JP6969449B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP6969449B2
JP6969449B2 JP2018039269A JP2018039269A JP6969449B2 JP 6969449 B2 JP6969449 B2 JP 6969449B2 JP 2018039269 A JP2018039269 A JP 2018039269A JP 2018039269 A JP2018039269 A JP 2018039269A JP 6969449 B2 JP6969449 B2 JP 6969449B2
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
control unit
flow path
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039269A
Other languages
English (en)
Other versions
JP2019153525A (ja
Inventor
富夫 山中
健司 馬屋原
裕治 村田
忍 大塚
貴史 山田
俊二郎 木川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018039269A priority Critical patent/JP6969449B2/ja
Publication of JP2019153525A publication Critical patent/JP2019153525A/ja
Application granted granted Critical
Publication of JP6969449B2 publication Critical patent/JP6969449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池システムに関する。
燃料電池システムに関して、例えば、特許文献1には、燃料電池スタックの発電停止から所定時間が経過した後、燃料電池システム内における温度が0℃以下になる前に、アノード側流路内に水素ガスを流すことによって、アノード側流路内に残留した水を排出する凍結抑制処理を実施することが開示されている。
特開2016−096018号公報
複数の燃料電池ユニットが1つの燃料電池システムに含まれる場合において、本願発明の発明者らは、燃料電池システムの動作を安定させるために、全ての燃料電池ユニットからの水素ガスの供給指令が一致した場合にのみ、各燃料電池ユニットへの水素ガスの供給を行う形態を考案した。しかし、各燃料電池ユニットが、自己の燃料電池ユニット内の温度に基づいて個別に凍結抑制処理の実施要否について判断を行うと、各燃料電池ユニット内における温度のばらつきによって、各燃料電池ユニットの判断結果が異なる場合があり、燃料電池ユニット全体に対する凍結抑制処理が適切に開始されない可能性があるという問題を、本願発明の発明者らは見出した。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、燃料電池と、前記燃料電池に空気を供給するコンプレッサと、前記燃料電池の発電制御を行う制御部と、をそれぞれ備える複数の燃料電池ユニットと;複数の前記燃料電池に水素を供給する水素供給システムと;を備える。複数の前記制御部のうちの第1制御部は、前記燃料電池システムによる発電時に、自己の水素供給要求と、他の制御部における水素供給要求とが一致した場合に、前記水素供給システムに水素の供給を指令し;前記第1制御部は、前記燃料電池システムが停止されている間に、前記燃料電池システム内の水分の凍結を抑制するための凍結抑制処理を実行するか否かを判断し、前記凍結抑制処理を実行すると判断した場合には、前記他の制御部とはかかわりなく、前記水素供給システムに水素の供給を指令した上で、複数の前記燃料電池内におけるアノードとカソードとの少なくともいずれか一方を掃気する。
この形態の燃料電池システムによれば、第1制御部が、凍結抑制処理を実行するか否かを単独で判断し、凍結抑制処理を実行すると判断した場合は、複数の燃料電池ユニットにおける凍結抑制処理の実行を単独で指令する。このため、複数の燃料電池ユニットに対して、凍結抑制処理を確実に開始することができる。
本発明は、燃料電池システム以外の種々の形態で実現することも可能である。例えば、燃料電池システムの凍結抑制方法、燃料電池車両等の形態で実現することができる。
