JP6964406B2 - Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed - Google Patents

Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed Download PDF

Info

Publication number
JP6964406B2
JP6964406B2 JP2016240410A JP2016240410A JP6964406B2 JP 6964406 B2 JP6964406 B2 JP 6964406B2 JP 2016240410 A JP2016240410 A JP 2016240410A JP 2016240410 A JP2016240410 A JP 2016240410A JP 6964406 B2 JP6964406 B2 JP 6964406B2
Authority
JP
Japan
Prior art keywords
chemical conversion
conversion film
acid
oxide film
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016240410A
Other languages
Japanese (ja)
Other versions
JP2018095907A (en
Inventor
英一 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2016240410A priority Critical patent/JP6964406B2/en
Publication of JP2018095907A publication Critical patent/JP2018095907A/en
Application granted granted Critical
Publication of JP6964406B2 publication Critical patent/JP6964406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、金属表面の酸化膜を除去する酸化膜除去剤、並びに該酸化膜除去剤を用いた酸化膜除去方法、表面処理方法及び酸化膜を除去した金属材料の製造方法に関する。 The present invention relates to an oxide film removing agent for removing an oxide film on a metal surface, a method for removing an oxide film using the oxide film removing agent, a surface treatment method, and a method for producing a metal material from which the oxide film has been removed.

従来より、鋼板の表面における酸化膜を除去する薬剤は開発されていた。該薬剤としては、例えば、クエン酸を用いた酸化亜鉛のヒューム除去に関する技術が提案されている(特許文献1)。 Conventionally, chemicals for removing an oxide film on the surface of a steel sheet have been developed. As the drug, for example, a technique for removing fume of zinc oxide using citric acid has been proposed (Patent Document 1).

特開2014−188528公報JP-A-2014-188528

しかし、上記技術においては、鋼板の表面における酸化亜鉛は除去できるが酸化鉄は除去できないため、その後に形成された化成皮膜の耐食性が劣るという技術的課題があった。そこで、本発明は、優れた耐食性を有する化成皮膜を形成するのに有用な、金属表面の酸化亜鉛及び酸化鉄等の酸化膜を除去する薬剤、並びに該薬剤を用いた酸化膜除去方法、表面処理方法及び酸化膜を除去した金属材料の製造方法を提供することを目的とする。 However, in the above technique, since zinc oxide on the surface of the steel sheet can be removed but iron oxide cannot be removed, there is a technical problem that the corrosion resistance of the chemical conversion film formed thereafter is inferior. Therefore, the present invention provides an agent for removing an oxide film such as zinc oxide and iron oxide on a metal surface, which is useful for forming a chemical conversion film having excellent corrosion resistance, and an oxide film removing method and surface using the agent. It is an object of the present invention to provide a treatment method and a method for producing a metal material from which an oxide film has been removed.

上記課題を解決するために研究を重ねた結果、下記発明を完成するに至った。
(1)有機ホスホン酸及び/又は有機スルホン酸及び/又はアルキルモノカルボン酸と、分子量が100以上であるポリカルボン酸とを含有し、且つ、pHが2.0以上5.0以下の範囲内である、酸化膜除去剤;
(2)前記ポリカルボン酸が、クエン酸、酒石酸、リンゴ酸、マレイン酸、コハク酸、ニトリロ三酢酸、エチレンジアミン四酢酸及びN−(2−ヒドロキシエチル)エチレンジアミン−N,N',N'−三酢酸からなる群から選ばれる少なくとも1種である、上記(1)に記載の酸化膜除去剤;
(3)更に、フェノール、ノボラック樹脂、タンニン酸、没食子酸、カテコール、レゾルシノール、ハイドロキノン、ナフタレンスルホン酸、アニリン又はサッカリン酸といったベンゼン環含有成分及びこれらの塩から選ばれる少なくとも1種を含有する、上記(1)又は(2)に記載の酸化膜除去剤;
(4)上記(1)〜(3)のいずれかに記載の酸化膜除去剤を金属表面に接触させる接触工程を含む、酸化膜除去方法;
(5)上記(1)〜(3)のいずれかに記載の酸化膜除去剤を金属表面に接触させる接触工程と、前記酸化膜除去剤を接触させた金属表面に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、バナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程、又はリン酸塩化成皮膜を形成させるリン酸塩化成皮膜形成工程とを含む、表面処理方法;
(6)前記リン酸塩化成皮膜上に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、又はバナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程を含む、上記(5)に記載の表面処理方法;
(7)上記(1)〜(3)のいずれかに記載の酸化膜除去剤を金属表面に接触させる接触工程を含む、酸化膜を除去した金属材料の製造方法;
等である。
As a result of repeated research to solve the above problems, the following inventions have been completed.
(1) Contains an organic phosphonic acid and / or an organic sulfonic acid and / or an alkylmonocarboxylic acid and a polycarboxylic acid having a molecular weight of 100 or more, and the pH is within the range of 2.0 or more and 5.0 or less. Oxide film remover;
(2) The polycarboxylic acids are citric acid, tartaric acid, malic acid, maleic acid, succinic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid and N- (2-hydroxyethyl) ethylenediamine-N, N', N'-3. The oxide film remover according to (1) above, which is at least one selected from the group consisting of acetic acid;
(3) Further, the above, which further contains a benzene ring-containing component such as phenol, novolak resin, tannin acid, gallic acid, catechol, resorcinol, hydroquinone, naphthalene sulfonic acid, aniline or saccharic acid, and at least one selected from these salts. The oxide film remover according to (1) or (2);
(4) A method for removing an oxide film, which comprises a contact step of bringing the oxide film removing agent according to any one of (1) to (3) above into contact with a metal surface;
(5) A contact step in which the oxide film removing agent according to any one of (1) to (3) above is brought into contact with the metal surface, and a zirconium chemical conversion film is formed on the metal surface in contact with the oxide film removing agent. Zirconium chemical conversion film formation step, titanium chemical conversion film formation step to form titanium chemical conversion film, hafnium chemical conversion film formation step to form hafnium chemical conversion film, vanadium chemical conversion film formation step to form vanadium chemical conversion film, or phosphate chemical conversion film formation A surface treatment method including a step of forming a phosphate chemical conversion film.
(6) A zirconium chemical conversion film forming step for forming a zirconium chemical conversion film on the phosphate chemical conversion film, a titanium chemical conversion film forming step for forming a titanium chemical conversion film, a hafnium chemical conversion film forming step for forming a hafnium chemical conversion film, or vanadium. The surface treatment method according to (5) above, which comprises a vanadium chemical conversion film forming step of forming a chemical conversion film;
(7) A method for producing a metal material from which an oxide film has been removed, which comprises a contact step of bringing the oxide film removing agent according to any one of (1) to (3) above into contact with the metal surface;
And so on.

本発明によれば、優れた耐食性を有する化成皮膜を形成するのに有用な、金属表面の酸化亜鉛及び酸化鉄等の酸化膜を除去する薬剤、並びに該薬剤を用いた酸化膜除去方法、表面処理方法及び酸化膜を除去した金属材料の製造方法を提供することができる。 According to the present invention, an agent for removing an oxide film such as zinc oxide and iron oxide on a metal surface, which is useful for forming a chemical conversion film having excellent corrosion resistance, and an oxide film removing method and surface using the agent. It is possible to provide a treatment method and a method for producing a metal material from which an oxide film has been removed.

