JP6958962B2 - Semiconductor memory devices and semiconductor memory systems - Google Patents
Semiconductor memory devices and semiconductor memory systems Download PDFInfo
- Publication number
- JP6958962B2 JP6958962B2 JP2017014964A JP2017014964A JP6958962B2 JP 6958962 B2 JP6958962 B2 JP 6958962B2 JP 2017014964 A JP2017014964 A JP 2017014964A JP 2017014964 A JP2017014964 A JP 2017014964A JP 6958962 B2 JP6958962 B2 JP 6958962B2
- Authority
- JP
- Japan
- Prior art keywords
- access
- storage unit
- semiconductor memory
- unit
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 208
- 230000015654 memory Effects 0.000 claims description 80
- 238000004364 calculation method Methods 0.000 claims description 45
- 230000004044 response Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 34
- 230000004048 modification Effects 0.000 description 34
- 238000012986 modification Methods 0.000 description 34
- 230000008569 process Effects 0.000 description 27
- 238000012545 processing Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000001994 activation Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Storage Device Security (AREA)
- Memory System (AREA)
Description
本発明は、ホスト装置と通信可能な半導体メモリ装置の技術に関する。 The present invention relates to a technique of a semiconductor memory device capable of communicating with a host device.
半導体メモリ装置は、半導体メモリ(例えば、フラッシュメモリ)と、半導体メモリを制御するマイクロプロセッサとを備える。このような半導体メモリ装置では、マイクロプロセッサが半導体メモリに記憶されるコードやデータを用いて処理することで、多様な処理を実現することができる。 The semiconductor memory device includes a semiconductor memory (for example, a flash memory) and a microprocessor that controls the semiconductor memory. In such a semiconductor memory device, various processes can be realized by processing using the code and data stored in the semiconductor memory by the microprocessor.
処理速度を向上させるために、揮発性の高速メモリ(例えば、SRAM(Static Random Access Memory))を備える半導体メモリも開発されている。 In order to improve the processing speed, a semiconductor memory provided with a volatile high-speed memory (for example, SRAM (Static Random Access Memory)) has also been developed.
揮発性の高速メモリは、高速アクセスが可能なので、CPU処理に用いられるコードやデータが格納される。そして、マイクロプロセッサが、揮発性の高速メモリにアクセスし、マイクロプロセッサによるCPU処理が高速に実現される。つまり、揮発性の高速メモリは、マイクロプロセッサによるCPU処理が安定して実行されることを保証するために、マイクロプロセッサからのみアクセスが許可され、外部装置(ホスト装置)からアクセスされることはない。 Since the volatile high-speed memory can be accessed at high speed, the code and data used for CPU processing are stored. Then, the microprocessor accesses the volatile high-speed memory, and the CPU processing by the microprocessor is realized at high speed. That is, the volatile high-speed memory is allowed access only from the microprocessor and is not accessed from the external device (host device) in order to ensure that the CPU processing by the microprocessor is stably executed. ..
特許文献1には、キャッシュメモリ(例えば、SRAMを用いて実現されるキャッシュメモリ)と主メモリとCPUとを備えるデジタルシステムの開示がある。特許文献1の技術では、CPUのみが、揮発性の高速メモリであるキャッシュメモリ(例えば、SRAM)にアクセスし、CPU処理を行うことで、高速なCPU処理を実現している。 Patent Document 1 discloses a digital system including a cache memory (for example, a cache memory realized by using SRAM), a main memory, and a CPU. In the technique of Patent Document 1, only the CPU accesses a cache memory (for example, SRAM) which is a volatile high-speed memory and performs CPU processing to realize high-speed CPU processing.
上記のように、揮発性の高速メモリは、マイクロプロセッサによるCPU処理が安定して実行されることを保証するために、マイクロプロセッサからのみアクセスが許可され、外部装置(ホスト装置)からアクセスされることはない。 As described above, the volatile high-speed memory is accessed only from the microprocessor and is accessed from the external device (host device) in order to ensure that the CPU processing by the microprocessor is stably executed. There is no such thing.
