JP6043689B2 - Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same - Google Patents

Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same Download PDF

Info

Publication number
JP6043689B2
JP6043689B2 JP2013159684A JP2013159684A JP6043689B2 JP 6043689 B2 JP6043689 B2 JP 6043689B2 JP 2013159684 A JP2013159684 A JP 2013159684A JP 2013159684 A JP2013159684 A JP 2013159684A JP 6043689 B2 JP6043689 B2 JP 6043689B2
Authority
JP
Japan
Prior art keywords
soluble
trivalent iron
coating composition
self
organic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013159684A
Other languages
Japanese (ja)
Other versions
JP2015030864A (en
Inventor
祐二 伊倉
祐二 伊倉
敏壽 片岡
敏壽 片岡
正人 鷲巣
正人 鷲巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2013159684A priority Critical patent/JP6043689B2/en
Priority to PCT/JP2014/067174 priority patent/WO2015015971A1/en
Priority to TW103125058A priority patent/TW201510276A/en
Publication of JP2015030864A publication Critical patent/JP2015030864A/en
Application granted granted Critical
Publication of JP6043689B2 publication Critical patent/JP6043689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Description

本発明は、自動車ボディー、自動車部品、熱交換器、建材、家電製品、飲料缶、航空機ボディー、航空機部品等の成形加工品、鋳造品、シートコイル等に使用される鋼材、亜鉛めっき材、アルミニウム合金材等、様々な金属材料に対し同一の自己析出型被覆組成物で同等の被膜析出性及び膜質を有し得る多種金属材料用自己析出型被覆組成物とその製造方法、及び当該多種金属材料用自己析出型被膜組成物を用いての有機樹脂被膜を有する金属材料とその製造方法に関する。   The present invention relates to steel materials used in automobile bodies, automobile parts, heat exchangers, building materials, home appliances, beverage cans, aircraft bodies, aircraft parts, etc., cast products, sheet coils, galvanized materials, aluminum Self-deposition coating composition for multi-metallic materials that can have equivalent film deposition properties and film quality with the same auto-deposition coating composition for various metal materials such as alloy materials, a method for producing the same, and the multi-metal materials The present invention relates to a metal material having an organic resin film using a self-depositing film composition for use and a method for producing the same.

金属材料表面を有機樹脂を含む酸性の被覆組成物に接触させることにより、前記金属材料表面に有機樹脂被膜を形成せしめることができる水系の被覆組成物は、自己析出型被覆組成物として知られており、例えば特許文献1及び2に開示されている。従来の公知の被覆組成物の特徴は、被覆組成物中に清浄な金属材料表面を浸漬することにより、浸漬時間とともに厚さ或いは重量が増大する有機樹脂被膜を形成せしめることができることである。更には、この被膜形成は金属材料表面上の被覆組成物の化学作用(エッチングにより金属材料表面から溶出した金属イオンが樹脂粒子に電気的に作用して金属材料表面上に析出する)により達成されるため、電着塗装のごとく外部からの電気を使用することなく、金属材料表面上に樹脂被膜を効果的に形成せしめることができるものである。従って、電着塗装では不得手としている付廻り性においても、自己析出型塗装では複雑な構造物に対して均一に被覆することが可能である。また、電着塗装では密着性確保のために必須とされるリン酸塩処理等の前処理を必要としないため、処理工程が電着塗装方法等と比較し短縮できるという利点がある。   An aqueous coating composition capable of forming an organic resin film on the surface of a metal material by bringing the surface of the metal material into contact with an acidic coating composition containing an organic resin is known as an autodeposition coating composition. For example, it is disclosed in Patent Documents 1 and 2. A characteristic of the conventional known coating composition is that an organic resin film whose thickness or weight increases with the immersion time can be formed by immersing a clean metal material surface in the coating composition. Furthermore, this film formation is achieved by the chemical action of the coating composition on the surface of the metal material (metal ions eluted from the surface of the metal material by etching act on the resin particles and precipitate on the surface of the metal material). Therefore, a resin film can be effectively formed on the surface of the metal material without using external electricity as in electrodeposition coating. Therefore, even with the throwing power that is not good with electrodeposition coating, it is possible to uniformly coat complex structures with autodeposition coating. In addition, since electrodeposition coating does not require pretreatment such as phosphate treatment, which is indispensable for ensuring adhesion, there is an advantage that the treatment process can be shortened as compared with the electrodeposition coating method.

従来の公知の自己析出型被覆組成物では、対象となる金属材料として、鉄、亜鉛、亜鉛めっき、又はアルミニウムが挙げられるが、該被覆組成物により形成された被膜において良好な被膜析出性、被膜外観、耐食性、密着性、電気絶縁性等が得られるのは主として鉄に限られてきた。例えば、該被覆組成物を用いてアルミニウムなどの非鉄金属材料に処理を施すと、被膜付着量は数g/mと低く、且つピンホールが形成されるため、鉄に対する処理で得られる前記性能と同等の性能を確保することはできない。すなわち、同一の自己析出型被覆組成物で種類の異なる金属材料を処理したときに同等の析出性及び膜質を有する被膜が得られなかった。そこで、鉄以外の金属材料に対して前記性能が優れることを特徴とした開発が行われてきた。 In the conventional well-known self-deposition type coating composition, the target metal material includes iron, zinc, galvanizing, or aluminum. The film formed by the coating composition has good film deposition property and film. Appearance, corrosion resistance, adhesion, electrical insulation, and the like have been mainly limited to iron. For example, when the coating composition is used to treat a non-ferrous metal material such as aluminum, the coating amount is as low as several g / m 2 and a pinhole is formed. It is not possible to ensure the same performance. That is, when different types of metal materials were treated with the same self-depositing coating composition, a film having the same precipitation properties and film quality could not be obtained. Thus, development has been carried out characterized by the above-mentioned performance being superior to metal materials other than iron.

例えば、特許文献3では、リンを含有する酸基を有する有機高分子化合物、Cr化合物及びフッ素化合物との組み合わせ又は前記有機高分子化合物、Zn、Mn、Zr、Ti、Ni、Co、Fe、Ca、Mg、Al、Sn、W及びMoから選ばれる1種又は2種以上の化合物及びフッ素化合物との組み合わせの処理剤によりアルミニウム及びその他金属材料を処理することで形成された被膜が、優れた耐沸水性、表面の滑り性、臭気発生の抑制効果を有することが開示されている。しかしながら、該処理剤により得られた被膜の付着量は数g/mと低く、被膜析出性や耐食性は十分ではない。 For example, in Patent Document 3, a combination of an organic polymer compound having an acid group containing phosphorus, a Cr compound and a fluorine compound, or the organic polymer compound, Zn, Mn, Zr, Ti, Ni, Co, Fe, Ca A film formed by treating aluminum and other metal materials with a treatment agent in combination with one or more compounds selected from Mg, Al, Sn, W and Mo and a fluorine compound has excellent resistance. It is disclosed that it has an effect of suppressing boiling water, surface slipperiness, and odor generation. However, the adhesion amount of the film obtained by the treatment agent is as low as several g / m 2, and the film deposition property and corrosion resistance are not sufficient.

特許文献4では、水分散性、又は水溶性の有機被膜形成用樹脂と、フッ化物イオン及び錯フッ化物イオンから選ばれる1種又は2種以上のイオンと、及びタングステン酸イオン及びモリブデン酸イオンから選ばれる1種又は2種のイオンとを含有しかつpHが1.6〜5であることを特徴とする自己析出型コーティング組成物でアルミニウム板に対して処理し、20g/m前後の被膜付着量が得られている。しかしながら、本発明者らが該特許文献と同じ条件で検証した結果、得られた被膜付着量は10g/m前後であり、更に該被膜にはピンホール等の被膜欠陥が多く発生しており、該特許文献に記載の発明の効果について再現性を見出すことはできなかった。 In Patent Document 4, a water-dispersible or water-soluble organic film-forming resin, one or more ions selected from fluoride ions and complex fluoride ions, and tungstate ions and molybdate ions are used. An aluminum plate is treated with an autodeposition-type coating composition containing one or two selected ions and having a pH of 1.6 to 5, and a film of about 20 g / m 2 Amount of adhesion is obtained. However, as a result of verification by the present inventors under the same conditions as in the patent document, the obtained coating amount is about 10 g / m 2 , and the coating film has many coating defects such as pinholes. The reproducibility of the effects of the invention described in the patent document could not be found.

従って、従来技術ではアルミニウム合金などの鉄以外の金属材料に対して、同一の自己析出型被覆組成物で鉄と同等の被膜性能が得られないのが現状である。   Therefore, in the prior art, the same autodeposition-type coating composition cannot provide a coating performance equivalent to iron for metal materials other than iron such as aluminum alloys.

特公昭47−17630号公報Japanese Patent Publication No. 47-17630 特公昭52−21006号公報Japanese Patent Publication No.52-21006 特開平7−90612号公報JP-A-7-90612 特開平5−214266号公報JP-A-5-214266

本発明の目的は、前記従来技術の課題点を解決することである。すなわち、本発明の目的は、様々な金属材料に対し同一の自己析出型被覆組成物で同等の被膜析出性及び膜質を供し得る自己析出型被覆組成物とその製造方法、及び当該多種金属材料用自己析出型被膜組成物を用いての有機樹脂被膜を有する金属材料とその製造方法を提供することにある。   An object of the present invention is to solve the problems of the prior art. That is, an object of the present invention is to provide an autodeposition coating composition that can provide equivalent film deposition properties and film quality with the same autodeposition coating composition for various metal materials, a method for producing the same, and a method for producing such various metal materials. An object of the present invention is to provide a metal material having an organic resin film using a self-depositing film composition and a method for producing the metal material.

本発明者らは、上記従来技術の抱える課題を解決すべく鋭意検討した結果、少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄源と、可溶型フッ素源と、分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分と、を水系溶媒に添加する際に、水系溶媒中に溶解している可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、前記有機成分が有機酸金属塩である場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[有機酸金属塩由来の金属カチオン成分のモル数])}を1.0〜3.2とすることで、様々な金属材料に対して優れた被膜析出性が得られることを見出した。該被覆組成物から析出、形成された自己析出型被膜は均一かつ顕著な被膜欠陥がなく、耐食性、更には電気絶縁性を有することを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have at least a water-dispersible or water-soluble anionic organic resin, a soluble trivalent iron source, and a soluble fluorine source. And an organic component having at least one carboxyl group or a salt of a carboxyl group in the molecule, a soluble type for soluble trivalent iron dissolved in the aqueous solvent when added to the aqueous solvent Fluorine molar ratio ([mol of soluble fluorine]) / ([mol of soluble trivalent iron]) {where the organic component is an organic acid metal salt ( The number of moles of soluble fluorine]) / ([number of moles of soluble trivalent iron] + [number of moles of metal cation component derived from organic acid metal salt])} is set to 1.0 to 3.2. The present inventors have found that excellent film deposition properties can be obtained for various metal materials. The present invention has been completed by finding that the self-deposited film deposited and formed from the coating composition is uniform and free of significant film defects and has corrosion resistance and electrical insulation.