以下、本発明をより詳細に説明する。尚、本発明の技術的範囲は該形態に限定されるものではない。以下、本発明に係る酸化膜除去剤及びその製造方法、本発明に係る酸化膜除去方法、本発明に係る表面処理方法、並びに酸化膜を除去した金属材料の製造方法を順に説明する。 Hereinafter, the present invention will be described in more detail. The technical scope of the present invention is not limited to this embodiment. Hereinafter, an oxide film removing agent according to the present invention and a method for producing the same, an oxide film removing method according to the present invention, a surface treatment method according to the present invention, and a method for producing a metal material from which the oxide film has been removed will be described in order.

≪1.酸化膜除去剤≫
本発明に係る酸化膜除去剤は、有機ホスホン酸及び/又は有機スルホン酸及び/又はアルキルモノカルボン酸と、分子量が100以上であるポリカルボン酸とを含有し、且つ、pHが2.0以上5.0以下の範囲内である、酸化膜除去剤である。尚、有機ホスホン酸は酸化鉄除去により効果的であり、有機スルホン酸及びアルキルモノカルボン酸は酸化亜鉛除去により効果的である。
≪1. Oxidation film remover ≫
The oxide film removing agent according to the present invention contains an organic phosphonic acid and / or an organic sulfonic acid and / or an alkylmonocarboxylic acid and a polycarboxylic acid having a molecular weight of 100 or more, and has a pH of 2.0 or more. It is an oxide film removing agent within the range of 5.0 or less. Organic phosphonic acid is more effective in removing iron oxide, and organic sulfonic acid and alkylmonocarboxylic acid are more effective in removing zinc oxide.

<1−1.成分>
(1−1−1.第一成分1:有機ホスホン酸)
上記有機ホスホン酸とは、少なくとも1つのホスホン基{−P(=O)(OH)}を有する有機化合物を意味する。有機ホスホン酸としては、特に限定されるものではないが、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸四ナトリウム塩、アミノトリメチレンホスホン酸五ナトリウム塩、ジエチレントリアミンペンタメチレンホスホン酸七ナトリウム塩、ニトリロトリスメチレンホスホン酸等が挙げられる。尚、酸化膜除去剤における有機ホスホン酸の濃度は0.1g/L以上であることが好ましい(上限値は特に限定されないが、例えば、10g/Lである)。本発明の酸化膜除去剤は有機ホスホン酸を含むものであってもよいが、環境面を考慮すると有機ホスホン酸を含有しないものが好ましく、リンを含む成分を含有しないものがより好ましい。また、本発明の酸化膜除去剤によって酸化膜を除去した後、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程を行う場合には、本発明の酸化膜除去剤は有機ホスホン酸を含有しないものが好ましく、リンを含む成分を含有しないものがより好ましい。
<1-1. Ingredients>
(1-1-1. First component 1: Organic phosphonic acid)
The organic phosphonic acid means an organic compound having at least one phosphon group {-P (= O) (OH) 2}. The organic phosphonic acid is not particularly limited, but is, for example, 1-hydroxyethylidene-1,1-diphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid tetrasodium salt, aminotrimethylenephosphonic acid pent. Examples thereof include sodium salt, diethylenetriamine pentamethylenephosphonic acid heptasodium salt, nitrilotrismethylenephosphonic acid and the like. The concentration of the organic phosphonic acid in the oxide film removing agent is preferably 0.1 g / L or more (the upper limit is not particularly limited, but is, for example, 10 g / L). The oxide film removing agent of the present invention may contain an organic phosphonic acid, but from an environmental point of view, it is preferably not containing an organic phosphonic acid, and more preferably not containing a phosphorus-containing component. Further, when the zirconium chemical conversion film forming step of forming the zirconium chemical conversion film is performed after removing the oxide film with the oxide film removing agent of the present invention, the oxide film removing agent of the present invention does not contain organic phosphonic acid. Preferably, those containing no phosphorus-containing component are more preferable.

(1−1−2.第一成分2:有機スルホン酸)
上記有機スルホン酸とは、少なくとも1つのスルホン基{−S(=O)(OH)}を有する有機化合物を意味する。有機スルホン酸(ホスホン基又はベンゼン環を含むものを除く)としては、特に限定されるものではないが、例えば、メタンスルホン酸、エタンスルホン酸、イセチオン酸等の水酸基を有するアルキルスルホン酸等が挙げられる。尚、酸化膜除去剤における有機スルホン酸の濃度は0.1g/L以上であることが好ましい(上限値は特に限定されないが、例えば、10g/Lである)。
(1-1-2. First component 2: Organic sulfonic acid)
The organic sulfonic acid means an organic compound having at least one sulfone group {-S (= O) 2 (OH)}. The organic sulfonic acid (excluding those containing a phosphone group or a benzene ring) is not particularly limited, and examples thereof include alkyl sulfonic acids having hydroxyl groups such as methane sulfonic acid, ethane sulfonic acid, and isethionic acid. Be done. The concentration of the organic sulfonic acid in the oxide film removing agent is preferably 0.1 g / L or more (the upper limit is not particularly limited, but is, for example, 10 g / L).

(1−1−3.第一成分3:アルキルモノカルボン酸)
上記アルキルモノカルボン酸とは、アルカンにおける1つの水素原子がカルボキシル基に置換された化合物を意味する。アルキルモノカルボン酸(ホスホン基、ベンゼン環又はスルホン基を含むものを除く)としては、特に限定されるものではないが、例えば、酢酸、プロピオン酸等が挙げられる。尚、酸化膜除去剤におけるアルキルモノカルボン酸の濃度は0.1g/L以上であることが好ましい(上限値は特に限定されないが、例えば、10g/Lである)。
(1-1-3. First component 3: Alkyl monocarboxylic acid)
The alkyl monocarboxylic acid means a compound in which one hydrogen atom in an alkane is substituted with a carboxyl group. The alkyl monocarboxylic acid (excluding those containing a phosphon group, a benzene ring or a sulfone group) is not particularly limited, and examples thereof include acetic acid and propionic acid. The concentration of the alkyl monocarboxylic acid in the oxide film removing agent is preferably 0.1 g / L or more (the upper limit is not particularly limited, but is, for example, 10 g / L).

(1−1−4.第二成分:ポリカルボン酸)
第二成分であるポリカルボン酸とは、2つ以上のカルボキシル基を有する成分(例えばキレート剤)であって、分子量が100以上である成分を意味する。ポリカルボン酸(ホスホン基、ベンゼン環又はスルホン基を含むものを除く)としては、例えば、クエン酸、酒石酸、リンゴ酸、マレイン酸、コハク酸、ニトリロ三酢酸、エチレンジアミン四酢酸、N−(2−ヒドロキシエチル)エチレンジアミン−N,N',N'−三酢酸等が挙げられるが、これらに限定されるものではない。尚、分子量の上限は特に限定されないが、例えば、500である。また、酸化膜除去剤におけるポリカルボン酸の濃度は0.1g/L以上であることが好ましい(上限値は特に限定されないが、例えば、10g/Lである)。
(1-1-4. Second component: polycarboxylic acid)
The second component, polycarboxylic acid, means a component having two or more carboxyl groups (for example, a chelating agent) and having a molecular weight of 100 or more. Examples of polycarboxylic acids (excluding those containing a phosphone group, a benzene ring or a sulfone group) include citric acid, tartrate acid, malic acid, maleic acid, succinic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid and N- (2-). Hydroxyethyl) ethylenediamine-N, N', N'-triacetic acid and the like can be mentioned, but the present invention is not limited thereto. The upper limit of the molecular weight is not particularly limited, but is, for example, 500. The concentration of the polycarboxylic acid in the oxide film removing agent is preferably 0.1 g / L or more (the upper limit is not particularly limited, but is, for example, 10 g / L).