つまり、揮発性の高速メモリは、外部からアクセスを許可するとマイクロプロセッサによるCPU処理が不安定になる危険があるあるため、通常、外部装置(ホスト装置)からのアクセスを許可しない。 That is, the volatile high-speed memory usually does not allow access from an external device (host device) because there is a risk that CPU processing by the microprocessor becomes unstable if access is permitted from the outside.
しかしながら、外部装置(ホスト装置)から安全に半導体メモリ装置の揮発性の高速メモリにアクセスすることができれば、多様な処理を高速に実現することができるため、外部装置(ホスト装置)から安全に半導体メモリ装置の揮発性の高速メモリにアクセスする技術の実現が望まれている。 However, if the volatile high-speed memory of the semiconductor memory device can be safely accessed from the external device (host device), various processes can be realized at high speed, so that the semiconductor can be safely accessed from the external device (host device). It is desired to realize a technique for accessing a volatile high-speed memory of a memory device.
そこで、本発明は、外部装置(ホスト装置)から安全に半導体メモリ装置の揮発性の高速メモリにアクセスすることができる半導体メモリ装置、半導体メモリシステムを実現することを目的とする。 Therefore, an object of the present invention is to realize a semiconductor memory device or a semiconductor memory system capable of safely accessing the volatile high-speed memory of the semiconductor memory device from an external device (host device).
上記課題を解決するために、第1の発明は、ホスト装置と通信可能な半導体メモリ装置であって、バスと、第1記憶部と、第2記憶部と、マイクロプロセッサと、インターフェース部と、を備える。 In order to solve the above problems, the first invention is a semiconductor memory device capable of communicating with a host device, which includes a bus, a first storage unit, a second storage unit, a microprocessor, an interface unit, and the like. To be equipped.
第1記憶部は、バスに接続されており、第1のアクセス速度によりデータの読み出しおよび書き込みの少なくとも一方を行う。 The first storage unit is connected to the bus and performs at least one of reading and writing of data according to the first access speed.
第2記憶部は、バスに接続されており、第1のアクセス速度よりも速い第2のアクセス速度によりデータの読み出しおよび書き込みの少なくとも一方を行う。 The second storage unit is connected to the bus and performs at least one of reading and writing of data at a second access speed that is faster than the first access speed.
マイクロプロセッサは、バスに接続されている。 The microprocessor is connected to the bus.
インターフェース部は、バスに接続されており、ホスト装置から第2記憶部に対して直接アクセス可能なインターフェースを提供する。 The interface unit is connected to the bus and provides an interface that can be directly accessed from the host device to the second storage unit.
この半導体メモリ装置では、インターフェース部がホスト装置から第2記憶部に対して直接アクセス可能なインターフェースを提供するので、ホスト装置は、インターフェース部を介して、第2記憶部にアクセスすることができる。つまり、この半導体メモリ装置では、ホスト装置からアクセス速度の速い第2記憶装置(例えば、SRAM)に、直接(バッファや、アクセス速度の遅い第1記憶部(例えば、不揮発性メモリ)に、暫定的にデータを保持させることなく)、アクセスすることができる。 In this semiconductor memory device, since the interface unit provides an interface that can be directly accessed from the host device to the second storage unit, the host device can access the second storage unit via the interface unit. That is, in this semiconductor memory device, the host device temporarily connects the host device to the second storage device (for example, SRAM) having a high access speed, and directly (to the buffer or the first storage unit (for example, non-volatile memory) having a slow access speed). Can be accessed (without having to retain data in).
第2の発明は、第1の発明であって、第1記憶部は、マイクロプロセッサが演算するためのコードを記憶することができる。 The second invention is the first invention, and the first storage unit can store a code for the microprocessor to perform an operation.