本発明(1)は、少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄源と、可溶型フッ素源と、分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分と、を水系溶媒に添加する工程を含み、
前記工程では、前記水系溶媒中に溶解している可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、前記有機成分が有機酸金属塩である場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[有機酸金属塩由来の金属カチオン成分のモル数])}を1.0〜3.2とすることを特徴とする、多種金属材料用自己析出型被覆組成物の製造方法である。
The present invention (1) includes at least a water-dispersible or water-soluble anionic organic resin, a soluble trivalent iron source, a soluble fluorine source, and at least one carboxyl group or carboxyl in the molecule. Adding an organic component having a base salt to an aqueous solvent,
In the step, the molar ratio of soluble fluorine to soluble trivalent iron dissolved in the aqueous solvent ([number of moles of soluble fluorine]) / ([number of moles of soluble trivalent iron]. ]) {Here, when the organic component is an organic acid metal salt, ([mol number of soluble fluorine]) / ([mol number of soluble trivalent iron] + [organic acid metal salt] The number of moles of the derived metal cation component])} is set to 1.0 to 3.2. This is a method for producing a self-deposition type coating composition for various metal materials.

ここで、前記有機成分が、分子内に2つ以上のカルボキシル基又はカルボキシル基の塩を有していてもよい。   Here, the organic component may have two or more carboxyl groups or salts of carboxyl groups in the molecule.

また、前記カルボキシル基の塩を形成しているカチオンが金属イオンであり(即ち、有機成分が有機酸金属塩であり)、該金属イオンが、Al3+、Ti4+、Mn4+、Fe3+、Co2+、Ni2+、Zn2+、Zr4+、Mg2+からなる群から選ばれる少なくとも1種以上であることがより好適である。 The cation forming the salt of the carboxyl group is a metal ion (that is, the organic component is an organic acid metal salt), and the metal ion is Al 3+ , Ti 4+ , Mn 4+ , Fe 3+ , Co More preferably, it is at least one selected from the group consisting of 2+ , Ni 2+ , Zn 2+ , Zr 4+ and Mg 2+ .

また、前記工程では、前記水系溶媒中に溶解している可溶型3価鉄に対する前記有機成分由来の可溶型有機成分のモル比([可溶型有機成分のモル数]/[可溶型3価鉄のモル数])を0.01〜1.0としてもよい。   In the step, the molar ratio of the soluble organic component derived from the organic component to the soluble trivalent iron dissolved in the aqueous solvent ([mol number of soluble organic component] / [soluble The number of moles of type trivalent iron]) may be 0.01 to 1.0.

また、前記工程にて、更に酸化剤を前記溶媒に添加してもよい。   In the step, an oxidizing agent may be further added to the solvent.

また、前記多種金属材料の一種が、アルミニウム系材料であってもよい。   Further, the one of the various metal materials may be an aluminum-based material.

本発明(2)は、水系溶媒中に、少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄と、可溶型フッ素と、を含有する多種金属用自己析出型被覆組成物において、
分子内に少なくとも1つ以上のカルボキシル基若しくはカルボキシル基の塩を有する有機成分に由来した可溶型有機成分を更に含有し、且つ、可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、当該組成物が、Al3+、Ti4+、Mn4+、Co2+、Ni2+、Zn2+、Zr4+及びMg2+からなる群より選択される少なくとも1種以上の可溶型金属イオンを更に含有する場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[可溶型金属イオンの合計モル数])}が、1.0〜3.2であることを特徴とする、多種金属材料用自己析出型被覆組成物である。
The present invention (2) is a self-precipitation type for multiple metals containing, in an aqueous solvent, at least a water-dispersible or water-soluble anionic organic resin, soluble trivalent iron, and soluble fluorine. In the coating composition:
It further contains a soluble organic component derived from an organic component having at least one carboxyl group or a carboxyl group salt in the molecule, and a molar ratio of soluble fluorine to soluble trivalent iron ([ Mole number of soluble type fluorine]) / ([Mole number of soluble type trivalent iron]) {wherein the composition contains Al 3+ , Ti 4+ , Mn 4+ , Co 2+ , Ni 2+ , Zn 2+ , When it further contains at least one soluble metal ion selected from the group consisting of Zr 4+ and Mg 2+ , ([mol number of soluble fluorine]) / ([soluble trivalent iron] The total number of moles of the soluble metal ions])} is 1.0 to 3.2, which is a self-deposition type coating composition for multi-metallic materials.

ここで、前記有機成分が、分子内に2つ以上のカルボキシル基又はカルボキシル基の塩を有していてもよい。   Here, the organic component may have two or more carboxyl groups or salts of carboxyl groups in the molecule.

また、前記水系溶媒中に溶解している可溶型3価鉄に対する前記有機成分由来の可溶型有機成分のモル比([可溶型有機成分のモル数]/[可溶型3価鉄のモル数])が、0.01〜1.0であってもよい。   Further, the molar ratio of the soluble organic component derived from the organic component to the soluble trivalent iron dissolved in the aqueous solvent ([mol number of soluble organic component] / [soluble trivalent iron] The number of moles]) may be from 0.01 to 1.0.

また、更に酸化剤を含有していてもよい。   Further, an oxidizing agent may be contained.

また、前記多種金属材料の一種が、アルミニウム系材料であってもよい。   Further, the one of the various metal materials may be an aluminum-based material.

本発明(3)は、前記多種金属材料用自己析出型被覆組成物を、金属材料に接触させる工程を含むことを特徴とする、有機樹脂被膜を有する金属材料の製造方法である。   The present invention (3) is a method for producing a metal material having an organic resin coating, comprising the step of bringing the self-deposition coating composition for multiple metal materials into contact with a metal material.

ここで、前記金属材料が、アルミニウム系材料であってもよい。   Here, the metal material may be an aluminum-based material.

以上のように本発明によれば、様々な金属材料に対して優れた被膜析出性を提供し、得られた被膜が均一かつ顕著な被膜欠陥がなく、耐食性に優れ、更には電気絶縁性の優れた自己析出型被膜を形成し得る。   As described above, according to the present invention, excellent film deposition properties are provided for various metal materials, the obtained film is uniform and free of significant film defects, has excellent corrosion resistance, and further has electrical insulation properties. An excellent self-depositing film can be formed.

≪本組成物の製造方法≫
以下、本発明に係る多種金属材料用自己析出型被覆組成物の製造方法を詳述する。まず、各原料を説明し、次いで製造プロセスを説明する。尚、本発明に係る「多種金属材料用自己析出型被覆組成物」は、新液のみならず、古液(新液の使用により何らかの成分が蓄積又は消費された結果の組成物)をも含む。
≪Method for producing this composition≫
Hereafter, the manufacturing method of the self-deposition type | mold coating composition for multiple metal materials based on this invention is explained in full detail. First, each raw material will be described, and then the manufacturing process will be described. The “self-deposition coating composition for various metal materials” according to the present invention includes not only a new solution but also an old solution (a composition resulting from the accumulation or consumption of some components by the use of the new solution). .

<各原料>
(アニオン性有機樹脂)
多種金属材料用自己析出型被覆組成物の一原料である、水分散(エマルジョンを含む)又は水溶性のアニオン性有機樹脂は、特に限定されるものではない。当該アニオン性有機樹脂としては、例えば、アクリル樹脂、ポリ塩化ビニリデン樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、フェノール樹脂が挙げられる。これらは、自己析出型被膜組成物では汎用されている材料であり、市販品として入手可能である。
<Each raw material>
(Anionic organic resin)
The water-dispersed (including emulsion) or water-soluble anionic organic resin that is one raw material of the self-deposition coating composition for multi-metallic materials is not particularly limited. Examples of the anionic organic resin include acrylic resin, polyvinylidene chloride resin, epoxy resin, urethane resin, polyester resin, polyamide resin, polyimide resin, and phenol resin. These are materials that are widely used in autodeposition coating compositions and are available as commercial products.

(可溶型3価鉄源、可溶型フッ素源)
多種金属材料用自己析出型被覆組成物の一原料である、可溶型3価鉄源及び可溶型フッ素源としては、それぞれ、組成物中で可溶型3価鉄や可溶型フッ素を放出し得る成分であれば特に限定されない。可溶型3価鉄源の例としては、フッ化第二鉄、硫酸第二鉄、硝酸第二鉄、クエン酸第二鉄、蓚酸第二鉄等を挙げることができ、可溶型フッ素源の例としては、フッ化第二鉄、チタンフッ化水素酸、ケイフッ化水素酸、フッ化水素酸、フッ化ナトリウム等を挙げることができる。これらの可溶型3価鉄源及び可溶型フッ素源から放出された可溶型3価鉄と可溶型フッ素とにより生成されるフッ化第二鉄(3価鉄イオン源又はフッ化物イオン源として添加したフッ化第二鉄を含む。)は、金属材料をエッチングする機能を有する。
(Soluble trivalent iron source, soluble fluorine source)
As a soluble trivalent iron source and a soluble fluorine source, which are one raw material of a self-deposition coating composition for various metal materials, soluble trivalent iron and soluble fluorine in the composition, respectively, Any component that can be released is not particularly limited. Examples of soluble trivalent iron sources include ferric fluoride, ferric sulfate, ferric nitrate, ferric citrate, ferric oxalate, and the like. Examples of these include ferric fluoride, titanium hydrofluoric acid, silicohydrofluoric acid, hydrofluoric acid, sodium fluoride, and the like. Ferric fluoride (trivalent iron ion source or fluoride ion) produced by soluble trivalent iron and soluble fluorine released from these soluble trivalent iron sources and soluble fluorine sources Including ferric fluoride added as a source) has the function of etching the metal material.

