JP6969903B2 - Synthetic deck - Google Patents

Synthetic deck Download PDF

Info

Publication number
JP6969903B2
JP6969903B2 JP2017105604A JP2017105604A JP6969903B2 JP 6969903 B2 JP6969903 B2 JP 6969903B2 JP 2017105604 A JP2017105604 A JP 2017105604A JP 2017105604 A JP2017105604 A JP 2017105604A JP 6969903 B2 JP6969903 B2 JP 6969903B2
Authority
JP
Japan
Prior art keywords
concrete
synthetic
steel plate
formwork
bottom steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105604A
Other languages
Japanese (ja)
Other versions
JP2018199968A (en
Inventor
健介 和田
英行 櫻井
博一 田中
和志 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2017105604A priority Critical patent/JP6969903B2/en
Publication of JP2018199968A publication Critical patent/JP2018199968A/en
Application granted granted Critical
Publication of JP6969903B2 publication Critical patent/JP6969903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、底鋼板とコンクリートを一体成形してなる合成床版に関する。 The present invention relates to a synthetic floor slab obtained by integrally molding a bottom steel plate and concrete.

底鋼板とコンクリートを一体成形した合成床版は、長支間化が可能で高い疲労耐久性を有するため、道路橋や鉄道橋の床版として用いるケースが増えている(例えば、特許文献1参照)。合成床版を道路橋や鉄道橋の床版として用いる場合には、底鋼板が型枠を兼ねるメリットを活かすため、一般に工場製作した鋼板パネルを架設現場に輸送し、現場でコンクリートの打込みを行うようにしている。 Synthetic decks made by integrally molding bottom steel plates and concrete have a long span and high fatigue durability, so they are increasingly used as decks for road bridges and railway bridges (see, for example, Patent Document 1). .. When a synthetic floor slab is used as a floor slab for road bridges and railway bridges, in order to take advantage of the fact that the bottom steel plate also serves as a formwork, steel plate panels manufactured at the factory are generally transported to the erection site and concrete is poured at the site. I am doing it.

特許文献1に記載された合成床版は、底鋼板の上面に樹脂製で中空の埋め殺し用型枠を所定間隔で縦横方向に配列固定し、コンクリート層に埋設している。そして、4つの埋め殺し用型枠で囲まれた中央空間にスタッドを植設して格子状に配列し、更に多数の鉄筋を埋め殺し用型枠の頂部で十字に交差させて配列している。
これにより、合成床版の重量を軽量化して底鋼板とコンクリートの付着性とせん断耐力を高めるとしている。
In the synthetic floor slab described in Patent Document 1, a hollow resin-made formwork for filling is arranged and fixed in the vertical and horizontal directions at predetermined intervals on the upper surface of the bottom steel plate, and is embedded in a concrete layer. Then, studs are planted in a central space surrounded by four filling formwork and arranged in a grid pattern, and a large number of reinforcing bars are arranged so as to cross each other at the top of the filling formwork. ..
As a result, the weight of the synthetic floor slab will be reduced, and the adhesiveness and shear strength of the bottom steel plate and concrete will be improved.

特開2010−216187号公報Japanese Unexamined Patent Publication No. 2010-216187

しかしながら、特許文献1に記載された従来の合成床版においては、軽量化のために中空で樹脂製の埋め殺し用型枠をコンクリートに埋設するため床版の剛性が小さくなり、剛性と重量とはトレードオフの関係になる。そのため、合成床版の軽量化を進めると、それに比例して剛性が小さくなるという問題がある。 However, in the conventional synthetic deck described in Patent Document 1, since a hollow resin-made filling form is embedded in concrete for weight reduction, the rigidity of the deck is reduced, and the rigidity and weight are increased. Is in a trade-off relationship. Therefore, if the weight of the synthetic deck is reduced, there is a problem that the rigidity is proportionally reduced.

本発明は、このような実情に鑑みてなされたものであり、剛性と軽量化を共に確保できるようにした合成床版を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a synthetic deck that can secure both rigidity and weight reduction.

