JP6962081B2 - Multi-level power converter - Google Patents

Multi-level power converter Download PDF

Info

Publication number
JP6962081B2
JP6962081B2 JP2017170739A JP2017170739A JP6962081B2 JP 6962081 B2 JP6962081 B2 JP 6962081B2 JP 2017170739 A JP2017170739 A JP 2017170739A JP 2017170739 A JP2017170739 A JP 2017170739A JP 6962081 B2 JP6962081 B2 JP 6962081B2
Authority
JP
Japan
Prior art keywords
common
connection point
potential
switch
common connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170739A
Other languages
Japanese (ja)
Other versions
JP2019047686A (en
Inventor
一伸 大井
賢司 小堀
鎮教 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2017170739A priority Critical patent/JP6962081B2/en
Publication of JP2019047686A publication Critical patent/JP2019047686A/en
Application granted granted Critical
Publication of JP6962081B2 publication Critical patent/JP6962081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、マルチレベル電力変換装置に係り、特に、直流電圧が指令値からずれてしまった場合でも出力電圧が歪まないようにする技術に関する。 The present invention relates to a multi-level power converter, and more particularly to a technique for preventing the output voltage from being distorted even when the DC voltage deviates from the command value.

電力変換装置の構成例として、特許文献1等に5レベルインバータが開示されている。図12に5レベルインバータを簡略化した構成を示す。 As a configuration example of the power conversion device, a 5-level inverter is disclosed in Patent Document 1 and the like. FIG. 12 shows a simplified configuration of the 5-level inverter.

直流部にはそれぞれ直流電圧V1,V2,V3,V4に充電された4台の第1〜第4直流電源(コンデンサ)C1〜C4によりV1+V2,V2,0,−V3,−V3−V4の5つの電位レベルが生成される。スイッチング素子により出力端子Oと直流部の1つの電位レベルを導通させ、電圧を出力する。なお、上記の各電位レベルは、第2直流電源C2と第3直流電源コンデンサC3の共通接続点NPを基準とした電位である。 The DC section is V1 + V2, V2, 0, -V3, -V3-V4 5 by four first to fourth DC power supplies (capacitors) C1 to C4 charged to DC voltages V1, V2, V3, V4, respectively. Two potential levels are generated. A switching element makes the output terminal O and one potential level of the DC unit conductive, and outputs a voltage. Each of the above potential levels is a potential based on the common connection point NP of the second DC power supply C2 and the third DC power supply capacitor C3.

図13は、特許文献4に記載された図12と同様に直流電源を4つ直列接続した5レベル電力変換装置の構成例である。 FIG. 13 is a configuration example of a 5-level power conversion device in which four DC power supplies are connected in series as in FIG. 12 described in Patent Document 4.

特許文献1の構成では、電位レベルV2,−V3はフライングキャパシタによって生成される。図6に、フライングキャパシタを有する5レベル電力変換装置の構成(1相あたり)を示す。 In the configuration of Patent Document 1, the potential levels V2 and −V3 are generated by the flying capacitor. FIG. 6 shows the configuration (per phase) of a 5-level power converter having a flying capacitor.

特開2015−220765号公報JP-A-2015-220765 特開平10−164856号公報Japanese Unexamined Patent Publication No. 10-164856 特開2013−211970号公報Japanese Unexamined Patent Publication No. 2013-21970 特開2016−32343号公報Japanese Unexamined Patent Publication No. 2016-32343 特開2014−204548号公報Japanese Unexamined Patent Publication No. 2014-204548

マルチレベル電力変換装置では、直流電圧V1,V2,V3,V4が常に規定の値になるようにすることが重要である。特許文献1ではフライングキャパシタを規定値に制御する方法が紹介されており、定常的には直流電圧V1,V2,V3,V4を規定値に制御できる。 In a multi-level power converter, it is important that the DC voltages V1, V2, V3, and V4 are always at specified values. Patent Document 1 introduces a method of controlling a flying capacitor to a specified value, and can constantly control DC voltages V1, V2, V3, and V4 to a specified value.

しかし、負荷変動による出力電流の急変などにより、過渡的に直流電圧V1,V2,V3,V4が規定値からずれてしまう場合がある。このような状態では、以下に示すように出力電圧に歪みが生じてしまう。 However, the DC voltages V1, V2, V3, and V4 may transiently deviate from the specified values due to a sudden change in the output current due to load fluctuations. In such a state, the output voltage is distorted as shown below.

電圧指令値V*と出力電圧Voの関係を説明する。電圧指令値V*とキャリア三角波との比較に基づいてスイッチング素子をオンオフさせるPWM変調においては、電圧指令値V*=0.5の場合、図12の上から2段目の電位レベルと出力端子Oがスイッチング素子により接続され、出力電圧Vo=V2となる。 The relationship between the voltage command value V * and the output voltage Vo will be described. In PWM modulation that turns the switching element on and off based on the comparison between the voltage command value V * and the carrier triangle wave, when the voltage command value V * = 0.5, the potential level and output terminal in the second stage from the top of FIG. O is connected by a switching element, and the output voltage Vo = V2.

電圧指令値V*=−0.8ならば、キャリア三角波1周期あたり最下段の電位−V3−V4が出力される期間が60%,上から4番目の電位−V3が出力される期間が40%となり、キャリア1周期平均の出力電圧はVo=0.6×(−V3−V4)+0.4×−V3=−V3−0.6×V4となる。任意の電圧指令値V*に対する出力電圧Voは以下の(1)式で表される。 If the voltage command value V * = -0.8, the period during which the lowest potential -V3-V4 is output is 60% and the period during which the fourth potential-V3 from the top is output is 40 per one cycle of the carrier triangle wave. %, And the output voltage of the carrier 1 cycle average is Vo = 0.6 × (−V3-V4) +0.4 × −V3 = −V3-0.6 × V4. The output voltage Vo for an arbitrary voltage command value V * is expressed by the following equation (1).

Figure 0006962081
Figure 0006962081

(1)式の関係を図14に示す。ここでは、直流電圧V1,V3が規定値よりも過剰、直流電圧V2,V4が規定値よりも不足した状態であることを想定している。電圧指令値V*と出力電圧Voの関係は直線ではない。この条件で、図15(a)に示すように電圧指令値V*として正弦波を与えると、出力電圧Voは図15(b)に示すように歪んでしまう。 The relationship of equation (1) is shown in FIG. Here, it is assumed that the DC voltages V1 and V3 are excessive than the specified values and the DC voltages V2 and V4 are insufficient than the specified values. The relationship between the voltage command value V * and the output voltage Vo is not a straight line. Under this condition, if a sine wave is applied as the voltage command value V * as shown in FIG. 15 (a), the output voltage Vo is distorted as shown in FIG. 15 (b).

出力電圧歪みは出力電流歪みの原因となり、系統連系用途であればフィルタリアクトルやトランス、コンデンサの発熱や焼損等、他の装置に悪影響を与える原因となる。モータ駆動用途においても鉄損増加やトルクリプルの原因となる。そのため、出力電圧Voの歪みは小さくしなければならない。 Output voltage distortion causes output current distortion, and in system interconnection applications, it causes adverse effects on other devices such as heat generation and burning of filter reactors, transformers, and capacitors. It also causes increased iron loss and torque ripple in motor drive applications. Therefore, the distortion of the output voltage Vo must be reduced.

出力電圧Voの歪みを小さくするには、直流電圧V1,V2,V3,V4の変動を抑える必要がある。そのためには直流コンデンサ容量を増加する必要があり、装置の容積やコストが増加してしまう。 In order to reduce the distortion of the output voltage Vo, it is necessary to suppress fluctuations in the DC voltages V1, V2, V3 and V4. For that purpose, it is necessary to increase the capacity of the DC capacitor, which increases the volume and cost of the device.

直流コンデンサ容量を増加せずに出力電圧の歪みを抑制する方法として、特許文献2,3が開示されている。特許文献2にはキャリア三角波の振幅を補正する手段、特許文献3には電圧指令値を補正する手段が開示されている。しかし、これらは3レベルインバータ向けの技術であり、そのままでは5レベルインバータに適用することができない。 Patent Documents 2 and 3 are disclosed as a method of suppressing distortion of an output voltage without increasing the capacity of a DC capacitor. Patent Document 2 discloses a means for correcting the amplitude of a carrier triangular wave, and Patent Document 3 discloses a means for correcting a voltage command value. However, these are technologies for 3-level inverters and cannot be applied to 5-level inverters as they are.

特許文献4には、空間ベクトル変調適用時の5レベルインバータにおける出力電圧歪みの抑制方法が開示されている。しかし、PWM変調には適用することができない。また、特許文献4の図19には複数の直流電圧が変動すると演算が難しいとの記述がある。 Patent Document 4 discloses a method of suppressing output voltage distortion in a 5-level inverter when space vector modulation is applied. However, it cannot be applied to PWM modulation. Further, FIG. 19 of Patent Document 4 describes that the calculation is difficult when a plurality of DC voltages fluctuate.

以上示したようなことから、マルチレベル電力変換装置において、直流電圧が規定値からずれてしまった場合においても、直流コンデンサ容量を増加せずに出力電圧の歪みを抑制することが課題となる。 From the above, even if the DC voltage deviates from the specified value in the multi-level power converter, it is an issue to suppress the distortion of the output voltage without increasing the capacity of the DC capacitor.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、第1〜第4直流電源を順次直列接続し、前記第1直流電源の正極端子の電位、または、前記第1,第2直流電源の共通接続点の電位、または、前記第2,第3直流電源の共通接続点の電位、または、前記第3,第4直流電源の共通接続点の電位、または、前記第4直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、前記各第1〜第4直流電源の直流電圧V1〜V4を検出し、前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式により、補正後の電圧指令値V*’を算出し、前記補正後の電圧指令値V*’に基づいてマルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is the potential of the positive terminal of the first DC power supply or the above-mentioned one in which the first to fourth DC power supplies are sequentially connected in series. The potential of the common connection point of the first and second DC power supplies, the potential of the common connection point of the second and third DC power supplies, or the potential of the common connection point of the third and fourth DC power supplies, or. A two-phase or higher multi-level power converter that selects and outputs from the potential of the negative terminal of the fourth DC power supply, and detects the DC voltages V1 to V4 of each of the first to fourth DC power supplies. Based on the DC voltages V1 to V4 and the voltage command value V *, the corrected voltage command value V *'is calculated by the following equation (3), and the corrected voltage command value V *'is set. Based on this, it is characterized in that a gate signal of a switching element in a multi-level power converter is generated.

Figure 0006962081
Figure 0006962081

また、その一態様として、前記(3)式の1/2Vn(n=1,2,3,4)に、以下の(4)式を代入した以下の(5)式によって補正後の電圧指令値V*’を生成することを特徴とする。 Further, as one aspect thereof, the voltage command corrected by the following equation (5) in which the following equation (4) is substituted for 1 / 2Vn (n = 1, 2, 3, 4) of the above equation (3). It is characterized by generating a value V *'.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

また、他の態様として、前記(3)式の1/2Vn(n=1,2,3,4)に、以下の(6)式を代入して補正後の電圧指令値V*’を生成することを特徴とする。 Further, as another embodiment, the following equation (6) is substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the equation (3) to generate the corrected voltage command value V *'. It is characterized by doing.

Figure 0006962081
Figure 0006962081

また、その他の態様として、第1〜第8直流電源を順次直列接続し、前記第1直流電源の正極端子の電位と、前記第1,第2直流電源の共通接続点の電位と、前記第2,第3直流電源の共通接続点の電位と、前記第3,第4直流電源の共通接続点の電位と、前記第4,第5直流電源の共通接続点の電位と、前記第5,第6直流電源の共通接続点の電位と、前記第6,第7直流電源の共通接続点の電位と、前記第7,第8直流電源の共通接続点の電位と、前記第8直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、前記各第1〜第8直流電源の直流電圧V1〜V8を検出し、前記直流電圧V1〜V8、および、電圧指令値V*に基づいて、以下の(9)式によって、補正後の電圧指令値V*’を生成し、前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とする。 Further, as another embodiment, the first to eighth DC power supplies are sequentially connected in series, the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, and the first. The potential of the common connection point of the second and third DC power supplies, the potential of the common connection point of the third and fourth DC power supplies, the potential of the common connection point of the fourth and fifth DC power supplies, and the fifth and fifth. The potential of the common connection point of the 6th DC power supply, the potential of the common connection point of the 6th and 7th DC power supplies, the potential of the common connection point of the 7th and 8th DC power supplies, and the potential of the 8th DC power supply. It is a multi-level power converter of two or more phases that selects and outputs from the potential of the negative electrode terminal, detects the DC voltages V1 to V8 of each of the first to eighth DC power supplies, and detects the DC voltages V1 to V8. , And, based on the voltage command value V *, the corrected voltage command value V *'is generated by the following equation (9), and the multi-level power is generated based on the corrected voltage command value V *'. It is characterized by generating a gate signal of a switching element in a conversion device.