(1−1−5.第三成分:ベンゼン環含有成分(添加剤))
本発明に係る酸化膜除去剤は、第一成分及び第二成分の他に、第三成分として、フェノール、ノボラック樹脂、タンニン酸、没食子酸、カテコール、レゾルシノール、ハイドロキノン、ナフタレンスルホン酸、アニリン、サッカリン酸等のベンゼン環含有成分(ホスホン基を含むものを除く)及びこれらの塩からなる群より選択される一種以上を、更に含んでいてもよい。尚、酸化膜除去剤における上記添加剤濃度は0.1g/L以上であることが好ましい(上限値は特に限定されないが、例えば、10g/Lである)。
(1-1-5. Third component: benzene ring-containing component (additive))
In addition to the first component and the second component, the oxide film removing agent according to the present invention has phenol, novolak resin, tannic acid, gallic acid, catechol, resorcinol, hydroquinone, naphthalene sulfonic acid, aniline, and saccharin as the third component. It may further contain one or more selected from the group consisting of benzene ring-containing components (excluding those containing a phosphone group) such as acids and salts thereof. The concentration of the additive in the oxide film removing agent is preferably 0.1 g / L or more (the upper limit is not particularly limited, but is, for example, 10 g / L).

(1−1−6.他の成分)
本発明に係る酸化膜除去剤は、必要に応じ、上記第一成分、第二成分及び第三成分以外の成分(他の成分)を含有してもよいし、含まないものであってもよい。他の成分としては、フッ酸、硝酸、塩酸、硫酸等の無機酸等が挙げられる。本発明に係る酸化膜除去剤に無機酸を配合する場合には、耐食性の観点から、酸化膜除去剤の総質量に対する無機酸の質量の割合を1質量%未満とすることが好ましい。
(1-1-6. Other ingredients)
The oxide film removing agent according to the present invention may or may not contain components (other components) other than the above-mentioned first component, second component and third component, if necessary. .. Examples of other components include inorganic acids such as hydrofluoric acid, nitric acid, hydrochloric acid, and sulfuric acid. When an inorganic acid is added to the oxide film remover according to the present invention, the ratio of the mass of the inorganic acid to the total mass of the oxide film remover is preferably less than 1% by mass from the viewpoint of corrosion resistance.

<1−2.第一成分と第二成分との比>
第一成分である上記有機ホスホン酸及び/又は有機スルホン酸及び/又はアルキルモノカルボン酸と、第二成分である上記ポリカルボン酸との配合比(第一成分の質量:第二成分の質量)は、特に限定されるものではないが、1.0:10.0〜10.0:1.0の範囲内であることが好ましく、1.0:5.0〜5.0:1.0の範囲内であることがより好ましく、1.0:3.0〜3.0:1.0の範囲内であることが更に好ましい。
<1-2. Ratio of 1st component to 2nd component>
Mixing ratio of the organic phosphonic acid and / or organic sulfonic acid and / or alkylmonocarboxylic acid as the first component and the polycarboxylic acid as the second component (mass of the first component: mass of the second component) Is not particularly limited, but is preferably in the range of 1.0: 10.0 to 10.0: 1.0, and 1.0: 5.0 to 5.0: 1.0. It is more preferable that it is in the range of 1.0: 3.0 to 3.0: 1.0.

<1−3.除去対象の酸化膜>
本発明に係る酸化膜除去剤における酸化膜とは、少なくとも酸化鉄及び酸化亜鉛を意味するが、これらに限定されるものではなく、酸化アルミニウムその他の金属の酸化膜をも含むことを意味してもよい。したがって、本発明に係る酸化膜除去剤は、少なくとも酸化亜鉛及び酸化鉄の酸化膜を除去するのに有用であるが、本発明に係る酸化膜除去剤を、酸化アルミニウムその他の金属の酸化膜の除去に利用してもよい。該酸化膜は、例えば、金属材料を放置することによって形成されるもの、金属材料を溶接した後に形成されるもの等が挙げられるが、これらに限定されるものではない。
<1-3. Oxide film to be removed>
The oxide film in the oxide film remover according to the present invention means at least iron oxide and zinc oxide, but is not limited to these, and means that an oxide film of aluminum oxide or other metal is also included. May be good. Therefore, the oxide film remover according to the present invention is useful for removing at least the oxide film of zinc oxide and iron oxide, but the oxide film remover according to the present invention can be used as an oxide film of aluminum oxide or other metal. It may be used for removal. Examples of the oxide film include, but are not limited to, those formed by leaving the metal material unattended, those formed after welding the metal material, and the like.

<1−4.液性>
本発明に係る酸化膜除去剤は、pH2.0以上pH5.0以下の範囲内でなければならない。尚、酸化膜除去剤のpHは、2.5以上4.5以下の範囲内であることがより好ましく、3.0以上4.0以下の範囲内であることが特に好ましい。pHがこれらの範囲内にあると、酸化鉄や酸化亜鉛などの酸化膜をより効率よく除去することができる。また、亜鉛めっき鋼板を金属材料として用いた場合には、亜鉛めっき溶解性も抑制されるため塗装後の防錆性能が良好である。尚、本明細書におけるpHは、pHメーターを用いて、酸化膜除去剤を25℃で測定した値を示す。
<1-4. Liquid>
The oxide film removing agent according to the present invention must be in the range of pH 2.0 or more and pH 5.0 or less. The pH of the oxide film removing agent is more preferably in the range of 2.5 or more and 4.5 or less, and particularly preferably in the range of 3.0 or more and 4.0 or less. When the pH is within these ranges, oxide films such as iron oxide and zinc oxide can be removed more efficiently. Further, when a galvanized steel sheet is used as a metal material, the zinc plating solubility is also suppressed, so that the rust preventive performance after painting is good. The pH in the present specification indicates a value obtained by measuring the oxide film removing agent at 25 ° C. using a pH meter.

≪2.酸化膜除去剤の製造方法≫
本発明に係る酸化膜除去剤は、例えば、第一成分を水に溶解させ、(2)第二成分を添加し、必要に応じて、(3)第三成分を添加して混合する、ことにより製造し得る。
≪2. Manufacturing method of oxide film remover ≫
The oxide film removing agent according to the present invention is, for example, dissolving the first component in water, (2) adding the second component, and if necessary, (3) adding the third component and mixing. Can be manufactured by

≪3.酸化膜除去方法及び酸化膜を除去した金属材料の製造方法≫
本発明に係る酸化膜除去方法及び酸化膜を除去した金属材料の製造方法は、金属材料の表面に本発明に係る酸化膜除去剤を接触させる工程を含む。これらの方法により、金属材料の表面における、酸化鉄や酸化亜鉛などの酸化膜を効率よく除去することができ、もって、酸化膜を除去した金属材料を製造することができる。
≪3. Oxide film removal method and manufacturing method of metal material from which the oxide film has been removed ≫
The method for removing an oxide film according to the present invention and the method for producing a metal material from which the oxide film has been removed include a step of bringing the oxide film removing agent according to the present invention into contact with the surface of the metal material. By these methods, the oxide film such as iron oxide and zinc oxide on the surface of the metal material can be efficiently removed, and thus the metal material from which the oxide film has been removed can be produced.

