suppress the gas flowing in through each through hole from flowing into the inside of the guide portion formed in a cylindrical shape, so that the propulsive force generated by the gas flow is further reduced.
In the valve device, it is preferable that the opening on the downstream side in each of the through holes is formed so as to face both a part of the valve body and the peripheral edge portion of the gas flow path in the body in the axial direction.

上記構成によれば、流通空間と軸方向に対向する貫通孔を介して流入するガスが、該流通空間に好適に流れ込むようになるため、ガスの流れによって発生する前記推進力がより一層減じられる。 According to the above configuration, the gas flowing in through the through hole facing the flow space in the axial direction is suitably flowed into the flow space, so that the propulsive force generated by the gas flow is further reduced. ..

上記弁装置において、前記案内部には、周方向幅が互いに等しい複数の前記流路形成部と、周方向幅が互いに等しい複数の前記摺接部とが形成され、前記複数の流路形成部と前記複数の摺接部とが周方向に交互に並んで設けられることが好ましい。 In the valve device, the guide portion is formed with a plurality of the flow path forming portions having the same circumferential width and a plurality of sliding contact portions having the same circumferential width, and the plurality of flow path forming portions are formed. And the plurality of sliding contact portions are preferably provided alternately side by side in the circumferential direction.

上記構成によれば、案内部が軸線周りに対称な形状となるため、流通空間を流通するガスの圧力の不釣り合いによって、例えば弁体がガス流路の内周面に押し付けられることを抑制できる。 According to the above configuration, since the guide portion has a symmetrical shape around the axis, it is possible to prevent, for example, the valve body from being pressed against the inner peripheral surface of the gas flow path due to the imbalance of the pressure of the gas flowing in the distribution space. ..

上記弁装置において、前記ガス流路は、前記ボディの一次ポートと二次ポートとを繋ぐものであり、前記二次ポートの圧力に応じて前記弁体を前記弁座から離間する方向に押圧する押圧機構を備えることが好ましい。 In the valve device, the gas flow path connects the primary port and the secondary port of the body, and presses the valve body in a direction away from the valve seat according to the pressure of the secondary port. It is preferable to provide a pressing mechanism.

上記構成によれば、弁装置が押圧機構により弁座の開き量(開度)を変化させることで、二次ポートに送出するガスの圧力を減圧する減圧弁として構成される。こうした減圧弁では、二次ポート側の圧力に応じて弁体が弁座に対して繰り返し着座するため、上記各構成のように貫通孔を形成することで弁体から弁座に大きな荷重が作用することを抑制する効果は大である。 According to the above configuration, the valve device is configured as a pressure reducing valve for reducing the pressure of the gas sent to the secondary port by changing the opening amount (opening) of the valve seat by the pressing mechanism. In such a pressure reducing valve, the valve body repeatedly seats on the valve seat according to the pressure on the secondary port side, so that a large load acts from the valve body to the valve seat by forming through holes as in each of the above configurations. The effect of suppressing the doing is great.

本発明によれば、弁座に過大な荷重が作用することを抑制できる。 According to the present invention, it is possible to suppress an excessive load from acting on the valve seat.

減圧弁の断面図。Sectional drawing of a pressure reducing valve. 弁機構周辺の拡大断面図。Enlarged sectional view around the valve mechanism. 弁体及び支持部材の斜視図。Perspective view of the valve body and the support member. (a),(b)は本実施形態における貫通孔の弁体に対する配置を示す模式的な断面図(図2のIV−IV線断面図)。(A) and (b) are schematic cross-sectional views showing the arrangement of through holes with respect to the valve body in this embodiment (FIG. 2 IV-IV cross-sectional view). 弁体の上流側における水素ガスの流れを示す模式図。The schematic diagram which shows the flow of hydrogen gas on the upstream side of a valve body. 別例における貫通孔の弁体に対する配置を示す模式的な断面図。Schematic cross-sectional view showing the arrangement of the through hole with respect to the valve body in another example. 別例における貫通孔の弁体に対する配置を示す模式的な断面図。Schematic cross-sectional view showing the arrangement of the through hole with respect to the valve body in another example.

以下、弁装置を減圧弁に具体化した一実施形態を図面に従って説明する。
図1に示す減圧弁(レギュレータ)1は、燃料電池自動車に搭載される水素ガスのガスタンク2と燃料電池3とを繋ぐ流体回路の途中に設けられ、高圧(例えば最大80MPa程度)の水素ガスを減圧(例えば1MPa程度)して燃料電池3側に送出する。減圧弁1は、一次ポート4及び二次ポート5が形成されたボディ6と、ボディ6内における一次ポート4と二次ポート5との間に設けられた弁機構7と、弁機構7の開き量(開度)を調整する押圧機構8とを備えている。
Hereinafter, an embodiment in which the valve device is embodied as a pressure reducing valve will be described with reference to the drawings.
The pressure reducing valve (regulator) 1 shown in FIG. 1 is provided in the middle of a fluid circuit connecting a hydrogen gas gas tank 2 mounted on a fuel cell vehicle and a fuel cell 3, and can emit high-pressure (for example, about 80 MPa maximum) hydrogen gas. The fuel cell is depressurized (for example, about 1 MPa) and sent to the fuel cell 3 side. The pressure reducing valve 1 includes a body 6 in which the primary port 4 and the secondary port 5 are formed, a valve mechanism 7 provided between the primary port 4 and the secondary port 5 in the body 6, and an opening of the valve mechanism 7. It is provided with a pressing mechanism 8 for adjusting the amount (opening degree).

ボディ6には、一次ポート4及び二次ポート5に連通するとともに、外部に開口した丸穴状の収容穴11が形成されている。一次ポート4から延びるガス流路としての供給流路12は収容穴11の底面における中央に開口し、二次ポート5へ延びるガス流路としての送出流路13は収容穴11の底面と内周面との交差部分に開口している。なお、供給流路12は、一次ポート4に取り付けられる継手14を介してガスタンク2に接続され、送出流路13は、二次ポート5に取り付けられる継手15を介して燃料電池3に接続される。 The body 6 is formed with a round hole-shaped accommodating hole 11 that communicates with the primary port 4 and the secondary port 5 and is open to the outside. The supply flow path 12 as a gas flow path extending from the primary port 4 opens in the center of the bottom surface of the accommodation hole 11, and the delivery flow path 13 as a gas flow path extending to the secondary port 5 is the bottom surface and the inner circumference of the accommodation hole 11. It is open at the intersection with the surface. The supply flow path 12 is connected to the gas tank 2 via a joint 14 attached to the primary port 4, and the delivery flow path 13 is connected to the fuel cell 3 via a joint 15 attached to the secondary port 5. ..