Figure 0006962081
Figure 0006962081

また、その一態様として、前記(9)式の1/4Vn(n=1,2,...,8)に、以下の(10)式を代入して補正後の電圧指令値V*’を生成することを特徴とする。 Further, as one aspect thereof, the voltage command value V *'after correction by substituting the following equation (10) into 1/4 Vn (n = 1, 2, ..., 8) of the equation (9). Is characterized in that.

Figure 0006962081
Figure 0006962081

また、他の態様として、前記(9)式の1/4Vn(n=1,2,...,8)に、以下の(11)式を代入して補正後の電圧指令値V*’を生成することを特徴とする。 Further, as another embodiment, the voltage command value V *'after correction by substituting the following equation (11) into 1/4 Vn (n = 1, 2, ..., 8) of the equation (9). Is characterized in that.

Figure 0006962081
Figure 0006962081

また、その他の態様として、各相共通の共通モジュールと、前記共通モジュールに接続された2相以上の相モジュールと、を備え、前記共通モジュールは、直列接続された第1,第2直流電源と、前記第1直流電源の正極端に一端が接続された第1共通スイッチと、前記第1直流電源の負極端に一端が接続された第4共通スイッチと、前記第1共通スイッチの他端と前記第4共通スイッチの他端との間に接続された第1フライングキャパシタと、前記第1共通スイッチと前記第1フライングキャパシタの共通接続点と、前記第4共通スイッチと前記第1フライングキャパシタの共通接続点と、の間に直列接続された第2,第3共通スイッチと、前記第2直流電源の正極端に一端が接続された第5共通スイッチと、前記第2直流電源の負極端に一端が接続された第8共通スイッチと、前記第5共通スイッチの他端と前記第8共通スイッチの他端との間に接続された第2フライングキャパシタと、前記第5共通スイッチと前記第2フライングキャパシタの共通接続点と、前記第8共通スイッチと前記第2フライングキャパシタの共通接続点と、の間に直列接続された第6,第7共通スイッチと、を有し、前記相モジュールは、前記第1共通スイッチの一端側、または、前記第2,第3共通スイッチの共通接続点、または、前記第4,第5共通スイッチの共通接続点、または、前記第6,第7共通スイッチの共通接続点、または、前記第8共通スイッチの一端側を入力端子とし、前記各入力端子と出力端子の間にスイッチングデバイスを有し、各入力端子の電位の中から選択して出力するマルチレベル電力変換装置であって、前記第1共通スイッチと前記第3共通スイッチ、あるいは、前記第5共通スイッチと前記第7共通スイッチをオンするMODE1と、前記第2共通スイッチと前記第4共通スイッチ、あるいは、前記第6共通スイッチと前記第8共通スイッチをオンするMODE2を備え、前記第1直流電源の電圧VDCP、前記第2直流電源の電圧VDCN、前記第1フライングキャパシタの電圧VFCP、前記第2フライングキャパシタの電圧VFCNを検出し、各MODE別に、以下の(12)式〜(15)式によって、前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点間の直流電圧V1,前記第2,第3共通スイッチの共通接続点と前記第4,第5共通スイッチの共通接続点間の直流電圧V2、前記第4,第5共通スイッチの共通接続点と前記第6,第7共通スイッチの共通接続点間の直流電圧V3、前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端間の直流電圧V4、を演算し、前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式によって、補正後の電圧指令値V*’を生成し、前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内の相モジュールのスイッチングデバイスのゲート信号を生成することを特徴とする。 Further, as another aspect, a common module common to each phase and two or more phase modules connected to the common module are provided, and the common module is connected to a first and second DC power supplies connected in series. A first common switch having one end connected to the positive end of the first DC power supply, a fourth common switch having one end connected to the negative end of the first DC power supply, and the other end of the first common switch. The first flying capacitor connected between the other ends of the fourth common switch, the common connection point between the first common switch and the first flying capacitor, and the fourth common switch and the first flying capacitor. The second and third common switches connected in series between the common connection points, the fifth common switch having one end connected to the positive end of the second DC power supply, and the negative end of the second DC power supply. An eighth common switch to which one end is connected, a second flying capacitor connected between the other end of the fifth common switch and the other end of the eighth common switch, the fifth common switch, and the second. The phase module has a common connection point of the flying capacitor and a sixth and seventh common switches connected in series between the eighth common switch and the common connection point of the second flying capacitor. One end side of the first common switch, the common connection point of the second and third common switches, the common connection point of the fourth and fifth common switches, or the sixth and seventh common switches. A multi-level that has a common connection point or one end side of the 8th common switch as an input terminal, has a switching device between each input terminal and an output terminal, and outputs by selecting from the potential of each input terminal. A power conversion device, the MODE1 for turning on the first common switch and the third common switch, or the fifth common switch and the seventh common switch, and the second common switch and the fourth common switch. Alternatively, the sixth common switch and the MODE2 for turning on the eighth common switch are provided, the voltage VDCP of the first DC power supply, the voltage VDCN of the second DC power supply, the voltage VFCP of the first flying capacitor, and the second. The voltage VFCN of the flying capacitor is detected, and the DC voltage between one end of the first common switch and the common connection point of the second and third common switches is calculated according to the following equations (12) to (15) for each MODE. V1, DC voltage V between the common connection point of the second and third common switches and the common connection point of the fourth and fifth common switches 2. DC voltage V3 between the common connection point of the 4th and 5th common switches and the common connection point of the 6th and 7th common switches, and the common connection point of the 6th and 7th common switches and the 8th common. The DC voltage V4 between one ends of the switch is calculated, and the corrected voltage command value V *'is generated by the following equation (3) based on the DC voltages V1 to V4 and the voltage command value V *. Then, based on the corrected voltage command value V *', the gate signal of the switching device of the phase module in the multi-level power conversion device is generated.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

また、その一態様として、前記(3)式の1/2Vn(n=1,2,3,4)に、以下の(4)式を代入した以下の(5)式によって補正後の電圧指令値V*’を生成することを特徴とする。 Further, as one aspect thereof, the voltage command corrected by the following equation (5) in which the following equation (4) is substituted for 1 / 2Vn (n = 1, 2, 3, 4) of the above equation (3). It is characterized by generating a value V *'.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

また、他の態様として、前記(3)式の1/2Vn(n=1,2,3,4)に、以下の(6)式を代入して補正後の電圧指令値V*’を生成することを特徴とする。 Further, as another embodiment, the following equation (6) is substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the equation (3) to generate the corrected voltage command value V *'. It is characterized by doing.

Figure 0006962081
Figure 0006962081

また、その一態様として、 前記各相の相モジュールは、前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点との間に順次直列接続された第1,第2スイッチングデバイスと、前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端との間に順次直列接続された第3,第4スイッチングデバイスと、前記第1,第2スイッチングデバイスの共通接続点と前記第3,第4スイッチングデバイスの共通接続点との間に順次直列接続された第5,第6,第7,第8スイッチングデバイスと、前記第5,第6スイッチングデバイスの共通接続点と前記第7,第8スイッチングデバイスの共通接続点との間に順次直列接続された第1,第2ダイオードと、を有し、前記第1,第2ダイオードの共通接続点を前記第1,第2直流電源の共通接続点と接続し、前記第6,第7スイッチングデバイスの共通接続点を出力端子としたことを特徴とする。 Further, as one aspect thereof, the phase modules of the respective phases are sequentially connected in series between one end of the first common switch and the common connection point of the second and third common switches. The device, the third and fourth switching devices sequentially connected in series between the common connection point of the sixth and seventh common switches and one end of the eighth common switch, and the first and second switching devices. The 5th, 6th, 7th, and 8th switching devices sequentially connected in series between the common connection point and the common connection point of the 3rd and 4th switching devices, and the 5th and 6th switching devices are common. It has first and second diodes sequentially connected in series between the connection point and the common connection point of the seventh and eighth switching devices, and the common connection point of the first and second diodes is the first. It is characterized in that it is connected to the common connection point of the first and second DC power supplies and the common connection point of the sixth and seventh switching devices is used as an output terminal.

本発明によれば、マルチレベル電力変換装置において、直流電圧が規定値からずれてしまった場合においても、直流コンデンサ容量を増加せずに出力電圧の歪みを抑制することが可能となる。 According to the present invention, in the multi-level power converter, even when the DC voltage deviates from the specified value, it is possible to suppress the distortion of the output voltage without increasing the capacity of the DC capacitor.

実施形態1におけるマルチレベル電力変換装置の制御ブロックを示す図。The figure which shows the control block of the multi-level power conversion apparatus in Embodiment 1. FIG. 実施形態2におけるマルチレベル電力変換装置の制御ブロックを示す図。The figure which shows the control block of the multi-level power conversion apparatus in Embodiment 2. FIG. 9レベル電力変換装置の構成を示す簡略図。The simplified figure which shows the structure of the 9-level power conversion apparatus. 9レベル電力変換装置の主回路構成の一例を示す図。The figure which shows an example of the main circuit composition of a 9-level power converter. 実施形態3におけるマルチレベル電力変換装置の制御ブロックを示す図。The figure which shows the control block of the multi-level power conversion apparatus in Embodiment 3. FIG. 実施形態4における主回路構成を示す図。The figure which shows the main circuit configuration in Embodiment 4. 実施形態4における直流電圧の演算ブロックを示す図。The figure which shows the calculation block of the DC voltage in Embodiment 4. FIG. 第1フライングキャパシタ側のスイッチングパターンのMODE1を示す図。The figure which shows MODE1 of the switching pattern on the 1st flying capacitor side. 第1フライングキャパシタ側のスイッチングパターンのMODE2を示す図。The figure which shows MODE2 of the switching pattern on the 1st flying capacitor side. 第2フライングキャパシタ側のスイッチングパターンのMODE1を示す図。The figure which shows MODE1 of the switching pattern on the 2nd flying capacitor side. 第2フライングキャパシタ側のスイッチングパターンのMODE2を示す図。The figure which shows MODE2 of the switching pattern on the 2nd flying capacitor side. 5レベル電力変換装置の構成を示す簡略図。The simplified figure which shows the structure of the 5 level power conversion apparatus. 従来の5レベル電力変換装置の構成例を示す図。The figure which shows the configuration example of the conventional 5-level power conversion apparatus. 電圧指令値と出力電圧の関係を示す図。The figure which shows the relationship between a voltage command value and an output voltage. 直流電圧のずれにより出力電圧が歪む様子を示す図。The figure which shows how the output voltage is distorted by the deviation of DC voltage.

以下、本願発明におけるマルチレベル電力変換装置の実施形態1〜4を図1〜図11に基づいて詳述する。 Hereinafter, embodiments 1 to 4 of the multi-level power conversion device according to the present invention will be described in detail with reference to FIGS. 1 to 11.

[実施形態1]
本実施形態1では、図12の概略図で示すようなマルチレベル電力変換装置の制御方法について説明する。図12では、簡略して一相のみを示しているが、相数は2以上とする。
[Embodiment 1]
In the first embodiment, a control method of the multi-level power conversion device as shown in the schematic diagram of FIG. 12 will be described. In FIG. 12, only one phase is shown for simplicity, but the number of phases is 2 or more.

図12に示すように、本実施形態1のマルチレベル電力変換装置は、第1〜第4直流電源(コンデンサ)C1〜C4が順次直列接続される。前記第1〜第4直流電源C1〜C4の電圧は、それぞれ、直流電圧V1〜V4である。 As shown in FIG. 12, in the multi-level power conversion device of the first embodiment, the first to fourth DC power supplies (capacitors) C1 to C4 are sequentially connected in series. The voltages of the first to fourth DC power supplies C1 to C4 are DC voltages V1 to V4, respectively.

また、第1直流電源C1の正極端子、第1,第2直流電源C1,C2の共通接続点、第2,第3直流電源C2,C3の共通接続点NP、第3,第4直流電源C3,C4の共通接続点、第4直流電源の負極端子、と出力端子Oとの間にスイッチング素子を設ける。 Further, the positive terminal of the first DC power supply C1, the common connection point of the first and second DC power supplies C1 and C2, the common connection point NP of the second and third DC power supplies C2 and C3, and the third and fourth DC power supplies C3. , A switching element is provided between the common connection point of C4, the negative terminal of the fourth DC power supply, and the output terminal O.

そして、第1直流電源C1の正極端子の電位V1+V2、または、第1,第2直流電源C1,C2の共通接続点の電位V2、または、第2,第3直流電源C2,C3の共通接続点NPの電位0、または、第3,第4直流電源C3,C4の共通接続点の電位−V3、または、第4直流電源の負極端子の電位−V3−V4の中から選択して出力する。 Then, the potential V1 + V2 of the positive terminal of the first DC power supply C1, the potential V2 of the common connection point of the first and second DC power supplies C1 and C2, or the common connection point of the second and third DC power supplies C2 and C3. The potential of the NP is 0, the potential of the common connection point of the third and fourth DC power supplies C3 and C4 is -V3, or the potential of the negative terminal of the fourth DC power supply is -V3-V4.

図1に本実施形態1におけるマルチレベル電力変換装置の制御ブロックを示す。 FIG. 1 shows a control block of the multi-level power conversion device according to the first embodiment.