インターフェース部は、マイクロプロセッサがコードを実行したときの演算結果を第2記憶部に記憶し、演算結果を第2記憶部から読み出し、ホスト装置に送信する。 The interface unit stores the calculation result when the microprocessor executes the code in the second storage unit, reads the calculation result from the second storage unit, and transmits the calculation result to the host device.
これにより、この半導体メモリ装置では、ホスト装置が、演算結果をインターフェース部を介して、読み出すことができる。 As a result, in this semiconductor memory device, the host device can read the calculation result via the interface unit.
なお、「コード」とは、例えば、コード(マイクロプロセッサで演算を行うための命令コード)を含むデータである。 The "code" is, for example, data including a code (instruction code for performing an operation by a microprocessor).
第3の発明は、第1または第2の発明であって、マイクロプロセッサは、マイクロプロセッサが演算するためのコードを第1記憶部から読み出し、第2記憶部に記憶する。 The third invention is the first or second invention, in which the microprocessor reads a code for calculation by the microprocessor from the first storage unit and stores it in the second storage unit.
これにより、この半導体メモリ装置では、マイクロプロセッサが演算するためのコードを第1記憶部から読み出し、第2記憶部に記憶することができる。 As a result, in this semiconductor memory device, the code for the microprocessor to calculate can be read from the first storage unit and stored in the second storage unit.
第4の発明は、第1から第3のいずれかの発明であって、インターフェース部は、ホスト装置から受信したコードを第2記憶部に記憶する。 The fourth invention is any one of the first to third inventions, in which the interface unit stores the code received from the host device in the second storage unit.
これにより、この半導体メモリ装置では、ホスト装置から受信したコードを第2記憶部に記憶することができる。 As a result, in this semiconductor memory device, the code received from the host device can be stored in the second storage unit.
第5の発明は、第1から第4のいずれかの発明であって、インターフェース部は、ホスト装置から第2記憶部へのアクセスを許可するメモリ領域である外部アクセス可能領域を設定し、設定した外部アクセス可能領域の情報に基づいて、第2記憶部へのアクセス制御を行う。 A fifth invention is any one of the first to fourth inventions, in which the interface unit sets and sets an externally accessible area, which is a memory area that allows access from the host device to the second storage unit. Access control to the second storage unit is performed based on the information of the externally accessible area.
この半導体メモリ装置では、インターフェース部が、外部アクセス許可領域を特定するための情報を、例えば、オフセットOfstと深さDpthにより第2記憶部のメモリ領域を特定することで設定し、当該情報に基づいて、インターフェース部が、ホスト装置からの第2記憶部へのアクセスを許可するか否かを判定する。この半導体メモリ装置では、外部アクセス許可領域を特定するための情報に基づいて、インターフェース部が、ホスト装置からの第2記憶部へのアクセスを許可した場合、ホスト装置は、インターフェース部を介して、第2記憶部にアクセスすることができる。つまり、この半導体メモリ装置では、ホスト装置からアクセス速度の速い第2記憶装置(例えば、SRAM)に、直接(バッファや、アクセス速度の遅い不揮発性メモリ等に、暫定的にデータを保持させることなく)、アクセスすることができる。さらに、この半導体メモリ装置では、上記の通り、インターフェース部が第2記憶装置へのアクセス制御を行い、外部装置(例えば、ホスト装置)からアクセスできる領域を外部アクセス許可領域に限定することができる。これにより、この半導体メモリ装置では、外部装置(例えば、ホスト装置)から不正に半導体メモリ装置の高速メモリである第2記憶部にアクセスされることがない。 In this semiconductor memory device, the interface unit sets information for specifying the external access permission area by, for example, specifying the memory area of the second storage unit by the offset Offst and the depth Dpt, and is based on the information. Then, the interface unit determines whether or not to allow access to the second storage unit from the host device. In this semiconductor memory device, when the interface unit permits access to the second storage unit from the host device based on the information for specifying the external access permission area, the host device performs the access to the second storage unit via the interface unit. The second storage unit can be accessed. That is, in this semiconductor memory device, data is not temporarily held in a second storage device (for example, SRAM) having a high access speed from the host device directly (in a buffer, a non-volatile memory having a slow access speed, or the like). ), Can be accessed. Further, in this semiconductor memory device, as described above, the interface unit controls access to the second storage device, and the area accessible from the external device (for example, the host device) can be limited to the external access permission area. As a result, in this semiconductor memory device, the second storage unit, which is a high-speed memory of the semiconductor memory device, is not illegally accessed from an external device (for example, a host device).