図2に示すように、供給流路12は、断面円形の直線状に形成されるとともに、その上流側(図1中、下側)の開口部分には、上記一次ポート4が同軸上に形成されている。供給流路12における下流側(図1中、上側)の開口部分には、上流側から順に第1及び第2取付部16,17が形成されている。具体的には、第1及び第2取付部16,17は、内径がこの順で大きくなるとともに、それぞれ収容穴11と同軸上に形成されている。 As shown in FIG. 2, the supply flow path 12 is formed in a straight line with a circular cross section, and the primary port 4 is coaxially formed in the opening portion on the upstream side (lower side in FIG. 1). Has been done. The first and second mounting portions 16 and 17 are formed in order from the upstream side in the opening portion on the downstream side (upper side in FIG. 1) in the supply flow path 12. Specifically, the inner diameters of the first and second mounting portions 16 and 17 increase in this order, and the first and second mounting portions 16 and 17 are formed coaxially with the accommodating holes 11, respectively.

一次ポート4に螺着される継手14には、供給流路12と同軸上に貫通した継手孔21が形成されている。継手孔21における下流側の開口端部には、上流側から順に第1及び第2拡径部22,23が形成されている。具体的には、第1及び第2拡径部22,23は、内径がこの順で大きくなるとともに、それぞれ収容穴11と同軸上に形成されている。 The joint 14 screwed to the primary port 4 is formed with a joint hole 21 that penetrates coaxially with the supply flow path 12. The first and second diameter-expanded portions 22 and 23 are formed in order from the upstream side at the opening end portion on the downstream side of the joint hole 21. Specifically, the first and second enlarged diameter portions 22 and 23 have larger inner diameters in this order and are formed coaxially with the accommodating holes 11, respectively.

弁機構7は、供給流路12内に往復動可能に収容される弁体(ポペット)31と、第1取付部16に固定される弁座32と、弁体31を弁座32側に付勢する付勢部材33と、付勢部材33を支持する支持部材34とを備えている。 The valve mechanism 7 has a valve body (poppet) 31 reciprocally housed in the supply flow path 12, a valve seat 32 fixed to the first mounting portion 16, and a valve body 31 attached to the valve seat 32 side. It includes a urging member 33 to urge and a support member 34 to support the urging member 33.

図2及び図3に示すように、支持部材34は、円柱状の支持部41と、支持部41の基端部から径方向外側に延出された円管状のフランジ部42とを有している。フランジ部42には、後述するように、その軸方向両側に開口する、すなわち支持部材34の上流側と下流側とを連通する複数の貫通孔43が形成されている。フランジ部42の外径は、第1拡径部22の内径よりも僅かに大きく設定されている。そして、支持部材34は、フランジ部42が第1拡径部22に設けられた円板状のフィルタ44を挟み込むように第1拡径部22に圧入されることで継手14に固定されている。継手14は、第2拡径部23に設けられた円環状のシール部材45を一次ポート4の底面との間で挟み込むとともに、支持部41の先端部が供給流路12内に挿入されるように、一次ポート4に螺着されている。 As shown in FIGS. 2 and 3, the support member 34 has a columnar support portion 41 and a circular tubular flange portion 42 extending radially outward from the base end portion of the support portion 41. There is. As will be described later, the flange portion 42 is formed with a plurality of through holes 43 that open on both sides in the axial direction, that is, communicate the upstream side and the downstream side of the support member 34. The outer diameter of the flange portion 42 is set to be slightly larger than the inner diameter of the first enlarged diameter portion 22. The support member 34 is fixed to the joint 14 by being press-fitted into the first diameter-expanded portion 22 so that the flange portion 42 sandwiches the disk-shaped filter 44 provided in the first diameter-expanded portion 22. .. The joint 14 sandwiches the annular seal member 45 provided in the second enlarged diameter portion 23 with the bottom surface of the primary port 4, and the tip portion of the support portion 41 is inserted into the supply flow path 12. Is screwed into the primary port 4.

弁体31は、有底筒状の案内部51と、案内部51の底部から下流側に向かって外径が小さくなるテーパ状の頭部52と、頭部52の下流側端部から突出した円柱状の当接部53とを有している。案内部51、頭部52及び当接部53は、同軸上に一体形成されている。なお、案内部51の内径は、支持部41の外径よりも僅かに大きく設定されている。そして、弁体31は、案内部51内に支持部41の先端部が挿入された状態で、供給流路12内において案内部51により弁体31の軸線L方向に沿って軸線方向移動可能に収容されている。 The valve body 31 protrudes from a bottomed cylindrical guide portion 51, a tapered head portion 52 whose outer diameter decreases toward the downstream side from the bottom portion of the guide portion 51, and a downstream end portion of the head portion 52. It has a columnar contact portion 53. The guide portion 51, the head portion 52, and the contact portion 53 are integrally formed coaxially. The inner diameter of the guide portion 51 is set to be slightly larger than the outer diameter of the support portion 41. Then, the valve body 31 can be moved in the axial direction along the axis L direction of the valve body 31 by the guide portion 51 in the supply flow path 12 with the tip portion of the support portion 41 inserted in the guide portion 51. It is contained.

図3、図4(a)及び図4(b)に示すように、案内部51の外周面は、円筒の複数箇所(本実施形態では、4箇所)を平坦に切り欠いた形状の複数の流路形成部54と、その余の複数の摺接部55とを、周方向に交互に並べて有している。各流路形成部54の周方向幅は互いに略等しく設定されている。これにより、供給流路12の内周面12aと流路形成部54との間には、水素ガスが流通可能な略半円形の流通空間56が形成されている。各摺接部55は、周方向幅が互いに略等しく設定されており、供給流路12の内周面12aよりも僅かに小さい曲率を有する断面円弧状をなしている。なお、案内部51の外周面は、その軸方向略全域に亘って同一断面を有している。したがって、弁体31は、供給流路12内にその周方向全域に亘って隙間を有して収容されており、軸線L周りに回転可能である。つまり、弁体31は、その往復動等に伴って軸線L周りの位相(周方向位置)が変化し得る(図4参照)。 As shown in FIGS. 3, 4 (a) and 4 (b), the outer peripheral surface of the guide portion 51 has a plurality of shapes in which a plurality of cylindrical locations (4 locations in the present embodiment) are cut out flat. The flow path forming portion 54 and the remaining plurality of sliding contact portions 55 are alternately arranged in the circumferential direction. The circumferential widths of the flow path forming portions 54 are set to be substantially equal to each other. As a result, a substantially semicircular circulation space 56 through which hydrogen gas can flow is formed between the inner peripheral surface 12a of the supply flow path 12 and the flow path forming portion 54. Each sliding contact portion 55 has a circumferential width set to be substantially equal to each other, and has a cross-sectional arc shape having a curvature slightly smaller than the inner peripheral surface 12a of the supply flow path 12. The outer peripheral surface of the guide portion 51 has the same cross section over substantially the entire axial direction thereof. Therefore, the valve body 31 is accommodated in the supply flow path 12 with a gap over the entire circumferential direction, and is rotatable around the axis L. That is, the phase (circumferential position) of the valve body 31 around the axis L may change due to its reciprocating movement or the like (see FIG. 4).