電圧指令値V*はフィードフォワードで与えられる他、インバータ出力電流指令値とインバータ出力電流検出値との偏差をアンプで増幅した電流制御の結果や、インバータ出力電圧指令値とインバータ出力電圧検出値との偏差をアンプで増幅した電圧制御の結果として与えられる。 In addition to being given by feed forward, the voltage command value V * is the result of current control in which the deviation between the inverter output current command value and the inverter output current detection value is amplified by an amplifier, and the inverter output voltage command value and the inverter output voltage detection value. Is given as a result of voltage control amplified by the amplifier.

直流電圧V1,V2,V3,V4は、正規化された値であり、規定値に等しければ正規化により0.5になるものとする。直流電圧V1〜V4は検出されて制御部に入力される。 The DC voltages V1, V2, V3, and V4 are normalized values, and if they are equal to the specified values, they are normalized to 0.5. The DC voltages V1 to V4 are detected and input to the control unit.

減算器1aは電圧指令値V*から直流電圧V2を減算し、V*−V2を求める。除算器2aは、減算器1aの出力V*−V2を被除数、直流電圧V1を除数として(V*−V2)/V1を求める。乗算器3aは、除算器2aの出力(V*−V2)/V1に1/2を乗算する。加算器4aは、乗算器3aの出力(V*−V2)/2V1に1/2を加算し、(V*−V2)/2V1+1/2を求める。 The subtractor 1a subtracts the DC voltage V2 from the voltage command value V * to obtain V * −V2. The divider 2a obtains (V * -V2) / V1 with the output V * -V2 of the subtractor 1a as the divisor and the DC voltage V1 as the divisor. The multiplier 3a multiplies the output (V * -V2) / V1 of the divider 2a by 1/2. The adder 4a adds 1/2 to the output (V * -V2) / 2V1 of the multiplier 3a to obtain (V * -V2) / 2V1 + 1/2.

除算器2bは、電圧指令値V*を被除数、直流電圧V2を除数としてV*/V2を求める。乗算器3bは、除算器2bの出力V*/V2に1/2を乗算し、V*/2V2を求める。 The divider 2b obtains V * / V2 with the voltage command value V * as the divisor and the DC voltage V2 as the divisor. The multiplier 3b multiplies the output V * / V2 of the divider 2b by 1/2 to obtain V * / 2V2.

除算器2cは電圧指令値V*を被除数、直流電圧V3を除数としてV*/V3を求める。乗算器3cは、除算器2cの出力V*/V3に1/2を乗算し、V*/2V3を求める。 The divider 2c obtains V * / V3 with the voltage command value V * as the divisor and the DC voltage V3 as the divisor. The multiplier 3c multiplies the output V * / V3 of the divider 2c by 1/2 to obtain V * / 2V3.

加算器1bは、電圧指令値V*に直流電圧V3を加算し、V*+V3を求める。除算器2dは、加算器1bの出力V*+V3を被除数、直流電圧V4を除数として(V*+V3)/V4を求める。乗算器3dは、除算器2dの出力(V*+V3)/V4に1/2を乗算し、(V*+V3)/2V4を求める。減算器4bは、乗算器3dの出力(V*+V3)/2V4から1/2を減算し、(V*+V3)/2V4−1/2を求める。 The adder 1b adds the DC voltage V3 to the voltage command value V * to obtain V * + V3. The divider 2d obtains (V * + V3) / V4 with the output V * + V3 of the adder 1b as the divisor and the DC voltage V4 as the divisor. The multiplier 3d multiplies the output (V * + V3) / V4 of the divider 2d by 1/2 to obtain (V * + V3) / 2V4. The subtractor 4b subtracts 1/2 from the output (V * + V3) / 2V4 of the multiplier 3d to obtain (V * + V3) / 2V4-1 / 2.

減算器5aは、電圧指令値V*から直流電圧V2を減算し、V*−V2を求める。比較器6aは、減算器5aの出力V*−V2がプラスなら1,マイナスなら0を出力する。 The subtractor 5a subtracts the DC voltage V2 from the voltage command value V * to obtain V * −V2. The comparator 6a outputs 1 if the output V * −V2 of the subtractor 5a is positive, and 0 if the output V * −V2 is negative.

スイッチSW1の上側端子には加算器4aの出力(V*−V2)/2V1+1/2が入力され、スイッチSW1の下側端子には乗算器3bの出力V*/2V2が入力される。比較器6aの出力が1,すなわちV*>V2ならばスイッチSW1は上側端子入力を出力する。比較器6aの出力が0,すなわちV*<V2ならばスイッチSW1は下側端子入力を出力する。 The output (V * -V2) / 2V1 + 1/2 of the adder 4a is input to the upper terminal of the switch SW1, and the output V * / 2V2 of the multiplier 3b is input to the lower terminal of the switch SW1. If the output of the comparator 6a is 1, that is, V *> V2, the switch SW1 outputs the upper terminal input. If the output of the comparator 6a is 0, that is, V * <V2, the switch SW1 outputs the lower terminal input.

加算器5bは電圧指令値V*に直流電圧V3を加算し、V*+V3を求める。比較器6cは、加算器5bの出力V*+V3がプラスなら1,マイナスなら0を出力する。 The adder 5b adds the DC voltage V3 to the voltage command value V * to obtain V * + V3. The comparator 6c outputs 1 if the output V * + V3 of the adder 5b is positive, and 0 if the output V * + V3 is negative.

スイッチSW2の上側端子には乗算器3cの出力V*/2V3が入力され、スイッチSW2の下側端子には減算器4bの出力(V*+V3)/2V4−1/2が入力される。比較器6cの出力が1,すなわちV*>−V3ならばスイッチSW2は上側端子入力を出力する。比較器6cの出力が0すなわち、V*<−V3ならばスイッチSW2は下側端子入力を出力する。 The output V * / 2V3 of the multiplier 3c is input to the upper terminal of the switch SW2, and the output (V * + V3) / 2V4-1 / 2 of the subtractor 4b is input to the lower terminal of the switch SW2. If the output of the comparator 6c is 1, that is, V *> -V3, the switch SW2 outputs the upper terminal input. If the output of the comparator 6c is 0, that is, V * <-V3, the switch SW2 outputs the lower terminal input.

比較器6bは、電圧指令値V*>0なら1,電圧指令値V*<0なら0を出力する。スイッチSW3の上側端子には、スイッチSW1の出力が入力され、スイッチSW3の下側端子にはスイッチSW2の出力が入力される。V*>0ならばスイッチSW3は上側端子入力を出力し、V*<0ならばスイッチSW3は下側端子入力を出力する。 The comparator 6b outputs 1 if the voltage command value V *> 0 and 0 if the voltage command value V * <0. The output of the switch SW1 is input to the upper terminal of the switch SW3, and the output of the switch SW2 is input to the lower terminal of the switch SW3. If V *> 0, the switch SW3 outputs the upper terminal input, and if V * <0, the switch SW3 outputs the lower terminal input.

スイッチSW3の出力が補正後の電圧指令値V*’となり、補正後の電圧指令値V*’とキャリア三角波とを比較しマルチレベル電力変換装置内のスイッチング素子のゲート信号(オンオフ信号)を生成する。 The output of the switch SW3 becomes the corrected voltage command value V *', and the corrected voltage command value V *'is compared with the carrier triangular wave to generate the gate signal (on / off signal) of the switching element in the multi-level power converter. do.

電圧歪みは、電圧指令値V*をPWM変調する際に(1)式による変換が行われることが原因である。そこで、本実施形態1では電圧指令値V*をあらかじめ(1)式の逆関数で補正する。(1)式の逆関数は、以下の(2)式で表すことができる。 The voltage distortion is caused by the conversion according to the equation (1) when the voltage command value V * is PWM-modulated. Therefore, in the first embodiment, the voltage command value V * is corrected in advance by the inverse function of the equation (1). The inverse function of Eq. (1) can be expressed by Eq. (2) below.

Figure 0006962081
Figure 0006962081

(2)式の出力電圧Voに電圧指令値V*を代入し、その結果得られた(2)式の電圧指令値V*を補正後の電圧指令値V*’とする。補正後の電圧指令値V*’をPWM変調することにより、電圧指令値V*と出力電圧Voを一致させることができる。補正後の電圧指令値V*’の演算式は、以下の(3)式となる。 The voltage command value V * is substituted for the output voltage Vo of the formula (2), and the voltage command value V * of the formula (2) obtained as a result is set as the corrected voltage command value V *'. By PWM-modulating the corrected voltage command value V *', the voltage command value V * and the output voltage Vo can be matched. The calculation formula of the corrected voltage command value V *'is the following formula (3).

Figure 0006962081
Figure 0006962081

図1は、(3)式を演算する制御ブロック図である。 FIG. 1 is a control block diagram for calculating the equation (3).

以上示したように、本実施形態1によれば、以下の効果が得られる。 As shown above, according to the first embodiment, the following effects can be obtained.

5レベル電力変換装置において、各第1〜第4直流電源C1〜C4の直流電圧V1〜V4が規定値からずれてしまった場合でも、交流側の出力電圧Voは指令値通りとすることができるようになり、出力電圧Voの歪みを抑制することができる。これにより、マルチレベル電力変換装置に接続する系統や負荷への悪影響を低減でき、マルチレベル電力変換装置の信頼性を向上させることができる。 In the 5-level power converter, even if the DC voltages V1 to V4 of the first to fourth DC power supplies C1 to C4 deviate from the specified values, the output voltage Vo on the AC side can be set to the command value. Therefore, the distortion of the output voltage Vo can be suppressed. As a result, adverse effects on the system and load connected to the multi-level power converter can be reduced, and the reliability of the multi-level power converter can be improved.

また、出力電圧Voの歪みが抑制されることによって、各第1〜第4直流電源C1〜C4の直流電圧V1〜V4の変動や脈動を許容できるようになるため、直流コンデンサ容量を低減することができ、装置の小型化や低コスト化につながる。 Further, by suppressing the distortion of the output voltage Vo, it becomes possible to tolerate fluctuations and pulsations of the DC voltages V1 to V4 of the first to fourth DC power supplies C1 to C4, so that the capacity of the DC capacitor should be reduced. This leads to miniaturization and cost reduction of the device.

また、本実施形態1は、複数の第1〜第4直流電源C1〜C4の直流電圧V1〜V4が一度にずれた場合、直流電圧V1〜V4の総和は規定値通りだが個別の第1〜第4直流電源C1〜C4の直流電圧V1〜V4のバランスが崩れた場合、各第1〜第4直流電源C1〜C4の直流電圧V1〜V4は等しくバランスしているが総和がずれた場合、の各々の場合について、対応することができる。 Further, in the first embodiment, when the DC voltages V1 to V4 of the plurality of first to fourth DC power supplies C1 to C4 deviate at one time, the total sum of the DC voltages V1 to V4 is as specified, but the individual first to first ones. When the DC voltages V1 to V4 of the fourth DC power supplies C1 to C4 are out of balance, or when the DC voltages V1 to V4 of the first to fourth DC power supplies C1 to C4 are equally balanced but the sum is out of alignment. It is possible to deal with each case of.

[実施形態2]
図2には本実施形態2におけるマルチレベル電力変換装置の制御ブロックを示す。本実施形態2は実施形態1にある4個の除算器2a〜2dと、その後段の乗算器3a〜3dを、以下の構成に置き換えたものである。その他の構成は実施形態1と同様であるため説明は省略する。
[Embodiment 2]
FIG. 2 shows a control block of the multi-level power conversion device according to the second embodiment. In the second embodiment, the four dividers 2a to 2d in the first embodiment and the multipliers 3a to 3d in the subsequent stage are replaced with the following configurations. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

減算器7a〜7dは、1から実施形態1における除数である直流電圧V1,V2,V3,V4を減算する。乗算器8a〜8dは、減算器7a〜7dの出力と、実施形態1における被除数V*−V2,V2,V3,V*+V3との積を求める。乗算器9a〜9dは乗算器8a〜8dの出力を2倍する。 The subtractors 7a to 7d subtract the DC voltages V1, V2, V3, and V4, which are divisors in the first embodiment, from 1. The multipliers 8a to 8d obtain the product of the outputs of the subtractors 7a to 7d and the divisors V * -V2, V2, V3, V * + V3 in the first embodiment. The multipliers 9a-9d double the output of the multipliers 8a-8d.

図1の最も上にある乗算器3aを例に説明すると、実施形態1では(V*−V2)/2V1を求めていたが、本実施形態2では乗算器9aにおいて(V*−V2)×2(1−V1)を求めている。 Explaining the multiplier 3a at the top of FIG. 1 as an example, (V * -V2) / 2V1 was obtained in the first embodiment, but in the second embodiment, the multiplier 9a has (V * -V2) ×. 2 (1-V1) is required.

実施形態1は除算を4回行うが、除算は演算負荷が高いという問題がある。本実施形態2は、マクローリン展開を用いた以下の近似式(4)式により除算を乗算に置換し演算負荷を低減した。 In the first embodiment, the division is performed four times, but the division has a problem that the calculation load is high. In the second embodiment, the division is replaced with the multiplication by the following approximate equation (4) using the McLaughlin expansion to reduce the calculation load.