上記の目的を達するために、本発明による合成床版は、底鋼板の一方の面にコンクリートが打設され、底鋼板とコンクリートが一体成形されてなる合成床版において、底鋼板の一方の面に固着された管状部材と、底鋼板の一方の面に設置された埋設型枠と、がコンクリートに埋設されており、前記埋設型枠は、平面視において前記管状部材の間に配設されていてコンクリートに接する端部が凸部形状または凹部形状に湾曲して形成されていることを特徴とする。
本発明によれば、合成床版のコンクリート打設部の剛性への寄与が小さい箇所に管状部材と埋設型枠を設置してコンクリートに埋設する構成を採用したため、コンクリートを削減できて軽量化と剛性向上の両方を達成できる。しかも合成床版の構成が簡単で製造時の組立が容易である。埋設型枠は管状部材より軽量であることが好ましい。
In order to achieve the above object, the synthetic formwork according to the present invention is a synthetic formwork in which concrete is cast on one surface of a bottom steel plate and the bottom steel plate and concrete are integrally formed, and one surface of the bottom steel plate is formed. A tubular member fixed to the concrete and an embedded formwork installed on one surface of the bottom steel plate are embedded in concrete, and the embedded formwork is arranged between the tubular members in a plan view. It is characterized in that the end portion in contact with the concrete is curved into a convex shape or a concave shape .
According to the present invention, since a tubular member and a buried formwork are installed in a place where the contribution to the rigidity of the concrete casting portion of the synthetic deck is small and the concrete is buried in the concrete, the concrete can be reduced and the weight can be reduced. Both improvements in rigidity can be achieved. Moreover, the structure of the synthetic deck is simple and it is easy to assemble at the time of manufacture. The embedded formwork is preferably lighter than the tubular member.

また、軽量な埋設型枠の端部は凸部形状または凹部形状を有しているために、コンクリートの応力集中を避けることができる。 Further, since the end portion of the lightweight buried formwork has a convex shape or a concave shape, stress concentration of concrete can be avoided.

また、埋設型枠は発泡性樹脂部材であることが好ましい。
埋設型枠を発泡性樹脂部材で形成することで、合成床版がより軽量になり加工が容易である上に施工性が向上する。
Further, it is preferable that the embedded formwork is a foamable resin member.
By forming the embedded formwork with a foamable resin member, the synthetic deck is lighter, easier to process, and easier to work with.

また、管状部材は底鋼板の一端側から他端側に延びていると共に、埋設型枠は管状部材の間で長手方向中央部に設置されていることが好ましい。
合成床版は中央領域がコンクリート打設部の剛性への寄与が小さい領域であるため、埋設型枠を配置して軽量化しても剛性を確保できる。
Further, it is preferable that the tubular member extends from one end side to the other end side of the bottom steel plate, and the embedded formwork is installed in the central portion in the longitudinal direction between the tubular members.
Since the central region of the synthetic deck is a region where the contribution to the rigidity of the concrete casting portion is small, the rigidity can be ensured even if the buried formwork is arranged to reduce the weight.

本発明に係る合成床版によれば、底鋼板の一方の面に管状部材と埋設型枠を設置してコンクリート中に埋設したためコンクリートの量を削減でき、管状部材によって剛性向上と軽量化を実現できると共に埋設型枠によって軽量化を一層増大できる。そのため、剛性と軽量化を共に達成できる。
しかも、合成床版の軽量化によって施工性を向上できて部材を大型化できる上に、構成が簡単であるため製造を容易にして製造コストを低減することできる。
According to the synthetic floor slab according to the present invention, since a tubular member and an embedded formwork are installed on one surface of the bottom steel plate and embedded in concrete, the amount of concrete can be reduced, and the tubular member realizes improvement in rigidity and weight reduction. At the same time, the weight reduction can be further increased by the buried formwork. Therefore, both rigidity and weight reduction can be achieved.
Moreover, the weight reduction of the synthetic deck makes it possible to improve the workability and increase the size of the member, and since the structure is simple, the manufacturing can be facilitated and the manufacturing cost can be reduced.