図2に示すように、付勢部材33には、コイルバネが採用されている。付勢部材33の一端は、支持部41に設置され、他端は案内部51の内底面に設置されている。そして、付勢部材33は、圧縮された状態で案内部51内に収容されており、弁体31を弁座32側に付勢している。なお、弁体31の供給流路12における往復動可能な範囲は、弁体31が付勢部材33を最大限圧縮し、支持部材34によって上流側への移動を規制される位置が後端位置となり、頭部52が弁座32に着座し、弁座32によって下流側への移動を規制される位置が前端位置となる。 As shown in FIG. 2, a coil spring is adopted for the urging member 33. One end of the urging member 33 is installed on the support portion 41, and the other end is installed on the inner bottom surface of the guide portion 51. The urging member 33 is housed in the guide portion 51 in a compressed state, and urges the valve body 31 toward the valve seat 32. In the range in which the valve body 31 can reciprocate in the supply flow path 12, the position where the valve body 31 compresses the urging member 33 to the maximum and the movement to the upstream side is restricted by the support member 34 is the rear end position. The front end position is the position where the head 52 is seated on the valve seat 32 and the movement to the downstream side is restricted by the valve seat 32.

弁座32は、弁孔58を有する円環状に形成されており、第1取付部16内において供給流路12と同軸配置されるように圧入されている。なお、弁座32は、ポリイミド樹脂等の弾性変形可能な硬質樹脂により構成されている。 The valve seat 32 is formed in an annular shape having a valve hole 58, and is press-fitted so as to be coaxially arranged with the supply flow path 12 in the first mounting portion 16. The valve seat 32 is made of a hard resin that can be elastically deformed, such as a polyimide resin.

図1に示すように、押圧機構8は、第2取付部17に取着されるプラグ61と、プラグ61内に配置されるピン62と、収容穴11を覆うようにボディ6に固定されるシリンダ63と、シリンダ63内に摺動可能に収容されるピストン64と、シリンダ63とピストン64との間に圧縮状態で配置されるコイルバネ65とを備えている。 As shown in FIG. 1, the pressing mechanism 8 is fixed to the body 6 so as to cover the plug 61 attached to the second mounting portion 17, the pin 62 arranged in the plug 61, and the accommodating hole 11. It includes a cylinder 63, a piston 64 slidably housed in the cylinder 63, and a coil spring 65 arranged in a compressed state between the cylinder 63 and the piston 64.

図2に示すようにプラグ61は、円柱状に形成されており、弁座32を圧縮しつつ第2取付部17の内周に螺着されており、その一部が収容穴11内に突出している。プラグ61の中央には、軸方向に貫通するプラグ孔71が弁孔58と同軸上に形成されている。プラグ孔71は、その大部分が略一定の内径を有する円筒状に形成されるとともに、上流側に近い部分で上流側に向かって小径となるテーパ状に形成され、プラグ孔71における弁孔58に連続する上流側部分は他の部分よりも小径とされている。プラグ61における収容穴11内に突出した突出部72には、径方向に延びてプラグ孔71と収容穴11とを連通する流路孔73が形成されている。 As shown in FIG. 2, the plug 61 is formed in a columnar shape, is screwed to the inner circumference of the second mounting portion 17 while compressing the valve seat 32, and a part thereof protrudes into the accommodating hole 11. ing. At the center of the plug 61, a plug hole 71 penetrating in the axial direction is formed coaxially with the valve hole 58. Most of the plug hole 71 is formed in a cylindrical shape having a substantially constant inner diameter, and is formed in a tapered shape having a smaller diameter toward the upstream side in a portion close to the upstream side, and the valve hole 58 in the plug hole 71. The upstream part continuous with the other part has a smaller diameter than the other parts. The protruding portion 72 protruding into the accommodating hole 11 in the plug 61 is formed with a flow path hole 73 extending in the radial direction to communicate the plug hole 71 and the accommodating hole 11.

ピン62は、円柱状に形成された軸状部74と、軸状部74から下流側に突出する下流端部75と、軸状部74から上流側に突出する上流端部76とを有している。軸状部74の外径は、プラグ孔71の内径よりも僅かに小さく設定されており、プラグ孔71内で軸線方向移動可能である。軸状部74には、軸線方向に延びる複数の流路孔77がその軸線周りに等角度間隔で形成されている。下流端部75の外径は、軸状部74よりも小径の円柱状に形成されている。上流端部76の外径は弁体31における当接部53の外径と略等しく設定されており、上流端部76及び当接部53は弁孔58及びプラグ孔71内に挿通されて互いに当接している。 The pin 62 has a shaft-shaped portion 74 formed in a columnar shape, a downstream end portion 75 protruding downstream from the shaft-shaped portion 74, and an upstream end portion 76 protruding upstream from the shaft-shaped portion 74. ing. The outer diameter of the shaft-shaped portion 74 is set to be slightly smaller than the inner diameter of the plug hole 71, and can be moved in the axial direction within the plug hole 71. In the axial portion 74, a plurality of flow path holes 77 extending in the axial direction are formed around the axial line at equal angular intervals. The outer diameter of the downstream end portion 75 is formed in a columnar shape having a smaller diameter than that of the shaft-shaped portion 74. The outer diameter of the upstream end portion 76 is set to be substantially equal to the outer diameter of the contact portion 53 in the valve body 31, and the upstream end portion 76 and the contact portion 53 are inserted into the valve hole 58 and the plug hole 71 to each other. It is in contact.

図1に示すように、シリンダ63は、有底円筒状に形成されるとともに、その開口端部には、径方向外側に延出された締結部81を有している。シリンダ63は、収容穴11と同軸上に配置されるように、ボルト82によって締結部81がボディ6に締結されることで固定されている。なお、ボディ6と締結部81との間には、Oリング等のシール部材83が挟み込まれている。 As shown in FIG. 1, the cylinder 63 is formed in a bottomed cylindrical shape, and has a fastening portion 81 extending radially outward at its open end. The cylinder 63 is fixed by fastening the fastening portion 81 to the body 6 by bolts 82 so as to be arranged coaxially with the accommodating hole 11. A sealing member 83 such as an O-ring is sandwiched between the body 6 and the fastening portion 81.