(3−1.対象金属)
上記酸化膜除去方法及び酸化膜を除去した金属材料の製造方法に使用する金属材料は、表面に酸化膜が形成されているものである。該金属材料は、例えば、鋼材、亜鉛めっき鋼材、アルミニウム材、アルミニウム合金材等を挙げることができるが、これらに限定されるものではない。より具体的には、冷延鋼板、高張力冷延鋼板、熱延鋼板、高張力熱延鋼板、黒皮鋼板、溶融亜鉛系めっき鋼板、電気亜鉛系めっき鋼板、合金化溶融亜鉛系めっき鋼板、アルミニウムめっき鋼板、アルミ−亜鉛合金化めっき鋼板、亜鉛−ニッケル合金化めっき鋼板、アルミニウム板、アルミニウム合金板等、又はこれら材料に対して熱処理(例えば、高熱処理、溶接処理等)を施した熱履歴材料が挙げられる。とくに、高熱処理、溶接処理を施した、酸化膜が厚い熱履歴材料が好ましい。
(3-1. Target metal)
The metal material used in the above-mentioned method for removing an oxide film and the method for producing a metal material from which the oxide film has been removed has an oxide film formed on its surface. Examples of the metal material include, but are not limited to, steel materials, galvanized steel materials, aluminum materials, aluminum alloy materials, and the like. More specifically, cold-rolled steel sheets, high-tensile cold-rolled steel sheets, hot-rolled steel sheets, high-tensile hot-rolled steel sheets, black-skinned steel sheets, hot-dip zinc-based plated steel sheets, electrozinc-based plated steel sheets, alloyed hot-dip zinc-based steel sheets, Thermal history of aluminum-plated steel sheet, aluminum-zinc alloy-plated steel sheet, zinc-nickel alloy-plated steel sheet, aluminum plate, aluminum alloy plate, etc., or these materials subjected to heat treatment (for example, high heat treatment, welding treatment, etc.) Materials can be mentioned. In particular, a heat history material having a thick oxide film, which has been subjected to high heat treatment and welding treatment, is preferable.

(3−2.接触方法)
上記金属材料と酸化膜除去剤との接触方法は特に限定されず、公知の処理方法を適用することができる。例えば、浸漬処理法、スプレー処理法、電解処理法、流しかけ処理法等が挙げられ、これらの方法を組み合わせてもよい。これらの中では浸漬処理法が好ましい。
(3-2. Contact method)
The contact method between the metal material and the oxide film removing agent is not particularly limited, and a known treatment method can be applied. For example, a dipping treatment method, a spray treatment method, an electrolytic treatment method, a pouring treatment method and the like can be mentioned, and these methods may be combined. Of these, the dipping treatment method is preferable.

(3−3.接触条件)
上記金属材料と酸化膜除去剤との接触温度は、特に限定されるものではないが、30〜60℃が好ましく、40〜50℃がより好ましい。また、上記金属材料と酸化膜除去剤との接触時間は、特に限定されるものではないが、30〜600秒が好ましく、60〜300秒がより好ましい。
(3-3. Contact conditions)
The contact temperature between the metal material and the oxide film removing agent is not particularly limited, but is preferably 30 to 60 ° C, more preferably 40 to 50 ° C. The contact time between the metal material and the oxide film removing agent is not particularly limited, but is preferably 30 to 600 seconds, more preferably 60 to 300 seconds.

≪4.表面処理方法≫
本発明に係る表面処理方法は、上記酸化膜除去工程と、その工程により酸化膜除去剤を接触させた金属材料の表面に所定の化成皮膜を形成させる化成処理工程とを含む。化成処理工程としては、例えば、リン酸塩化成皮膜を形成するリン酸塩化成皮膜形成工程、ジルコニウム化成皮膜を形成するジルコニウム化成皮膜形成工程、チタン化成皮膜を形成するチタン化成皮膜形成工程、ハフニウム化成皮膜を形成するハフニウム化成皮膜形成工程、バナジウム化成皮膜を形成するバナジウム化成皮膜形成工程等が挙げられる。また、本発明に係る表面処理方法は、上記酸化膜除去剤を接触させた金属材料の表面にリン酸化成皮膜を形成するリン酸塩化成皮膜形成工程と、得られたリン酸塩化成皮膜上に別の化成皮膜を形成する所定の化成処理工程とを含む。リン酸塩化成皮膜以外の化成皮膜を形成する化成処理工程としては、例えば、ジルコニウム化成皮膜形成工程、チタン化成皮膜形成工程、ハフニウム化成皮膜形成工程、バナジウム化成皮膜形成工程等の各種化成皮膜形成工程が挙げられる。このように、酸化膜除去工程後に、1の各種化成皮膜形成工程又は2種の異なる化成皮膜形成工程を行うことにより、金属材料の防錆性能を更に向上させることができる。
≪4. Surface treatment method ≫
The surface treatment method according to the present invention includes the above-mentioned oxide film removing step and a chemical conversion treatment step of forming a predetermined chemical conversion film on the surface of a metal material in contact with the oxide film removing agent by the step. Examples of the chemical conversion treatment step include a phosphate chemical conversion film forming step for forming a phosphate chemical conversion film, a zirconium chemical conversion film forming step for forming a zirconium chemical conversion film, a titanium chemical conversion film forming step for forming a titanium chemical conversion film, and a hafnium chemical conversion step. Examples thereof include a hafnium chemical conversion film forming step for forming a film, a vanadium chemical conversion film forming step for forming a vanadium chemical conversion film, and the like. Further, the surface treatment method according to the present invention includes a phosphate chemical conversion film forming step of forming a phosphoric acid conversion film on the surface of a metal material in contact with the oxide film removing agent, and a phosphate chemical conversion film obtained. Includes a predetermined chemical conversion treatment step of forming another chemical conversion film. Examples of the chemical conversion treatment step for forming a chemical conversion film other than the phosphate chemical conversion film include various chemical conversion film formation steps such as a zirconium chemical conversion film formation step, a titanium chemical conversion film formation step, a hafnium chemical conversion film formation step, and a vanadium chemical conversion film formation step. Can be mentioned. As described above, the rust preventive performance of the metal material can be further improved by performing one various chemical conversion film forming step or two different chemical conversion film forming steps after the oxide film removing step.

<4−1.リン酸塩化成皮膜形成処理>
リン酸塩化成皮膜形成処理としては、リン酸塩による公知の化成処理を用いることが出来る。より具体的には、リン酸イオン(0.1〜50g/L)と、亜鉛イオン(0.01〜3.0g/L)とを含むpH3.0〜6.0のリン酸塩処理液を用いて、25〜55℃で10〜300秒間、浸漬処理及び/又はスプレー処理を、酸化膜を除去した金属材料に対して施すことにより行われる。尚、本発明の表面処理方法は、リン酸塩化成皮膜形成処理工程の前に、リン酸塩化成処理の反応性向上を目的とした表面調整処理工程を、酸化膜を除去した金属材料に対して施してもよい。この表面調整処理方法としては、公知の方法を用いることができる。
<4-1. Phosphate chemical conversion film formation treatment>
As the phosphate chemical conversion film forming treatment, a known chemical conversion treatment with a phosphate can be used. More specifically, a phosphate treatment solution having a pH of 3.0 to 6.0 containing phosphate ions (0.1 to 50 g / L) and zinc ions (0.01 to 3.0 g / L) is used. It is carried out by subjecting the metal material from which the oxide film has been removed to a dipping treatment and / or a spray treatment at 25 to 55 ° C. for 10 to 300 seconds. In the surface treatment method of the present invention, before the phosphate chemical conversion film forming treatment step, a surface adjustment treatment step for improving the reactivity of the phosphate chemical conversion treatment is performed on the metal material from which the oxide film has been removed. May be applied. As this surface adjusting treatment method, a known method can be used.