本発明の第一実施形態による合成床版の斜視図である。It is a perspective view of the synthetic deck according to the 1st Embodiment of this invention. 図1に示す合成床版のA−A線水平断面図である。FIG. 3 is a horizontal sectional view taken along line AA of the synthetic deck shown in FIG. 図2における合成床版の発泡スチロールを示すもので、(a)は平面図、(b)は同図(a)のB−B線断面図である。2 shows the styrofoam of the synthetic deck in FIG. 2, where FIG. 2A is a plan view and FIG. 2B is a sectional view taken along line BB of FIG. 2A. 第二実施形態による合成床版の図2と同様な水平断面図である。FIG. 2 is a horizontal sectional view similar to FIG. 2 of the synthetic deck according to the second embodiment. 図4における合成床版の発泡スチロールを示す斜視図である。It is a perspective view which shows the styrofoam of a synthetic deck in FIG.

以下、本発明の実施形態による合成床版を添付図面により説明する。
本発明の第一実施形態による合成床版1を図1乃至図3に基づいて説明する。本第一実施形態による合成床版1は例えば道路橋や鉄道橋等に用いられる合成床版を示すものである。図1及び図2に示すように、本実施形態による合成床版1は、底鋼板2を型枠の底面とし、その一方の面である内面2aにコンクリート3を打設充填し、底鋼板2とコンクリート3を一体成形して構成されている。底鋼板2の四辺の側面には型枠の側面が形成されているが、図では省略されている。
本実施形態による合成床版1は、底鋼板2の内面2aに後述する角鋼管4と埋設型枠7を交互に配列してその周囲の隙間をコンクリート3で埋設すると共に、その上面をコンクリート3の層で被覆して一体形成されている。また、必要に応じて角鋼管4と埋設型枠7の上側に圧縮側となる鉄筋を配置する。
Hereinafter, the synthetic deck according to the embodiment of the present invention will be described with reference to the accompanying drawings.
The synthetic deck 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. The synthetic deck 1 according to the first embodiment shows a synthetic deck used for, for example, a road bridge, a railway bridge, or the like. As shown in FIGS. 1 and 2, in the synthetic floor slab 1 according to the present embodiment, the bottom steel plate 2 is used as the bottom surface of the formwork, and concrete 3 is cast and filled on the inner surface 2a, which is one of the bottom steel plates 2. And concrete 3 are integrally molded. The side surfaces of the formwork are formed on the side surfaces of the four sides of the bottom steel plate 2, but they are omitted in the drawing.
In the synthetic floor slab 1 according to the present embodiment, the square steel pipes 4 and the buried formwork 7, which will be described later, are alternately arranged on the inner surface 2a of the bottom steel plate 2, and the gaps around the square steel pipes 7 are filled with concrete 3, and the upper surface thereof is concrete 3. It is integrally formed by covering with a layer of. Further, if necessary, a reinforcing bar to be a compression side is arranged on the upper side of the square steel pipe 4 and the buried formwork 7.

図2に示す合成床版1の水平断面図において、底鋼板2のコンクリート3を打設する側の内面2aに、例えば管状部材として断面略四角形筒状をなす中空の角鋼管4を一方向、例えば底鋼板2の長手方向に所定間隔で略平行に配列した。引張側の鋼材を底鋼板2に配列した角鋼管4は中空構造体5の一部を構成している。
また、角鋼管4を底鋼板2の内面2aに溶接することで、底鋼板2及び角鋼管4の一体構造部の剛性が所望の剛性に高められている。
In the horizontal cross-sectional view of the synthetic floor slab 1 shown in FIG. 2, a hollow square steel pipe 4 having a substantially square tubular cross section as a tubular member is provided in one direction on the inner surface 2a of the bottom steel plate 2 on the side where the concrete 3 is placed. For example, the bottom steel plates 2 were arranged substantially parallel to each other at predetermined intervals in the longitudinal direction. The square steel pipe 4 in which the steel materials on the tension side are arranged on the bottom steel plate 2 constitutes a part of the hollow structure 5.
Further, by welding the square steel pipe 4 to the inner surface 2a of the bottom steel plate 2, the rigidity of the integrated structure portion of the bottom steel plate 2 and the square steel pipe 4 is increased to a desired rigidity.