ピストン64は有底円筒状に形成されるとともに、その外径はシリンダ63の内径よりも僅かに小さく設定されている。ピストン64は、その底部がシリンダ63の開口端側に位置する姿勢でシリンダ63内に軸方向に摺動可能収容され、シリンダ63内を減圧室84と圧力調整室85とに区画している。なお、ピストン64の外周にはOリング等のシール部材86が装着されており、減圧室84と圧力調整室85との間の気密を確保している。そして、ピストン64は、ピン62の下流端部75に当接している。これにより、ピン62及び弁体31は、ピストン64の摺動に応じて一体で移動する。 The piston 64 is formed in a bottomed cylindrical shape, and its outer diameter is set to be slightly smaller than the inner diameter of the cylinder 63. The piston 64 is slidably accommodated in the cylinder 63 in a posture in which the bottom thereof is located on the open end side of the cylinder 63, and the inside of the cylinder 63 is divided into a pressure reducing chamber 84 and a pressure adjusting chamber 85. A seal member 86 such as an O-ring is mounted on the outer periphery of the piston 64 to ensure airtightness between the pressure reducing chamber 84 and the pressure adjusting chamber 85. The piston 64 is in contact with the downstream end portion 75 of the pin 62. As a result, the pin 62 and the valve body 31 move integrally according to the sliding of the piston 64.

コイルバネ65は、シリンダ63とピストン64との間で圧縮された状態で収容されている。そして、コイルバネ65は、弁体31が弁座32から離座する、すなわち弁機構7の開き量が大きくなるようにピストン64を付勢している。 The coil spring 65 is housed in a compressed state between the cylinder 63 and the piston 64. Then, the coil spring 65 urges the piston 64 so that the valve body 31 separates from the valve seat 32, that is, the opening amount of the valve mechanism 7 becomes large.

このように構成された減圧弁1では、減圧室84と圧力調整室85の差圧、付勢部材33及びコイルバネ65の付勢力に応じてピストン64がシリンダ63内を摺動する。そして、ピストン64の軸方向位置に応じて弁機構7の開き量を調整することで、二次ポート5側の圧力(圧力調整室85の圧力)が所定圧を超えないようにしている。弁体31は、燃料電池3への水素ガスの供給に応じて弁座32への着座と離座を繰り返す。 In the pressure reducing valve 1 configured as described above, the piston 64 slides in the cylinder 63 according to the differential pressure between the pressure reducing chamber 84 and the pressure adjusting chamber 85 and the urging force of the urging member 33 and the coil spring 65. Then, by adjusting the opening amount of the valve mechanism 7 according to the axial position of the piston 64, the pressure on the secondary port 5 side (pressure of the pressure adjusting chamber 85) is prevented from exceeding a predetermined pressure. The valve body 31 repeatedly sits on and off the valve seat 32 according to the supply of hydrogen gas to the fuel cell 3.

ここで、ガスタンク2から継手14を介して供給される水素ガスは、支持部材34の各貫通孔43を通って供給流路12内に流れ込む。そのため、供給流路12内に流れ込む水素ガスの一部は、弁体31を弁座32方向に推し進める推進力を付与することになる。そして、この水素ガスによる推進力が大きくなると、弁体31が着座する際に弁座32に大きな荷重が作用するおそれがある。 Here, the hydrogen gas supplied from the gas tank 2 through the joint 14 flows into the supply flow path 12 through the through holes 43 of the support member 34. Therefore, a part of the hydrogen gas flowing into the supply flow path 12 imparts a propulsive force for pushing the valve body 31 toward the valve seat 32. If the propulsive force generated by the hydrogen gas is increased, a large load may be applied to the valve seat 32 when the valve body 31 is seated.

この点を踏まえ、図4(a),(b)に示すように、複数の貫通孔43の少なくとも1つは、弁体31が軸線L周りの任意の位相(周方向位置)にある状態で、その下流側の開口の中心が流通空間56を軸方向に投影した領域に含まれる、すなわち貫通孔43における下流側の開口の中心が流通空間56と軸方向に対向するように形成されている。なお、図4では、各貫通孔43の開口の中心を黒丸で示している。換言すると、複数の貫通孔43の一における下流側の開口の中心が摺接部55に連なる端縁57と軸方向に対向する場合に、複数の貫通孔43の他の一における下流側の開口の中心が流通空間56と軸方向に対向するように形成されている。 Based on this point, as shown in FIGS. 4A and 4B, at least one of the plurality of through holes 43 is in a state where the valve body 31 is in an arbitrary phase (circumferential position) around the axis L. , The center of the opening on the downstream side is included in the region where the flow space 56 is projected in the axial direction, that is, the center of the opening on the downstream side in the through hole 43 is formed so as to face the flow space 56 in the axial direction. .. In FIG. 4, the center of the opening of each through hole 43 is indicated by a black circle. In other words, when the center of the downstream opening in one of the plurality of through holes 43 is axially opposed to the edge 57 connected to the sliding contact portion 55, the downstream opening in the other one of the plurality of through holes 43. The center of the space 56 is formed so as to face the distribution space 56 in the axial direction.

具体的には、支持部材34のフランジ部42には、8つの貫通孔43a〜43hが形成されている。各貫通孔43a〜43hは、軸線Lに沿った直線状に形成されており、軸方向全域に亘って円形の一様な断面を有している。そして、図4において二点鎖線で示す各貫通孔43a〜43hの下流側の開口は、軸線L方向視で、案内部51の内周面がなす円Cよりも径方向外側に位置するとともに、案内部51及びボディ6における供給流路12の周縁部6aの双方と軸方向に対向するようにフランジ部42に周方向に等角度間隔で形成されている。なお、本実施形態においては、周縁部6aをシール部材45が覆っており、各貫通孔43a〜43hの下流側の開口は、シール部材45を介して周縁部6aと軸方向に対向している。 Specifically, eight through holes 43a to 43h are formed in the flange portion 42 of the support member 34. Each of the through holes 43a to 43h is formed in a straight line along the axis L, and has a uniform circular cross section over the entire axial direction. The openings on the downstream side of the through holes 43a to 43h shown by the two-dot chain line in FIG. 4 are located radially outside the circle C formed by the inner peripheral surface of the guide portion 51 in the axial L direction. The flange portion 42 is formed at equal intervals in the circumferential direction so as to face both the peripheral portion 6a of the supply flow path 12 in the guide portion 51 and the body 6 in the axial direction. In the present embodiment, the peripheral edge portion 6a is covered with the sealing member 45, and the opening on the downstream side of each of the through holes 43a to 43h faces the peripheral edge portion 6a in the axial direction via the sealing member 45. ..