本実施形態の燃料電池システムの概略構成を示す説明図。 本実施形態の制御部の構成を示す説明図。 本実施形態の凍結抑制処理の工程を示す説明図。 第1発電制御部による掃気準備処理の内容を示すフローチャート。 第1車両制御部による掃気準備処理の内容を示すフローチャート。 第2発電制御部による掃気準備処理の内容を示すフローチャート。
A.第1実施形態
図1は、第1実施形態における燃料電池システム5の概略構成を示す説明図である。本実施形態の燃料電池システム5は、例えば、バス等の大型の燃料電池車両に搭載され、燃料電池車両の駆動用モータを駆動させるための発電装置として用いられる。燃料電池システム5は、定置型の発電装置として用いてもよい。
燃料電池システム5は、第1燃料電池ユニット10Aと、第2燃料電池ユニット10Bと、水素供給システム15と、水素充填口280とを備えている。第1燃料電池ユニット10Aの構成と、第2燃料電池ユニット10Bの構成とは、特に説明しない限り同じである。以下の説明において、第1燃料電池ユニット10Aと、第2燃料電池ユニット10Bとを、特に区別せずに説明する場合は、単に燃料電池ユニット10と呼ぶ。また、図1において、第1燃料電池ユニット10Aに係る構成要素には、符号の末尾に「A」を付し、第2燃料電池ユニット10Bに係る構成要素には、符号の末尾に「B」を付している。以下の説明において、各構成要素の所属を特に区別せずに説明する場合は、符号の末尾に「A」や「B」を付さずに説明する。
それぞれの燃料電池ユニット10は、燃料電池100と、水素供給系300と、空気供給系400と、冷媒循環系500と、制御部600とを備えている。
本実施形態の燃料電池100は、固体高分子形の燃料電池である。燃料電池100は、複数のセルが積層したスタック構造を有する。各セルは、電解質膜の両面に電極触媒層を有する膜電極接合体と、膜電極接合体を挟持する一対のセパレータとを備えている。各セルは、膜電極接合体のアノード側に燃料ガスである水素ガスが供給され、カソード側に酸化ガスである空気が供給されることにより、電気化学反応により起電力を発生する。各セル同士は、直列に接続されている。
水素供給系300は、水素供給流路310と、レギュレータ320と、中圧センサ330と、インジェクタ340と、低圧センサ350と、水素排出流路360と、気液分離器370と、排気排水弁375と、水素循環ポンプ380と、排気排水流路390とを備えている。
水素供給流路310は、水素供給システム15から供給された水素ガスを、燃料電池100に供給するための流路である。水素供給流路310には、上流側から順に、レギュレータ320と、中圧センサ330と、インジェクタ340と、低圧センサ350とが設けられている。レギュレータ320は、水素供給システム15から供給された水素ガスを、所定の圧力まで減圧させるための弁である。中圧センサ330は、水素供給流路310におけるレギュレータ320とインジェクタ340との間の水素ガスの圧力を検知するためのセンサである。インジェクタ340は、燃料電池100の発電要求に応じて、水素ガスを噴射する弁である。低圧センサ350は、水素供給流路310におけるインジェクタ340と燃料電池100との間の水素ガスの圧力を検知するためのセンサである。
水素排出流路360は、燃料電池100から、燃料電池100の発電に伴う生成水等を含む水素ガス(アノードオフガス)を排出するための流路である。水素排出流路360には、気液分離器370が設けられている。気液分離器370は、アノードオフガスに含まれる水素ガス等の気体と、生成水等の液体とを分離する。
気液分離器370によって分離された水素ガスは、水素循環ポンプ380によって、水素供給流路310における低圧センサ350よりも下流側に循環する。一方、気液分離器370によって分離された生成水等は、気液分離器370に設けられた排気排水弁375から排気排水流路390へ排出される。排気排水流路390は、後述する空気排出流路420における空気バイパス流路430との接続部とマフラ470との間に接続されており、排出された生成水等は、排気排水流路390から空気排出流路420へと流れ、マフラ470を通過して大気へと排出される。
空気供給系400は、空気供給流路410と、空気排出流路420と、空気バイパス流路430と、エアコンプレッサ440と、空気分流弁450と、空気調圧弁460と、マフラ470と、空気温度センサ411とを備えている。