Figure 0006962081
Figure 0006962081

特許文献1などの方式を適用し直流電圧V1,V2,V3,V4が規定値に制御されているならば、過渡的な変動が生じても直流電圧V1,V2,V3,V4は規定値0.5に近い値となるため、近似を行っても誤差は小さく実施形態1に比べて歪みはほとんど増加しない。(規定値とのずれ10%で誤差1%)
図2での演算内容を以下の(5)式に示す。
If the DC voltage V1, V2, V3, V4 is controlled to the specified value by applying the method such as Patent Document 1, the DC voltage V1, V2, V3, V4 has the specified value 0 even if a transient fluctuation occurs. Since the value is close to .5, the error is small even if the approximation is performed, and the distortion hardly increases as compared with the first embodiment. (10% deviation from the specified value and 1% error)
The calculation content in FIG. 2 is shown in the following equation (5).

Figure 0006962081
Figure 0006962081

直流電圧V1,V2,V3,V4の変動が大きいならば、近似式を求める際にマクローリン展開を高い次数まで行うことで、演算負荷は増加するが誤差をより小さくすることができる。以下の(6)式は2次まで展開した近似式である。(規定値とのずれ20%で誤差1%) If the fluctuations of the DC voltages V1, V2, V3, and V4 are large, the calculation load can be increased but the error can be made smaller by performing the McLaughlin expansion to a higher order when obtaining the approximate expression. The following equation (6) is an approximate equation expanded to the second order. (20% deviation from the specified value and 1% error)

Figure 0006962081
Figure 0006962081

以上示したように、本実施形態2によれば、実施形態1と同様の作用効果を奏する。また、本実施形態2は、実施形態1に比べて、除算を使用しないため演算負荷を下げることができる。その結果、演算遅延の低減による制御の安定化や制御機能を搭載した装置(基板など)のコスト低減といった効果が得られる。 As shown above, according to the second embodiment, the same effects as those of the first embodiment are obtained. Further, as compared with the first embodiment, the second embodiment does not use division, so that the calculation load can be reduced. As a result, it is possible to obtain effects such as stabilization of control by reducing calculation delay and cost reduction of a device (such as a substrate) equipped with a control function.

また、近似式の次数を上げれば直流電圧が規定値から大きくずれてしまった場合でも演算精度を維持でき、直流コンデンサ容量低減と演算負荷低減の両立を図ることができる。 Further, if the order of the approximate expression is increased, the calculation accuracy can be maintained even if the DC voltage deviates significantly from the specified value, and the DC capacitor capacity can be reduced and the calculation load can be reduced at the same time.

[実施形態3]
図3に本実施形態3を適用する9レベル電力変換装置の簡略した構成図を示す。図3に示すように、本実施形態3のマルチレベル電力変換装置は、第1〜第8直流電源C1〜C8が順次直列接続される。前記第1〜第8直流電源C1〜C8は、それぞれ、直流電圧V1〜V8に制御される。
[Embodiment 3]
FIG. 3 shows a simplified configuration diagram of a 9-level power conversion device to which the third embodiment is applied. As shown in FIG. 3, in the multi-level power conversion device of the third embodiment, the first to eighth DC power supplies C1 to C8 are sequentially connected in series. The first to eighth DC power supplies C1 to C8 are controlled by DC voltages V1 to V8, respectively.

そして、第1直流電源C1の正極端子の電位V1+V2+V3+V4、または、第1,第2直流電源C1,C2の共通接続点の電位V2+V3+V4、または、第2,第3直流電源C2,C3の共通接続点の電位V3+V4、または、第3,第4直流電源C3,C4の共通接続点の電位V4、または、第4,第5直流電源C4,C5の共通接続点NPの電位0、または、第5,第6直流電源C5,C6の共通接続点の電位−V5、または、第6,第7直流電源C6,C7の共通接続点の電位−V5−V6、または、第7,第8直流電源C7,C8の共通接続点の電位−V5−V6−V7、または、第8直流電源C8の負極端子の電位−V5−V6−V7−V8の中から選択して出力する。 Then, the potential V1 + V2 + V3 + V4 of the positive terminal of the first DC power supply C1, the potential V2 + V3 + V4 of the common connection point of the first and second DC power supplies C1 and C2, or the common connection point of the second and third DC power supplies C2 and C3. Potential V3 + V4, or potential V4 at the common connection point of the 3rd and 4th DC power supplies C3 and C4, or potential 0 or 5th at the common connection point NP of the 4th and 5th DC power supplies C4 and C5. Potential-V5 at the common connection point of the sixth DC power supplies C5 and C6, or potential-V5-V6 at the common connection point of the sixth and seventh DC power supplies C6 and C7, or the seventh and eighth DC power supplies C7, The potential of the common connection point of C8-V5-V6-V7 or the potential of the negative terminal of the eighth DC power supply C8-V5-V6-V7-V8 is selected and output.

図4は、特許文献5に開示されている図6と同様に第1〜第8直流電源C1〜C8を8つ直列接続した9レベル電力変換装置の構成例である。 FIG. 4 is a configuration example of a 9-level power conversion device in which eight first to eighth DC power supplies C1 to C8 are connected in series as in FIG. 6 disclosed in Patent Document 5.

第1直流電源C1の正極端子と第1,第2直流電源C1,C2の共通接続点との間には、第1スイッチング素子S1と第1ダイオードD1が直列接続される。第1,第2直流電源C1,C2の共通接続点と第2,第3直流電源C2,C3の共通接続点との間には、第2,第3ダイオードD2,D3が直列接続される。第2,第3直流電源C2,C3の共通接続点と第3,第4直流電源C3,C4の共通接続点との間には、第4,第5ダイオードD4,D5が直列接続される。第3,第4直流電源C3,C4の共通接続点と第4,第5直流電源C4,C5の共通接続点との間には、第6,第7ダイオードD6,D7が直列接続される。 The first switching element S1 and the first diode D1 are connected in series between the positive electrode terminal of the first DC power supply C1 and the common connection points of the first and second DC power supplies C1 and C2. The second and third diodes D2 and D3 are connected in series between the common connection points of the first and second DC power supplies C1 and C2 and the common connection points of the second and third DC power supplies C2 and C3. The fourth and fifth diodes D4 and D5 are connected in series between the common connection points of the second and third DC power supplies C2 and C3 and the common connection points of the third and fourth DC power supplies C3 and C4. The sixth and seventh diodes D6 and D7 are connected in series between the common connection points of the third and fourth DC power supplies C3 and C4 and the common connection points of the fourth and fifth DC power supplies C4 and C5.

第4,第5直流電源C4,C5の共通接続点と第5,第6直流電源C5,C6の共通接続点との間には、第8,第9ダイオードD8,D9が直列接続される。第5,第6直流電源C5,C6の共通接続点と第6,第7直流電源C6,C7の共通接続点との間には、第10,第11ダイオードD10,D11が直列接続される。第6,第7直流電源C6,C7の共通接続点と第7,第8直流電源C7,C8の共通接続点との間には、第12,第13ダイオードD12,D13が直列接続される。第7,第8直流電源C7,C8の共通接続点と第8直流電源C8の負極端子との間には、第14ダイオードD14と第2スイッチング素子S2が直列接続される。 The eighth and ninth diodes D8 and D9 are connected in series between the common connection points of the fourth and fifth DC power supplies C4 and C5 and the common connection points of the fifth and sixth DC power supplies C5 and C6. The 10th and 11th diodes D10 and D11 are connected in series between the common connection points of the 5th and 6th DC power supplies C5 and C6 and the common connection points of the 6th and 7th DC power supplies C6 and C7. The 12th and 13th diodes D12 and D13 are connected in series between the common connection points of the 6th and 7th DC power supplies C6 and C7 and the common connection points of the 7th and 8th DC power supplies C7 and C8. A 14th diode D14 and a second switching element S2 are connected in series between the common connection points of the 7th and 8th DC power supplies C7 and C8 and the negative electrode terminals of the 8th DC power supply C8.

第1スイッチング素子S1と第1ダイオードD1の共通接続点と第2,第3ダイオードD2,D3の共通接続点との間には、第3,第4スイッチング素子S3,S4が直列接続される。第4,第5ダイオードD4,D5の共通接続点と第6,第7ダイオードD6,D7の共通接続点との間には第5,第6スイッチング素子S5,S6が直列接続される。 The third and fourth switching elements S3 and S4 are connected in series between the common connection point of the first switching element S1 and the first diode D1 and the common connection point of the second and third diodes D2 and D3. The fifth and sixth switching elements S5 and S6 are connected in series between the common connection points of the fourth and fifth diodes D4 and D5 and the common connection points of the sixth and seventh diodes D6 and D7.

第8,第9ダイオードD8,D9の共通接続点と第10,第11ダイオードD10,11の共通接続点との間には第7,第8スイッチング素子S7,S8が直列接続される。第12,第13ダイオードD12,D13の共通接続点と、第14ダイオードD14と第2スイッチング素子S2の共通接続点との間には第9,第10スイッチング素子S9,S10が直列接続される。 The seventh and eighth switching elements S7 and S8 are connected in series between the common connection points of the eighth and ninth diodes D8 and D9 and the common connection points of the tenth and eleventh diodes D10 and 11. The ninth and tenth switching elements S9 and S10 are connected in series between the common connection points of the twelfth and thirteenth diodes D12 and D13 and the common connection points of the fourteenth diode D14 and the second switching element S2.

第3,第4スイッチング素子S3,S4の共通接続点と第5,第6スイッチング素子S5,S6の共通接続点との間には第11,第12スイッチング素子S11,S12が直列接続される。第7,第8スイッチング素子S7,S8の共通接続点と第9,第10スイッチング素子S9,S10の共通接続点との間には第13,第14スイッチング素子S13,S14が直列接続される。 The eleventh and twelfth switching elements S11 and S12 are connected in series between the common connection points of the third and fourth switching elements S3 and S4 and the common connection points of the fifth and sixth switching elements S5 and S6. The 13th and 14th switching elements S13 and S14 are connected in series between the common connection points of the 7th and 8th switching elements S7 and S8 and the common connection points of the 9th and 10th switching elements S9 and S10.

第11,第12スイッチング素子S11,S12の共通接続点と第13,第14スイッチング素子S13,S14の共通接続点との間には第15,第16スイッチング素子S15,S16が直列接続される。第15,第16スイッチング素子S15,S16の共通接続点が出力端子Oとなる。 The 15th and 16th switching elements S15 and S16 are connected in series between the common connection points of the 11th and 12th switching elements S11 and S12 and the common connection points of the 13th and 14th switching elements S13 and S14. The common connection point of the 15th and 16th switching elements S15 and S16 is the output terminal O.

図5に本実施形態3におけるマルチレベル電力変換装置の制御ブロックを示す。本実施形態3は、実施形態1を9レベル電力変換装置に適用できるよう拡張した構成である。 FIG. 5 shows a control block of the multi-level power conversion device according to the third embodiment. The third embodiment is an extension of the first embodiment so that it can be applied to a 9-level power conversion device.

図5に示すように、電圧指令値補正部10には、正規化した直流電圧V1,V2,V3,V4,V5,V6,V7,V8および電圧指令値V*が入力される。これら直流電圧V1〜V8は、規定値に等しければ正規化により0.25になるとする。電圧指令値補正部10は、直流電圧V1〜V8および電圧指令値V*に基づいて、後述する(9)式により補正後の電圧指令値V*’を演算する。 As shown in FIG. 5, the normalized DC voltage V1, V2, V3, V4, V5, V6, V7, V8 and the voltage command value V * are input to the voltage command value correction unit 10. If these DC voltages V1 to V8 are equal to the specified values, they are normalized to be 0.25. The voltage command value correction unit 10 calculates the corrected voltage command value V *'based on the DC voltages V1 to V8 and the voltage command value V * by the equation (9) described later.

電圧指令値補正部10の出力が補正後の電圧指令値V*’となり、補正後の電圧指令値V*’とキャリア三角波とを比較し、スイッチング素子のゲート信号(オンオフ信号)を生成する。 The output of the voltage command value correction unit 10 becomes the corrected voltage command value V *', and the corrected voltage command value V *'is compared with the carrier triangular wave to generate a gate signal (on / off signal) of the switching element.

実施形態1の制御方法は、5レベルを超えるマルチレベル電力変換装置に適用することができる。本実施形態3では9レベルに適用した例を示す。9レベル電力変換装置においては、実施形態1と同様の考え方により、電圧指令値V*と出力電圧Voの関係を以下の(7)で示すことができる。 The control method of the first embodiment can be applied to a multi-level power conversion device having more than five levels. In the third embodiment, an example applied to nine levels is shown. In the 9-level power conversion device, the relationship between the voltage command value V * and the output voltage Vo can be shown by the following (7) based on the same concept as in the first embodiment.

Figure 0006962081
Figure 0006962081

9レベル電力変換装置では(7)式の逆関数で電圧指令値V*を補正すればよい。逆関数を以下の(8)式に示す。 In the 9-level power converter, the voltage command value V * may be corrected by the inverse function of Eq. (7). The inverse function is shown in the following equation (8).