フッ化第二鉄は酸化力が強いため、金属基材の溶解反応を促進させることが可能となると共に、金属材料をエッチングするエッチング剤としてフッ化水素酸等の無機酸を使用する場合と比較して、一層均一かつ欠陥が少ない被膜を形成させることが可能となる。例えば、金属材料としてAlやFe等を用いる場合、エッチング剤としてフッ化水素酸等の無機酸を使用すると水素が発生する。このようにして発生した水素は、自己析出型被覆組成物を用いて形成される有機樹脂被膜中のピンホール等の欠陥の原因となる。これに対して、エッチング剤としてフッ化第二鉄を用いると、不用に水素を発生することなくAlやFe等の金属材料をエッチングすることができるため、ピンホール等の欠陥の発生を抑制することができる。   Since ferric fluoride has strong oxidizing power, it is possible to accelerate the dissolution reaction of the metal substrate, and compared with the case of using an inorganic acid such as hydrofluoric acid as an etching agent for etching the metal material. Thus, it is possible to form a film that is more uniform and has fewer defects. For example, when Al or Fe is used as the metal material, hydrogen is generated when an inorganic acid such as hydrofluoric acid is used as the etchant. The hydrogen generated in this manner causes defects such as pinholes in the organic resin coating formed using the self-depositing coating composition. On the other hand, when ferric fluoride is used as an etching agent, metal materials such as Al and Fe can be etched without generating hydrogen unnecessarily, thereby suppressing the occurrence of defects such as pinholes. be able to.

(カルボキシル基等を有する有機成分)
多種金属材料用自己析出型被覆組成物の一原料である有機成分は、分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分である。具体的には、分子内に少なくとも1つ以上のカルボキシル基を有する有機酸、分子内に少なくとも1つ以上のカルボキシル基を有する有機酸塩(例えば有機酸金属塩)、分子内に少なくとも1つ以上のカルボキシル基の塩を有する有機酸塩、を挙げることができる。当該成分の存在により、可溶型3価鉄及び可溶型フッ素を皮膜析出性や膜質に悪影響を与える形態で存在させることを回避できる結果、優れた被膜析出性や膜質を達成することができる。
(Organic component having a carboxyl group)
The organic component which is one raw material of the self-deposition type coating composition for multi-metallic materials is an organic component having at least one carboxyl group or a carboxyl group salt in the molecule. Specifically, an organic acid having at least one carboxyl group in the molecule, an organic acid salt having at least one carboxyl group in the molecule (for example, an organic acid metal salt), at least one in the molecule And organic acid salts having a carboxyl group salt. Due to the presence of the component, it is possible to avoid the presence of soluble trivalent iron and soluble fluorine in a form that adversely affects film deposition properties and film quality, so that excellent film deposition properties and film quality can be achieved. .

ここで、まず、有機酸としては、分子内に少なくとも1つ以上のカルボキシル基を有していれば特に限定されるものではないが、好適にはカルボキシル基を2つ以上、より好適にはカルボキシル基を3つ以上有する有機酸である。具体例としては、蟻酸、酢酸、クエン酸、リンゴ酸、マロン酸、酒石酸、シュウ酸、グルタミン酸、アスパラギン酸、マレイン酸、フマル酸、コハク酸、フタル酸、イタコン酸、メリト酸、トリメリト酸、トリメシン酸、ピロメリト酸、ナフタレンテトラカルボン酸、プロパンジカルボン酸、ブタンジカルボン酸、ペンタンジカルボン酸、ヘキサンジカルボン酸、ヘプタンジカルボン酸、ブタントリカルボン酸、ブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ヘキサントリカルボン酸、2−ホスホノブタン−1,2,4−トリカルボン酸、エチレンジアミン四酢酸、トリニトロ酢酸、シクロヘキサンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチレンジアミン三酢酸、グリコールエーテルジアミン四酢酸、トリエチレンテトラミン六酢酸、イミノ二酢酸、エチレンジアミン二酢酸、ジアミノプロパノール四酢酸、プロピレンジアミン四酢酸、ヒドロキシエチルイミノ二酢酸、エチレンジアミンジプロピオン酸、ビスアミノフェニルエチレングリコール四酢酸等が挙げられる。   Here, the organic acid is not particularly limited as long as it has at least one or more carboxyl groups in the molecule, but preferably has two or more, more preferably carboxyl groups. An organic acid having three or more groups. Specific examples include formic acid, acetic acid, citric acid, malic acid, malonic acid, tartaric acid, oxalic acid, glutamic acid, aspartic acid, maleic acid, fumaric acid, succinic acid, phthalic acid, itaconic acid, melittic acid, trimellitic acid, trimesin Acid, pyromellitic acid, naphthalenetetracarboxylic acid, propanedicarboxylic acid, butanedicarboxylic acid, pentanedicarboxylic acid, hexanedicarboxylic acid, heptanedicarboxylic acid, butanetricarboxylic acid, butanetetracarboxylic acid, cyclohexanetetracarboxylic acid, hexanetricarboxylic acid, 2- Phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetraacetic acid, trinitroacetic acid, cyclohexanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylenediaminetriacetic acid, glycol etherdiaminetetraacetic acid, tri Chirentetoramin hexaacetic acid, iminodiacetic acid, ethylenediamine diacetic acid, diaminopropanol tetraacetic acid, propylenediamine tetraacetic acid, hydroxyethyliminodiacetic acid, ethylenediamine dipropionate acid, bis aminophenyl ethylene glycol tetraacetic acid.

次に、有機酸塩としては、例えば、前記有機酸アニオンと金属カチオンとの塩(有機酸金属塩)を挙げることができる。ここで、金属カチオンとしては、組成物中で有機酸アニオン乃至は可溶型フッ素と錯化し溶解するものが好適であり、例えば、Al3+、Ti4+、Mn4+、Fe3+、Co2+、Ni2+、Zn2+、Zr4+、Mg2+からなる群から選ばれる少なくとも1種以上を挙げることができる。これら金属カチオンは、有機酸塩を添加後、別途組成物に追加する形で添加してもよく、その場合の添加の形態は有機酸塩ではなくともよい。 Next, as an organic acid salt, the salt (organic acid metal salt) of the said organic acid anion and a metal cation can be mentioned, for example. Here, as the metal cation, those which complex with organic acid anions or soluble fluorine in the composition and dissolve are suitable. For example, Al 3+ , Ti 4+ , Mn 4+ , Fe 3+ , Co 2+ , Ni There may be mentioned at least one selected from the group consisting of 2+ , Zn 2+ , Zr 4+ and Mg 2+ . These metal cations may be added in a form separately added to the composition after the addition of the organic acid salt, and the form of addition in that case may not be the organic acid salt.

尚、「可溶型3価鉄源」と「可溶型フッ素源」と「カルボキシル基等を有する有機成分」は、これらがそれぞれ別成分であっても、一部又はすべての組み合わせが同一成分であってもよい。例えば、一部の組み合わせが同一成分であるものの例として、「可溶型3価鉄源」と「可溶型フッ素源」とが同一成分であるものとしてはフッ化第二鉄を挙げることができ、また、「可溶型3価鉄源」と「カルボキシル基等を有する有機成分」とが同一成分であるものとしてはクエン酸第二鉄や蓚酸第二鉄を挙げることができる。   The “soluble trivalent iron source”, “soluble fluorine source”, and “organic component having a carboxyl group” may be the same component in some or all combinations even if they are separate components. It may be. For example, as an example in which some combinations are the same component, ferric fluoride can be cited as an example in which the “soluble trivalent iron source” and the “soluble fluorine source” are the same component. In addition, examples of the "soluble trivalent iron source" and the "organic component having a carboxyl group" that are the same component include ferric citrate and ferric oxalate.

(酸化剤)
多種金属材料用自己析出型被覆組成物は、例えば、反応過程にて還元型金属イオン(例えばFe2+)が発生し得る系の場合、酸化剤を添加することが好適である。ここで、当該酸化剤としては、過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも一種であることが好ましい。過酸化水素は自身の還元反応による副生成物が水であることから自己析出処理浴に対する影響を考慮する必要がなく、本発明に好適な酸化剤である。
(Oxidant)
In the case of a system in which reduced metal ions (for example, Fe 2+ ) can be generated in the reaction process, for example, an oxidizing agent is preferably added to the self-deposition coating composition for multi-metallic materials. Here, the oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide. Hydrogen peroxide is a suitable oxidizing agent for the present invention, since it is not necessary to consider the influence on the autodeposition treatment bath because the by-product of the reduction reaction is water.

(他の添加成分)
本発明で使用する自己析出型被覆組成物に用いてもよい任意添加成分としては、最低造膜温度を下げて、析出した樹脂粒子の融着をしやすくするための造膜助剤、例えばトリアルキルペンタンジオールイソブチレート、アルキルカルビトール等、を添加してもよく、更に被膜を着色するための顔料、例えばカーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナクリドンレッド、ハンザイエロー、ベンジジンイエロー等を添加していてもよい。
(Other additive ingredients)
As an optional additive component that may be used in the self-depositing type coating composition used in the present invention, a film-forming auxiliary, for example, a tri-layering agent for lowering the minimum film-forming temperature and facilitating fusion of the precipitated resin particles. Alkylpentanediol isobutyrate, alkyl carbitol, etc. may be added, and pigments for coloring the film, such as carbon black, phthalocyanine blue, phthalocyanine green, quinacridone red, Hansa yellow, benzidine yellow, etc. may be added. It may be.

(水系溶媒)
多種金属材料用自己析出型被覆組成物で使用する水系溶媒は、好適には水である。尚、アルコール等の他の水系溶媒を含有していていもよい。ここで、水系溶媒は、多種金属材料用自己析出型被覆組成物で用いる液体成分の全体積を基準として、好適には、水を50体積%以上、好適には80体積%以上、より好適には90体積%以上含有する。
(Aqueous solvent)
The aqueous solvent used in the autodeposition coating composition for multi-metallic materials is preferably water. In addition, you may contain other aqueous solvents, such as alcohol. Here, the water-based solvent is preferably 50% by volume or more, preferably 80% by volume or more, more preferably water based on the total volume of liquid components used in the self-deposition coating composition for multi-metallic materials. Contains 90% by volume or more.

(好適な組み合わせ)
ここで、有機被膜を形成させる多種金属材料の一種としてAl系基材を含む場合の、特に好適な原料の組み合わせとしては、アニオン性樹脂の他、フッ化第二鉄、フッ化水素酸、クエン酸又はその塩(特にクエン酸第二鉄)の組み合わせが挙げられる。当該組み合わせに係る剤を用いた場合、特に優れた被膜析出性や膜質を達成することができるからである。加えて、酸化剤を必須成分として添加することが好ましい(特に過酸化水素がより好ましい)。当該系の場合、酸化剤が存在すると液安定性に優れるからである。因みに、上記好適例における「可溶型3価鉄源」は、フッ化第二鉄及びクエン酸第二鉄であり、「可溶型フッ素源」は、フッ化第二鉄及びフッ化水素酸である。
(Preferred combination)
Here, particularly suitable combinations of raw materials in the case of including an Al-based substrate as one of various metal materials for forming an organic coating include anionic resins, ferric fluoride, hydrofluoric acid, citric acid. The combination of an acid or its salt (especially ferric citrate) is mentioned. This is because when the agent according to the combination is used, particularly excellent film deposition properties and film quality can be achieved. In addition, it is preferable to add an oxidizing agent as an essential component (particularly hydrogen peroxide is more preferable). This is because the liquid stability is excellent in the case of the system when an oxidizing agent is present. Incidentally, the “soluble trivalent iron source” in the above preferred examples is ferric fluoride and ferric citrate, and the “soluble fluorine source” is ferric fluoride and hydrofluoric acid. It is.