図2において、底鋼板2の内面2a上で隣り合う2本の角鋼管4の間には、例えば発泡スチロール(発泡性樹脂部材)からなる埋設型枠7が設置されている。この埋設型枠7は、図3(a)、(b)に示すように発泡スチロールの中実構造または中空構造であり、軽量である。埋設型枠7は短手方向の長さが隣り合う2本の角鋼管4の間の長さであり、長手方向の長さは底鋼板2及び角鋼管4の長さより短い。埋設型枠7は角鋼管4の長手方向中央領域に設置されている。埋設型枠7は隣り合う角鋼管4の間に嵌合されていてもよいし、接着剤等で底鋼板2に接着されていてもよい。 In FIG. 2, an embedded formwork 7 made of, for example, styrofoam (expandable resin member) is installed between two adjacent square steel pipes 4 on the inner surface 2a of the bottom steel plate 2. As shown in FIGS. 3A and 3B, the embedded formwork 7 has a solid structure or a hollow structure of Styrofoam and is lightweight. The buried formwork 7 has a length in the lateral direction between two adjacent square steel pipes 4, and a length in the longitudinal direction is shorter than the lengths of the bottom steel plate 2 and the square steel pipe 4. The buried formwork 7 is installed in the central region in the longitudinal direction of the square steel pipe 4. The embedded formwork 7 may be fitted between adjacent square steel pipes 4, or may be adhered to the bottom steel plate 2 with an adhesive or the like.

埋設型枠7の長手方向の対向する端部7aは適宜の形状に形成可能であるが、図2及び図3に示す例では、互いに近接する方向に凹曲面形状に切り欠いて湾曲形成された凹部7bを有している。凹部7bの両側に先端側が湾曲した一対の脚部7cが形成されている。埋設型枠7の長手方向の両側端部7aは凹曲面状の凹部7bによってコンクリート3に当接しているため、コンクリート3の応力集中を避けることができ、軽量でありながらその端面形状を維持できる。
底鋼板2の内面2aにおいて、埋設型枠7の両側端部7aにおける一対の脚部7c間の凹部7bにコンクリート3のずれ止め用の板状のスタッド9が起立している。このスタッド9は埋設型枠の脚部7cに係合していてもよい。
The opposite end portions 7a in the longitudinal direction of the embedded form 7 can be formed into an appropriate shape, but in the examples shown in FIGS. 2 and 3, they are formed by cutting out into a concave curved surface shape in the directions close to each other. It has a recess 7b. A pair of leg portions 7c having curved tip sides are formed on both sides of the recess 7b. Since the both side end portions 7a in the longitudinal direction of the buried form 7 are in contact with the concrete 3 by the concave curved concave portion 7b, stress concentration of the concrete 3 can be avoided, and the end face shape can be maintained while being lightweight. ..
On the inner surface 2a of the bottom steel plate 2, plate-shaped studs 9 for preventing the concrete 3 from slipping stand up in the recesses 7b between the pair of leg portions 7c at the both side end portions 7a of the embedded formwork 7. The stud 9 may be engaged with the leg portion 7c of the embedded formwork.