Figure 0006962081
Figure 0006962081

(8)式の出力電圧Voに電圧指令値V*を代入し、得られた結果の電圧指令値V*を補正後の電圧指令値V*’としてPWM変調を行う。補正後の電圧指令値V*’の演算式を、以下の(9)式に示す。 The voltage command value V * is substituted for the output voltage Vo of the equation (8), and the obtained voltage command value V * is used as the corrected voltage command value V *'for PWM modulation. The calculation formula of the corrected voltage command value V *'is shown in the following formula (9).

Figure 0006962081
Figure 0006962081

本実施形態3においても、実施形態2のように、除算を乗算に置換し演算負荷を低減することができる。以下の(10)式に1次のマクローリン展開による除算の近似式を、以下の(11)式に2次の近似式を示す。 Also in the third embodiment, as in the second embodiment, division can be replaced with multiplication to reduce the calculation load. The following equation (10) shows an approximate expression of division by the first-order McLaughlin expansion, and the following equation (11) shows a quadratic approximate expression.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

以上示したように、本実施形態3によれば、9レベル電力変換装置においても実施形態1と同様の作用効果を得ることができる。また、同様の拡張を行うことで、5レベルや9レベル以外のマルチレベル電力変換装置にも適用することができる。また、本実施形態3は実施形態2と組み合わせ、演算負荷を下げることができる。 As shown above, according to the third embodiment, the same effect as that of the first embodiment can be obtained in the 9-level power conversion device. Further, by performing the same expansion, it can be applied to a multi-level power converter other than the 5-level and 9-level. Further, the present embodiment 3 can be combined with the second embodiment to reduce the calculation load.

[実施形態4]
本実施形態4は、図6に示すようなフライングキャパシタFCP,FCNを有するマルチレベル電力変換装置の主回路構成に実施形態1を適用できるようにしたものである。
[Embodiment 4]
In the fourth embodiment, the first embodiment can be applied to the main circuit configuration of the multi-level power conversion device having the flying capacitors FCP and FCN as shown in FIG.

ここで、図6に示すマルチレベル電力変換装置の構成を説明する。図6に示すマルチレベル電力変換装置は、各相共通の共通モジュール11と、各相毎(2相以上)の相モジュール12と、を備える。共通モジュール11では、第1,第2直流電源DCP,DCNが直列接続される。 Here, the configuration of the multi-level power conversion device shown in FIG. 6 will be described. The multi-level power conversion device shown in FIG. 6 includes a common module 11 common to each phase and a phase module 12 for each phase (two or more phases). In the common module 11, the first and second DC power supplies DCP and DCN are connected in series.

共通モジュール11は、第1直流電源DCPの正極端に第1共通スイッチSc1の一端が接続される。第1直流電源DCPの負極端に第4共通スイッチSc4の一端が接続される。第1共通スイッチSc1の他端と第4共通スイッチSc4の他端との間に第1フライングキャパシタFCPが接続される。 In the common module 11, one end of the first common switch Sc1 is connected to the positive end of the first DC power supply DCP. One end of the fourth common switch Sc4 is connected to the negative end of the first DC power supply DCP. The first flying capacitor FCP is connected between the other end of the first common switch Sc1 and the other end of the fourth common switch Sc4.

第1共通スイッチSc1と第1フライングキャパシタFCPの共通接続点と、第4共通スイッチSc4と第1フライングキャパシタFCPの共通接続点と、の間に第2,第3共通スイッチSc2,Sc3が直列接続される。 The second and third common switches Sc2 and Sc3 are connected in series between the common connection point of the first common switch Sc1 and the first flying capacitor FCP and the common connection point of the fourth common switch Sc4 and the first flying capacitor FCP. Will be done.

第2直流電源DCNの正極端に第5共通スイッチSc5の一端が接続される。第2直流電源DCNの負極端に第8共通スイッチSc8の一端が接続される。第5共通スイッチSc5の他端と第8共通スイッチSc8の他端との間に第2フライングキャパシタFCNが接続される。 One end of the fifth common switch Sc5 is connected to the positive end of the second DC power supply DCN. One end of the eighth common switch Sc8 is connected to the negative end of the second DC power supply DCN. A second flying capacitor FCN is connected between the other end of the fifth common switch Sc5 and the other end of the eighth common switch Sc8.

第5共通スイッチSc5と第2フライングキャパシタFCNの共通接続点と、第8共通スイッチSc8と第2フライングキャパシタFCNの共通接続点と、の間に第6,第7共通スイッチSc6,Sc7が直列接続される。 The 6th and 7th common switches Sc6 and Sc7 are connected in series between the common connection point of the 5th common switch Sc5 and the 2nd flying capacitor FCN and the common connection point of the 8th common switch Sc8 and the 2nd flying capacitor FCN. Will be done.

ここで、第1共通スイッチSc1の一端側と第2,第3共通スイッチSc2,Sc3の共通接続点間の電圧を直流電圧V1とし、第2,第3共通スイッチSc2,Sc3の共通接続点と第4,第5共通スイッチSc4,Sc5の共通接続点との間の電圧を直流電圧V2とし、第4,第5共通スイッチSc4,Sc5の共通接続点と第6,第7共通スイッチSc6,Sc7の共通接続点との間の電圧を直流電圧V3とし、第6,第7共通スイッチSc6,Sc7の共通接続点と第8共通スイッチSc8の一端との間の電圧を直流電圧V4とする。 Here, the voltage between one end side of the first common switch Sc1 and the common connection point of the second and third common switches Sc2 and Sc3 is defined as the DC voltage V1, and the common connection point of the second and third common switches Sc2 and Sc3. The voltage between the 4th and 5th common switches Sc4 and Sc5 is the DC voltage V2, and the common connection points of the 4th and 5th common switches Sc4 and Sc5 and the 6th and 7th common switches Sc6 and Sc7. The voltage between the common connection point and the common connection point of the sixth and seventh common switches Sc6 and Sc7 is defined as the DC voltage V3, and the voltage between the common connection point of the sixth and seventh common switches Sc6 and Sc7 and one end of the eighth common switch Sc8 is defined as the DC voltage V4.

相モジュール12は、第1共通スイッチSc1の一端側の電位、または、第2,第3共通スイッチSc2,Sc3の共通接続点の電位、または、第4,第5共通スイッチSc4,Sc5の共通接続点の電位、または、第6,第7共通スイッチSc6,Sc7の共通接続点の電位、または、第8共通スイッチSc8の一端側の電位の中から選択して出力する。 The phase module 12 has the potential on one end side of the first common switch Sc1, the potential at the common connection point of the second and third common switches Sc2 and Sc3, or the common connection of the fourth and fifth common switches Sc4 and Sc5. The potential of the point, the potential of the common connection point of the 6th and 7th common switches Sc6 and Sc7, and the potential of one end side of the 8th common switch Sc8 are selected and output.

具体的には、相モジュール12は、第1共通スイッチSc1の一端と第2,第3共通スイッチSc2,Sc3の共通接続点との間に第1,第2スイッチングデバイスSd1,Sd2が順次直列接続される。第6,第7共通スイッチSc6,Sc7の共通接続点と第8共通スイッチSc8の一端との間に第3,第4スイッチングデバイスSd3,Sd4が順次直列接続される。 Specifically, in the phase module 12, the first and second switching devices Sd1 and Sd2 are sequentially connected in series between one end of the first common switch Sc1 and the common connection point of the second and third common switches Sc2 and Sc3. Will be done. The third and fourth switching devices Sd3 and Sd4 are sequentially connected in series between the common connection point of the sixth and seventh common switches Sc6 and Sc7 and one end of the eighth common switch Sc8.

第1,第2スイッチングデバイスSd1,Sd2の共通接続点と第3,第4スイッチングデバイスSd3,Sd4の共通接続点との間に第5,第6,第7,第8スイッチングデバイスSd5,Sd6a,Sd6b,Sd7a,Sd7b,Sd8が順次直列接続される。 Between the common connection point of the first and second switching devices Sd1 and Sd2 and the common connection point of the third and fourth switching devices Sd3 and Sd4, the fifth, sixth, seventh and eighth switching devices Sd5 and Sd6a, Sd6b, Sd7a, Sd7b, and Sd8 are sequentially connected in series.

第5,第6スイッチングデバイスSd5,Sd6aの共通接続点と第7,第8スイッチングデバイスSd7b,Sd8の共通接続点との間に第1,第2ダイオードD1a,D1b,D2a,D2bが順次直列接続される。 The first and second diodes D1a, D1b, D2a, and D2b are sequentially connected in series between the common connection points of the fifth and sixth switching devices Sd5 and Sd6a and the common connection points of the seventh and eighth switching devices Sd7b and Sd8. Will be done.

第1,第2ダイオードD1b,D2aの共通接続点を第1,第2直流電源DCP,DCNの共通接続点と接続する。第6,第7スイッチングデバイスSd6b,Sd7aの共通接続点を出力端子Oとする。 The common connection points of the first and second diodes D1b and D2a are connected to the common connection points of the first and second DC power supplies DCP and DCN. The common connection point of the 6th and 7th switching devices Sd6b and Sd7a is set as the output terminal O.

なお、第6スイッチングデバイスS6a,S6b,第7スイッチングデバイスS7a,S7b,第1ダイオードD1a,D1b,第2ダイオードD2a,D2bは、耐電圧の関係から2つ直列接続しているが、耐電圧の問題が解消できるのであれば、1つでもよい。 The sixth switching devices S6a and S6b, the seventh switching devices S7a and S7b, the first diodes D1a and D1b, and the second diodes D2a and D2b are connected in series due to the withstand voltage, but the withstand voltage If the problem can be solved, only one may be used.

なお、図6の主回路構成は、5レベル電力変換装置の1相のみの構成を示している。3相の電力変換装置の場合は、共通モジュール11は各相で共通化され、相モジュール12は各相別に設けられる。 The main circuit configuration of FIG. 6 shows the configuration of only one phase of the 5-level power converter. In the case of a three-phase power conversion device, the common module 11 is shared by each phase, and the phase module 12 is provided for each phase.

図7に本実施形態4におけるマルチレベル電力変換装置の直流電圧V1〜V4の演算ブロックを示す。図7に基づいて、本実施形態4におけるマルチレベル電力変換装置の演算ブロックを説明する。 FIG. 7 shows the calculation blocks of the DC voltages V1 to V4 of the multi-level power converter according to the fourth embodiment. The calculation block of the multi-level power conversion device according to the fourth embodiment will be described with reference to FIG. 7.

正規化した第1,第2直流電源DCP,DCNの電圧VDCP,VDCNは、規定値に等しければ正規化により1になるとする。正規化した第1フライングキャパシタFCPの電圧VFCP、および、正規化した第2フライングキャパシタFCNの電圧VFCNは、規定値に等しければ正規化により0.5になるとする。 The normalized voltages VDCP and VDCN of the first and second DC power supplies DCP and DCN are assumed to be 1 by normalization if they are equal to the specified values. The voltage VFCP of the normalized first flying capacitor FCP and the voltage VFCN of the normalized second flying capacitor FCN are assumed to be 0.5 by normalization if they are equal to the specified values.

減算器13aは、第1直流電源DCPの電圧VDCP−第1フライングキャパシタFCPの電圧VFCPを演算する。スイッチSW4の上側端子には第1フライングキャパシタFCPの電圧VFCPが入力され、下側端子には減算器13aの出力VDCP−VFCPが入力される。 The subtractor 13a calculates the voltage VCCP of the first DC power supply DCP-the voltage VFCP of the first flying capacitor FCP. The voltage VFCP of the first flying capacitor FCP is input to the upper terminal of the switch SW4, and the output VDCP-VFCP of the subtractor 13a is input to the lower terminal.

スイッチSW4は、第1〜第4共通スイッチSc1〜Sc4のスイッチングパターンがMODE1ならば上側端子の信号を出力し、MODE2ならば下側端子の信号を出力し、それ以外の指令が来たらスイッチの切り替えを行わず前回の状態を維持する。 The switch SW4 outputs the signal of the upper terminal if the switching pattern of the first to fourth common switches Sc1 to Sc4 is MODE1, outputs the signal of the lower terminal if it is MODE2, and outputs the signal of the lower terminal if other commands are received. The previous state is maintained without switching.

第1〜第4共通スイッチSc1〜Sc4のスイッチングパターンMODE1におけるONの素子は、図8の丸で囲った第1,第3共通スイッチSc1,Sc3である。第1〜第4共通スイッチSc1〜Sc4のスイッチングパターンMODE2におけるONの素子は、図9の丸で囲った第2,第4共通スイッチSc2,Sc4である。なお、スイッチングパターンMODE1,MODE2の両方で第2,第5,第6スイッチングデバイスSd2,Sd5,Sd6a,Sd6bはONとなる。スイッチングパターンMODE1,MODE2の両方の場合において、スイッチSW4出力は直流電圧V1となり、実施形態1,2における図1や図2の直流電圧V1に入力される。 The ON elements in the switching pattern MODE1 of the first to fourth common switches Sc1 to Sc4 are the first and third common switches Sc1 and Sc3 circled in FIG. The ON elements in the switching pattern MODE2 of the first to fourth common switches Sc1 to Sc4 are the second and fourth common switches Sc2 and Sc4 circled in FIG. The second, fifth, and sixth switching devices Sd2, Sd5, Sd6a, and Sd6b are turned on in both the switching patterns MODE1 and MODE2. In both cases of the switching patterns MODE1 and MODE2, the switch SW4 output becomes the DC voltage V1 and is input to the DC voltage V1 of FIGS. 1 and 2 in the first and second embodiments.