<添加量>
(アニオン性有機樹脂)
本発明で使用する自己析出型被覆組成物を製造する際の水分散又は水溶性のアニオン性有機樹脂の添加量は、目的とする被膜が十分に得られれば特に限定されないが、効率的に被膜を得るには樹脂固形分濃度として5〜550g/Lが好ましく、更に好ましくは20〜200g/Lであり、特に好ましくは40〜100g/Lである。該樹脂固形分濃度が5g/Lを下回る場合、十分な被膜析出性が得られず、550g/Lを上回る場合、処理液の貯蔵安定性が低下する。
<Addition amount>
(Anionic organic resin)
The amount of water-dispersed or water-soluble anionic organic resin used in the production of the self-depositing coating composition used in the present invention is not particularly limited as long as the desired coating can be obtained sufficiently, but the coating can be efficiently performed. Is preferably from 5 to 550 g / L, more preferably from 20 to 200 g / L, and particularly preferably from 40 to 100 g / L. When the resin solid content concentration is less than 5 g / L, sufficient film deposition cannot be obtained, and when it exceeds 550 g / L, the storage stability of the treatment liquid is lowered.

(可溶型3価鉄源、可溶型フッ素源)
本発明で使用する自己析出型被覆組成物を製造する際の可溶型3価鉄源と可溶型フッ素源の合計の添加量は、0.1〜15g/Lが好ましく、より好ましくは0.5〜10g/Lであり、更に好ましくは1.0〜5g/Lである。可溶型3価鉄源と可溶型フッ素源の合計の添加量が0.1g/Lを下回る場合、対象の金属材料に対するエッチングの反応性が低下し、有機樹脂の凝集に必要な金属イオンが十分に供給されず、被膜析出性が不十分となる場合がある。他方、可溶型3価鉄源と可溶型フッ素源の合計の添加量が15g/Lを上回る場合、析出した被膜に取り込まれる金属イオン濃度が上昇し、それに伴い被膜中に取り込まれる水分量もまた増加するために、自己析出被膜が後の水洗工程で剥離する等の不具合が生じる場合がある。尚、当該可溶型3価鉄源と可溶型フッ素源を含め、本明細書における成分の量とは、特記しない限り、当該成分が溶液(例えば水溶液)である場合には当該溶液中の溶質量を意味する(例えばフッ化水素酸である場合、溶液中のHF)。
(Soluble trivalent iron source, soluble fluorine source)
The total addition amount of the soluble trivalent iron source and the soluble fluorine source in producing the autodeposition coating composition used in the present invention is preferably 0.1 to 15 g / L, more preferably 0. 0.5 to 10 g / L, more preferably 1.0 to 5 g / L. When the total addition amount of the soluble trivalent iron source and the soluble fluorine source is less than 0.1 g / L, the etching reactivity with respect to the target metal material decreases, and the metal ions necessary for the aggregation of the organic resin May not be sufficiently supplied, and film deposition may be insufficient. On the other hand, when the total addition amount of the soluble trivalent iron source and the soluble fluorine source exceeds 15 g / L, the concentration of metal ions taken into the deposited film increases, and the amount of moisture taken into the film accordingly. Therefore, the autodeposition film may be peeled off in the subsequent water washing step. In addition, unless otherwise specified, the amount of the component in the present specification including the soluble trivalent iron source and the soluble fluorine source means that the component in the solution is a solution (for example, an aqueous solution) unless otherwise specified. Refers to dissolved mass (for example, HF in solution in the case of hydrofluoric acid).

(酸化剤)
前述のように、被膜形成の対象とする多種金属材料にAl系材料を含む場合、酸化剤を添加することが好適である。本発明で使用する自己析出型被覆組成物を製造する際の酸化剤の添加量は、0.01〜5g/Lが好ましく、より好ましくは0.05〜4g/Lであり、更に好ましくは0.1〜3g/Lである。当該酸化剤の添加量が0.01g/Lを下回る場合、液安定性が不十分となる場合があり、他方、当該酸化剤の添加量が5g/Lを上回る場合、被膜析出性が低下する場合がある。
(Oxidant)
As described above, in the case where an Al-based material is included in the various metal materials to be coated, it is preferable to add an oxidizing agent. The amount of the oxidant added when producing the self-depositing coating composition used in the present invention is preferably 0.01 to 5 g / L, more preferably 0.05 to 4 g / L, still more preferably 0. .1-3 g / L. When the addition amount of the oxidizing agent is less than 0.01 g / L, the liquid stability may be insufficient. On the other hand, when the addition amount of the oxidizing agent is more than 5 g / L, the film deposition property is lowered. There is a case.

≪本組成物の成分≫
上述したようにして製造される本発明に係る自己析出型被覆組成物の各成分について説明する。
≪Ingredients of this composition≫
Each component of the self-depositing coating composition according to the present invention produced as described above will be described.

本発明に係る自己析出型被覆組成物は、水系溶媒中に、少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄と、可溶型フッ素と、分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分に由来した可溶型有機成分(分子内に少なくとも1つ以上のカルボキシル基を有する有機成分、分子内に少なくとも1つ以上のカルボキシル基若しくはカルボキシル基の塩を有する有機成分又は該有機成分がアニオン化したもの)と、を含有する。また、水系溶媒中に溶解している可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、当該組成物が、Al3+、Ti4+、Mn4+、Co2+、Ni2+、Zn2+、Zr4+及びMg2+からなる群より選択される少なくとも1種以上の可溶型金属イオンを更に含有する場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[可溶型金属イオンの合計モル数])}が、1.0〜3.2である。 The self-precipitation type coating composition according to the present invention comprises at least a water-dispersible or water-soluble anionic organic resin, soluble trivalent iron, soluble fluorine, and at least in the molecule in an aqueous solvent. Soluble organic components derived from organic components having one or more carboxyl groups or salts of carboxyl groups (organic components having at least one carboxyl group in the molecule, at least one carboxyl group in the molecule or An organic component having a carboxyl group salt or an anion of the organic component). Further, the molar ratio of soluble fluorine to soluble trivalent iron dissolved in the aqueous solvent ([mol number of soluble fluorine]) / ([mol number of soluble trivalent iron]) { Here, the composition further comprises at least one or more soluble metal ions selected from the group consisting of Al 3+ , Ti 4+ , Mn 4+ , Co 2+ , Ni 2+ , Zn 2+ , Zr 4+ and Mg 2+. When contained, ([mol number of soluble fluorine]) / ([mol number of soluble trivalent iron] + [total number of moles of soluble metal ions])} is 1.0 to 3.2.

自己析出型被覆組成物中の可溶型3価鉄は、上述した可溶型3価鉄源から供給される成分であり、可溶型フッ素は、上述した可溶型フッ素源から供給される成分である。また、上述したカルボキシル基等を有する有機成分は、可溶型有機成分として存在する{例えば、プロトンが解離していない酸の状態(R−COOH)、プロトンが解離したアニオンの状態(R−COO)、更には、剤中の他の成分と複合体を形成している状態(R−COOH・M、R−COOM等)}。その他の上記自己析出型被覆組成物の各成分については上述した通りであるので、ここでは詳細な説明を省略する。 The soluble trivalent iron in the self-deposited coating composition is a component supplied from the soluble trivalent iron source described above, and the soluble fluorine is supplied from the soluble fluorine source described above. It is an ingredient. In addition, the organic component having a carboxyl group or the like described above exists as a soluble organic component {for example, an acid state where protons are not dissociated (R-COOH), an anion state where protons are dissociated (R-COO) - ), And a state where a complex is formed with other components in the agent (R-COOH · M, R-COOM, etc.)}. The other components of the autodeposition-type coating composition are the same as described above, and a detailed description thereof is omitted here.

<含有量比>
(可溶型フッ素/可溶型3価鉄の含有量比)
本発明で使用する自己析出型被覆組成物を製造する際の水系溶媒中に溶解している可溶型3価鉄に対する可溶型フッ素の含有量比(モル比)、即ち、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、当該組成物が、Al3+、Ti4+、Mn4+、Co2+、Ni2+、Zn2+、Zr4+及びMg2+からなる群より選択される少なくとも1種以上の可溶型金属イオンを更に含有する場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[可溶型金属イオンの合計モル数])}は、1.0〜3.2であることが必要である。該含有量比が1.0を下回る場合、素材に対する溶解力が弱まるため、樹脂を凝集させる金属成分が不十分となり、被膜の析出性が低下する。また、該含有量比が3.2を上回る場合、素材に対する溶解力が強まるため、エッチング過多による被膜析出性の低下、或いはピンホール等の発生による被膜外観の劣化や被膜性能の低下が起きる。被膜の析出性をより向上させ、ピンホール等の発生をより確実に抑制するために、該含有量比は、1.5〜3.0であることが好ましく、2.0〜3.0であることがより好ましい。ここで、剤中の可溶型3価鉄量の含有量は、用いた化合物によりICP発光分光分析法、キレート滴定などを適宜選択することで定量した値とする。また、可溶型フッ素の含有量は、用いた化合物によりキャピラリ電気泳動法(CE)、イオンクロマトグラフィー(IC)などを適宜選択することで定量した値とする。
<Content ratio>
(Content ratio of soluble fluorine / soluble trivalent iron)
The content ratio (molar ratio) of soluble fluorine to soluble trivalent iron dissolved in an aqueous solvent when producing the autodeposition-type coating composition used in the present invention, ie, ([soluble Mole number of type fluorine]) / ([Mole number of soluble trivalent iron]) {wherein the composition contains Al 3+ , Ti 4+ , Mn 4+ , Co 2+ , Ni 2+ , Zn 2+ , Zr 4+ And at least one or more soluble metal ions selected from the group consisting of Mg 2+ and ([mol number of soluble fluorine]) / ([mol of soluble trivalent iron] Number] + [total number of moles of soluble metal ions])} is required to be 1.0 to 3.2. When the content ratio is less than 1.0, the dissolving power with respect to the material is weakened, so that the metal component for aggregating the resin becomes insufficient, and the depositability of the film is lowered. Further, when the content ratio exceeds 3.2, the dissolving power with respect to the material is increased, so that the film depositability is reduced due to excessive etching, or the appearance of the film is deteriorated due to the occurrence of pinholes and the film performance is deteriorated. The content ratio is preferably 1.5 to 3.0, more preferably 2.0 to 3.0 in order to further improve the depositability of the film and more reliably suppress the occurrence of pinholes and the like. More preferably. Here, the content of the soluble trivalent iron content in the agent is a value quantified by appropriately selecting ICP emission spectroscopic analysis, chelate titration, etc. depending on the compound used. Further, the content of soluble fluorine is a value quantified by appropriately selecting capillary electrophoresis (CE), ion chromatography (IC) or the like depending on the compound used.