底鋼板2の内面2a上で、複数の埋設型枠7と角鋼管4との間にはコンクリート3が打設充填されてコンクリート3の層を形成している。合成床版1の長手方向に沿う端部はコンクリート3で端面が形成され、短手方向に沿う端部は角鋼管4の端部とコンクリート3で端面が形成されている。角鋼管4及び埋設型枠7の上面にもコンクリート3の層が形成され、その内部に圧縮側となる鉄筋が配置されている。これによって、本実施形態による合成床版1が構成されている。合成床版1に埋設された角鋼管4と埋設型枠7はコンクリート3を充填しない領域である中空構造体5を構成する。 On the inner surface 2a of the bottom steel plate 2, concrete 3 is cast and filled between the plurality of buried formwork 7 and the square steel pipe 4 to form a layer of concrete 3. The end face of the synthetic deck 1 along the longitudinal direction is formed of concrete 3, and the end face of the synthetic deck 1 is formed of the end face of the square steel pipe 4 and the end face of the concrete 3 along the lateral direction. A layer of concrete 3 is also formed on the upper surfaces of the square steel pipe 4 and the buried formwork 7, and reinforcing bars on the compression side are arranged inside the layer. As a result, the synthetic deck 1 according to the present embodiment is configured. The square steel pipe 4 and the buried formwork 7 embedded in the synthetic deck 1 constitute a hollow structure 5 which is a region not filled with the concrete 3.

次に、第一実施形態による合成床版1の試験例について説明する。
従来技術である、底鋼板2上にコンクリート3と鉄筋のみを配設した既存のRC床版を比較例として用い、本第一実施形態による合成床版1を実施例とした。比較例と実施例を同一寸法に形成したものを用いて、FEM(有限要素法)解析によって各床版の中央でのたわみ量を解析した。解析の条件として、境界条件は単純梁と同等とし、荷重は各床版表面に100kN/mを作用させた。
重量とたわみ量について解析結果を示すと下記の表1ようになった。表1の結果から実施例の方が比較例よりも軽量であり、しかもたわみ量が小さく高剛性であるという結果が得られた。
Next, a test example of the synthetic deck 1 according to the first embodiment will be described.
An existing RC deck in which only concrete 3 and reinforcing bars are arranged on a bottom steel plate 2, which is a conventional technique, is used as a comparative example, and a synthetic deck 1 according to the first embodiment is used as an example. The amount of deflection at the center of each deck was analyzed by FEM (finite element method) analysis using the ones formed in the comparative example and the example having the same dimensions. As the conditions of the analysis, the boundary conditions were the same as those of the simple beam, and the load was 100 kN / m 2 applied to the surface of each deck.
When showing the analysis results for the amount of deflection and weight were as shown in Table 1 below. From the results in Table 1, it was obtained that the example was lighter than the comparative example, and the amount of deflection was small and the rigidity was high.

Figure 0006969903
Figure 0006969903

上述のように本実施形態による合成床版1によれば、中空構造体5とした複数の角鋼管4及び埋設型枠7の分だけコンクリート3の体積が減少するため、従来技術の合成床版やRC床版と比較して軽量化と剛性を向上できる。しかも、軽量の発泡スチロールからなる埋設型枠7は合成床版1の中央領域にのみ設置されているために、従来技術の合成床版や既存のPC床版と比較して軽量でありながら撓み量を小さくすることができて高い剛性を確保できる。
特に、埋設型枠7は発泡スチロール製であるから、軽量である上に成形が容易である。また、埋設型枠7は長手方向の両側端部7aの端面形状を凹部7bと円弧状の脚部7cとで湾曲形成したため、コンクリート3による応力集中を避けることができる。
As described above, according to the synthetic deck 1 according to the present embodiment, the volume of the concrete 3 is reduced by the amount of the plurality of square steel pipes 4 and the buried formwork 7 as the hollow structure 5, so that the synthetic deck of the prior art is used. It is possible to reduce the weight and improve the rigidity compared to the RC floor slab. Moreover, since the embedded formwork 7 made of lightweight styrofoam is installed only in the central region of the synthetic deck 1, it is lighter than the conventional synthetic deck and the existing PC deck, but the amount of bending is large. Can be made smaller and high rigidity can be ensured.
In particular, since the embedded form 7 is made of Styrofoam, it is lightweight and easy to mold. Further, since the buried form 7 has the end face shape of both side end portions 7a in the longitudinal direction curved by the concave portion 7b and the arcuate leg portion 7c, stress concentration due to the concrete 3 can be avoided.