減算器14aは、第1直流電源DCPの電圧VDCPからスイッチSW4の出力信号(つまり、直流電圧V1)を減算する。減算器14aの出力は直流電圧V2となり、実施形態1,2における図1や図2の直流電圧V2に入力される。 The subtractor 14a subtracts the output signal of the switch SW4 (that is, the DC voltage V1) from the voltage VDCP of the first DC power supply DCP. The output of the subtractor 14a is the DC voltage V2, which is input to the DC voltage V2 of FIGS. 1 and 2 in the first and second embodiments.

減算器13bは、第2直流電源の電圧VDCN−第2フライングキャパシタFCNの電圧VFCNを演算する。スイッチSW5の上側端子には第2フライングキャパシタFCNの電圧VFCNが入力され、下側端子には減算器13bの出力VDCN−VFCNが入力される。 The subtractor 13b calculates the voltage VDCN of the second DC power supply and the voltage VFCN of the second flying capacitor FCN. The voltage VFCN of the second flying capacitor FCN is input to the upper terminal of the switch SW5, and the output VDCN-VFCN of the subtractor 13b is input to the lower terminal.

スイッチSW5は、第5〜第8共通スイッチSc5〜Sc8のスイッチングパターンがMODE1ならば上側端子の信号を出力し、MODE2ならば下側端子の信号を出力し、それ以外の指令が来たらスイッチの切り替えを行わず前回の状態を維持する。 The switch SW5 outputs the signal of the upper terminal if the switching pattern of the fifth to eighth common switches Sc5 to Sc8 is MODE1, outputs the signal of the lower terminal if it is MODE2, and outputs the signal of the lower terminal if other commands are received. The previous state is maintained without switching.

第5〜第8共通スイッチSc5〜Sc8のスイッチングパターンMODE1におけるONの素子は、図10の丸で囲った第5,第7共通スイッチSc5,Sc7である。第5〜第8共通スイッチSc5〜Sc8のスイッチングパターンMODE2におけるONの素子は、図11の丸で囲った第6,第8共通スイッチSc6,Sc8である。なお、スイッチングパターンMODE1,MODE2の両方で、第3,第7,第8スイッチングデバイスSd3,Sd7a,Sd7b,Sd8はONとなる。スイッチングパターンMODE1,MODE2の両方の場合において、スイッチSW5出力は直流電圧V3となり、実施形態1,2の図1や図2の直流電圧V3に入力される。 The ON element in the switching pattern MODE1 of the fifth to eighth common switches Sc5 to Sc8 is the fifth and seventh common switches Sc5 and Sc7 circled in FIG. The ON elements in the switching pattern MODE2 of the fifth to eighth common switches Sc5 to Sc8 are the sixth and eighth common switches Sc6 and Sc8 circled in FIG. In both the switching patterns MODE1 and MODE2, the third, seventh, and eighth switching devices Sd3, Sd7a, Sd7b, and Sd8 are turned on. In both cases of the switching patterns MODE1 and MODE2, the switch SW5 output becomes the DC voltage V3 and is input to the DC voltage V3 of FIGS. 1 and 2 of the first and second embodiments.

減算器14bは、第2直流電源DCNの電圧VDCNからスイッチSW5の出力信号を減算する。減算器14bの出力は直流電圧V4となり、実施形態1,2における図1や図2の直流電圧V4に入力される
特許文献1に示すフライングキャパシタを有するマルチレベル電力変換装置の場合、通常は第1,第2直流電源DCP,DCN,第1,第2フライングキャパシタFCP,FCNの電圧を検出し、直流電圧V1,V2,V3,V4は検出しない。このような場合、実施形態1を適用するには直流電圧V1,V2,V3,V4を求める必要がある。本実施形態4は、図6の主回路構成で直流電圧V1,V2,V3,V4を求める方法を示す。
The subtractor 14b subtracts the output signal of the switch SW5 from the voltage VDCN of the second DC power supply DCN. The output of the subtractor 14b is the DC voltage V4, and in the case of the multi-level power converter having the flying capacitor shown in Patent Document 1 input to the DC voltage V4 of FIGS. 1 and 2 in the first and second embodiments, it is usually the first. The voltages of the first and second DC power supplies DCP and DCN, the first and second flying capacitors FCP and FCN are detected, and the DC voltages V1, V2, V3 and V4 are not detected. In such a case, it is necessary to obtain the DC voltages V1, V2, V3, and V4 in order to apply the first embodiment. The fourth embodiment shows a method of obtaining DC voltages V1, V2, V3, and V4 in the main circuit configuration of FIG.

図6の構成では、直流電圧V1,V2は第1〜第4共通スイッチSc1〜Sc4のスイッチングパターンに依存する。スイッチングパターンMODE1,MODE2はそれぞれ図8,図9の丸で囲ったスイッチング素子がON状態となる。スイッチングパターンMODE1では第1共通スイッチSc1と第3共通スイッチSc3がON状態で、スイッチングパターンMODE2では第2共通スイッチSc2と第4共通スイッチSc4がON状態であるため、直流電圧V1,V2は第1直流電源DCPの電圧VDCP,第1フライングキャパシタFCPの電圧VFCPを用いて以下の(12)式,(13)式で表される。ここでは、第1〜第4共通スイッチSc1〜Sc4のオン電圧降下は無視する。 In the configuration of FIG. 6, the DC voltages V1 and V2 depend on the switching pattern of the first to fourth common switches Sc1 to Sc4. In the switching patterns MODE1 and MODE2, the switching elements circled in FIGS. 8 and 9, respectively, are in the ON state. In the switching pattern MODE1, the first common switch Sc1 and the third common switch Sc3 are in the ON state, and in the switching pattern MODE2, the second common switch Sc2 and the fourth common switch Sc4 are in the ON state, so that the DC voltages V1 and V2 are the first. It is represented by the following equations (12) and (13) using the voltage VDCP of the DC power supply DCP and the voltage VFCP of the first flying capacitor FCP. Here, the on-voltage drop of the first to fourth common switches Sc1 to Sc4 is ignored.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

直流電圧V3,V4も同様に第5〜第8共通スイッチSc5〜Sc8に依存する。スイッチングパターンMODE1,MODE2はそれぞれ図10,図11の丸で囲ったスイッチング素子がON状態となる。スイッチングパターンMODE1では第5共通スイッチSc5と第7共通スイッチSc7がON状態で、スイッチングパターンMODE2では第6共通スイッチcS6と第8共通スイッチSc8がON状態であるため、直流電圧V3,V4は第2直流電源DCNの電圧VDCN,第2フライングキャパシタFCPの電圧VFCNを用いて以下の(14)式,(15)式で表される。ここでは、第5〜第8共通スイッチSc5〜Sc8のオン電圧降下は無視する。 The DC voltages V3 and V4 also depend on the fifth to eighth common switches Sc5 to Sc8. In the switching patterns MODE1 and MODE2, the switching elements circled in FIGS. 10 and 11, respectively, are in the ON state. In the switching pattern MODE1, the fifth common switch Sc5 and the seventh common switch Sc7 are in the ON state, and in the switching pattern MODE2, the sixth common switch cS6 and the eighth common switch Sc8 are in the ON state, so that the DC voltages V3 and V4 are the second. It is represented by the following equations (14) and (15) using the voltage VDCN of the DC power supply DCN and the voltage VFCN of the second flying capacitor FCP. Here, the on-voltage drop of the fifth to eighth common switches Sc5 to Sc8 is ignored.

Figure 0006962081
Figure 0006962081

Figure 0006962081
Figure 0006962081

本実施形態4では、スイッチングパターンに応じて図7のスイッチSW4,SW5を切り替え直流電圧V1,V2,V3,V4を求められるようにした。求めた直流電圧V1,V2,V3,V4を実施形態1,2における図1や図2に入力し、補正後の電圧指令値V*’を演算し、補正後の電圧指令値V*’に基づいて相モジュールのスイッチングデバイスのゲート信号を生成すれば、フライングキャパシタを有する構成でも実施形態1や実施形態2を適用することができる。 In the fourth embodiment, the switches SW4 and SW5 of FIG. 7 are switched according to the switching pattern so that the DC voltages V1, V2, V3 and V4 can be obtained. The obtained DC voltages V1, V2, V3, and V4 are input to FIGS. 1 and 2 in the first and second embodiments, the corrected voltage command value V *'is calculated, and the corrected voltage command value V *'is used. If the gate signal of the switching device of the phase module is generated based on the above, the first embodiment and the second embodiment can be applied even in a configuration having a flying capacitor.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only with respect to the specific examples described in the present invention, it is clear to those skilled in the art that various modifications and modifications can be made within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

V1〜V4…直流電圧
C1〜C4…第1〜第4直流電源
O…出力端子
SW1〜SW5…スイッチ
10…電圧指令値補正部
11…共通モジュール
12…相モジュール
DCP…第1直流電源
DCN…第2直流電源
FCP…第1フライングキャパシタ
FCN…第2フライングキャパシタ
V1 to V4 ... DC voltage C1 to C4 ... 1st to 4th DC power supply O ... Output terminal SW1 to SW5 ... Switch 10 ... Voltage command value correction unit 11 ... Common module 12 ... Phase module DCP ... 1st DC power supply DCN ... 1st 2 DC power supply FCP ... 1st flying capacitor FCN ... 2nd flying capacitor

Claims (10)