このように、この半導体メモリ装置では、外部装置(例えば、ホスト装置)から安全に半導体メモリ装置の高速メモリである第2記憶部にアクセスすることができる。 In this way, in this semiconductor memory device, the second storage unit, which is a high-speed memory of the semiconductor memory device, can be safely accessed from an external device (for example, a host device).
第6の発明は、第5の発明であって、外部アクセス可能領域の情報の初期値は、第2記憶部の全メモリ領域へのアクセスを禁止することを示す値である。 The sixth invention is the fifth invention, and the initial value of the information in the externally accessible area is a value indicating that access to the entire memory area of the second storage unit is prohibited.
これにより、外部アクセス可能領域が設定されていない状態においても、外部装置(例えば、ホスト装置)から第2記憶部に不正アクセスされることを適切に防止することができる。 As a result, it is possible to appropriately prevent unauthorized access to the second storage unit from the external device (for example, the host device) even when the external accessible area is not set.
第7の発明は、第6の発明であって、アクセス禁止情報保持部と、ラッパー部と、さらに備える。 The seventh invention is the sixth invention, further including an access prohibition information holding unit, a wrapper unit, and the like.
アクセス禁止情報保持部は、第2記憶部のアクセス禁止領域を設定するための情報であるアクセス禁止情報を保持する。 The access prohibition information holding unit holds the access prohibition information which is the information for setting the access prohibition area of the second storage unit.
ラッパー部は、アクセス禁止情報に基づいて、第2記憶部のアクセス禁止領域を設定する。 The wrapper unit sets the access prohibited area of the second storage unit based on the access prohibited information.
これにより、半導体メモリ装置では、第2記憶部のアクセス禁止領域への不正なアクセスを適切に防止することができる。 As a result, in the semiconductor memory device, unauthorized access to the access prohibited area of the second storage unit can be appropriately prevented.
第8の発明は、第7の発明であって、アクセス禁止情報保持部は、一度のみ書き込みができるROMを含み、アクセス禁止情報は、ROMに書き込まれる。 The eighth invention is the seventh invention, in which the access prohibition information holding unit includes a ROM that can be written only once, and the access prohibition information is written in the ROM.
これにより、この半導体メモリ装置では、アクセス禁止情報は、後から変更されることはないので、第2記憶部のアクセス禁止領域への不正なアクセスを適切に防止することができる。 As a result, in this semiconductor memory device, the access prohibition information is not changed later, so that unauthorized access to the access prohibited area of the second storage unit can be appropriately prevented.
第9の発明は、第7の発明であって、アクセス禁止情報保持部は、アクセス禁止情報を保持するための回路を含み、アクセス禁止情報を、回路から出力される信号として、ラッパー部に出力する。 The ninth invention is the seventh invention, in which the access prohibition information holding unit includes a circuit for holding the access prohibition information, and outputs the access prohibition information to the wrapper unit as a signal output from the circuit. do.
これにより、この半導体メモリ装置では、アクセス禁止情報は、後から変更されることはないので、第2記憶部のアクセス禁止領域への不正なアクセスを適切に防止することができる。 As a result, in this semiconductor memory device, the access prohibition information is not changed later, so that unauthorized access to the access prohibited area of the second storage unit can be appropriately prevented.