<4−2.ジルコニウム/チタン/ハフニウム/バナジウム化成皮膜形成処理>
ジルコニウム化成皮膜形成処理としては、ジルコニウム化成処理剤による公知の化成処理を用いることができる。また、チタン化成皮膜形成処理としては、チタン化成処理剤による公知の化成処理を用いることができる。ハフニウム化成皮膜形成処理としては、ハフニウム化成処理剤による公知の化成処理を用いることができる。バナジウム化成皮膜形成処理としては、バナジウム化成処理剤による公知の化成処理を用いることができる。これらの化成処理は、例えば、ジルコニウムイオン、チタンイオン、ハフニウムイオン又はバナジウムイオンを0.005〜5.0g/Lで含むpH3.0〜6.0の処理液を用いて、25〜55℃で10〜300秒間、浸漬処理及び/又はスプレー処理を、酸化膜を除去した金属材料に対して施すことにより行われる。
<4-2. Zirconium / Titanium / Hafnium / Vanadium chemical conversion film formation treatment>
As the zirconium chemical conversion film forming treatment, a known chemical conversion treatment with a zirconium chemical conversion treatment agent can be used. Further, as the titanium chemical conversion film forming treatment, a known chemical conversion treatment with a titanium chemical conversion treatment agent can be used. As the hafnium chemical conversion film forming treatment, a known chemical conversion treatment with a hafnium chemical conversion treatment agent can be used. As the vanadium chemical conversion film forming treatment, a known chemical conversion treatment with a vanadium chemical conversion treatment agent can be used. These chemical conversion treatments are carried out at 25 to 55 ° C. using, for example, a treatment solution having a pH of 3.0 to 6.0 containing zirconium ions, titanium ions, hafnium ions or vanadium ions at 0.005 to 5.0 g / L. It is carried out by applying a dipping treatment and / or a spray treatment to the metal material from which the oxide film has been removed for 10 to 300 seconds.

<4−3.脱脂処理>
本発明に係る表面処理方法は、上記酸化膜除去工程前後のいずれか一方又は両方に、前記金属材料の表面を脱脂処理により清浄化する脱脂工程を含んでいてもよい。上記脱脂工程は、上記酸化膜除去工程前に行うことが好ましい。脱脂処理の方法は特に限定されず、公知の方法を適用することができる。尚、酸化膜除去工程のみ、あるいは、脱脂工程及び酸化膜除去工程を行った後に、上記1の各種化成皮膜形成工程又は2種の異なる化成皮膜形成工程が行われる。
<4-3. Solvent degreasing>
The surface treatment method according to the present invention may include a degreasing step of cleaning the surface of the metal material by a degreasing treatment in either or both before and after the oxide film removing step. The degreasing step is preferably performed before the oxide film removing step. The method of degreasing treatment is not particularly limited, and a known method can be applied. It should be noted that only the oxide film removing step, or after the degreasing step and the oxide film removing step are performed, the various chemical conversion film forming steps of 1 above or the two different chemical conversion film forming steps are performed.

<4−4.塗装処理>
また、上記酸化膜除去工程後に、脱脂工程及び酸化膜除去工程を行った後に、或いは、1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程後に、塗料を用いた塗装工程を行ってもよい。塗装方法としては、公知の方法、例えば、電着塗装(例えば、カチオン電着塗装)、溶剤塗装、粉体塗装等の方法を適用することができるがこれらの方法に限定されるものではない。尚、塗装工程前に、該酸化膜除去金属材料を、水洗してもよいし、水洗しなくてもよい。また、塗装工程前に、水洗後の、或いは、未水洗の、金属材料における表面を乾燥してもよいし、乾燥しなくてもよい。
<4-4. Painting process>
Further, after the oxide film removing step, a degreasing step and an oxide film removing step are performed, or after one various chemical conversion film forming step or two different chemical conversion film forming steps, a coating step using a paint is performed. May be good. As the coating method, known methods such as electrodeposition coating (for example, cationic electrodeposition coating), solvent coating, powder coating and the like can be applied, but the coating method is not limited to these methods. Before the painting step, the oxide film removing metal material may or may not be washed with water. Further, the surface of the metal material, which has been washed with water or has not been washed with water, may or may not be dried before the painting step.

上記カチオン電着塗装としては、公知の方法を適用できる。例えば、塗料として、アミン付加エポキシ樹脂と、硬化成分としてブロック化ポリイソシアネート硬化剤とを含有するカチオン電着塗料組成物を用い、この塗料中に本発明の酸化膜除去剤で得られた酸化膜除去金属材料を浸漬する方法が挙げられる。カチオン電着塗装は、例えば、塗料の温度を26〜32℃程度に保持し、塗料を攪拌した状態で、整流器を用いて被塗物に30秒かけて0Vから200Vまで直線的に電圧を陰極方向に印加し、その後200Vで150秒間保持して行う。このようにして得られた、表面を塗装した金属材料に対して、水洗及び焼き付けを実施して塗膜を形成させる。焼き付けは、例えば、170℃で20分間行う。尚、電着塗料を用いた電着塗装方法を適用する場合には、その前工程である、上記酸化膜除去工程、脱脂工程、或いは、各種化成皮膜形成工程で用いる処理剤中のナトリウムイオン濃度を質量基準で500ppm未満に制御することが好ましい。 A known method can be applied to the cationic electrodeposition coating. For example, a cationic electrodeposition coating composition containing an amine-added epoxy resin and a blocked polyisocyanate curing agent as a curing component is used as the coating material, and the oxide film obtained by the oxide film removing agent of the present invention is contained in the coating material. Examples include a method of immersing the removed metal material. In cationic electrodeposition coating, for example, the temperature of the coating material is maintained at about 26 to 32 ° C., the coating material is agitated, and a rectifier is used to linearly apply a voltage from 0V to 200V to the object to be coated over 30 seconds. It is applied in the direction and then held at 200 V for 150 seconds. The surface-painted metal material thus obtained is washed with water and baked to form a coating film. The baking is carried out, for example, at 170 ° C. for 20 minutes. When the electrodeposition coating method using an electrodeposition coating material is applied, the sodium ion concentration in the treatment agent used in the above-mentioned oxide film removing step, degreasing step, or various chemical conversion film forming steps, which is the previous step thereof. Is preferably controlled to less than 500 ppm on a mass basis.

<4−5.水洗工程>
本発明に係る表面処理方法は、上記酸化膜除去工程に加えて、上記脱脂工程;1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程;上記塗装工程;上記脱脂工程及び1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程;上記脱脂工程及び上記塗装工程;1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程、及び上記塗装工程;又は、上記脱脂工程、1の各種化成皮膜形成工程若しくは2種の異なる化成皮膜形成工程、及び上記塗装工程、を含む場合には、各工程後にそれぞれ水洗工程を含んでいてもよいし、一部に水洗工程を含んでいてもよい。
<4-5. Washing process>
In the surface treatment method according to the present invention, in addition to the oxide film removing step, the degreasing step; 1 various chemical conversion film forming steps or 2 different chemical conversion film forming steps; the coating step; the degreasing step and 1 type Chemical conversion film forming step or two different chemical conversion film forming steps; the degreasing step and the coating step; 1 various chemical conversion film forming step or two different chemical conversion film forming steps, and the coating step; or the degreasing step, When the various chemical conversion film forming steps of 1 or the two different chemical conversion film forming steps and the coating step are included, a water washing step may be included after each step, or a water washing step may be included in a part thereof. You may.