(可溶型有機成分/可溶型3価鉄の含有量比)
水系溶媒中に溶解している可溶型3価鉄に対する、有機成分(分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分)由来の可溶型有機成分のモル比([可溶型有機成分のモル数]/[可溶型3価鉄のモル数])は、好適には0.01〜1.0であり、より好適には0.01〜0.8であり、更に好適には0.01〜0.6である。当該モル比が0.01未満である場合、被膜外観の悪化又は被膜析出性の低下が生じる場合があり、他方、当該モル比が1.0超である場合も同様に、被膜外観の悪化又は被膜析出性が低下する場合がある。ここで、剤中の可溶型有機成分の含有量は、用いた化合物によりキャピラリ電気泳動法(CE)、イオンクロマトグラフィー(IC)などを適宜選択することで定量した値とする。
(Content ratio of soluble organic component / soluble trivalent iron)
Molar ratio of soluble organic component derived from organic component (organic component having at least one carboxyl group or carboxyl group salt in the molecule) to soluble trivalent iron dissolved in aqueous solvent ( [Mole number of soluble organic component] / [Mole number of soluble trivalent iron]) is preferably 0.01 to 1.0, and more preferably 0.01 to 0.8. And more preferably 0.01 to 0.6. When the molar ratio is less than 0.01, the coating appearance may be deteriorated or the coating deposition may be deteriorated. On the other hand, when the molar ratio is more than 1.0, the coating appearance is deteriorated or The film depositability may be reduced. Here, the content of the soluble organic component in the agent is a value quantified by appropriately selecting capillary electrophoresis (CE), ion chromatography (IC), etc. depending on the compound used.

ここで、本発明の自己析出型被覆組成物を金属材料に接触させた場合、フッ化第二鉄等による金属材料のエッチング反応により、可溶性3価鉄及び可溶性フッ素の存在形態が変化する。具体的には、3価鉄イオンやフッ化物イオンの濃度が変化する。例えば、3価鉄イオン濃度が過度に高くなると、金属材料の表面に3価鉄イオンを含む膜(フッ化第二鉄等によりエッチングされない膜)が形成され、被膜析出性が低下する場合がある。また、フッ化物イオン濃度が過度に高くなると、このフッ化物イオンが自己析出型被覆組成物中に存在するプロトンと結合してフッ化水素酸が生成し、このフッ化水素酸が金属をエッチングすると水素が発生するため、ピンホール等の原因となる。このとき、本発明に係る自己析出型被覆組成物の原料として、上述したカルボキシル基等を有する有機成分を含んでいることから、この有機成分が3価鉄イオンやフッ化物イオンを安定化させる(金属材料のエッチング反応や被膜の析出反応に寄与しないようにする)ことができる。このような有機成分の作用により、本発明の自己析出型被覆組成物においては、上記含有量比を1.0〜3.2の範囲に保持することができるため、例えば、過度に3価鉄イオン濃度やフッ化物イオン濃度が高くなったりすることもない。従って、本発明の自己析出型被覆組成物を金属材料に接触させた場合、皮膜にピンホール等の欠陥が殆ど発生せず、良好な被膜析出性を保つことができる。   Here, when the self-precipitation type coating composition of the present invention is brought into contact with a metal material, the presence forms of soluble trivalent iron and soluble fluorine are changed by etching reaction of the metal material with ferric fluoride or the like. Specifically, the concentration of trivalent iron ions or fluoride ions changes. For example, if the trivalent iron ion concentration becomes excessively high, a film containing trivalent iron ions (a film that is not etched by ferric fluoride or the like) is formed on the surface of the metal material, and the film deposition property may be reduced. . Also, if the fluoride ion concentration becomes excessively high, this fluoride ion combines with protons present in the autodeposition coating composition to produce hydrofluoric acid, and this hydrofluoric acid etches the metal. Hydrogen is generated, causing pinholes and the like. Since the organic component which has the carboxyl group etc. which were mentioned above as a raw material of the self-precipitation type coating composition which concerns on this invention at this time is included, this organic component stabilizes trivalent iron ion and fluoride ion ( (It can be made not to contribute to the etching reaction of the metal material and the deposition reaction of the film). Due to the action of such an organic component, the content ratio can be maintained in the range of 1.0 to 3.2 in the autodeposition-type coating composition of the present invention. The ion concentration or fluoride ion concentration does not increase. Therefore, when the self-depositing coating composition of the present invention is brought into contact with a metal material, defects such as pinholes hardly occur in the film, and good film deposition properties can be maintained.

≪本組成物の用途≫
本発明に係る自己析出型被覆組成物は、多種金属材料に適用可能である。該金属材料としては、アルミニウム系材料(アルミニウム、アルミニウム合金等)、鉄系材料(鉄、鉄鋼等)、亜鉛系材料(亜鉛、亜鉛めっき材料等)等が挙げられる。特に、本発明に係る自己析出型被覆組成物は、アルミニウム系材料を含む多種金属材料に適用可能(特に、アルミニウム系材料と鉄系材料の両方に適用可能)である点で特徴的である。
≪Use of this composition≫
The self-depositing type coating composition according to the present invention can be applied to various metal materials. Examples of the metal material include aluminum-based materials (such as aluminum and aluminum alloys), iron-based materials (such as iron and steel), and zinc-based materials (such as zinc and galvanized materials). In particular, the autodeposition-type coating composition according to the present invention is characteristic in that it can be applied to various metal materials including aluminum-based materials (particularly applicable to both aluminum-based materials and iron-based materials).

より具体的には、本発明の対象物は自動車ボディー、自動車部品、熱交換器、建材、家電製品、飲料缶、航空機ボディー、航空機部品等の成形加工品、鋳造品、シートコイル等、多岐に渡る分野で使用される金属材料である。本発明は多種金属材料に対し同等の膜質を提供するものである。   More specifically, the objects of the present invention are widely used for automobile bodies, automobile parts, heat exchangers, building materials, home appliances, beverage cans, aircraft bodies, molded products such as aircraft parts, cast products, sheet coils, etc. It is a metal material used in various fields. The present invention provides equivalent film quality for various metal materials.

≪本組成物の使用方法≫
本発明に係る多種金属材料用自己析出型被覆組成物は、金属材料上に有機樹脂被膜を自己析出させるために使用される。具体的には、本発明に係る多種金属材料用自己析出型被覆組成物を用いての金属材料上への樹脂被覆方法(有機被膜付金属材料の製造方法)は、本発明に係る自己析出型被覆組成物を金属材料表面に接触させて、前記金属材料表面に有機樹脂被膜を形成させ、それを加熱乾燥させることにより有機樹脂被膜を該金属材料表面に固定する手法である。より具体的には、本樹脂被覆方法は、必要に応じて金属材料表面を予め脱脂、水洗によって清浄化した後、本発明の自己析出型被覆組成物と接触させた後、更に水洗工程で該金属材料表面に付着した余剰な自己析出型組成物を除去し、次いで乾燥を行うことによって被膜形成を行う。乾燥工程における乾燥温度は、析出した自己析出型被膜が含有する水分が蒸発すれば特に限定されない。更に必要に応じて乾燥前に後処理剤に接触させても構わない。以下、各工程を詳述する。
≪How to use this composition≫
The self-deposition coating composition for multi-metallic materials according to the present invention is used for self-depositing an organic resin film on a metal material. Specifically, the resin coating method on the metal material using the self-deposition coating composition for multi-metallic materials according to the present invention (method for producing a metal material with an organic coating) is the self-deposition type according to the present invention. In this method, the coating composition is brought into contact with the surface of the metal material, an organic resin film is formed on the surface of the metal material, and the organic resin film is fixed to the surface of the metal material by heating and drying it. More specifically, in the resin coating method, the surface of the metal material is previously degreased and cleaned with water as necessary, and then contacted with the self-deposition type coating composition of the present invention. A film is formed by removing excess self-depositing composition adhering to the surface of the metal material and then drying. The drying temperature in a drying process will not be specifically limited if the water | moisture content which the deposited self-deposition type film contains evaporates. Furthermore, you may make it contact with a post-processing agent before drying as needed. Hereinafter, each process is explained in full detail.

(脱脂処理工程・水洗処理工程)
処理対象である金属材料表面に油分、汚れその他が付着している場合には予めこれを行い、表面を清浄化するのが好ましい。脱脂処理は表面が清浄化できれば特に限定されるものではなく、例えば溶剤脱脂、アルカリ脱脂等を用いることができ、汚れの付着程度によっては例えば中性洗浄や湯洗等を用いることもできる。その工法も表面を清浄化できれば流しかけ、スプレー、或いは浸漬等、特に限定するものではない。また、脱脂処理後、及び自己析出型被覆処理後に行われる水洗処理方法に関しても特に限定はなく、流しかけ、スプレー、浸漬等から選択することができる。水洗に用いられる水の水質にも特に制約はないが、自己析出型被覆処理浴への微量成分の持ち込みによる液劣化防止、及び被膜中への残存による性能劣化防止の観点から、イオン交換水が望ましい。
(Degreasing process / washing process)
If oil, dirt or the like is adhered to the surface of the metal material to be treated, it is preferable to perform this in advance to clean the surface. The degreasing treatment is not particularly limited as long as the surface can be cleaned, and for example, solvent degreasing, alkaline degreasing, etc. can be used, and neutral washing, hot water washing, etc. can be used depending on the degree of dirt adhesion. The construction method is not particularly limited as long as the surface can be cleaned, such as pouring, spraying or dipping. Moreover, there is no limitation in particular also about the water-washing processing method performed after a degreasing process and an autodeposition type | mold coating process, It can select from pouring, spraying, immersion, etc. Although there is no particular restriction on the quality of water used for washing, ion-exchanged water is used from the viewpoint of preventing liquid deterioration due to the introduction of trace components into the self-deposition type coating treatment bath and preventing performance deterioration due to remaining in the coating. desirable.