これにより、弁体31の位相が例えば図4(a)に示す位置にあり、貫通孔43a,43c,43e,43gの下流側の開口の中心が摺接部55に連なる端縁57と軸方向に対向する場合に、貫通孔43b,43d,43f,43hの下流側の開口の中心は、流通空間56と軸方向に対向する。また、弁体31が軸線L周りに回転し、弁体31の位相が例えば同図(b)に示す位置になると、すべての貫通孔43a〜43hの下流側の開口の中心が流通空間56と軸方向に対向する。このように各貫通孔43a〜43hは、弁体31が任意の位相にある状態で、各貫通孔43a〜43hの少なくとも一つにおける下流側の開口の中心が流通空間56と軸方向に対向する。 As a result, the phase of the valve body 31 is at the position shown in FIG. 4A, for example, and the center of the opening on the downstream side of the through holes 43a, 43c, 43e, 43g is axially connected to the edge 57 connected to the sliding contact portion 55. The center of the opening on the downstream side of the through holes 43b, 43d, 43f, 43h faces the flow space 56 in the axial direction. Further, when the valve body 31 rotates around the axis L and the phase of the valve body 31 is, for example, the position shown in FIG. Facing in the axial direction. As described above, in each of the through holes 43a to 43h, the center of the opening on the downstream side in at least one of the through holes 43a to 43h faces the distribution space 56 in the axial direction in a state where the valve body 31 is in an arbitrary phase. ..

以上記述したように、本実施形態によれば、以下の作用効果を奏することができる。
(1)上記のように各貫通孔43を支持部材34に形成したため、図5において太線の矢印で示すように、各貫通孔43の一を介して流入する水素ガスが摺接部55に連なる端縁57に当たり易い場合でも、各貫通孔43の他の一を介して流入する水素ガスは、流通空間56に流れ込み易い。つまり、例えば支持部材34の中央に貫通孔を形成する場合に比べ、各貫通孔43を介して流入する水素ガスのうち、弁体31の摺接部55に連なる端縁57に当たることで該弁体31を弁座32方向に推し進める推進力として作用し易い水素ガスの流量が減少すると同時に、流通空間56に直接流れ込んで弁体に対して前記推進力として作用し難い水素ガスの流量が増加する。そのため、全体として弁体31が各貫通孔43を介して流入した水素ガスによって発生する前記推進力が従来よりも減じられ、弁体31が弁座32に着座する際に大きな荷重が作用することを抑制できる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) Since each through hole 43 is formed in the support member 34 as described above, hydrogen gas flowing in through one of the through holes 43 is connected to the sliding contact portion 55 as shown by the thick arrow in FIG. Even when it easily hits the edge 57, the hydrogen gas flowing in through the other one of the through holes 43 easily flows into the flow space 56. That is, as compared with the case where a through hole is formed in the center of the support member 34, for example, the hydrogen gas flowing through each through hole 43 hits the end edge 57 connected to the sliding contact portion 55 of the valve body 31 to hit the valve. At the same time as the flow rate of hydrogen gas that easily acts as a propulsive force for pushing the body 31 toward the valve seat 32 decreases, the flow rate of hydrogen gas that flows directly into the flow space 56 and does not easily act as the propulsive force for the valve body increases. .. Therefore, as a whole, the propulsive force generated by the hydrogen gas flowing into the valve body 31 through each through hole 43 is reduced as compared with the conventional case, and a large load acts when the valve body 31 is seated on the valve seat 32. Can be suppressed.

(2)貫通孔43の数を流通空間56の数よりも多くしたため、弁体31が軸線L周りの任意の位相にある状態で、貫通孔43の少なくとも一つにおける下流側の開口の中心が流通空間56を軸方向に投影した領域に含まれる構成を容易に実現できる。 (2) Since the number of through holes 43 is larger than the number of flow spaces 56, the center of the opening on the downstream side in at least one of the through holes 43 is in a state where the valve body 31 is in an arbitrary phase around the axis L. A configuration included in a region in which the distribution space 56 is projected in the axial direction can be easily realized.

(3)各貫通孔43における下流側の開口を、軸線L方向視で、案内部51の内周面がなす円Cよりも径方向外側に位置するように形成したため、各貫通孔43を介して流入する水素ガスが案内部51の内底面側に流れ込むことを抑制できる。したがって、水素ガスの流れによって発生する前記推進力がより減じられる。 (3) Since the opening on the downstream side of each through hole 43 is formed so as to be located radially outside the circle C formed by the inner peripheral surface of the guide portion 51 when viewed in the L direction of the axis, the opening is formed through each through hole 43. It is possible to suppress the inflowing hydrogen gas from flowing into the inner bottom surface side of the guide portion 51. Therefore, the propulsive force generated by the flow of hydrogen gas is further reduced.

(4)各貫通孔43における下流側の開口を、案内部51及びボディ6における供給流路12の周縁部6aの双方と軸方向に対向するように形成したため、流通空間56と軸方向に対向する貫通孔43を介して流入する水素ガスが、流通空間56に好適に流れ込むようになる。したがって、水素ガスの流れによって発生する前記推進力がより一層減じられる。 (4) Since the opening on the downstream side of each through hole 43 is formed so as to face both the peripheral portion 6a of the supply flow path 12 in the guide portion 51 and the body 6 in the axial direction, it faces the distribution space 56 in the axial direction. The hydrogen gas flowing in through the through hole 43 is preferably flowed into the distribution space 56. Therefore, the propulsive force generated by the flow of hydrogen gas is further reduced.

(5)各流路形成部54の周方向幅を互いに等しく形成するとともに、各摺接部55の周方向幅を互いに等しく形成し、これら流路形成部54と摺接部55とを周方向に交互に並んで設けたため、案内部51が軸線L周りに対称な形状となる。したがって、流通空間56を流通する水素ガスの圧力の不釣り合いによって、例えば弁体31が供給流路12の内周面に押し付けられることを抑制できる。 (5) The circumferential widths of the flow path forming portions 54 are formed to be equal to each other, the circumferential widths of the sliding contact portions 55 are formed to be equal to each other, and the flow path forming portions 54 and the sliding contact portions 55 are formed in the circumferential direction. Since the guide portions 51 are provided alternately side by side, the guide portions 51 have a symmetrical shape around the axis L. Therefore, it is possible to prevent, for example, the valve body 31 from being pressed against the inner peripheral surface of the supply flow path 12 due to the imbalance of the pressure of the hydrogen gas flowing through the distribution space 56.