空気供給流路410は、燃料電池100に空気を供給するための流路である。空気供給流路410には、上流側から順に、空気温度センサ411と、エアコンプレッサ440と、空気分流弁450とが設けられている。空気温度センサ411は、空気供給流路410の入口における空気の温度を取得可能なセンサである。エアコンプレッサ440は、空気供給流路410内へ空気を圧送するための圧縮機である。空気分流弁450は、空気供給流路410から空気バイパス流路430へ分流する空気の流量を調節可能な弁である。
空気排出流路420は、燃料電池100から空気を排出するための流路である。空気排出流路420には、上流側から順に、空気調圧弁460と、マフラ470とが設けられている。空気調圧弁460は、空気排出流路420の流路抵抗を調節可能な弁である。空気調圧弁460の開度を調節することによって、燃料電池100内の空気の圧力が調節される。マフラ470は、排気音を抑制する。
空気バイパス流路430は、空気供給流路410内の空気を、燃料電池100を介することなく排出するための流路である。本実施形態の空気バイパス流路430は、空気供給流路410に設けられた空気分流弁450と、空気排出流路420とを連通しており、空気排出流路420における空気調圧弁460とマフラ470との間と接続されている。尚、空気バイパス流路430は、空気排出流路420と連通せず、大気と連通してもよい。
冷媒循環系500は、ラジエータ510と、冷媒供給流路520と、冷媒排出流路530と、冷媒バイパス流路540と、冷媒循環ポンプ550と、冷媒分流弁560と、冷媒温度センサ511とを備えている。
冷媒供給流路520は、燃料電池100に冷媒を供給するための流路である。燃料電池100に供給された冷媒は、燃料電池100の発電に伴う熱を吸収し、冷媒排出流路530へと排出される。燃料電池100から排出された冷媒は、冷媒排出流路530に接続されたラジエータ510へと流れる。ラジエータ510によって放熱された冷媒は、冷媒循環ポンプ550の駆動によって、冷媒供給流路520に循環する。ラジエータ510の出口には、冷媒温度センサ511が設けられている。冷媒温度センサ511は、ラジエータ510の出口における冷媒の温度を取得可能なセンサである。冷媒バイパス流路540は、ラジエータ510を介することなく、冷媒を燃料電池100内へ循環させるための流路である。冷媒バイパス流路540には、冷媒に溶出したイオンを除去するためのイオン交換器が設けられてもよい。
制御部600は、CPUと、メモリと、各部品が接続されるインターフェース回路とを備えたコンピュータとして構成されている。CPUは、メモリに記憶された制御プログラムを実行することにより、燃料電池ユニット10の補機類(インジェクタ340やエアコンプレッサ440やラジエータ510等)を制御することによって、燃料電池100の発電制御を行う。また、制御部600は、後述する凍結抑制処理を実行する。
水素供給システム15は、燃料電池100Aおよび燃料電池100Bに水素ガスを供給する。水素供給システム15は、第1水素供給部200Aと、第2水素供給部200Bと、水素連通流路312とを備えている。第1水素供給部200Aの構成と、第2水素供給部200Bの構成とは、特に説明しない限り同じである。以下の説明において、第1水素供給部200Aと、第2水素供給部200Bとを、特に区別せずに説明する場合は、単に水素供給部200と呼ぶ。また、図1において、第1水素供給部200Aに係る構成要素には、符号の末尾に「A」を付し、第2水素供給部200Bに係る構成要素には、符号の末尾に「B」を付している。以下の説明において、各構成要素の所属を特に区別せずに説明する場合は、符号の末尾に「A」や「B」を付さずに説明する。
水素供給部200は、水素タンク210と、主止弁222と、水素供給分岐流路230と、水素供給共通流路240と、高圧センサ242と、上流側逆止弁226と、水素充填分岐流路250と、水素充填共通流路260と、充填圧センサ262と、水素充填流路270とを備えている。
水素タンク210は、高圧の水素ガスを貯留するためのタンクである。本実施形態では、それぞれの水素供給部200には、5本の水素タンク210が設けられている。それぞれの水素タンク210には、水素供給分岐流路230が接続されている。それぞれの水素供給分岐流路230には、主止弁222が設けられており、主止弁222の開閉によって、水素ガスの供給についてのオンオフが切替えられる。それぞれの水素供給分岐流路230は、1つの水素供給共通流路240に接続されており、それぞれの水素供給分岐流路230を流れた水素ガスは、水素供給共通流路240にて合流する。水素供給共通流路240は、水素供給流路310に接続されており、水素ガスは、燃料電池100へと供給される。尚、水素供給共通流路240には、高圧センサ242が設けられている。高圧センサ242は、水素供給共通流路240内の水素ガスの圧力を検知するためのセンサである。