<4−6.塗膜厚さ>
塗装された金属材料の塗膜は、特に限定されないが、平均厚さで1〜50μmが好ましく、7〜25μmであることがより好ましい。
<4-6. Coating thickness>
The coating film of the painted metal material is not particularly limited, but the average thickness is preferably 1 to 50 μm, more preferably 7 to 25 μm.

尚、塗膜の厚さは、電磁式膜厚計又は渦電流式膜厚計を用いて測定することにより求めることができる。より具体的には、塗膜が磁性体の金属材料(鉄、鉄系合金等)の表面上に形成される場合は、電磁式膜厚計を用いて測定する。また、塗膜が非磁性体の金属材料(アルミニウム、アルミニウム合金等)の表面上に形成される場合は、渦電流式膜厚計を用いて測定する。測定後、塗膜の任意の箇所を数箇所測定して、平均厚さを求める。 The thickness of the coating film can be determined by measuring with an electromagnetic film thickness meter or an eddy current film thickness meter. More specifically, when the coating film is formed on the surface of a magnetic metal material (iron, iron-based alloy, etc.), it is measured using an electromagnetic film thickness meter. When the coating film is formed on the surface of a non-magnetic metal material (aluminum, aluminum alloy, etc.), it is measured using an eddy current film thickness meter. After the measurement, the average thickness is obtained by measuring several arbitrary parts of the coating film.

以下、実施例を示して、本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited thereto.

≪金属材料≫
次の金属材料を用意した(全て株式会社パルテック製)
・高張力熱延鋼板:SPH材(SPH−590)70×150×1.2mm
・合金化溶融亜鉛めっき鋼板:GA材(亜鉛目付量45g/m;両面とも)70×150×1.2mm
・電気亜鉛めっき鋼板:EG材(亜鉛目付量20g/m;両面とも)70×150×1.2mm
≪Metallic material≫
The following metal materials were prepared (all manufactured by Partec Co., Ltd.)
-High-strength hot-rolled steel sheet: SPH material (SPH-590) 70 x 150 x 1.2 mm
-Alloyed hot-dip galvanized steel sheet: GA material (zinc basis weight 45 g / m 2 ; both sides) 70 x 150 x 1.2 mm
-Electrogalvanized steel sheet: EG material (zinc basis weight 20 g / m 2 ; both sides) 70 x 150 x 1.2 mm

≪酸化膜生成条件≫
各種金属材料にアーク溶接を施し、強制的に酸化膜[SPH材には酸化鉄の酸化膜、GA材には酸化鉄及び酸化亜鉛の複合(混合)酸化膜、EG材には酸化亜鉛の酸化膜]を生成させた。
≪Oxidation film formation conditions≫
Various metal materials are arc-welded to force an oxide film [SPH material is an iron oxide oxide film, GA material is a composite (mixed) oxide film of iron oxide and zinc oxide, and EG material is zinc oxide oxidation. Membrane] was generated.

≪実施例1〜26及び比較例1〜5の酸化膜除去剤の調製≫
表1に示した成分及び配合量に基づき、有機ホスホン酸、有機スルホン酸又はアルキルモノカルボン酸を水に溶解させ、分子量が100以上であるポリカルボン酸を添加し、必要に応じて添加剤を添加し、実施例1〜26及び比較例1〜5の各種酸化膜処理剤を調製した。
<< Preparation of Oxide Film Remover of Examples 1-26 and Comparative Examples 1-5 >>
Based on the components and blending amounts shown in Table 1, dissolve organic phosphonic acid, organic sulfonic acid or alkyl monocarboxylic acid in water, add polycarboxylic acid having a molecular weight of 100 or more, and add additives as necessary. Addition was made to prepare various oxide film treatment agents of Examples 1 to 26 and Comparative Examples 1 to 5.

≪酸化膜除去処理≫
酸化膜を生成させた各金属材料の表面に、脱脂剤(日本パーカライジング株式会社製;ファインクリーナー−E2001)を40℃で120秒間スプレーすることにより脱脂処理した。脱脂処理後、表面を水洗した。続いて、水洗した金属材料を実施例1〜26及び比較例1〜5の酸化膜除去剤に40℃で120秒間浸漬し、その後、水洗し、自然乾燥することにより、金属材料の表面における酸化膜を除去した金属材料を作製した。
≪Oxidation film removal treatment≫
The surface of each metal material on which the oxide film was formed was degreased by spraying a degreasing agent (manufactured by Nihon Parkerizing Co., Ltd .; Fine Cleaner-E2001) at 40 ° C. for 120 seconds. After the degreasing treatment, the surface was washed with water. Subsequently, the washed metal material was immersed in the oxide film removers of Examples 1 to 26 and Comparative Examples 1 to 5 at 40 ° C. for 120 seconds, then washed with water and air-dried to oxidize the surface of the metal material. A metal material from which the film had been removed was prepared.

≪化成皮膜形成処理≫
実施例1〜13及び16〜26並びに比較例1〜5の酸化膜除去剤で酸化膜を除去した金属材料を、ジルコニウム化成処理液[日本パーカライジング株式会社製のジルコニウム化成処理剤;パルミナ1500を使用)]に40℃で120秒間浸漬し、ジルコニウム化成皮膜を有する金属材料を作製した。
≪Chemical film formation treatment≫
A metal material from which the oxide film was removed with the oxide film removers of Examples 1 to 13 and 16 to 26 and Comparative Examples 1 to 5 was used as a zirconium chemical conversion treatment solution [a zirconium chemical conversion treatment agent manufactured by Nihon Parkerizing Co., Ltd .; Palmina 1500 was used. )] Was immersed at 40 ° C. for 120 seconds to prepare a metal material having a zirconium chemical conversion film.

また、実施例14又は15の酸化膜除去剤で酸化膜を除去した金属材料を、表面調整処理液[3g/Lの表面調整処理液(プレパレンX;日本パーカライジング株式会社製)]に25℃で30秒間浸漬した後、リン酸亜鉛化成処理液[50g/Lのリン酸亜鉛化成処理液(パルボンドSX35;日本パーカライジング株式会社製)]に35℃で120秒間浸漬し、リン酸亜鉛化成皮膜を有する金属材料を作製した。 Further, the metal material from which the oxide film was removed with the oxide film removing agent of Example 14 or 15 was added to a surface adjusting treatment solution [3 g / L surface adjusting treatment solution (Preparen X; manufactured by Nihon Parkerizing Co., Ltd.)] at 25 ° C. After immersing for 30 seconds, it is immersed in a zinc phosphate chemical conversion treatment solution [50 g / L zinc phosphate chemical conversion treatment solution (Palbond SX35; manufactured by Nihon Parkerizing Co., Ltd.)] at 35 ° C. for 120 seconds to have a zinc phosphate chemical conversion film. A metal material was prepared.

実施例15の酸化膜除去剤で酸化膜を除去した後、リン酸亜鉛化成皮膜を形成した金属材料を、ジルコニウム化成処理液[50g/Lのジルコニウム化成処理液(パルミナ1500;日本パーカライジング株式会社製)]に40℃で120秒間浸漬してジルコニウム化成処理を行い、リン酸亜鉛化成皮膜とジルコニウム化成皮膜の複合皮膜が形成された金属材料を作製した。 After removing the oxide film with the oxide film removing agent of Example 15, the metal material on which the zinc phosphate chemical conversion film was formed was subjected to a zirconium chemical conversion treatment solution [50 g / L zirconium chemical conversion treatment solution (Palmina 1500; manufactured by Nihon Parkerizing Co., Ltd.). )] Was immersed in zirconium chemical conversion treatment at 40 ° C. for 120 seconds to prepare a metal material in which a composite film of zinc phosphate chemical conversion film and zirconium chemical conversion film was formed.