第10の発明は、第7から第9のいずれかの発明であって、ラッパー部は、マイクロプロセッサからのフェッチアクセス信号がイネーブルを示す信号値であり、かつ、マイクロプロセッサから受信した命令フェッチ信号が示すアドレスがアクセス禁止領域内である場合に、第2記憶部のアクセス禁止領域へのアクセスを許可するように第2記憶部に対するアクセス制御を行う。 The tenth invention is any one of the seventh to ninth inventions, wherein the wrapper unit is a signal value indicating that the fetch access signal from the microprocessor is valid, and the instruction fetch signal received from the microprocessor. When the address indicated by is in the access prohibited area, access control to the second storage unit is performed so as to allow access to the access prohibited area of the second storage unit.
これにより、この半導体メモリ装置では、上記条件を満たす場合に、アクセス禁止領域へのアクセスを許可することができる。 As a result, in this semiconductor memory device, access to the access prohibited area can be permitted when the above conditions are satisfied.
第11の発明は、第7から第10のいずれかの発明であって、ラッパー部は、アクセス禁止情報およびインターフェース部により設定された外部アクセス可能領域の情報に基づいて、第2記憶部に対するアクセス制御を行う。 The eleventh invention is any one of the seventh to tenth inventions, in which the wrapper unit accesses the second storage unit based on the access prohibition information and the information of the external accessible area set by the interface unit. Take control.
これにより、この半導体メモリ装置では、アクセス禁止情報および外部アクセス可能領域の情報の両方を用いて、多様な条件により、第2記憶部へのアクセス制御を行うことができる。 As a result, in this semiconductor memory device, access control to the second storage unit can be performed under various conditions by using both the access prohibition information and the information of the externally accessible area.
第12の発明は、第7から第11のいずれかの発明であって、ラッパー部は、第2記憶部へのアクセス要求をしているアドレスが、外部アクセス可能領域内のアドレスであり、かつ、アクセス禁止領域内であると判定した場合、第2記憶部への全てのアクセスを禁止する。 The twelfth invention is any one of the seventh to eleventh inventions, and in the wrapper unit, the address requesting access to the second storage unit is an address in the external accessible area, and If it is determined that the area is within the access prohibited area, all access to the second storage unit is prohibited.
これにより、この半導体メモリ装置では、外部装置から第2記憶部4に対して不正なアクセスが実行されようとしている可能性の高い状態を検知でき、外部装置から第2記憶部4に対する不正なアクセスを適切に防止することができる。
As a result, in this semiconductor memory device, it is possible to detect a state in which there is a high possibility that an unauthorized access to the
第13の発明は、第1から第12のいずれかの発明であって、インターフェース部は、ホスト装置から、半導体メモリ装置の第2記憶部の全メモリ領域をアクセスするコマンドを受信した場合、第2記憶部に記憶されているデータを正常に読み出すことができないことを示すレスポンスをホスト装置に送信する。 The thirteenth invention is any one of the first to the twelfth inventions, and when the interface unit receives a command from the host device to access the entire memory area of the second storage unit of the semiconductor memory device, the thirteenth invention is the thirteenth invention. 2 A response indicating that the data stored in the storage unit cannot be read normally is transmitted to the host device.
これにより、半導体メモリ装置からホスト装置に送信されるレスポンスを調査することで、第13の発明が実施されているか否かを判定することができる。 Thereby, by investigating the response transmitted from the semiconductor memory device to the host device, it is possible to determine whether or not the thirteenth invention has been implemented.
第14の発明は、ホスト装置と、第1から第13のいずれかの発明である半導体メモリ装置と、を備える半導体メモリシステムである。 A fourteenth invention is a semiconductor memory system including a host device and a semiconductor memory device according to any one of the first to thirteenth inventions.
これにより第1から第13のいずれかの発明である半導体メモリ装置を用いて、半導体メモリシステムを実現することができる。 Thereby, the semiconductor memory system can be realized by using the semiconductor memory device according to any one of the first to thirteenth inventions.