水素タンク210内の水素ガスは、水素充填口280から充填される。水素充填口280は、水素充填流路270を介して、水素充填共通流路260に接続されている。水素充填共通流路260には、5本の水素充填分岐流路250が接続されており、それぞれの水素充填分岐流路250は、水素供給分岐流路230における水素タンク210と主止弁222との間に接続されている。水素充填分岐流路250には、上流側逆止弁226が設けられており、水素タンク210側から水素充填口280側へと水素ガスが逆流することが抑制される。主止弁222を閉じた状態で、水素充填口280から水素ガスを充填することによって、水素タンク210に水素ガスが貯留される。主止弁222と、上流側逆止弁226とを合わせて、タンク弁220とも呼ぶ。タンク弁220によって、水素タンク210は封止される。尚、水素充填共通流路260には、充填圧センサ262が設けられている。充填圧センサ262は、水素充填共通流路260内の水素ガスの圧力を検知するためのセンサである。
水素連通流路312は、第1水素供給部200Aと、第2水素供給部200Bとを連通する。本実施形態では、水素連通流路312は、第1燃料電池ユニット10Aの水素供給流路310Aにおけるレギュレータ320Aの上流側と、第2燃料電池ユニット10Bの水素供給流路310Bにおけるレギュレータ320Bの上流側との間に接続され、第1水素供給部200Aと、第2水素供給部200Bとを連通する。そのため、第1燃料電池ユニット10Aと第2燃料電池ユニット10Bとにおける水素ガスの消費量のばらつきによって、水素タンク210Aと水素タンク210Bとのいずれか一方の水素ガスが欠乏しても、他方から水素ガスの供給を受けることができる。
水素充填口280は、ユーザの操作によって開閉可能な燃料リッドGnによって覆われており、水素充填口280から水素ガスを充填する際は、燃料リッドGnが開放されて、水素ステーションの水素ガス充填用ノズルが水素充填口280に接続される。本実施形態では、水素充填口280には、第1水素供給部200Aの水素充填流路270Aと、第2水素供給部200Bの水素充填流路270Bとが接続されており、水素充填口280から充填された水素ガスは、水素充填流路270Aと水素充填流路270Bとに分流し、それぞれの水素タンク210Aと水素タンク210Bとに貯留される。そのため、水素タンク210Aと水素タンク210Bとに、過不足なく水素ガスが充填される。
図2は、本実施形態の第1燃料電池ユニット10Aの制御部600Aと、第2燃料電池ユニット10Bの制御部600Bとの構成を模式的に表した説明図である。以下、第1燃料電池ユニット10Aの制御部600Aを「第1制御部600A」とも呼び、第2燃料電池ユニット10Bの制御部600Bを「第2制御部600B」とも呼ぶ。尚、第2制御部600Bのことを「他の制御部」とも呼ぶ。第1制御部600Aは、第1発電制御部601Aと、第1車両制御部602Aとを備えている。第2制御部600Bは、第2発電制御部601Bと、第2車両制御部602Bとを備えている。
第1発電制御部601Aは、第1燃料電池ユニット10Aの補機類(インジェクタ340Aやエアコンプレッサ440Aやラジエータ510A等)を制御する。第2発電制御部601Bは、第2燃料電池ユニット10Bの補機類(インジェクタ340Bやエアコンプレッサ440Bやラジエータ510B等)を制御する。第1車両制御部602Aは、第1水素供給部200Aの補機類(主止弁222A等)を制御する。第2車両制御部602Bは、第2水素供給部200Bの補機類(主止弁222B等)を制御する。
第1発電制御部601Aと第1車両制御部602Aとは、通信可能に接続されている。第1車両制御部602Aと第2発電制御部601Bとは、通信可能に接続されている。第2発電制御部601Bと第2車両制御部602Bとは、通信可能に接続されている。尚、各制御部は、図示しないバッテリによって電力が供給され、燃料電池システム5の発電が停止された後においても、動作可能に構成されている。また、図2には、凍結抑制処理の際に、各制御部間において授受される信号についても表しているが、これらの詳細については後述する(図3〜図6参照)。