第1〜第4直流電源を順次直列接続し、前記第1直流電源の正極端子の電位、または、前記第1,第2直流電源の共通接続点の電位、または、前記第2,第3直流電源の共通接続点の電位、または、前記第3,第4直流電源の共通接続点の電位、または、前記第4直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第4直流電源の直流電圧V1〜V4を検出し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式により、補正後の電圧指令値V*’を算出し、
前記補正後の電圧指令値V*’に基づいてマルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
The first to fourth DC power supplies are sequentially connected in series, and the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, or the potential of the second and third DC power supplies. A multi of two or more phases that is selected and output from the potential of the common connection point of the power supply, the potential of the common connection point of the third and fourth DC power supplies, or the potential of the negative terminal of the fourth DC power supply. It is a level power converter
The DC voltages V1 to V4 of each of the first to fourth DC power supplies are detected, and the DC voltages V1 to V4 are detected.
Based on the DC voltages V1 to V4 and the voltage command value V *, the corrected voltage command value V *'is calculated by the following equation (3).
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
第1〜第4直流電源を順次直列接続し、前記第1直流電源の正極端子の電位、または、前記第1,第2直流電源の共通接続点の電位、または、前記第2,第3直流電源の共通接続点の電位、または、前記第3,第4直流電源の共通接続点の電位、または、前記第4直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第4直流電源の直流電圧V1〜V4を検出し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式の1/2Vn(n=1,2,3,4)に、以下の(4)式を代入した以下の(5)式により、補正後の電圧指令値V*’を算出し、
前記補正後の電圧指令値V*’に基づいてマルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
Figure 0006962081
The first to fourth DC power supplies are sequentially connected in series, and the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, or the potential of the second and third DC power supplies. A multi of two or more phases that is selected and output from the potential of the common connection point of the power supply, the potential of the common connection point of the third and fourth DC power supplies, or the potential of the negative terminal of the fourth DC power supply. It is a level power converter
The DC voltages V1 to V4 of each of the first to fourth DC power supplies are detected, and the DC voltages V1 to V4 are detected.
Based on the DC voltages V1 to V4 and the voltage command value V *, the following equation (4) was substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the following equation (3). Calculate the corrected voltage command value V *'by the following equation (5).
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
Figure 0006962081
第1〜第4直流電源を順次直列接続し、前記第1直流電源の正極端子の電位、または、前記第1,第2直流電源の共通接続点の電位、または、前記第2,第3直流電源の共通接続点の電位、または、前記第3,第4直流電源の共通接続点の電位、または、前記第4直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第4直流電源の直流電圧V1〜V4を検出し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式の1/2Vn(n=1,2,3,4)に、以下の(6)式を代入した式により、補正後の電圧指令値V*’を算出し、
前記補正後の電圧指令値V*’に基づいてマルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
The first to fourth DC power supplies are sequentially connected in series, and the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, or the potential of the second and third DC power supplies. A multi of two or more phases that is selected and output from the potential of the common connection point of the power supply, the potential of the common connection point of the third and fourth DC power supplies, or the potential of the negative terminal of the fourth DC power supply. It is a level power converter
The DC voltages V1 to V4 of each of the first to fourth DC power supplies are detected, and the DC voltages V1 to V4 are detected.
Based on the DC voltages V1 to V4 and the voltage command value V *, the following equation (6) was substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the following equation (3). Calculate the corrected voltage command value V *' by the formula,
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
第1〜第8直流電源を順次直列接続し、前記第1直流電源の正極端子の電位と、前記第1,第2直流電源の共通接続点の電位と、前記第2,第3直流電源の共通接続点の電位と、前記第3,第4直流電源の共通接続点の電位と、前記第4,第5直流電源の共通接続点の電位と、前記第5,第6直流電源の共通接続点の電位と、前記第6,第7直流電源の共通接続点の電位と、前記第7,第8直流電源の共通接続点の電位と、前記第8直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第8直流電源の直流電圧V1〜V8を検出し、
前記直流電圧V1〜V8、および、電圧指令値V*に基づいて、以下の(9)式によって、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
The first to eighth DC power supplies are sequentially connected in series, the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, and the potential of the second and third DC power supplies. The potential of the common connection point, the potential of the common connection point of the third and fourth DC power supplies, the potential of the common connection point of the fourth and fifth DC power supplies, and the common connection of the fifth and sixth DC power supplies. From the potential of the point, the potential of the common connection point of the 6th and 7th DC power supplies, the potential of the common connection point of the 7th and 8th DC power supplies, and the potential of the negative terminal of the 8th DC power supply. A multi-level power converter with two or more phases that can be selected and output.
The DC voltages V1 to V8 of each of the first to eighth DC power supplies are detected, and the DC voltages V1 to V8 are detected.
Based on the DC voltages V1 to V8 and the voltage command value V *, the corrected voltage command value V *'is generated by the following equation (9).
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
第1〜第8直流電源を順次直列接続し、前記第1直流電源の正極端子の電位と、前記第1,第2直流電源の共通接続点の電位と、前記第2,第3直流電源の共通接続点の電位と、前記第3,第4直流電源の共通接続点の電位と、前記第4,第5直流電源の共通接続点の電位と、前記第5,第6直流電源の共通接続点の電位と、前記第6,第7直流電源の共通接続点の電位と、前記第7,第8直流電源の共通接続点の電位と、前記第8直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第8直流電源の直流電圧V1〜V8を検出し、
前記直流電圧V1〜V8、および、電圧指令値V*に基づいて、以下の(9)式の1/4Vn(n=1,2,…,8)に、以下の(10)式を代入した式により、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
The first to eighth DC power supplies are sequentially connected in series, the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, and the potential of the second and third DC power supplies. The potential of the common connection point, the potential of the common connection point of the third and fourth DC power supplies, the potential of the common connection point of the fourth and fifth DC power supplies, and the common connection of the fifth and sixth DC power supplies. From the potential of the point, the potential of the common connection point of the 6th and 7th DC power supplies, the potential of the common connection point of the 7th and 8th DC power supplies, and the potential of the negative terminal of the 8th DC power supply. A multi-level power converter with two or more phases that can be selected and output.
The DC voltages V1 to V8 of each of the first to eighth DC power supplies are detected, and the DC voltages V1 to V8 are detected.
Based on the DC voltages V1 to V8 and the voltage command value V *, the following equation (10) was substituted into 1/4 Vn (n = 1, 2, ..., 8) of the following equation (9). The corrected voltage command value V *'is generated by the formula,
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
第1〜第8直流電源を順次直列接続し、前記第1直流電源の正極端子の電位と、前記第1,第2直流電源の共通接続点の電位と、前記第2,第3直流電源の共通接続点の電位と、前記第3,第4直流電源の共通接続点の電位と、前記第4,第5直流電源の共通接続点の電位と、前記第5,第6直流電源の共通接続点の電位と、前記第6,第7直流電源の共通接続点の電位と、前記第7,第8直流電源の共通接続点の電位と、前記第8直流電源の負極端子の電位の中から選択して出力する2相以上のマルチレベル電力変換装置であって、
前記各第1〜第8直流電源の直流電圧V1〜V8を検出し、
前記直流電圧V1〜V8、および、電圧指令値V*に基づいて、以下の(9)式の1/4Vn(n=1,2,…,8)に、以下の(11)式を代入した式により、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内のスイッチング素子のゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
The first to eighth DC power supplies are sequentially connected in series, the potential of the positive terminal of the first DC power supply, the potential of the common connection point of the first and second DC power supplies, and the potential of the second and third DC power supplies. The potential of the common connection point, the potential of the common connection point of the third and fourth DC power supplies, the potential of the common connection point of the fourth and fifth DC power supplies, and the common connection of the fifth and sixth DC power supplies. From the potential of the point, the potential of the common connection point of the 6th and 7th DC power supplies, the potential of the common connection point of the 7th and 8th DC power supplies, and the potential of the negative terminal of the 8th DC power supply. A multi-level power converter with two or more phases that can be selected and output.
The DC voltages V1 to V8 of each of the first to eighth DC power supplies are detected, and the DC voltages V1 to V8 are detected.
Based on the DC voltages V1 to V8 and the voltage command value V *, the following equation (11) was substituted into 1/4 Vn (n = 1, 2, ..., 8) of the following equation (9). The corrected voltage command value V *'is generated by the formula,
A multi-level power conversion device characterized in that a gate signal of a switching element in the multi-level power conversion device is generated based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
各相共通の共通モジュールと、前記共通モジュールに接続された2相以上の相モジュールと、を備え、
前記共通モジュールは、
直列接続された第1,第2直流電源と、
前記第1直流電源の正極端に一端が接続された第1共通スイッチと、
前記第1直流電源の負極端に一端が接続された第4共通スイッチと、
前記第1共通スイッチの他端と前記第4共通スイッチの他端との間に接続された第1フライングキャパシタと、
前記第1共通スイッチと前記第1フライングキャパシタの共通接続点と、前記第4共通スイッチと前記第1フライングキャパシタの共通接続点と、の間に直列接続された第2,第3共通スイッチと、
前記第2直流電源の正極端に一端が接続された第5共通スイッチと、
前記第2直流電源の負極端に一端が接続された第8共通スイッチと、
前記第5共通スイッチの他端と前記第8共通スイッチの他端との間に接続された第2フライングキャパシタと、
前記第5共通スイッチと前記第2フライングキャパシタの共通接続点と、前記第8共通スイッチと前記第2フライングキャパシタの共通接続点と、の間に直列接続された第6,第7共通スイッチと、を有し、
前記相モジュールは、前記第1共通スイッチの一端側と出力端子の間および、前記第2,第3共通スイッチの共通接続点と前記出力端子の間および、前記第4,第5共通スイッチの共通接続点と前記出力端子の間および、前記第6,第7共通スイッチの共通接続点と前記出力端子の間および、前記第8共通スイッチの一端側と前記出力端子の間にスイッチングデバイスを有し、前記第1共通スイッチの一端側の電位、または、前記第2,第3共通スイッチの共通接続点の電位、または、前記第4,第5共通スイッチの共通接続点の電位、または、前記第6,第7共通スイッチの共通接続点の電位、または、前記第8共通スイッチの一端側の電位の中から選択して出力するマルチレベル電力変換装置であって、
前記第1共通スイッチと前記第3共通スイッチ、あるいは、前記第5共通スイッチと前記第7共通スイッチをオンするMODE1と、前記第2共通スイッチと前記第4共通スイッチ、あるいは、前記第6共通スイッチと前記第8共通スイッチをオンするMODE2を備え、
前記第1直流電源の電圧VDCP、前記第2直流電源の電圧VDCN、前記第1フライングキャパシタの電圧VFCP、前記第2フライングキャパシタの電圧VFCNを検出し、
各MODE別に、以下の(12)式〜(15)式によって、前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点間の直流電圧V1,前記第2,第3共通スイッチの共通接続点と前記第4,第5共通スイッチの共通接続点間の直流電圧V2、前記第4,第5共通スイッチの共通接続点と前記第6,第7共通スイッチの共通接続点間の直流電圧V3、前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端間の直流電圧V4、を演算し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式によって、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内の相モジュールのスイッチングデバイスのゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
A common module common to each phase and two or more phase modules connected to the common module are provided.
The common module is
With the 1st and 2nd DC power supplies connected in series,
A first common switch whose one end is connected to the positive end of the first DC power supply,
A fourth common switch whose one end is connected to the negative end of the first DC power supply,
A first flying capacitor connected between the other end of the first common switch and the other end of the fourth common switch,
The second and third common switches connected in series between the common connection point between the first common switch and the first flying capacitor and the common connection point between the fourth common switch and the first flying capacitor.
A fifth common switch with one end connected to the positive end of the second DC power supply,
The eighth common switch, one end of which is connected to the negative end of the second DC power supply,
A second flying capacitor connected between the other end of the fifth common switch and the other end of the eighth common switch,
The sixth and seventh common switches connected in series between the fifth common switch and the second flying capacitor common connection point, and the eighth common switch and the second flying capacitor common connection point, and the like. Have,
The phase module, between one end side and the output terminal of the first common switch, and the second, between the output terminal and the common connection point of the third common switch, and said fourth, fifth common switch common connection point and between said output terminal, and the sixth, between the common connection point of the seventh common switch said output terminal, and switching between the one end and the output terminal of the eighth common switch Having a device, the potential on one end side of the first common switch, the potential of the common connection point of the second and third common switches, or the potential of the common connection point of the fourth and fifth common switches. Alternatively, it is a multi-level power conversion device that selects and outputs from the potential of the common connection point of the 6th and 7th common switches or the potential of one end side of the 8th common switch.
The first common switch and the third common switch, or MODE1 that turns on the fifth common switch and the seventh common switch, the second common switch and the fourth common switch, or the sixth common switch. And MODE2 to turn on the 8th common switch,
The voltage VDCP of the first DC power supply, the voltage VDCN of the second DC power supply, the voltage VFCP of the first flying capacitor, and the voltage VFCN of the second flying capacitor are detected.
For each MODE, the DC voltage V1 between one end of the first common switch and the common connection point of the second and third common switches is common to the second and third common switches according to the following equations (12) to (15). DC voltage V2 between the common connection point of the switch and the common connection point of the 4th and 5th common switches, and between the common connection point of the 4th and 5th common switches and the common connection point of the 6th and 7th common switches. The DC voltage V3, the DC voltage V4 between the common connection point of the 6th and 7th common switches and one end of the 8th common switch, is calculated.
Based on the DC voltages V1 to V4 and the voltage command value V *, the corrected voltage command value V *'is generated by the following equation (3).
A multi-level power conversion device characterized by generating a gate signal of a switching device of a phase module in the multi-level power conversion device based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
各相共通の共通モジュールと、前記共通モジュールに接続された2相以上の相モジュールと、を備え、
前記共通モジュールは、
直列接続された第1,第2直流電源と、
前記第1直流電源の正極端に一端が接続された第1共通スイッチと、
前記第1直流電源の負極端に一端が接続された第4共通スイッチと、
前記第1共通スイッチの他端と前記第4共通スイッチの他端との間に接続された第1フライングキャパシタと、
前記第1共通スイッチと前記第1フライングキャパシタの共通接続点と、前記第4共通スイッチと前記第1フライングキャパシタの共通接続点と、の間に直列接続された第2,第3共通スイッチと、
前記第2直流電源の正極端に一端が接続された第5共通スイッチと、
前記第2直流電源の負極端に一端が接続された第8共通スイッチと、
前記第5共通スイッチの他端と前記第8共通スイッチの他端との間に接続された第2フライングキャパシタと、
前記第5共通スイッチと前記第2フライングキャパシタの共通接続点と、前記第8共通スイッチと前記第2フライングキャパシタの共通接続点と、の間に直列接続された第6,第7共通スイッチと、を有し、
前記相モジュールは、前記第1共通スイッチの一端側と出力端子の間および、前記第2,第3共通スイッチの共通接続点と前記出力端子の間および、前記第4,第5共通スイッチの共通接続点と前記出力端子の間および、前記第6,第7共通スイッチの共通接続点と前記出力端子の間および、前記第8共通スイッチの一端側と前記出力端子の間にスイッチングデバイスを有し、前記第1共通スイッチの一端側の電位、または、前記第2,第3共通スイッチの共通接続点の電位、または、前記第4,第5共通スイッチの共通接続点の電位、または、前記第6,第7共通スイッチの共通接続点の電位、または、前記第8共通スイッチの一端側の電位の中から選択して出力するマルチレベル電力変換装置であって、
前記第1共通スイッチと前記第3共通スイッチ、あるいは、前記第5共通スイッチと前記第7共通スイッチをオンするMODE1と、前記第2共通スイッチと前記第4共通スイッチ、あるいは、前記第6共通スイッチと前記第8共通スイッチをオンするMODE2を備え、
前記第1直流電源の電圧VDCP、前記第2直流電源の電圧VDCN、前記第1フライングキャパシタの電圧VFCP、前記第2フライングキャパシタの電圧VFCNを検出し、
各MODE別に、以下の(12)式〜(15)式によって、前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点間の直流電圧V1,前記第2,第3共通スイッチの共通接続点と前記第4,第5共通スイッチの共通接続点間の直流電圧V2、前記第4,第5共通スイッチの共通接続点と前記第6,第7共通スイッチの共通接続点間の直流電圧V3、前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端間の直流電圧V4、を演算し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式の1/2Vn(n=1,2,3,4)に、以下の(4)式を代入した以下の(5)式により、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内の相モジュールのスイッチングデバイスのゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
A common module common to each phase and two or more phase modules connected to the common module are provided.
The common module is
With the 1st and 2nd DC power supplies connected in series,
A first common switch whose one end is connected to the positive end of the first DC power supply,
A fourth common switch whose one end is connected to the negative end of the first DC power supply,
A first flying capacitor connected between the other end of the first common switch and the other end of the fourth common switch,
The second and third common switches connected in series between the common connection point between the first common switch and the first flying capacitor and the common connection point between the fourth common switch and the first flying capacitor.
A fifth common switch with one end connected to the positive end of the second DC power supply,
The eighth common switch, one end of which is connected to the negative end of the second DC power supply,
A second flying capacitor connected between the other end of the fifth common switch and the other end of the eighth common switch,
The sixth and seventh common switches connected in series between the fifth common switch and the second flying capacitor common connection point, and the eighth common switch and the second flying capacitor common connection point, and the like. Have,
The phase module, between one end side and the output terminal of the first common switch, and the second, between the output terminal and the common connection point of the third common switch, and said fourth, fifth common switch common connection point and between said output terminal, and the sixth, between the common connection point of the seventh common switch said output terminal, and switching between the one end and the output terminal of the eighth common switch Having a device, the potential on one end side of the first common switch, the potential of the common connection point of the second and third common switches, or the potential of the common connection point of the fourth and fifth common switches. Alternatively, it is a multi-level power conversion device that selects and outputs from the potential of the common connection point of the 6th and 7th common switches or the potential of one end side of the 8th common switch.
The first common switch and the third common switch, or MODE1 that turns on the fifth common switch and the seventh common switch, the second common switch and the fourth common switch, or the sixth common switch. And MODE2 to turn on the 8th common switch,
The voltage VDCP of the first DC power supply, the voltage VDCN of the second DC power supply, the voltage VFCP of the first flying capacitor, and the voltage VFCN of the second flying capacitor are detected.
For each MODE, the DC voltage V1 between one end of the first common switch and the common connection point of the second and third common switches is common to the second and third common switches according to the following equations (12) to (15). DC voltage V2 between the common connection point of the switch and the common connection point of the 4th and 5th common switches, and between the common connection point of the 4th and 5th common switches and the common connection point of the 6th and 7th common switches. The DC voltage V3, the DC voltage V4 between the common connection point of the 6th and 7th common switches and one end of the 8th common switch, is calculated.
Based on the DC voltages V1 to V4 and the voltage command value V *, the following equation (4) was substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the following equation (3). the following equation (5), generates a voltage command value V * 'after the correction,
A multi-level power conversion device characterized by generating a gate signal of a switching device of a phase module in the multi-level power conversion device based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
各相共通の共通モジュールと、前記共通モジュールに接続された2相以上の相モジュールと、を備え、
前記共通モジュールは、
直列接続された第1,第2直流電源と、
前記第1直流電源の正極端に一端が接続された第1共通スイッチと、
前記第1直流電源の負極端に一端が接続された第4共通スイッチと、
前記第1共通スイッチの他端と前記第4共通スイッチの他端との間に接続された第1フライングキャパシタと、
前記第1共通スイッチと前記第1フライングキャパシタの共通接続点と、前記第4共通スイッチと前記第1フライングキャパシタの共通接続点と、の間に直列接続された第2,第3共通スイッチと、
前記第2直流電源の正極端に一端が接続された第5共通スイッチと、
前記第2直流電源の負極端に一端が接続された第8共通スイッチと、
前記第5共通スイッチの他端と前記第8共通スイッチの他端との間に接続された第2フライングキャパシタと、
前記第5共通スイッチと前記第2フライングキャパシタの共通接続点と、前記第8共通スイッチと前記第2フライングキャパシタの共通接続点と、の間に直列接続された第6,第7共通スイッチと、を有し、
前記相モジュールは、前記第1共通スイッチの一端側と出力端子の間および、前記第2,第3共通スイッチの共通接続点と前記出力端子の間および、前記第4,第5共通スイッチの共通接続点と前記出力端子の間および、前記第6,第7共通スイッチの共通接続点と前記出力端子の間および、前記第8共通スイッチの一端側と前記出力端子の間にスイッチングデバイスを有し、前記第1共通スイッチの一端側の電位、または、前記第2,第3共通スイッチの共通接続点の電位、または、前記第4,第5共通スイッチの共通接続点の電位、または、前記第6,第7共通スイッチの共通接続点の電位、または、前記第8共通スイッチの一端側の電位の中から選択して出力するマルチレベル電力変換装置であって、
前記第1共通スイッチと前記第3共通スイッチ、あるいは、前記第5共通スイッチと前記第7共通スイッチをオンするMODE1と、前記第2共通スイッチと前記第4共通スイッチ、あるいは、前記第6共通スイッチと前記第8共通スイッチをオンするMODE2を備え、
前記第1直流電源の電圧VDCP、前記第2直流電源の電圧VDCN、前記第1フライングキャパシタの電圧VFCP、前記第2フライングキャパシタの電圧VFCNを検出し、
各MODE別に、以下の(12)式〜(15)式によって、前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点間の直流電圧V1,前記第2,第3共通スイッチの共通接続点と前記第4,第5共通スイッチの共通接続点間の直流電圧V2、前記第4,第5共通スイッチの共通接続点と前記第6,第7共通スイッチの共通接続点間の直流電圧V3、前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端間の直流電圧V4、を演算し、
前記直流電圧V1〜V4、および、電圧指令値V*に基づいて、以下の(3)式の1/2Vn(n=1,2,3,4)に、以下の(6)式を代入した式により、補正後の電圧指令値V*’を生成し、
前記補正後の電圧指令値V*’に基づいて、マルチレベル電力変換装置内の相モジュールのスイッチングデバイスのゲート信号を生成することを特徴とするマルチレベル電力変換装置。
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
A common module common to each phase and two or more phase modules connected to the common module are provided.
The common module is
With the 1st and 2nd DC power supplies connected in series,
A first common switch whose one end is connected to the positive end of the first DC power supply,
A fourth common switch whose one end is connected to the negative end of the first DC power supply,
A first flying capacitor connected between the other end of the first common switch and the other end of the fourth common switch,
The second and third common switches connected in series between the common connection point between the first common switch and the first flying capacitor and the common connection point between the fourth common switch and the first flying capacitor.
A fifth common switch with one end connected to the positive end of the second DC power supply,
The eighth common switch, one end of which is connected to the negative end of the second DC power supply,
A second flying capacitor connected between the other end of the fifth common switch and the other end of the eighth common switch,
The sixth and seventh common switches connected in series between the fifth common switch and the second flying capacitor common connection point, and the eighth common switch and the second flying capacitor common connection point, and the like. Have,
The phase module, between one end side and the output terminal of the first common switch, and the second, between the output terminal and the common connection point of the third common switch, and said fourth, fifth common switch common connection point and between said output terminal, and the sixth, between the common connection point of the seventh common switch said output terminal, and switching between the one end and the output terminal of the eighth common switch Having a device, the potential on one end side of the first common switch, the potential of the common connection point of the second and third common switches, or the potential of the common connection point of the fourth and fifth common switches. Alternatively, it is a multi-level power conversion device that selects and outputs from the potential of the common connection point of the 6th and 7th common switches or the potential of one end side of the 8th common switch.
The first common switch and the third common switch, or MODE1 that turns on the fifth common switch and the seventh common switch, the second common switch and the fourth common switch, or the sixth common switch. And MODE2 to turn on the 8th common switch,
The voltage VDCP of the first DC power supply, the voltage VDCN of the second DC power supply, the voltage VFCP of the first flying capacitor, and the voltage VFCN of the second flying capacitor are detected.
For each MODE, the DC voltage V1 between one end of the first common switch and the common connection point of the second and third common switches is common to the second and third common switches according to the following equations (12) to (15). DC voltage V2 between the common connection point of the switch and the common connection point of the 4th and 5th common switches, and between the common connection point of the 4th and 5th common switches and the common connection point of the 6th and 7th common switches. The DC voltage V3, the DC voltage V4 between the common connection point of the 6th and 7th common switches and one end of the 8th common switch, is calculated.
Based on the DC voltages V1 to V4 and the voltage command value V *, the following equation (6) was substituted into 1 / 2Vn (n = 1, 2, 3, 4) of the following equation (3). The corrected voltage command value V *'is generated by the formula,
A multi-level power conversion device characterized by generating a gate signal of a switching device of a phase module in the multi-level power conversion device based on the corrected voltage command value V *'.
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
Figure 0006962081
前記各相の相モジュールは、
前記第1共通スイッチの一端と前記第2,第3共通スイッチの共通接続点との間に順次直列接続された第1,第2スイッチングデバイスと、
前記第6,第7共通スイッチの共通接続点と前記第8共通スイッチの一端との間に順次直列接続された第3,第4スイッチングデバイスと、
前記第1,第2スイッチングデバイスの共通接続点と前記第3,第4スイッチングデバイスの共通接続点との間に順次直列接続された第5,第6,第7,第8スイッチングデバイスと、
前記第5,第6スイッチングデバイスの共通接続点と前記第7,第8スイッチングデバイスの共通接続点との間に順次直列接続された第1,第2ダイオードと、を有し、前記第1,第2ダイオードの共通接続点を前記第1,第2直流電源の共通接続点と接続し、前記第6,第7スイッチングデバイスの共通接続点を出力端子としたことを特徴とする請求項7〜9のうち何れかに記載のマルチレベル電力変換装置。
The phase module of each phase is
The first and second switching devices sequentially connected in series between one end of the first common switch and the common connection point of the second and third common switches,
The third and fourth switching devices sequentially connected in series between the common connection point of the sixth and seventh common switches and one end of the eighth common switch, and
The fifth, sixth, seventh, and eighth switching devices sequentially connected in series between the common connection point of the first and second switching devices and the common connection point of the third and fourth switching devices,
It has first and second diodes sequentially connected in series between the common connection point of the fifth and sixth switching devices and the common connection point of the seventh and eighth switching devices, and has the first and second diodes. 7. To claim 7, wherein the common connection point of the second diode is connected to the common connection point of the first and second DC power supplies, and the common connection point of the sixth and seventh switching devices is used as an output terminal. 9. The multi-level power converter according to any one of 9.
JP2017170739A 2017-09-06 2017-09-06 Multi-level power converter Active JP6962081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170739A JP6962081B2 (en) 2017-09-06 2017-09-06 Multi-level power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170739A JP6962081B2 (en) 2017-09-06 2017-09-06 Multi-level power converter