≪カチオン電着塗装≫
ジルコニウム化成皮膜、リン酸亜鉛化成皮膜、又は複合皮膜を有する金属材料を陰極とし、カチオン電着塗料(GT−100;関西ペイント株式会社製)を用いて、180秒間定電圧陰極電解して各種皮膜を有する金属材料の全表面に塗膜を形成させた。その後、各種皮膜を有する金属材料上に形成させた塗膜の表面を水洗し、170℃で20分間焼き付けて各試験板を作製し、以下の複合サイクル試験を実施した。尚、塗膜厚は20μmとなるように調整した。
≪Cation electrodeposition coating≫
Using a metal material having a zirconium chemical conversion film, zinc phosphate chemical conversion film, or composite film as a cathode, and using a cationic electrodeposition paint (GT-100; manufactured by Kansai Paint Co., Ltd.), constant voltage cathode electrolysis is performed for 180 seconds to perform various films. A coating film was formed on the entire surface of the metal material having. Then, the surface of the coating film formed on the metal material having various films was washed with water and baked at 170 ° C. for 20 minutes to prepare each test plate, and the following composite cycle test was carried out. The coating thickness was adjusted to be 20 μm.

≪酸化膜除去性≫
実施例1〜26及び比較例1〜5の酸化膜除去剤によって金属材料における酸化膜がどれだけ除去できたかを、各種酸化膜除去剤で酸化膜を除去した金属材料の表面を目視で確認し、以下に示す評価基準に従って酸化膜除去性を評価した。(◎及び〇が実用性能を満たす。)
<評価基準>
◎:完全除去
〇:大部分除去
△:一部除去
×:殆ど除去できず
≪Oxidation film removing property≫
To how much the oxide film in the metal material could be removed by the oxide film removers of Examples 1 to 26 and Comparative Examples 1 to 5, the surface of the metal material from which the oxide film was removed by various oxide film removers was visually confirmed. , The oxide film removability was evaluated according to the evaluation criteria shown below. (◎ and 〇 satisfy the practical performance.)
<Evaluation criteria>
◎: Complete removal 〇: Mostly removed △: Partially removed ×: Almost impossible to remove

≪亜鉛めっき溶解性≫
GA材及びEG材には、防錆性確保のために表面に亜鉛めっきが施されている。実施例1〜26及び比較例1〜5の酸化膜除去剤によって、亜鉛めっき上の酸化膜を除去するだけでなく、亜鉛めっきを溶解する恐れもある。そこで、各種酸化膜除去剤によって酸化膜を除去した各種金属材料に対して亜鉛めっきが溶解されているかの確認を行った。尚、亜鉛めっきが溶解されているかの確認は、上記酸化膜除去剤に浸漬させることにより溶出されたZnの量を、ICP発光分光分析法を用いて測定することにより実施した。尚、亜鉛めっき溶解性の評価は、以下に示す評価基準に従って実施した。(◎、〇及び△が実用性能を満たす。)
<評価基準>
◎:Zn溶出量が0.5g/m未満である
〇:Zn溶出量が0.5g/m以上1.0g/m未満である
△:Zn溶出量が1.0g/m以上2.0g/m未満である
×:Zn溶出量が2.0g/m以上である
≪Zinc plating solubility≫
The surfaces of GA and EG materials are galvanized to ensure rust prevention. The oxide film removers of Examples 1 to 26 and Comparative Examples 1 to 5 not only remove the oxide film on the zinc plating, but may also dissolve the zinc plating. Therefore, it was confirmed whether the zinc plating was dissolved in various metal materials whose oxide film was removed by various oxide film removing agents. It should be noted that confirmation of whether the zinc plating was dissolved was carried out by measuring the amount of Zn eluted by immersing in the oxide film removing agent by using ICP emission spectroscopic analysis. The evaluation of zinc plating solubility was carried out according to the evaluation criteria shown below. (◎, 〇 and △ satisfy the practical performance.)
<Evaluation criteria>
⊚: Zn elution amount is less than 0.5 g / m 2 〇: Zn elution amount is 0.5 g / m 2 or more and less than 1.0 g / m 2 Δ: Zn elution amount is 1.0 g / m 2 or more Less than 2.0 g / m 2 ×: Zn elution amount is 2.0 g / m 2 or more

≪塗装性能(CCT)≫
防錆性能を確認するため、カチオン電着塗装を施した各種金属材料に対してJASO−M609−91「自動車用材料腐食試験方法」に則った複合サイクル試験を100サイクル実施した。100サイクル実施後に、各種金属材料の溶接部からの最大膨れ幅を測定し、以下に示す評価基準に従って塗装性能を評価した。(◎、〇及び△が実用性能を満たす。)
<評価基準>
◎:最大膨れ幅が5.0mm未満
○:最大膨れ幅が5.0mm以上9.0mm未満
△:最大膨れ幅が9.0mm以上13.0mm未満
×:最大膨れ幅が13.0mm以上

Figure 0006964406
≪Painting performance (CCT) ≫
In order to confirm the rust preventive performance, 100 cycles of composite cycle tests were carried out on various metal materials subjected to cationic electrodeposition coating in accordance with JASO-M609-91 "Material Corrosion Test Method for Automobiles". After 100 cycles, the maximum swelling width from the welded part of various metal materials was measured, and the coating performance was evaluated according to the evaluation criteria shown below. (◎, 〇 and △ satisfy the practical performance.)
<Evaluation criteria>
⊚: Maximum swelling width is less than 5.0 mm ○: Maximum swelling width is 5.0 mm or more and less than 9.0 mm Δ: Maximum swelling width is 9.0 mm or more and less than 13.0 mm ×: Maximum swelling width is 13.0 mm or more
Figure 0006964406

Claims (5)