(6)減圧弁1では、二次ポート5側の圧力に応じて弁体31が弁座32に対して繰り返し着座するため、上記各構成のように貫通孔43を形成することで弁体31から弁座32に大きな荷重が作用することを抑制する効果は大である。 (6) In the pressure reducing valve 1, the valve body 31 repeatedly sits on the valve seat 32 according to the pressure on the secondary port 5 side. Therefore, the valve body 31 is formed by forming the through hole 43 as in each of the above configurations. The effect of suppressing a large load from acting on the valve seat 32 is great.

なお、上記実施形態は、これを適宜変更した以下の態様にて実施することもできる。
・上記実施形態では、各貫通孔43の断面を円形状に形成したが、これに限らず、例えば四角形状等の多角形や楕円形状としてもよい。また、例えば各貫通孔43を軸線Lに対して傾斜した直線状等としてもよく、その形状は適宜変更可能である。
In addition, the above-mentioned embodiment can also be carried out in the following embodiment which changed this as appropriate.
-In the above embodiment, the cross section of each through hole 43 is formed in a circular shape, but the cross section is not limited to this, and may be a polygonal shape such as a quadrangular shape or an elliptical shape. Further, for example, each through hole 43 may be formed into a linear shape inclined with respect to the axis L, and the shape thereof can be appropriately changed.

・上記実施形態で、案内部51を有底筒状に形成したが、これに限らず、例えば中実の柱状に形成してもよい。なお、この場合、弁体31に付勢部材33の内周に挿通される支持部を形成することで、付勢部材33を安定して保持できる。 -In the above embodiment, the guide portion 51 is formed in the shape of a bottomed cylinder, but the present invention is not limited to this, and the guide portion 51 may be formed in a solid columnar shape, for example. In this case, the urging member 33 can be stably held by forming the support portion inserted into the inner circumference of the urging member 33 in the valve body 31.

・上記実施形態では、流路形成部54を平面状に形成したが、これに限らず、供給流路12の内周面12aとの間に流通空間56を形成できれば、例えば曲面状等に形成してもよい。 In the above embodiment, the flow path forming portion 54 is formed in a planar shape, but the present invention is not limited to this, and if the distribution space 56 can be formed between the inner peripheral surface 12a of the supply flow path 12, for example, it is formed in a curved surface shape. You may.

・上記実施形態において、各流路形成部54の周方向幅を互いに異なるように形成してもよく、同様に各摺接部55の周方向幅を互いに異なるように形成してもよい。また、流路形成部54及び摺接部55は、それぞれ1つであってもよく、その数は適宜変更可能である。 In the above embodiment, the circumferential widths of the flow path forming portions 54 may be formed to be different from each other, and similarly, the circumferential widths of the sliding contact portions 55 may be formed to be different from each other. Further, the number of the flow path forming portion 54 and the sliding contact portion 55 may be one each, and the number thereof can be appropriately changed.

・上記実施形態では、各貫通孔43の下流側の開口を、案内部51及び周縁部6aの双方と軸方向に対向するようにフランジ部42に形成したが、これに限らず、例えば図6に示すように、案内部51のみと軸方向に対向してもよい。なお、この場合において、弁体31が軸線L周りの任意の位相にある状態で、各貫通孔43の少なくとも1つにおける下流側の開口の中心が流通空間56と軸方向に対向することは必ずしも必要ではない。 In the above embodiment, the opening on the downstream side of each through hole 43 is formed in the flange portion 42 so as to face both the guide portion 51 and the peripheral edge portion 6a in the axial direction, but the present invention is not limited to this, and for example, FIG. As shown in, it may face only the guide portion 51 in the axial direction. In this case, in a state where the valve body 31 is in an arbitrary phase around the axis L, the center of the opening on the downstream side in at least one of the through holes 43 does not necessarily face the flow space 56 in the axial direction. Not necessary.

・上記実施形態では、各貫通孔43の下流側の開口を、案内部51の内周面がなす円Cよりも径方向外側に位置するようにフランジ部42に形成したが、これに限らず、例えば図7に示すように、該各開口の一部が円Cよりも径方向内側に位置してもよい。なお、この場合において、弁体31が軸線L周りの任意の位相にある状態で、各貫通孔43の少なくとも1つにおける下流側の開口の中心が流通空間56と軸方向に対向することは必ずしも必要ではない。 In the above embodiment, the opening on the downstream side of each through hole 43 is formed in the flange portion 42 so as to be located radially outside the circle C formed by the inner peripheral surface of the guide portion 51, but the present invention is not limited to this. For example, as shown in FIG. 7, a part of each opening may be located radially inside the circle C. In this case, in a state where the valve body 31 is in an arbitrary phase around the axis L, the center of the opening on the downstream side in at least one of the through holes 43 does not necessarily face the flow space 56 in the axial direction. Not necessary.

・上記実施形態において、弁体31が軸線L周りの任意の位相にある状態で、各貫通孔43の少なくとも一つにおける下流側の開口の中心が流通空間56と軸方向に対向すれば、その数(2以上)や配置は適宜変更可能である。なお、貫通孔43の数は、上記実施形態のように流路形成部54(摺接部55)の数よりも多いことが好ましく、さらに流路形成部54(摺接部55)の数の整数倍が好適である。 In the above embodiment, if the center of the opening on the downstream side in at least one of the through holes 43 faces the distribution space 56 in the axial direction in a state where the valve body 31 is in an arbitrary phase around the axis L, the valve body 31 is axially opposed to the flow space 56. The number (2 or more) and arrangement can be changed as appropriate. The number of through holes 43 is preferably larger than the number of flow path forming portions 54 (sliding contact portions 55) as in the above embodiment, and further, the number of flow path forming portions 54 (sliding contact portions 55). Integer multiples are preferred.

・上記実施形態において、弁機構7が付勢部材33を備えない構成としてもよい。なお、この場合、支持部材34は、付勢部材33を支持せず、弁体31の後端位置を規定するものとして機能する。 -In the above embodiment, the valve mechanism 7 may be configured not to include the urging member 33. In this case, the support member 34 does not support the urging member 33 and functions as defining the rear end position of the valve body 31.

・上記実施形態では、支持部材34が第1拡径部22に設けられたフィルタ44を挟み込んで固定したが、これに限らず、フィルタを他の位置に設け、支持部材34がフィルタ44を固定しないものとしてもよい。 In the above embodiment, the support member 34 sandwiches and fixes the filter 44 provided in the first diameter expansion portion 22, but the present invention is not limited to this, and the filter is provided at another position and the support member 34 fixes the filter 44. It may not be.