さらに、底鋼板2に複数の角鋼管4が固着されていることで底鋼板2側の剛性が高まり、平板に比べて鋼板の厚さを薄くすることができる。この点からも合成床版1の軽量化を図ることができる。
しかも、本実施形態による合成床版1は、剛性向上と軽量化を実現できるため施工性が向上し且つ大型化できると共に、構成が簡単で施工工数が少なく製造工程を減少させることができて製造コストを低減できる。
Further, since the plurality of square steel pipes 4 are fixed to the bottom steel plate 2, the rigidity of the bottom steel plate 2 side is increased, and the thickness of the steel plate can be made thinner than that of the flat plate. From this point as well, the weight of the synthetic deck 1 can be reduced.
Moreover, the synthetic deck 1 according to the present embodiment can be manufactured because the rigidity can be improved and the weight can be reduced, so that the workability can be improved and the size can be increased. The cost can be reduced.

なお、本発明による合成床版1は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更や置換等が可能である。以下に本発明の他の実施形態や変形例について上述した実施形態と同一または同様な部分、部材には同一の符号を用いて説明する。 The synthetic deck 1 according to the present invention is not limited to the above-described embodiment, and various changes and substitutions can be made without departing from the gist thereof. Hereinafter, other embodiments and modifications of the present invention will be described with reference to the same or similar parts and members as those described above.

次に本発明の第二実施形態による合成床版11について図4及び図5に基づいて説明する。
本第二実施形態による合成床版11においても、底鋼板2上に所定間隔で角鋼管4を配列し、角鋼管4の間に埋設型枠12を配列して中空構造体5とし、その両側と上面にコンクリート3を充填して一体形成したものである。
本第二実施形態による合成床版11では、底鋼板2上に固定する角鋼管4の配置間隔を例えば第一実施形態より短く設定した。そして、角鋼管4の間に設置する埋設型枠12の長手方向両側端部12aに凸部12bを形成した。これによって、埋設型枠12の両側端部12aが凸部12bで、これに当接するコンクリート3の面が凹部の当接面形状を有している。これによって、コンクリート3の応力集中を避けることができる。なお、埋設型枠12の凸部12bの両側部にコンクリートずれ止め用のスタッド9を設置してもよい。
Next, the synthetic deck 11 according to the second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
Also in the synthetic floor slab 11 according to the second embodiment, the square steel pipes 4 are arranged on the bottom steel plate 2 at predetermined intervals, and the buried formwork 12 is arranged between the square steel pipes 4 to form a hollow structure 5, both sides thereof. And concrete 3 is filled in the upper surface and integrally formed.
In the synthetic floor slab 11 according to the second embodiment, the arrangement interval of the square steel pipe 4 fixed on the bottom steel plate 2 is set shorter than that of the first embodiment, for example. Then, convex portions 12b were formed on both end portions 12a in the longitudinal direction of the buried formwork 12 installed between the square steel pipes 4. As a result, both side end portions 12a of the embedded formwork 12 are convex portions 12b, and the surface of the concrete 3 in contact with the convex portions 12b has the shape of the contact surface of the concave portions. This makes it possible to avoid stress concentration in the concrete 3. In addition, studs 9 for preventing concrete slippage may be installed on both sides of the convex portions 12b of the buried formwork 12.