有機ホスホン酸及び/又は有機スルホン酸及び/又はアルキルモノカルボン酸と、分子量が100以上であるポリカルボン酸と、フェノール、ノボラック樹脂、タンニン酸、没食子酸、カテコール、レゾルシノール、ハイドロキノン、ナフタレンスルホン酸、アニリン及びサッカリン酸並びにこれらの塩から選ばれる少なくとも1種とを含有し、且つ、pHが2.5以上4.5以下の範囲内であり、
前記ポリカルボン酸は、クエン酸、酒石酸、リンゴ酸、マレイン酸、コハク酸、ニトリロ三酢酸、エチレンジアミン四酢酸及びN−(2−ヒドロキシエチル)エチレンジアミン−N,N',N'−三酢酸から選ばれる少なくとも1種である、
酸化鉄、酸化亜鉛又は酸化アルミ除去剤。
Organic phosphonic acid and / or organic sulfonic acid and / or alkyl monocarboxylic acid, polycarboxylic acid having a molecular weight of 100 or more , phenol, novolak resin, tannic acid, gallic acid, catechol, resorcinol, hydroquinone, naphthalene sulfonic acid, It contains aniline, saccharic acid, and at least one selected from these salts , and has a pH in the range of 2.5 or more and 4.5 or less.
The polycarboxylic acid is selected from citric acid, tartaric acid, malic acid, maleic acid, succinic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid and N- (2-hydroxyethyl) ethylenediamine-N, N', N'-triacetic acid. At least one species
Iron oxide, zinc oxide or aluminum oxide remover.
請求項1に記載の酸化鉄、酸化亜鉛又は酸化アルミ除去剤を金属表面に接触させる接触工程を含む、酸化膜除去方法。 A method for removing an oxide film, which comprises a contact step of bringing the iron oxide, zinc oxide or aluminum oxide remover according to claim 1 into contact with a metal surface. 請求項1に記載の酸化鉄、酸化亜鉛又は酸化アルミ除去剤を金属表面に接触させる接触工程と、前記酸化鉄、酸化亜鉛又は酸化アルミ除去剤を接触させた金属表面に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、バナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程、又はリン酸塩化成皮膜を形成させるリン酸塩化成皮膜形成工程を含む、表面処理方法。 A zirconium chemical conversion film is formed on the contact step of contacting the iron oxide, zinc oxide or aluminum oxide remover according to claim 1 with the metal surface and the metal surface with the iron oxide, zinc oxide or aluminum oxide remover in contact with the metal surface. A zirconium chemical conversion film forming step, a titanium chemical conversion film forming step to form a titanium chemical conversion film, a hafnium chemical conversion film forming step to form a hafnium chemical conversion film, a vanadium chemical conversion film forming step to form a vanadium chemical conversion film, or a phosphate chemical conversion film. A surface treatment method including a step of forming a phosphate chemical conversion film to be formed. 前記リン酸塩化成皮膜上に、ジルコニウム化成皮膜を形成させるジルコニウム化成皮膜形成工程、チタン化成皮膜を形成させるチタン化成皮膜形成工程、ハフニウム化成皮膜を形成させるハフニウム化成皮膜形成工程、又はバナジウム化成皮膜を形成させるバナジウム化成皮膜形成工程を含む、請求項に記載の表面処理方法。 A zirconium chemical conversion film forming step for forming a zirconium chemical conversion film, a titanium chemical conversion film forming step for forming a titanium chemical conversion film, a hafnium chemical conversion film forming step for forming a hafnium chemical conversion film, or a vanadium chemical conversion film is formed on the phosphate chemical conversion film. The surface treatment method according to claim 3 , further comprising a step of forming a vanadium chemical conversion film to be formed. 請求項1に記載の酸化鉄、酸化亜鉛又は酸化アルミ除去剤を金属表面に接触させる接触工程を含む、酸化膜を除去した金属材料の製造方法。 A method for producing a metal material from which an oxide film has been removed, which comprises a contact step of bringing the iron oxide, zinc oxide or aluminum oxide remover according to claim 1 into contact with a metal surface.
JP2016240410A 2016-12-12 2016-12-12 Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed Active JP6964406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240410A JP6964406B2 (en) 2016-12-12 2016-12-12 Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240410A JP6964406B2 (en) 2016-12-12 2016-12-12 Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed

Publications (2)

Publication Number Publication Date
JP2018095907A JP2018095907A (en) 2018-06-21
JP6964406B2 true JP6964406B2 (en) 2021-11-10

Family

ID=62632623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240410A Active JP6964406B2 (en) 2016-12-12 2016-12-12 Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed

Country Status (1)

Country Link
JP (1) JP6964406B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128384A (en) * 1990-09-17 1992-04-28 Nippon Paint Co Ltd Treatment of metallic surface, treating bath and treating agent
JP3202414B2 (en) * 1993-06-14 2001-08-27 三菱重工業株式会社 Scale dissolution method
US5529637A (en) * 1994-02-17 1996-06-25 Hydrochem Industrial Services, Inc. Formic-carboxylic acid mixtures for removing iron oxide sclae from steel surfaces
JP3898801B2 (en) * 1997-06-17 2007-03-28 株式会社大和化成研究所 Silver product discoloration film remover and removal method
JP3783995B2 (en) * 1999-05-12 2006-06-07 日本パーカライジング株式会社 Magnesium alloy surface treatment method
JP2002275653A (en) * 2001-03-15 2002-09-25 Kansai Paint Co Ltd Metallic surface treated steel sheet
JP4579714B2 (en) * 2004-03-08 2010-11-10 日新製鋼株式会社 Chemically treated steel sheet with excellent film adhesion after forming
JP2010070805A (en) * 2008-09-18 2010-04-02 Shidaaburaito:Kk Descaling and rust-preventive agent
JP2011074490A (en) * 2009-09-07 2011-04-14 Ofutekku Kk Surface treatment method of magnesium and magnesium alloy for imparting brightness/decorating property, high corrosion resistance and functionality
JP6169479B2 (en) * 2012-11-13 2017-07-26 朝日化学工業株式会社 Rust removal / rust prevention agent and removal / rust prevention method
JP5650860B1 (en) * 2014-04-22 2015-01-07 株式会社石飛製作所 Scale remover for stainless steel welds
JP2016011436A (en) * 2014-06-27 2016-01-21 新日本理化株式会社 Acidic rust removal agent composition and acidic rust removal cleaning agent composition
CN104152926A (en) * 2014-08-28 2014-11-19 赵理奎 A steel environmental rust remover

Also Published As

Publication number Publication date
JP2018095907A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6804464B2 (en) A method for phosphating metal surfaces without the use of nickel
CN104185693B (en) Pretreatment zinc surface before passivation technology
KR101185997B1 (en) Chemical conversion treatment solution for steel material and chemical conversion treatment method
US9347134B2 (en) Corrosion resistant metallate compositions
JP2009097093A (en) Method for producing surface-treated metal material and method for producing metal coated article
US11359288B2 (en) Chemical conversion treatment agent, method for producing chemical conversion coating, metal material having chemical conversion coating, and painted metal material
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
JP2014504333A (en) Metal pretreatment compositions containing zirconium, copper, and metal chelators, and associated coatings on metal substrates
JP5894576B2 (en) Surface treatment composition for tin-plated steel and surface-treated tin-plated steel
CN103687979A (en) Aqueous acidic composition for forming chromium-containing conversion coating on ferrous member, and ferrous member having conversion coating formed using said composition
JP5605632B2 (en) Finishing agent for chemical conversion film containing no hexavalent chromium
KR20180119700A (en) Metal pretreatment modification for improved throwpower
JP6566798B2 (en) Surface treatment agent, surface treatment method and surface treatment metal material
JP6964406B2 (en) Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed
JP2021501829A (en) Improved method for phosphating metal surfaces without nickel
JP6594678B2 (en) Surface treatment agent, surface treatment method, and surface-treated metal material
JP4492254B2 (en) Phosphate-treated galvanized steel sheet with excellent corrosion resistance and blackening resistance
JP2018012857A (en) Metal surface treatment agent for electrolytic treatment, manufacturing method of metal surface treatment agent for electrolytic treatment and surface treatment method of metal material
JP2009256699A (en) Method for manufacturing of chemical-converted steel, organic resine-coated steel, and surface treatment apparatus
BR112016017018B1 (en) METHOD FOR COATING METALLIC SURFACES, THEIR COATED SUBSTRATES AND THEIR USE
JP6547088B1 (en) PRETREATMENT AGENT, PRETREATMENT METHOD, METAL MATERIAL HAVING CHEMICAL CONVERSION FILM, AND METHOD FOR PRODUCING THE SAME, AND COATING METAL MATERIAL AND METHOD FOR PRODUCING THE SAME
JPH07305177A (en) Treatment of aluminum material before coating
JP6043689B2 (en) Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250