第1水素供給部200Aと第2水素供給部200Bとは、水素連通流路312によって連通しているため、主止弁222Aと主止弁222Bとを同時に開閉しなければ、水素タンク210への水素ガスの逆流等の問題が生じる場合がある。そこで、本実施形態の燃料電池システム5の発電時には、第1燃料電池ユニット10Aの第1制御部600Aと、第2燃料電池ユニット10Bの第2制御部600Bとが、同期して主止弁222の開閉を行う。本明細書において、「同期」とは、第1制御部600Aからの水素供給要求による主止弁222Aの駆動開始タイミングと、第2制御部600Bからの水素供給要求による主止弁222Bの駆動開始タイミングとを一致させることを意味する。本実施形態では、第1発電制御部601Aは、制御部600Aと制御部600Bとを統合して制御する機能を備えている。以下、この機能のことを「統合システム」と呼ぶ。本実施形態では、この統合システムが、自己(第1制御部600A)の水素供給要求による主止弁222Aと、他の制御部(第2制御部600B)の水素供給要求による主止弁222Bの駆動開始タイミングを一致させる役割を担う。
図3は、本実施形態の燃料電池システム5における凍結抑制処理の工程を示す説明図である。「凍結抑制処理」とは、燃料電池システム5による発電が停止されている間に、燃料電池システム5内の水分が凍結することを抑制するための処理である。凍結抑制処理では、水素供給システム15からそれぞれの燃料電池100内に水素ガスが供給されて、排気排水弁375から排出されることによって、燃料電池100内の掃気(パーキングパージ)が行われ、残留した水分が燃料電池システム5外に排出される。
図4から図6は、この凍結抑制処理において、各制御部が行うパーキングパージ実行準備処理の内容を示すフローチャートである。図3に示したステップ番号と、図4から図6に示したステップ番号とは同じである。図3から図6を用いて、本実施形態における凍結抑制処理の内容を説明する。
図3に示すとおり、第1発電制御部601Aに備えられた統合システムは、燃料電池システム5による発電の停止後、統合システムに備えられた内部タイマに設定されたタイミングで起動し、パーキングパージ実行準備処理(図4参照)を開始する。
図4は、第1発電制御部601A(統合システム)が行うパーキングパージ実行準備処理の内容を示すフローチャートである。まず、第1発電制御部601Aは、外気温と水温とを取得する(ステップS110)。本実施形態では、空気温度センサ411を用いて空気供給流路410の入口における外気温を取得し、冷媒温度センサ511を用いてラジエータ510の出口における水温を取得し、燃料電池車両に設けられた図示しない外気温センサを用いて外気温を取得する。次に、第1発電制御部601Aは、パーキングパージ実行条件が成立したか否かを判定する(ステップS120)。本実施形態では、第1発電制御部601Aは、上述した各センサによって取得した外気温と水温との内、少なくともいずれか1つが0℃以下であり、かつ、上述した各センサによって取得した温度情報等を基に推定した排気排水弁375内の温度が例えば5℃以下である場合に、パーキングパージ実行条件が成立したと判断する。尚、パーキングパージ実行条件における排気排水弁375内の温度は推定温度であるため、0℃より高い温度を閾値としているが、0℃を閾値としてもよい。パーキングパージ実行条件が成立したと判断した場合(ステップS120:YES)、第1発電制御部601Aは、パーキングパージ実行のために、第1車両制御部602Aに対して、第1燃料電池ユニット10Aの起動を要求する旨の信号を送る(ステップS130)。第1発電制御部601Aは、第1車両制御部602Aからの第1燃料電池ユニット10Aの起動指令を受信した後(ステップS150)、主止弁222の駆動準備を行い(ステップS160)、当該パーキングパージ実行準備処理を終了する。一方、パーキングパージ実行条件が成立していないと判断した場合(ステップS120:NO)、第1発電制御部601Aは、内部タイマに対して、次のウェイクアップ時間を、例えば1時間後に設定して(ステップS140)、当該パーキングパージ実行準備処理を終了する。
図3に戻り、上述したとおり、第1発電制御部601Aによって、パーキングパージ実行条件が成立したと判断されると(ステップS120:YES)、第1発電制御部601Aから第1車両制御部602Aに対して、第1燃料電池ユニット10Aの起動を要求する旨の信号が送られる(ステップS130)。
図5は、第1車両制御部602Aが行うパーキングパージ実行準備処理の内容を示すフローチャートである。まず、第1車両制御部602Aは、第1発電制御部601Aからの第1燃料電池ユニット10Aの起動要求を取得する(ステップS210)。次に、第1車両制御部602Aは、第1燃料電池ユニット10Aを起動させるとともに、第1発電制御部601Aに対して、第1燃料電池ユニット10Aの起動指令を送信し(ステップS220)、第2発電制御部601Bに対して、パーキングパージ実行判断がオン(実行する)である旨の信号を送り(ステップS230)、当該パーキングパージ実行準備処理を終了する。