上述した各実施形態では、管状部材として角鋼管4を用いたが円筒状の鋼管でもよく、鋼管の断面形状は任意である。
また、上述した各実施形態の合成床版1、11において、コンクリート3として繊維補強コンクリートを用いてもよい。この場合には、繊維補強コンクリートを用いることで、床版厚さをより薄くすることができる。よって、合成床版1、11の一層の軽量化を実現することが可能になる。
また、角鋼管4で挟まれた埋設型枠7,12の端部7a,12aの端面形状は凹部7bや凸部12bの曲面形状に限定されるものではなく、適宜の形状を採用できる。
さらに、床版厚さが薄い場合には圧縮側の鉄筋を省略することも可能である。
In each of the above-described embodiments, the square steel pipe 4 is used as the tubular member, but a cylindrical steel pipe may be used, and the cross-sectional shape of the steel pipe is arbitrary.
Further, in the synthetic decks 1 and 11 of each of the above-described embodiments, fiber reinforced concrete may be used as the concrete 3. In this case, the thickness of the deck can be made thinner by using the fiber reinforced concrete. Therefore, it becomes possible to further reduce the weight of the synthetic decks 1 and 11.
Further, the shape of the end faces of the end portions 7a and 12a of the embedded formwork 7 and 12 sandwiched between the square steel pipes 4 is not limited to the curved surface shape of the concave portion 7b and the convex portion 12b, and an appropriate shape can be adopted.
Further, when the floor slab thickness is thin, it is possible to omit the reinforcing bar on the compression side.

上述した各実施形態では、埋設型枠7,12として発泡スチロール等の発泡性樹脂部材で形成したが、コンクリート3や角鋼管4や底鋼板2等の鋼材より軽量でコンクリート打設時に変形しなければ材質は問わない。例えば合成樹脂製の中空枠体等で形成してもよい。 In each of the above-described embodiments, the buried formwork 7 and 12 are formed of a foamable resin member such as styrofoam, but they are lighter than steel materials such as concrete 3 and square steel pipe 4 and bottom steel plate 2 and must be deformed at the time of concrete placement. The material does not matter. For example, it may be formed of a hollow frame made of synthetic resin or the like.

1、11 合成床版
2 底鋼板
3 コンクリート(繊維補強コンクリート)
4 角鋼管
5 中空構造体
7、12 埋設型枠
7b 凹部
9 スタッド
12b 凸部
1,11 Synthetic deck
2 Bottom steel plate 3 Concrete (fiber reinforced concrete)
4 Square steel pipe 5 Hollow structure 7, 12 Embedded formwork 7b Recessed 9 Stud 12b Convex part

Claims (3)

底鋼板の一方の面にコンクリートが打設され、前記底鋼板と前記コンクリートが一体成形されてなる合成床版において、
前記底鋼板の一方の面に固着された管状部材と、
前記底鋼板の一方の面に設置された埋設型枠と、
が前記コンクリートに埋設されており、
前記埋設型枠は、平面視において前記管状部材の間に配設されていてコンクリートに接する端部が凸部形状または凹部形状に湾曲して形成されていることを特徴とする合成床版。
In a synthetic floor slab in which concrete is cast on one surface of a bottom steel plate and the bottom steel plate and the concrete are integrally molded.
A tubular member fixed to one surface of the bottom steel plate and
The buried formwork installed on one side of the bottom steel plate,
There are embedded in said concrete,
The embedded formwork is a synthetic deck that is arranged between the tubular members in a plan view and has an end portion in contact with concrete curved in a convex or concave shape.
請求項1に記載された合成床版において、
前記埋設型枠は発泡性樹脂部材であることを特徴とする合成床版。
In the synthetic deck according to claim 1,
The embedded formwork is a synthetic deck characterized by being a foamable resin member.
請求項1または請求項2に記載された合成床版において、
前記管状部材は前記底鋼板の一端側から他端側に延びていると共に、前記埋設型枠は前記管状部材の間で長手方向中央部に設置されていることを特徴とする合成床版。
In the synthetic deck according to claim 1 or 2.
A synthetic deck characterized in that the tubular member extends from one end side to the other end side of the bottom steel plate, and the embedded formwork is installed in the central portion in the longitudinal direction between the tubular members.
JP2017105604A 2017-05-29 2017-05-29 Synthetic deck Active JP6969903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105604A JP6969903B2 (en) 2017-05-29 2017-05-29 Synthetic deck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105604A JP6969903B2 (en) 2017-05-29 2017-05-29 Synthetic deck