Publications (2)

Publication Number Publication Date
JP2019047686A JP2019047686A (en) 2019-03-22
JP6962081B2 true JP6962081B2 (en) 2021-11-05

Family

ID=65813035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170739A Active JP6962081B2 (en) 2017-09-06 2017-09-06 Multi-level power converter

Country Status (1)

Country Link
JP (1) JP6962081B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136532A (en) * 2013-04-05 2015-12-07 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power conversion device
JP6206118B2 (en) * 2013-08-02 2017-10-04 株式会社明電舎 Multi-level power converter
US9231492B2 (en) * 2014-01-06 2016-01-05 General Electric Company System and method of power conversion
JP6191965B2 (en) * 2014-05-12 2017-09-06 パナソニックIpマネジメント株式会社 Power converter and power conditioner using the same
CN104393778B (en) * 2014-12-18 2017-01-18 阳光电源股份有限公司 Method and device for modulating five-level inverter and photovoltaic system
JP6394401B2 (en) * 2015-01-14 2018-09-26 株式会社明電舎 5-level power converter and control method
JP2016214021A (en) * 2015-05-13 2016-12-15 株式会社明電舎 Control apparatus and control method for multilevel inverter

Also Published As

Publication number Publication date
JP2019047686A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US7518893B2 (en) Method for operation of a converter circuit, as well as an apparatus for carrying out the method
US7952896B2 (en) Power conversion architecture with zero common mode voltage
KR101189428B1 (en) Power conversion device
US11916474B2 (en) Electrical power converter
US7778052B2 (en) Method for operating a converter circuit and apparatus for implementing the method
US9780692B2 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
US7450405B2 (en) DC/AC converter with dampened LCL filter distortions
US8879290B2 (en) Unified control of single and three-phase power converters
EP3247029A1 (en) Three-phase power-factor correcting ac-dc self-balancing rectifier without neutral connection
US20160268948A1 (en) Inverter system
JP6225418B2 (en) 3-level inverter controller
JP4929863B2 (en) Power converter
JP5510146B2 (en) Power converter control circuit
JP2019097366A (en) Method for suppressing and controlling leakage current of power converter
JP2016046962A (en) Multilevel power conversion device
JP6418020B2 (en) Control method of parallel connection system of three level inverter and parallel connection system of three level inverter
JP6962081B2 (en) Multi-level power converter
JP5910333B2 (en) 5 level power converter
US9438132B2 (en) Multilevel AC/DC power converting method and converter device thereof
CN114079392A (en) AC-DC converter based on constant power load and control method thereof
JP2001238453A (en) Power converter
JP6291882B2 (en) AC-AC converter
JP5904834B2 (en) Control device, control method, and control program for power converter
JP5915753B2 (en) Power converter
Jagan et al. A superior boost active-switched impedance network quasi Z-source inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150