図3に戻り、上述したとおり、第1車両制御部602Aから第2発電制御部601Bに対して、パーキングパージ実行判断がオンである旨の信号が送られる(ステップS230)。
図6は、第2発電制御部601Bが行うパーキングパージ実行準備処理の内容を示すフローチャートである。まず、第2発電制御部601Bは、第1車両制御部602Aからのパーキングパージ実行判断の信号を取得する(ステップS310)。次に、第2発電制御部601Bは、取得した第1車両制御部602Aからのパーキングパージ実行判断がオンであるか否かを判定する(ステップS320)。パーキングパージ実行判断がオンである場合(ステップS320:YES)、第2発電制御部601Bは、パーキングパージ実行のために、第2車両制御部602Bに対して、第2燃料電池ユニット10Bの起動を要求する旨の信号を送る(ステップS330)。第2発電制御部601Bは、第2車両制御部602Bからの第2燃料電池ユニット10Bの起動指令を受信した後(ステップS340)、当該パーキングパージ実行準備処理を終了する。一方、パーキングパージ実行判断がオンでない場合(ステップS320:NO)、第2発電制御部601Bは、ステップS330およびステップS340の処理を行うことなく、当該パーキングパージ実行準備処理を終了する。
図3に戻り、第2発電制御部601Bから第2車両制御部602Bに対して、第1燃料電池ユニット10Aの起動を要求する旨の信号が送られると(ステップS330)、燃料電池システム5におけるパーキングパージの実行準備が整う。その後、第1発電制御部601Aに備えられた統合システムは、一斉に、主止弁222Aおよび主止弁222Bを駆動させて、パーキングパージを実行する。つまり、本実施形態では、第1制御部600Aに備えられた統合システムが、凍結抑制処理を実行するか否かを、他の第2制御部600Bとはかかわりなく単独で判断し、凍結抑制処理を実行すると判断した場合には、水素供給システム15に水素ガスの供給を指令して、燃料電池100Aおよび燃料電池100B内を掃気する。
以上で説明した本実施形態の燃料電池システム5によれば、第1制御部600Aに備えられた統合システムが、凍結抑制処理を実行するか否かを単独で判断し、凍結抑制処理を実行すると判断した場合は、第1燃料電池ユニット10Aおよび第2燃料電池ユニット10Bにおける凍結抑制処理の実行を単独で指令する。このため、第1燃料電池ユニット10Aおよび第2燃料電池ユニット10Bに対して、凍結抑制処理を確実に開始することができる。
B.他の実施形態1
上述した実施形態における燃料電池システム5では、統合システムは、第1燃料電池ユニット10A内のセンサを用いて温度を取得し、この温度に基づいてパーキングパージを実行するか否かを判断している。これに対して、統合システムは、第2燃料電池ユニット10B内のセンサを用いて温度を取得して、この温度に基づいてパーキングパージを実行するか否かを判断してもよい。また、統合システムは、第1燃料電池ユニット10A内のセンサおよび第2燃料電池ユニット10B内のセンサを用いて温度を取得して、この温度に基づいてパーキングパージを実行するか否かを判断してもよい。燃料電池システム5における凍結の可能性の有無を判断できれば、どのセンサを用いて温度を取得してもよい。
C.他の実施形態2
上述した各実施形態における燃料電池システム5では、統合システムは、第1発電制御部601Aに備えられ、パーキングパージを行うか否かの判断を行っている。これに対して、統合システムは、第1発電制御部601Aではなく、第2発電制御部601Bに備えられ、パーキングパージを行うか否かを判断してもよい。つまり、1つの制御部がパーキングパージを実施するか否かの判断を行う形態であればよい。
D.他の実施形態3
上述した各実施形態における燃料電池システム5は、2つの燃料電池ユニット10である、第1燃料電池ユニット10Aと第2燃料電池ユニット10Bとを備えている。これに対して、燃料電池システム5は、3つ以上の燃料電池ユニット10を備えてもよい。
E.他の実施形態4
上述した各実施形態における燃料電池システム5では、水素連通流路312によって、第1水素供給部200Aと第2水素供給部200Bとが連通している。これに対して、燃料電池システム5は、第1水素供給部200Aと第2水素供給部200Bとが連通していなくてもよい。第1燃料電池ユニット10Aの第1制御部600Aと、第2燃料電池ユニット10Bの第2制御部600Bとが、同期して主止弁222の開閉を行う形態であればよい。