Publications (2)

Publication Number Publication Date
JP2018199968A JP2018199968A (en) 2018-12-20
JP6969903B2 true JP6969903B2 (en) 2021-11-24

Family

ID=64667858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105604A Active JP6969903B2 (en) 2017-05-29 2017-05-29 Synthetic deck

Country Status (1)

Country Link
JP (1) JP6969903B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564429B2 (en) * 1991-02-27 1996-12-18 株式会社宮地鐵工所 How to build a synthetic slab bridge
JPH0674615B2 (en) * 1993-01-22 1994-09-21 鹿島建設株式会社 Construction method of bearing floor
JPH0726517A (en) * 1993-07-14 1995-01-27 Mitsui Constr Co Ltd Floor slab construction
JPH09111941A (en) * 1995-10-20 1997-04-28 Yasuo Kagami Reinforced concrete floor slab form
US6170105B1 (en) * 1999-04-29 2001-01-09 Composite Deck Solutions, Llc Composite deck system and method of construction
JP2001295404A (en) * 2000-04-18 2001-10-26 Keiichi Niihara Method for driving hollow pipe into reinforced permanent form
JP2004211367A (en) * 2002-12-27 2004-07-29 Sumitomo Heavy Ind Ltd Hollow composite floor slab using steel pipe
JP2007113357A (en) * 2005-10-24 2007-05-10 Kaneka Corp Weight-saving material buried in reinforced concrete and its unit
JP5279566B2 (en) * 2009-03-18 2013-09-04 株式会社Ihiインフラシステム Synthetic floor slab
JP5758636B2 (en) * 2011-01-27 2015-08-05 株式会社Ihiインフラシステム Synthetic floor slab manufacturing method
JP2015025330A (en) * 2013-07-29 2015-02-05 横河工事株式会社 Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure
JP5901675B2 (en) * 2014-03-13 2016-04-13 新日鉄住金エンジニアリング株式会社 Steel / concrete composite floor slab

Also Published As

Publication number Publication date
JP2018199968A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP5984131B2 (en) Prestressed concrete truss girder formwork equipment
US10280568B2 (en) Field-assembly concrete dowel basket
KR101655330B1 (en) Rahmem structure using composite steel beam and the construction method therefor
KR101747104B1 (en) Long-span u-type composite beam for slim floor and the construction method therefor
JP5372587B2 (en) Steel / concrete composite floor slab
KR101814754B1 (en) Built-Up Beam
JP2012533696A (en) Top slab for floor construction
US10533320B2 (en) Reinforcement for a concrete tile
JP6674768B2 (en) Precast slab joining method and precast slab joining structure
JP6969903B2 (en) Synthetic deck
US775927A (en) Self-centering plate.
JP6868994B2 (en) Synthetic floor slab
KR20100069847A (en) Precast steel-concrete composite girder and manufacturing method thereof
KR101892962B1 (en) Manufacturing Method of Pretensioned Girder, and Constructing Method of Bridge using such Pretensioned Girders
KR101333527B1 (en) Beam bridge that use corrugated steelplate
JP6066981B2 (en) Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs
KR101505719B1 (en) Method for manufacturing composite deck plate integrated with a bar truss
JP6679261B2 (en) Reinforcement structure of steel beam support of slab
JP4565331B2 (en) Floor structure
JP6517121B2 (en) Buried formwork
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
KR100748939B1 (en) Difference direction corrugated composition plate
KR101402620B1 (en) Construction method of slab type rahmen birdge using Half-PC slab for slab bridge
KR102175546B1 (en) Precast concrete floor and floor structure
KR102139851B1 (en) PSC Girder With Variable Cross Section And Slab Construction Method Using Thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R150 Certificate of patent or registration of utility model

Ref document number: 6969903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150