(酸洗処理工程)
処理対象である金属材料の表面状態によっては酸洗工程を追加することができる。該工程には金属表面の錆又は酸化物を除去することで、次の自己析出型被膜処理工程における樹脂の金属材料に対する密着性を向上する働きがある。酸洗処理は金属表面の錆又は酸化物を除去できれば特に限定されるものではなく、硝酸、硫酸、フッ酸等を用いることが出来、溶剤や界面活性剤等を添加することによって、前記脱脂処理の目的を兼ねるようにすることもできる。その工法も表面の錆または酸化物を除去できれば流しかけ、スプレー、或いは浸漬等、特に限定するものではない。また、酸洗処理後、及び自己析出型被覆処理後に行われる水洗処理方法に関しても特に限定はなく、流しかけ、スプレー、浸漬等から選択することができる。水洗に用いられる水の水質にも特に制約はないが、自己析出型被覆処理浴への微量成分の持ち込みによる液劣化防止、及び被膜中への残存による性能劣化防止の観点から、イオン交換水が望ましい。
(Pickling process)
A pickling step can be added depending on the surface state of the metal material to be treated. This process has the function of improving the adhesion of the resin to the metal material in the next autodeposition coating process by removing rust or oxide on the metal surface. The pickling treatment is not particularly limited as long as rust or oxide on the metal surface can be removed, and nitric acid, sulfuric acid, hydrofluoric acid and the like can be used, and the degreasing treatment can be performed by adding a solvent or a surfactant. It can also be made to serve the purpose of. The construction method is not particularly limited as long as it can remove rust or oxide on the surface, such as pouring, spraying or dipping. Moreover, there is no limitation in particular also about the water-washing processing method performed after a pickling process and an autodeposition type | mold coating process, It can select from pouring, spraying, immersion, etc. Although there is no particular restriction on the quality of water used for washing, ion-exchanged water is used from the viewpoint of preventing liquid deterioration due to the introduction of trace components into the self-deposition type coating treatment bath and preventing performance deterioration due to remaining in the coating. desirable.

(自己析出型被覆処理)
本発明の自己析出型被覆処理は、好適には、被処理物を処理浴へ浸漬する浸漬法によって行われる。浸漬法が行われる処理浴に関しては、処理浴中の成分濃度が均一に保たれる程度以上の攪拌効果が備わっていればよい。処理時間は10〜500秒が好ましく、20〜300秒がより好ましい。10秒を下回ると析出反応不足で十分な被膜が形成されないことがある。また500秒を超えると被処理物の溶解が進むことによって被膜中の金属イオン濃度が高くなり過ぎる場合があり、外観不良や耐食性低下が生じる場合がある。処理温度は5〜50℃が好ましく、10〜40℃がより好ましい。処理温度が5℃を下回ると、析出効率が低く十分な被膜量を得ることができない場合があり、50℃を超えると反応過多で被膜表面外観が低下することがある。
(Self-precipitation type coating treatment)
The autodeposition type coating treatment of the present invention is preferably performed by an immersion method in which an object to be processed is immersed in a treatment bath. With respect to the treatment bath in which the dipping method is performed, it is only necessary to have an agitation effect that is equal to or higher than the level at which the component concentration in the treatment bath is kept uniform. The treatment time is preferably 10 to 500 seconds, and more preferably 20 to 300 seconds. If it is less than 10 seconds, a sufficient film may not be formed due to insufficient precipitation reaction. On the other hand, if it exceeds 500 seconds, the metal ion concentration in the coating film may become too high due to the dissolution of the object to be processed, which may cause poor appearance and reduced corrosion resistance. The treatment temperature is preferably 5 to 50 ° C, more preferably 10 to 40 ° C. If the treatment temperature is less than 5 ° C, the deposition efficiency may be low and a sufficient coating amount may not be obtained. If the treatment temperature exceeds 50 ° C, the coating surface appearance may be deteriorated due to excessive reaction.

(後処理工程)
自己析出した有機被膜には、任意で後処理を施すことができる。自己析出した有機被膜は、多量の水を含んだウェット膜であるため、後処理剤はこの水を媒体として被膜に浸透、拡散し、溶媒除去することで表面硬度、耐溶剤性、耐食性を高める作用がある。後処理剤は、自己析出有機被膜全体を均一に分布させるのでなく、金属との界面より被膜表面近傍の濃度が高くその作用が大きいため、素材との密着性を阻害することなく優れた表面硬度、耐溶剤性、耐食性を付与することができる。
(Post-processing process)
The self-deposited organic coating can optionally be post-treated. Since the self-deposited organic film is a wet film containing a large amount of water, the post-treatment agent penetrates and diffuses into the film using this water as a medium, and removes the solvent to improve surface hardness, solvent resistance, and corrosion resistance. There is an effect. The post-treating agent does not distribute the entire autodeposited organic coating uniformly, but the concentration near the coating surface is higher than the interface with the metal and its action is great, so it has excellent surface hardness without hindering adhesion to the material Solvent resistance and corrosion resistance can be imparted.

後処理剤に用いられる原料は、メラミン樹脂、グアナミン樹脂、尿素樹脂等のアミノ樹脂、フェノール樹脂、エポキシ樹脂、イソシアネート化合物等の有機系原料やジルコンフッ化水素酸、チタンフッ化水素酸等の無機系原料から選ばれる少なくとも1種であることが好ましい。   Raw materials used for the post-treatment agent are organic raw materials such as amino resins such as melamine resins, guanamine resins and urea resins, phenol resins, epoxy resins and isocyanate compounds, and inorganic raw materials such as zircon hydrofluoric acid and titanium hydrofluoric acid. It is preferably at least one selected from

後処理剤濃度は、例えば固形分濃度として5〜300g/Lとしたものが使用可能で、好ましくは10〜200g/Lである。該固形分濃度が5g/Lを下回る場合、被膜中の後処理剤含有量が充分でなく、被膜の架橋度合いがさほど向上しないため、耐食性、耐溶剤性、表面硬度等の被膜性能向上効果は期待できない。また該固形分濃度が300g/Lを上回る場合は、表面硬度は高まるものの、同時に被膜が脆くなり、更には被膜外観の低下を招くことがあるため好ましくない。   As the post-treatment agent concentration, for example, a solid content concentration of 5 to 300 g / L can be used, and preferably 10 to 200 g / L. When the solid content concentration is less than 5 g / L, the content of the post-treatment agent in the film is not sufficient, and the degree of crosslinking of the film is not improved so much, so the effect of improving the film performance such as corrosion resistance, solvent resistance, surface hardness, etc. I can't expect it. On the other hand, when the solid content concentration exceeds 300 g / L, the surface hardness is increased, but at the same time, the coating becomes brittle, and further the appearance of the coating may be deteriorated.

(溶媒除去処理工程・被膜形成処理工程)
溶媒除去ならびに被膜の形成工程における加熱手段としては、例えば、電気又は石油燃料等をエネルギー源とした熱風循環式乾燥炉、遠赤外線を利用した加熱炉、高周波加熱、誘導加熱などが挙げられ、乾燥温度はウェット膜中の水分が蒸発できれば特に限定されるものではない。
(Solvent removal treatment process / film formation treatment process)
Examples of the heating means in the solvent removal and film formation process include a hot-air circulating drying furnace using electricity or petroleum fuel as an energy source, a heating furnace using far infrared rays, high-frequency heating, induction heating, and the like. The temperature is not particularly limited as long as moisture in the wet film can be evaporated.

上述した本樹脂被覆方法により、本発明の有機被膜付金属材料を得ることができる。   By the resin coating method described above, the metal material with an organic coating of the present invention can be obtained.

次に実施例及び比較例により本発明を説明するが、本実施例は単なる一例に過ぎず、本発明を限定するものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention, this Example is only a mere example and does not limit this invention.

1.供試材
実施例、及び比較例で用いた供試材は以下の通りである。
I:Al アルミニウム合金板(JIS
A1000系アルミニウム合金)
II:Al アルミニウム合金板(JIS
A2000系アルミニウム合金)
III:Al アルミニウム合金板(JIS
A5000系アルミニウム合金)
IV:Al アルミニウム合金板(JIS
A6000系アルミニウム合金)
V:Al アルミニウム鋳造板(AC4C)
VI:SPC 冷延鋼板(JIS−G3141)
VII:GA 両面合金化溶融亜鉛めっき鋼板(めっき目付量45g/m2)
VIII:EG 電気亜鉛めっき鋼板
1. The sample materials used in the sample material examples and comparative examples are as follows.
I: Al aluminum alloy plate (JIS
A1000 series aluminum alloy)
II: Al aluminum alloy plate (JIS
A2000 series aluminum alloy)
III: Al aluminum alloy plate (JIS
A5000 series aluminum alloy)
IV: Al aluminum alloy plate (JIS
A6000 series aluminum alloy)
V: Al cast aluminum plate (AC4C)
VI: SPC Cold rolled steel sheet (JIS-G3141)
VII: GA double-sided alloyed hot-dip galvanized steel sheet (plating weight 45 g / m2)
VIII: EG Electrogalvanized steel sheet