F.他の実施形態5
上述した各実施形態における燃料電池システム5では、凍結抑制処理として、統合システムが、水素供給システム15に水素の供給を指令した上で、アノード側の水分を排出するパーキングパージを実行している。これに対して、燃料電池システム5では、凍結抑制処理として、統合システムが、水素供給システム15に水素の供給を指令した上で、それぞれのエアコンプレッサ440からそれぞれの燃料電池100内におけるカソード側に空気を供給して、カソード側の水分を排出する掃気処理を実行してもよい。尚、カソード側の掃気処理の際、各エアコンプレッサ440の駆動は、騒音抑制のために、統合システムによって同期して制御される。また、燃料電池システム5では、凍結抑制処理として、統合システムが、水素供給システム15に水素の供給を指令した上で、アノード側のパーキングパージと、カソード側の掃気処理との両方を実行してもよい。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
5…燃料電池システム
10…燃料電池ユニット
10A…第1燃料電池ユニット
10B…第2燃料電池ユニット
15…水素供給システム
100…燃料電池
200…水素供給部
200A…第1水素供給部
200B…第2水素供給部
210…水素タンク
220…タンク弁
222…主止弁
226…上流側逆止弁
230…水素供給分岐流路
240…水素供給共通流路
242…高圧センサ
250…水素充填分岐流路
260…水素充填共通流路
262…充填圧センサ
270…水素充填流路
280…水素充填口
300…水素供給系
310…水素供給流路
312…水素連通流路
320…レギュレータ
330…中圧センサ
340…インジェクタ
350…低圧センサ
360…水素排出流路
370…気液分離器
375…排気排水弁
380…水素循環ポンプ
390…排気排水流路
400…空気供給系
410…空気供給流路
411…空気温度センサ
420…空気排出流路
430…空気バイパス流路
440…エアコンプレッサ
450…空気分流弁
460…空気調圧弁
470…マフラ
500…冷媒循環系
510…ラジエータ
511…冷媒温度センサ
520…冷媒供給流路
530…冷媒排出流路
540…冷媒バイパス流路
550…冷媒循環ポンプ
560…冷媒分流弁
600…制御部
600A…第1制御部
600B…第2制御部
601A…第1発電制御部
601B…第2発電制御部
602A…第1車両制御部
602B…第2車両制御部
Gn…燃料リッド

Claims (1)

  1. 燃料電池システムであって、
    燃料電池と、前記燃料電池に空気を供給するコンプレッサと、前記燃料電池の発電制御を行う制御部と、をそれぞれ備える複数の燃料電池ユニットと、
    複数の前記燃料電池に水素を供給する水素供給システムと、
    を備え、
    複数の前記制御部のうちの第1制御部は、前記燃料電池システムによる発電時に、自己の水素供給要求と、他の制御部における水素供給要求とが一致した場合に、前記水素供給システムに水素の供給を指令し、
    前記第1制御部は、前記燃料電池システムが停止されている間に、前記燃料電池システム内の水分の凍結を抑制するための凍結抑制処理を実行するか否かを判断し、前記凍結抑制処理を実行すると判断した場合には、前記他の制御部とはかかわりなく、前記水素供給システムに水素の供給を指令した上で、複数の前記燃料電池内におけるアノードとカソードとの少なくともいずれか一方を掃気する、
    燃料電池システム。
JP2018039269A 2018-03-06 2018-03-06 燃料電池システム Active JP6969449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018039269A JP6969449B2 (ja) 2018-03-06 2018-03-06 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039269A JP6969449B2 (ja) 2018-03-06 2018-03-06 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2019153525A JP2019153525A (ja) 2019-09-12