・上記実施形態において、減圧弁1を高圧の水素ガスを減圧する用途に用いたが、これに限らず、水素以外の気体を減圧する用途に用いてもよい。
・上記実施形態では、弁装置を弁機構7から減圧した水素ガスを送出する減圧弁1として構成したが、これに限らず、例えば弁機構7により水素ガスの流出を止める逆止弁等の他の弁装置としてもよい。
-In the above embodiment, the pressure reducing valve 1 is used for reducing the pressure of high-pressure hydrogen gas, but the present invention is not limited to this, and the pressure reducing valve 1 may be used for reducing the pressure of a gas other than hydrogen.
-In the above embodiment, the valve device is configured as a pressure reducing valve 1 that sends out decompressed hydrogen gas from the valve mechanism 7, but the present invention is not limited to this, for example, a check valve that stops the outflow of hydrogen gas by the valve mechanism 7. It may be used as a valve device.

次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(イ)ガス流路が形成されたボディと、前記ガス流路の途中に設けられた弁座と、前記ガス流路内における前記弁座の上流側に収容され、該弁座に対して接離する弁体と、前記弁体の上流側に設けられ、該弁体の後退位置を規定する支持部材と、前記弁体と前記支持部材との間に設けられ、該弁体を前記弁座側に付勢する付勢部材とを備え、前記弁体は、前記弁座の弁孔を閉塞可能な頭部、及び該弁体の軸線方向に沿った移動を案内する案内部を有し、前記案内部には、前記ガス流路の内周面との間にガスが流通可能な流通空間を形成する流路形成部と、前記ガス流路の内周面に摺接する摺接部とが周方向に並んで形成され、前記支持部材には、該支持部材の上流側と下流側とを連通する複数の貫通孔が形成され、前記案内部は、前記付勢部材の一部を収容可能な筒状に形成され、前記各貫通孔における下流側の開口は、前記軸線方向視で、前記案内部の内周面がなす円よりも径方向外側に位置するように形成された弁装置。上記構成によれば、各貫通孔を介して流入するガスが筒状に形成された案内部の内側に流れ込むことを抑制できるため、ガスによって発生する推進力が減じられる。
Next, the technical ideas that can be grasped from the above embodiment and other examples will be added below together with their effects.
(B) The body in which the gas flow path is formed, the valve seat provided in the middle of the gas flow path, and the valve seat are housed on the upstream side of the valve seat in the gas flow path and are in contact with the valve seat. A valve body to be separated, a support member provided on the upstream side of the valve body and defining a retracted position of the valve body, and a support member provided between the valve body and the support member, the valve body is provided on the valve seat. The valve body includes a urging member for urging to the side, and the valve body has a head capable of closing the valve hole of the valve seat, and a guide portion for guiding the movement of the valve body along the axial direction. The guide portion includes a flow path forming portion that forms a flow space through which gas can flow between the guide portion and the inner peripheral surface of the gas flow path, and a sliding contact portion that is in sliding contact with the inner peripheral surface of the gas flow path. The support members are formed side by side in the circumferential direction, and the support member is formed with a plurality of through holes communicating the upstream side and the downstream side of the support member, and the guide portion can accommodate a part of the urging member. A valve device formed in a tubular shape, and the opening on the downstream side in each of the through holes is formed so as to be located radially outside the circle formed by the inner peripheral surface of the guide portion in the axial direction. According to the above configuration, it is possible to suppress the gas flowing in through each through hole from flowing into the inside of the guide portion formed in a cylindrical shape, so that the propulsive force generated by the gas is reduced.

(ロ)ガス流路が形成されたボディと、前記ガス流路の途中に設けられた弁座と、前記ガス流路内における前記弁座の上流側に収容され、該弁座に対して接離する弁体と、前記弁体の上流側に設けられ、該弁体の後退位置を規定する支持部材とを備え、前記弁体は、前記弁座の弁孔を閉塞可能な頭部、及び該弁体の軸線方向に沿った移動を案内する案内部を有し、前記案内部には、前記ガス流路の内周面との間にガスが流通可能な流通空間を形成する流路形成部と、前記ガス流路の内周面に摺接する摺接部とが周方向に並んで形成され、前記支持部材には、該支持部材の上流側と下流側とを連通する複数の貫通孔が形成され、前記各貫通孔における下流側の開口は、前記弁体の一部及び前記ボディにおける前記ガス流路の周縁部の双方と軸方向に対向するように形成された弁装置。上記構成によれば、流通空間と軸方向に対向する貫通孔を介して流入するガスが、該流通空間に好適に流れ込むようになるため、ガスの流れによって発生する推進力が減じられる。 (B) The body in which the gas flow path is formed, the valve seat provided in the middle of the gas flow path, and the valve seat are housed on the upstream side of the valve seat in the gas flow path and are in contact with the valve seat. The valve body includes a valve body to be separated and a support member provided on the upstream side of the valve body and defining a retracted position of the valve body. A guide portion for guiding the movement of the valve body along the axial direction is provided, and the guide portion forms a flow path forming a flow space through which gas can flow between the guide portion and the inner peripheral surface of the gas flow path. A portion and a sliding contact portion that is in sliding contact with the inner peripheral surface of the gas flow path are formed side by side in the circumferential direction, and the support member has a plurality of through holes that communicate the upstream side and the downstream side of the support member. Is formed, and the opening on the downstream side in each of the through holes is formed so as to face both a part of the valve body and the peripheral edge portion of the gas flow path in the body in the axial direction. According to the above configuration, the gas flowing in through the through hole facing the flow space in the axial direction is suitably flowed into the flow space, so that the propulsive force generated by the gas flow is reduced.

1…減圧弁、4…一次ポート、5…二次ポート、6…ボディ、6a…周縁部、7…弁機構、8…押圧機構、12…供給流路(ガス流路)、12a…内周面、13…送出流路(ガス流路)、14,15…継手、31…弁体、32…弁座、33…付勢部材、34…支持部材、41…支持部、42…フランジ部、43,43a〜43h…貫通孔、51…案内部、52…頭部、53…当接部、54…流路形成部、55…摺接部、56…流通空間、57…端縁、58…弁孔、84…減圧室、85…圧力調整室、C…円、L…軸線。 1 ... Pressure reducing valve, 4 ... Primary port, 5 ... Secondary port, 6 ... Body, 6a ... Peripheral part, 7 ... Valve mechanism, 8 ... Pressing mechanism, 12 ... Supply flow path (gas flow path), 12a ... Inner circumference Surface, 13 ... Delivery flow path (gas flow path), 14, 15 ... Joint, 31 ... Valve body, 32 ... Valve seat, 33 ... Basis member, 34 ... Support member, 41 ... Support part, 42 ... Flange part, 43, 43a to 43h ... Through hole, 51 ... Guide part, 52 ... Head, 53 ... Contact part, 54 ... Flow path forming part, 55 ... Sliding contact part, 56 ... Distribution space, 57 ... Edge, 58 ... Valve hole, 84 ... decompression chamber, 85 ... pressure adjustment chamber, C ... circle, L ... axis.