2.処理液組成

2. Treatment liquid composition

表1中の各成分は下記の通りである。表中、Fは有機樹脂の固形分濃度(g/L)、Gは可溶型3価鉄源と可溶型フッ素源の合計の添加量(g/L)、Hは[可溶型フッ素のモル数]/([可溶型3価鉄のモル数]+[有機酸金属塩由来の金属カチオン成分のモル数])、Iは[可溶型有機成分のモル数]/[可溶型3価鉄のモル数]、Jは酸化剤添加量(g/L)を、Kは後処理を行う場合の後処理樹脂を、各々示す。尚、可溶性三価鉄の含有量測定は、ICP発光分光分析法(島津製作所 型番:ICPS−8100)を用いて行った。可溶型フッ素量の測定には、イオンクロマトグラフィー(ダイオネクス 型番:ICS−2000)を用い、分離カラムにはIonPacAS20、ガードカラムにはIonPacAG20を用いた。溶離液はKOH40mmol/L、流量は1.0mL/minとした。また可溶型有機成分は、キャピラリ電気泳動法(アジレント 型番:Agilent1600)にてキャピラリにはフューズドシリカキャピラリ(内径75μm、有効長80.5cm)を用い、注入方式は加圧注入法とし、泳動緩衝液はHP Organic Acids Buffer(HEWLETT PACKARD 型番:PN8500−6785)とする。測定した値をもとにモル比を算出した。
水分散又は水溶性の有機樹脂(A)
A1:サランラテックスL232A(ポリ塩化ビニリデン樹脂、固形分濃度:48重量%、旭化成ケミカルズ)
A2:プライマルWL−91(アクリル樹脂、固形分濃度:41.5重量%、ロームアンドハース)
A3:F−2125D(ウレタン樹脂、固形分濃度:30重量%、第一工業製薬)
A4:バイロナールMD−1500(ポリエステル樹脂、固形分濃度:30重量%、東洋紡)
A5:エピレッツ3522W60(エポキシ樹脂、固形分濃度:60重量%、油化シェルエポキシ)
可溶型3価鉄源(B)
B1:フッ化第二鉄
B2:硫酸第二鉄
B3:硝酸第二鉄
B4:クエン酸第二鉄
可溶型フッ素源(C)
C1:フッ化水素酸
C2:チタンフッ化水素酸
C3:フッ化ナトリウム
C4:フッ化第二鉄
有機成分(D)
D1:クエン酸第二鉄
D2:酒石酸第二鉄
D3:リンゴ酸マグネシウム
D4:クエン酸
D5:シュウ酸アルミニウム
D6:酢酸アルミニウム
D7:酢酸
D8:4−スルホフタル酸
酸化剤(E)
E1:過酸化水素
後処理剤樹脂(K)
K1:メラミン樹脂水溶液{日本サイテックインダストリーズ製「サイメル385(固形分濃度:85重量%)」をイオン交換水にて希釈し100g/Lとしたもの}
Each component in Table 1 is as follows. In the table, F is the solid content concentration (g / L) of the organic resin, G is the total addition amount (g / L) of the soluble trivalent iron source and the soluble fluorine source, and H is [soluble fluorine. Number of moles] / ([number of moles of soluble trivalent iron] + [number of moles of metal cation component derived from organic acid metal salt]), I is [number of moles of soluble organic component] / [soluble Number of moles of type trivalent iron], J represents an oxidant addition amount (g / L), and K represents a post-treatment resin when post-treatment is performed. In addition, content measurement of soluble trivalent iron was performed using the ICP emission-spectral-analysis method (Shimadzu Corporation model number: ICPS-8100). Ion chromatography (Dionex model number: ICS-2000) was used to measure the amount of soluble fluorine, IonPacAS20 was used for the separation column, and IonPacAG20 was used for the guard column. The eluent was KOH 40 mmol / L, and the flow rate was 1.0 mL / min. Soluble organic components were subjected to capillary electrophoresis (Agilent model: Agilent 1600) using a fused silica capillary (inner diameter 75 μm, effective length 80.5 cm) as the capillary, and the injection method was the pressure injection method. The buffer is HP Organic Acids Buffer (HEWLETT PACKARD model number: PN8500-6785). The molar ratio was calculated based on the measured value.
Water-dispersed or water-soluble organic resin (A)
A1: Saran latex L232A (polyvinylidene chloride resin, solid content concentration: 48% by weight, Asahi Kasei Chemicals)
A2: Primal WL-91 (acrylic resin, solid content concentration: 41.5% by weight, Rohm and Haas)
A3: F-2125D (urethane resin, solid content concentration: 30% by weight, Daiichi Kogyo Seiyaku)
A4: Vylonal MD-1500 (polyester resin, solid content concentration: 30% by weight, Toyobo)
A5: Epiletz 3522W60 (epoxy resin, solid content concentration: 60% by weight, oiled shell epoxy)
Soluble trivalent iron source (B)
B1: Ferric fluoride B2: Ferric sulfate B3: Ferric nitrate B4: Ferric citrate, soluble fluorine source (C)
C1: Hydrofluoric acid C2: Titanium hydrofluoric acid C3: Sodium fluoride C4: Ferric fluoride / organic component (D)
D1: Ferric citrate
D2: ferric tartrate D3: magnesium malate D4: citric acid D5: aluminum oxalate D6: aluminum acetate D7: acetic acid D8: 4-sulfophthalic acid, oxidizing agent (E)
E1: Hydrogen peroxide and post - treatment resin (K)
K1: Melamine resin aqueous solution {Nippon Cytec Industries'"Cymel 385 (solid content concentration: 85% by weight)" diluted with ion-exchanged water to 100g / L}

3.表面処理方法
(1)脱脂
アルカリ脱脂剤「ファインクリーナーL4460」(商品名,日本パーカライジング(株)製)の20g/L水溶液を40℃に加温した液を供試材にスプレー装置で噴霧することによる脱脂処理を120秒行い、脱脂処理後の供試材表面を、スプレー装置を用いてイオン交換水で洗浄した。
3. Surface treatment method (1) Degreasing Spraying a solution obtained by heating a 20 g / L aqueous solution of an alkaline degreasing agent “Fine Cleaner L4460” (trade name, manufactured by Nihon Parkerizing Co., Ltd.) to 40 ° C. with a spray device. The surface of the test material after the degreasing treatment was washed with ion-exchanged water using a spray device.

(2)処理・乾燥
前記表面を脱脂洗浄した供試材を各種自己析出型被覆組成物の処理浴に浸漬した後、スプレー装置を用いてイオン交換水で洗浄し、次いで180℃で20分間焼き付けを行った。後処理を実施する場合は、前記イオン交換水での洗浄後、後処理樹脂Kに10秒間浸漬した後180℃で20分間焼き付けを行った。尚、以下の評価では、被膜外観、耐食性、電気絶縁性では被膜の膜厚を20μmとして実施した。
(2) Treatment / Drying After immersing the test material whose surface has been degreased and washed in a treatment bath of various autodeposition coating compositions, it was washed with ion-exchanged water using a spray device, and then baked at 180 ° C. for 20 minutes. Went. In the case of carrying out post-treatment, after washing with the ion-exchanged water, it was immersed in post-treatment resin K for 10 seconds and then baked at 180 ° C. for 20 minutes. In the following evaluation, the film thickness was set to 20 μm for the film appearance, corrosion resistance, and electrical insulation.

4.評価方法
得られた各種表面処理金属材料について、下記に示す方法により被膜外観、被膜析出性、耐食性、電気絶縁性の評価を行った。
4). Evaluation method The various surface-treated metal materials obtained were evaluated for coating appearance, coating deposition, corrosion resistance, and electrical insulation by the following methods.

(1)被膜外観
実施例、比較例において作製した処理板試料の外観を目視で判定した。
評価基準:◎異常なし、○ピンホール、膨れ、割れ不良5ヶ未満有り、△ピンホール、膨れ、割れ不良5ヶ以上20ヶ未満有り、×ピンホール、膨れ、割れ不良20ヶ以上有り
(1) Appearance of coating The appearance of the treated plate samples prepared in Examples and Comparative Examples was visually determined.
Evaluation criteria: ◎ No abnormality, ○ Pinhole, bulge, crack failure less than 5 pieces, △ Pinhole, bulge, crack failure from 5 pieces to less than 20 pieces, × Pinhole, bulge, crack failure, 20 pieces or more

(2)被膜析出性
処理時間300秒で成膜処理した処理板試料の膜厚を渦電流式膜厚計LZ−373(ケツト科学研究所製)を用いて測定した。
評価基準:◎25μm以上、○15μm以上25μm未満、△5μm以上15μm未満、×5μm未満
(2) Film deposition property The film thickness of the treated plate sample subjected to the film formation treatment at a treatment time of 300 seconds was measured using an eddy current type film thickness meter LZ-373 (manufactured by Kett Science Laboratory).
Evaluation criteria: ◎ 25 μm or more, ○ 15 μm or more and less than 25 μm, Δ5 μm or more and less than 15 μm, × 5 μm or less

(3)耐食性
実施例、比較例において作製した処理板試料について、無加工(平面部)の耐食性試験を行った。評価方法は次の通りである。
(3) Corrosion resistance About the process board sample produced in the Example and the comparative example, the non-processed (plane part) corrosion resistance test was done. The evaluation method is as follows.

(平面部)
塩水噴霧試験法JIS−Z−2371に準じて塩水噴霧480時間後の白錆発生面積を求め評価した。
評価基準:白錆発生面積◎10%未満、○10%以上〜30%未満、△30%以上〜60%未満、×60%以上
(Flat part)
According to the salt spray test method JIS-Z-2371, the white rust generation area after 480 hours of salt spray was determined and evaluated.
Evaluation criteria: White rust generation area ◎ <10%, ○ 10% to less than 30%, △ 30% to less than 60%, x60% or more

(4)電気絶縁性
実施例、比較例において作製した処理板試料について、電気絶縁性を耐電圧としてJIS−C2110に準じて測定した。試験機については耐電圧試験機TOS5051(菊水電子製)、真鍮製φ25mm円柱型の同径電極を用いた。初期電圧を100Vとし、各電圧において20秒保持した後、100V毎印加電圧を上昇させ、被膜を流れる電流値が10mAを超えた時に被膜は絶縁破壊を起こしたと判断し、その時に印加した電圧を耐電圧とした。尚、該試験機の測定可能電圧の最大値は5,000Vである。
評価基準:耐電圧◎3,000V以上、○1,500V以上3,000V未満、△500V以上1,500V未満、×500V未満
(4) Electrical insulation The processing plate samples produced in the examples and comparative examples were measured according to JIS-C2110 with the electrical insulation as a withstand voltage. With respect to the tester, a withstand voltage tester TOS5051 (manufactured by Kikusui Electronics Co., Ltd.), a brass φ25 mm cylindrical electrode having the same diameter was used. The initial voltage is set to 100 V, and after holding at each voltage for 20 seconds, the applied voltage is increased every 100 V. When the current value flowing through the film exceeds 10 mA, it is determined that the film has undergone dielectric breakdown. Withstand voltage. The maximum measurable voltage of the testing machine is 5,000V.
Evaluation criteria: Withstand voltage ◎ 3,000 V or more, ○ 1,500 V or more and less than 3,000 V, Δ500 V or more and less than 1,500 V, or less than × 500 V

(5)貯蔵安定性
実施例、比較例の処理液を作製してから常温のもと1ヵ月後の状態を貯蔵安定性として次のように評価した。
評価基準:◎変化なし、○不溶物5体積%未満、△不溶物5体積%以上20体積%未満、×不溶物20体積%以上
(5) Storage stability After preparing the treatment liquids of Examples and Comparative Examples, the state after 1 month at room temperature was evaluated as storage stability as follows.
Evaluation criteria: ◎ No change, ○ Insoluble matter less than 5% by volume, ΔInsoluble matter 5% by volume or more and less than 20% by volume, X Insoluble matter 20% by volume or more