JP6969449B2 true JP6969449B2 (ja) 2021-11-24

Family

ID=67946839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039269A Active JP6969449B2 (ja) 2018-03-06 2018-03-06 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6969449B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378394B2 (ja) * 1994-12-19 2003-02-17 東芝システムテクノロジー株式会社 燃料電池発電プラントの並列運転装置
US7485382B2 (en) * 2004-01-22 2009-02-03 General Motors Corporation Parallel stack antifreeze system
JP2006155997A (ja) * 2004-11-26 2006-06-15 Honda Motor Co Ltd 燃料電池システムおよび燃料電池システムの掃気方法
JP2007018992A (ja) * 2005-06-07 2007-01-25 Ricoh Co Ltd 燃料電池システム及び燃料電池システムの稼動制御方法
JP5243780B2 (ja) * 2007-12-05 2013-07-24 本田技研工業株式会社 燃料電池システムの運転方法
US8900766B2 (en) * 2012-09-28 2014-12-02 GM Global Technology Operations LLC Automated cold storage protection for a fuel cell system
JP2016081724A (ja) * 2014-10-16 2016-05-16 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2019153525A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
US10601059B2 (en) Fuel cell system having improved timing control and vehicle utilizing the same
US10090539B2 (en) Fuel cell system
JP6886914B2 (ja) 燃料電池システム及びその制御方法
KR101852676B1 (ko) 차량
CN104160538B (zh) 燃料电池系统及其控制方法
JP6847029B2 (ja) 燃料電池システム及びその制御方法
JP5744094B2 (ja) 燃料電池システムの制御方法
JP2018160311A (ja) 燃料電池システムおよび残水掃気制御方法
JP6382893B2 (ja) 燃料電池システムの制御方法
US20200127312A1 (en) Fuel cell system, control method therefor, and non-transitory computer-readable storage medium in which a program is stored
JP6969449B2 (ja) 燃料電池システム
US11621431B2 (en) Fuel Cell System
US20210075036A1 (en) Fuel cell system
JP2003331888A (ja) 燃料電池システム
JP4891961B2 (ja) 燃料電池システム
JP2009087652A (ja) 燃料電池システム
JP2019149321A (ja) 燃料電池システム
JP6973216B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6348135B2 (ja) 燃料電池システムの制御方法
JP7006158B2 (ja) 燃料電池システム
JP2007242381A (ja) 燃料電池システム
JP7047685B2 (ja) 燃料電池システムの処理方法及び部品の取り外し方法
JP2016058188A (ja) 燃料電池システムの停止方法
JP2009094000A (ja) 燃料電池システム
JP7059686B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151