Claims (5)

ガス流路が形成されたボディと、
前記ガス流路の途中に設けられた弁座と、
前記ガス流路内における前記弁座の上流側に収容され、該弁座に対して接離可能な弁体と、
前記弁体の上流側に設けられ、該弁体の後退位置を規定する支持部材とを備え、
前記弁体は、前記弁座の弁孔を閉塞可能な頭部、及び該弁体の軸線方向に沿った移動を案内する案内部を有し、前記案内部には、前記ガス流路の内周面との間にガスが流通可能な流通空間を形成する流路形成部と、前記ガス流路の内周面に摺接する摺接部とが周方向に交互に並んで形成され、
前記支持部材には、該支持部材の上流側と下流側とを連通する複数の貫通孔が形成され、
前記複数の貫通孔の少なくとも一つは、前記弁体が前記軸線周りの任意の位相にある状態で、該貫通孔における下流側の開口の中心が前記流通空間を軸方向に投影した領域に含まれるように形成され
前記貫通孔の数は前記摺接部の数よりも多い弁装置。
The body on which the gas flow path is formed and
A valve seat provided in the middle of the gas flow path and
A valve body housed on the upstream side of the valve seat in the gas flow path and capable of being brought into contact with and separated from the valve seat.
A support member provided on the upstream side of the valve body and defining a retracted position of the valve body is provided.
The valve body has a head capable of closing the valve hole of the valve seat, and a guide portion for guiding the movement of the valve body along the axial direction, and the guide portion is in the gas flow path. A flow path forming portion that forms a flow space through which gas can flow between the peripheral surface and a sliding contact portion that is in sliding contact with the inner peripheral surface of the gas flow path are formed alternately in the circumferential direction.
The support member is formed with a plurality of through holes that communicate the upstream side and the downstream side of the support member.
At least one of the plurality of through holes is included in a region where the center of the opening on the downstream side in the through holes projects the flow space in the axial direction while the valve body is in an arbitrary phase around the axis. It is formed as,
A valve device in which the number of through holes is larger than the number of sliding contact portions.
請求項1に記載の弁装置において、
前記弁体と前記支持部材との間に設けられ、該弁体を前記弁座側に付勢する付勢部材を備え、
前記案内部は、前記付勢部材の一部を収容可能な筒状に形成され、
前記各貫通孔における下流側の開口は、前記軸線方向視で、前記案内部の内周面がなす円よりも径方向外側に位置するように形成された弁装置。
In the valve device according to claim 1,
A urging member provided between the valve body and the support member and urging the valve body to the valve seat side is provided.
The guide portion is formed in a tubular shape capable of accommodating a part of the urging member.
A valve device formed so that the opening on the downstream side of each through hole is located radially outside the circle formed by the inner peripheral surface of the guide portion in the axial direction.
請求項1又は2に記載の弁装置において、
前記各貫通孔における下流側の開口は、前記弁体の一部及び前記ボディにおける前記ガス流路の周縁部の双方と軸方向に対向するように形成された弁装置。
In the valve device according to claim 1 or 2.
A valve device formed so that the opening on the downstream side in each of the through holes is axially opposed to both a part of the valve body and the peripheral edge portion of the gas flow path in the body.
請求項1〜のいずれか一項に記載の弁装置において、
前記案内部には、周方向幅が互いに等しい複数の前記流路形成部と、周方向幅が互いに等しい複数の前記摺接部とが形成され、前記複数の流路形成部と前記複数の摺接部とが周方向に交互に並んで設けられた弁装置。
In the valve device according to any one of claims 1 to 3.
A plurality of the flow path forming portions having the same circumferential width and a plurality of the sliding contact portions having the same circumferential width are formed in the guide portion, and the plurality of flow path forming portions and the plurality of sliding portions are formed. A valve device in which the contact parts are alternately arranged in the circumferential direction.
請求項1〜のいずれか一項に記載の弁装置において、
前記ガス流路は、前記ボディの一次ポートと二次ポートとを繋ぐものであり、
前記二次ポートの圧力に応じて前記弁体を前記弁座から離間する方向に押圧する押圧機構を備えた弁装置。
In the valve device according to any one of claims 1 to 4.
The gas flow path connects the primary port and the secondary port of the body.
A valve device provided with a pressing mechanism that presses the valve body in a direction away from the valve seat in response to the pressure of the secondary port.
JP2017162448A 2017-08-25 2017-08-25 Valve device Active JP6969933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162448A JP6969933B2 (en) 2017-08-25 2017-08-25 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162448A JP6969933B2 (en) 2017-08-25 2017-08-25 Valve device

Publications (2)

Publication Number Publication Date
JP2019039512A JP2019039512A (en) 2019-03-14
JP6969933B2 true JP6969933B2 (en) 2021-11-24

Family

ID=65726332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162448A Active JP6969933B2 (en) 2017-08-25 2017-08-25 Valve device

Country Status (1)

Country Link
JP (1) JP6969933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315407A (en) * 2020-03-27 2022-11-08 住友重机械建机起重机株式会社 Crane, crane main body, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207744A (en) * 2007-02-27 2008-09-11 Showa Corp Check valve
JP6273093B2 (en) * 2013-03-19 2018-01-31 株式会社ニッキ Check valve
JP2016184256A (en) * 2015-03-26 2016-10-20 愛三工業株式会社 Pressure control valve

Also Published As

Publication number Publication date
JP2019039512A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6904858B2 (en) Pressure reducing valve
JP6277835B2 (en) Fuel vapor control device
JP5561492B2 (en) Check valve
JP6765935B2 (en) Valve device
JP7041416B2 (en) Fluid control valve
JP6769840B2 (en) Pressure reducing valve device
JP6969933B2 (en) Valve device
KR20140122249A (en) Poppet valve
KR101653932B1 (en) Check valve
JP2005076752A (en) Magnetic fluid buffer
JP2016184256A (en) Pressure control valve
JP4352879B2 (en) Connector with built-in valve
JP4798510B2 (en) Spring structure used in fluid pressure equipment
US20220074461A1 (en) Shock absorber
WO2016163271A1 (en) Pressure-reducing valve
JP6790695B2 (en) Pressure reducing valve
JP2019199926A (en) Valve gear
KR102627961B1 (en) Damping force adjustable shock absorber
WO2015064429A1 (en) Pressure reducing valve
JPWO2020262244A1 (en) Differential pressure valve
JPWO2020032156A1 (en) Pressure reducing valve
JP2016184260A (en) Pressure control valve
JP2009180377A (en) Connector with built-in valve
JP7033794B2 (en) non-return valve
JP7147268B2 (en) valve device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R150 Certificate of patent or registration of utility model

Ref document number: 6969933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150