(6)総合評価
前記(1)から(5)の評価結果を次に規定する点数基準に基づき合計点を算出した。
被膜外観: ◎3pt、○2pt、△1pt、×0pt
被膜析出性: ◎6pt、○4pt、△2pt、×0pt
耐食性: ◎3pt、○2pt、△1pt、×0pt
電気絶縁性: ◎3pt、○2pt、△1pt、×0pt
貯蔵安定性: ◎3pt、○2pt、△1pt、×0pt
(6) Comprehensive evaluation The total score was calculated based on the score standard which prescribes | regulates the evaluation result of said (1) to (5) next.
Film appearance: ◎ 3pt, ○ 2pt, Δ1pt, × 0pt
Film deposition property: ◎ 6pt, ○ 4pt, Δ2pt, × 0pt
Corrosion resistance: ◎ 3pt, ○ 2pt, Δ1pt, × 0pt
Electrical insulation: ◎ 3pt, ○ 2pt, Δ1pt, × 0pt
Storage stability: ◎ 3pt, ○ 2pt, Δ1pt, × 0pt

Claims (12)

少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄源と、可溶型フッ素源と、分子内に少なくとも1つ以上のカルボキシル基又はカルボキシル基の塩を有する有機成分と、を水系溶媒に添加する工程を含み、
前記工程では、前記水系溶媒中に溶解している可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、前記有機成分が有機酸金属塩である場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[有機酸金属塩由来の金属カチオン成分のモル数])}を1.0〜3.2とすることを特徴とする、多種金属材料用自己析出型被覆組成物の製造方法。
Organic component having at least one water-dispersible or water-soluble anionic organic resin, a soluble trivalent iron source, a soluble fluorine source, and at least one carboxyl group or carboxyl group salt in the molecule And adding to an aqueous solvent,
In the step, the molar ratio of soluble fluorine to soluble trivalent iron dissolved in the aqueous solvent ([number of moles of soluble fluorine]) / ([number of moles of soluble trivalent iron]. ]) {Here, when the organic component is an organic acid metal salt, ([mol number of soluble fluorine]) / ([mol number of soluble trivalent iron] + [organic acid metal salt] The number of moles of the derived metal cation component])} is set to 1.0 to 3.2. A method for producing a self-deposition coating composition for various metal materials.
前記有機成分が、分子内に2つ以上のカルボキシル基又はカルボキシル基の塩を有する、請求項1記載の製造方法。   The production method according to claim 1, wherein the organic component has two or more carboxyl groups or salts of carboxyl groups in the molecule. 前記工程では、前記水系溶媒中に溶解している可溶型3価鉄に対する前記有機成分由来の可溶型有機成分のモル比([可溶型有機成分のモル数]/[可溶型3価鉄のモル数])を0.01〜1.0とする、請求項1又は2記載の製造方法。   In the step, the molar ratio of the soluble organic component derived from the organic component to the soluble trivalent iron dissolved in the aqueous solvent ([mol number of soluble organic component] / [soluble type 3] The manufacturing method of Claim 1 or 2 which makes 0.01-1.0 the number-of-moles of valence iron]). 前記工程にて、更に酸化剤を前記溶媒に添加する、請求項1〜3のいずれか一項記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein an oxidizing agent is further added to the solvent in the step. 前記多種金属材料の一種が、アルミニウム系材料である、請求項1〜4のいずれか一項記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein one kind of the multi-metallic material is an aluminum-based material. 水系溶媒中に、少なくとも、水分散性又は水溶性のアニオン性有機樹脂と、可溶型3価鉄と、可溶型フッ素と、を含有する多種金属用自己析出型被覆組成物において、
分子内に少なくとも1つ以上のカルボキシル基若しくはカルボキシル基の塩を有する有機成分に由来した可溶型有機成分を更に含有し、且つ、可溶型3価鉄に対する可溶型フッ素のモル比([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]){ここで、当該組成物が、Al3+、Ti4+、Mn4+、Co2+、Ni2+、Zn2+、Zr4+及びMg2+からなる群より選択される少なくとも1種以上の可溶型金属イオンを更に含有する場合には、([可溶型フッ素のモル数])/([可溶型3価鉄のモル数]+[可溶型金属イオンの合計モル数])}が、1.0〜3.2であることを特徴とする、多種金属材料用自己析出型被覆組成物。
In an aqueous solvent, at least a water-dispersible or water-soluble anionic organic resin, soluble trivalent iron, and soluble fluorine, a self-deposition coating composition for multiple metals,
It further contains a soluble organic component derived from an organic component having at least one carboxyl group or a carboxyl group salt in the molecule, and a molar ratio of soluble fluorine to soluble trivalent iron ([ Mole number of soluble type fluorine]) / ([Mole number of soluble type trivalent iron]) {wherein the composition contains Al 3+ , Ti 4+ , Mn 4+ , Co 2+ , Ni 2+ , Zn 2+ , When it further contains at least one soluble metal ion selected from the group consisting of Zr 4+ and Mg 2+ , ([mol number of soluble fluorine]) / ([soluble trivalent iron] The total number of moles of the soluble metal ions])} is 1.0 to 3.2. A self-deposition coating composition for multi-metallic materials.
前記有機成分が、分子内に2つ以上のカルボキシル基又はカルボキシル基の塩を有する、請求項6記載の多種金属材料用自己析出型被覆組成物。   The self-deposition type coating composition for multi-metallic materials according to claim 6, wherein the organic component has two or more carboxyl groups or salts of carboxyl groups in the molecule. 前記水系溶媒中に溶解している可溶型3価鉄に対する前記有機成分由来の可溶型有機成分のモル比([可溶型有機成分のモル数]/[可溶型3価鉄のモル数])が、0.01〜1.0である、請求項6又は7記載の多種金属材料用自己析出型被覆組成物。   Molar ratio of soluble organic component derived from the organic component to soluble trivalent iron dissolved in the aqueous solvent ([mol number of soluble organic component] / [mol of soluble trivalent iron] The number]) is 0.01 to 1.0, and the self-deposition coating composition for multi-metallic materials according to claim 6 or 7. 更に酸化剤を含有する、請求項6〜8のいずれか一項記載の多種金属材料用自己析出型被覆組成物。   Furthermore, the self-deposition type | mold coating composition for multi-metallic materials as described in any one of Claims 6-8 containing an oxidizing agent. 前記多種金属材料の一種が、アルミニウム系材料である、請求項6〜9のいずれか一項記載の多種金属材料用自己析出型被覆組成物。   The self-deposition coating composition for multi-metallic materials according to any one of claims 6 to 9, wherein one of the multi-metallic materials is an aluminum-based material. 請求項6〜10のいずれか一項記載の多種金属材料用自己析出型被覆組成物を、金属材料に接触させる工程を含むことを特徴とする、有機樹脂被膜を有する金属材料の製造方法。   A method for producing a metal material having an organic resin coating, comprising the step of bringing the self-deposition coating composition for multi-metallic materials according to any one of claims 6 to 10 into contact with a metal material. 前記金属材料が、アルミニウム系材料である、請求項11記載の製造方法。   The manufacturing method according to claim 11, wherein the metal material is an aluminum-based material.
JP2013159684A 2013-07-31 2013-07-31 Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same Active JP6043689B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013159684A JP6043689B2 (en) 2013-07-31 2013-07-31 Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same
PCT/JP2014/067174 WO2015015971A1 (en) 2013-07-31 2014-06-27 Self-depositing coating composition for numerous kinds of metal materials, manufacturing method therefor, metal material with organic resin film, and manufacturing method therefor
TW103125058A TW201510276A (en) 2013-07-31 2014-07-22 Self-precipitation coating composition for various metal materials and method for producing the same, and metal material with organic resin coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159684A JP6043689B2 (en) 2013-07-31 2013-07-31 Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015030864A JP2015030864A (en) 2015-02-16
JP6043689B2 true JP6043689B2 (en) 2016-12-14

Family

ID=52431512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159684A Active JP6043689B2 (en) 2013-07-31 2013-07-31 Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same

Country Status (3)

Country Link
JP (1) JP6043689B2 (en)
TW (1) TW201510276A (en)
WO (1) WO2015015971A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214266A (en) * 1992-01-31 1993-08-24 Nippon Parkerizing Co Ltd Self-depositing water-based coating composition
US5486414A (en) * 1994-07-18 1996-01-23 Henkel Corporation Dual coated metal substrates and method of making
JP3860693B2 (en) * 1999-12-17 2006-12-20 日本パーカライジング株式会社 Self-depositing type coating composition, method for coating metal surface, and coated metal material

Also Published As

Publication number Publication date
JP2015030864A (en) 2015-02-16
WO2015015971A1 (en) 2015-02-05
TW201510276A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
US9347134B2 (en) Corrosion resistant metallate compositions
JP6526968B2 (en) Pre-treatment of zinc surface before passivation process
JP5130226B2 (en) Aqueous reaction solution and method for passivating workpieces with zinc or zinc alloy surfaces
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
US9797044B2 (en) Aqueous acidic composition for forming chromium-containing chemical conversion coating on iron-based member, and iron-based member having chemical conversion coating formed using the composition
US20110159315A1 (en) Finishing Agent and Member Having an Overcoat Formed from the Finishing Agent
CA2612107C (en) Method for treatment of chemically passivated galvanized surfaces to improve paint adhesion
KR100921116B1 (en) Surface-treated metallic material
EP0119608B1 (en) Coating composite for extended corrosion resistance
US20220364240A1 (en) Bismuth compositions for metal pretreatment applications
JP6216936B2 (en) Method for producing member having reactive composition and acidic coating for chemical conversion treatment and chemical coating on its surface
JP6051171B2 (en) Process and composition for improving the corrosion performance of zinc surfaces pretreated with zirconium oxide
US11008659B2 (en) Trivalent chromium chemical conversion liquid for zinc or zinc alloy bases and chemical conversion coating film
JP6043689B2 (en) Self-deposition type coating composition for various metal materials and method for producing the same, metal material having organic resin film and method for producing the same
US20170137947A1 (en) Processes and compositions for improving corrosion performance of zirconium oxide pretreated zinc surfaces
JP6622206B2 (en) Method for coating metal surface, substrate coated by said method and use thereof
JP5660751B2 (en) Chemical conversion aqueous solution for forming a chromium-free conversion coating on zinc or zinc alloy plating and a chromium-free conversion coating obtained therefrom
KR20080087477A (en) Trivalent chromate solution, chromated metal, and method for manufactring the chromated metal
JP6964406B2 (en) Oxide film remover, oxide film removal method, surface treatment method and manufacturing method of metal material from which the oxide film has been removed
JP4419555B2 (en) Manufacturing method of surface-treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6043689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250