本発明によれば、外部装置(ホスト装置)から安全に半導体メモリ装置の揮発性の高速メモリにアクセスすることができる半導体メモリ装置、半導体メモリシステムを実現することができる。 According to the present invention, it is possible to realize a semiconductor memory device or a semiconductor memory system capable of safely accessing the volatile high-speed memory of the semiconductor memory device from an external device (host device).
[第1実施形態]
第1実施形態について、図面を参照しながら、以下、説明する。
[First Embodiment]
The first embodiment will be described below with reference to the drawings.
<1.1:半導体メモリシステムの構成>
図1は、第1実施形態に係る半導体メモリシステム1000の概略構成図である。
<1.1: Configuration of semiconductor memory system>
FIG. 1 is a schematic configuration diagram of the
半導体メモリシステム1000は、図1に示すように、ホスト装置H1と、半導体メモリ装置100とを備える。ホスト装置H1と、半導体メモリ装置100とは、通信路CH1により接続されており、双方向に通信が可能である。なお、通信路は、有線であっても無線であってもよい。ホスト装置H1と、半導体メモリ装置100との間において、通信路CH1を介して、コマンド、データ、クロック信号等の通信が行われる。
As shown in FIG. 1, the
ホスト装置H1は、通信路CH1を介して、半導体メモリ装置100と接続されている。ホスト装置H1は、半導体メモリ装置100に対して、例えば、コマンド、データ、クロック信号等を送信する。
The host device H1 is connected to the
また、ホスト装置H1は、半導体メモリ装置100から送信されるデータ等を受信する。
Further, the host device H1 receives data or the like transmitted from the
半導体メモリ装置100は、図1に示すように、内部バスBusと、ホストインターフェース(ホストIF)1と、マイクロプロセッサ2と、第1記憶部3と、第2記憶部4とを備える。
As shown in FIG. 1, the
内部バスBusは、例えば、データバス、制御バス、アドレスバスとから構成されており、半導体メモリ装置100の各機能部と接続されている。そして、半導体メモリ装置100の各機能部は、内部バスBusを介して、各種データの送受信を行うことができる。
The internal bus Bus is composed of, for example, a data bus, a control bus, and an address bus, and is connected to each functional unit of the
ホストインターフェース1は、内部バスBusに接続されており、マイクロプロセッサ2と、第2記憶部4と、各種データの送受信を行う。また、ホストインターフェース1は、通信路CH1を介して、ホスト装置H1と接続することができる。ホストインターフェース1は、通信路CH1を介して、コマンド、データ等を送受信する。
The host interface 1 is connected to the internal bus Bus, and transmits and receives various data to and from the
また、ホストインターフェース1は、メモリ制御部11を備え、メモリ制御部11を用いて、第2記憶部4のアクセス制御を実行する。
Further, the host interface 1 includes a
メモリ制御部11は、第2記憶部4のアクセス制御を実行するために用いられる。メモリ制御部11は、例えば、レジスタにより実現されるものであってもよい。
The
マイクロプロセッサ2は、半導体メモリ装置100の各機能部を制御する。マイクロプロセッサ2は、内部バスBusに接続されている。マイクロプロセッサ2は、半導体メモリ装置100の各機能部へ、内部バスBusを介して、各種データを送信し、また、半導体メモリ装置100の各機能部から、内部バスBusを介して、各種データを受信する。
The
第1記憶部3は、データの読み出し/書き込みを行うことができるメモリである。第1記憶部3は、内部バスBusに接続されており、マイクロプロセッサ2により制御される。
The
第2記憶部4は、高速アクセス可能なメモリ(例えば、SRAM)であり、第1記憶部3のアクセス速度よりも速いアクセス速度で、データの読み出し/書き込みを行うことができる。第2記憶部4は、内部バスBusに接続されており、マイクロプロセッサ2又はホストIF1のメモリ制御部11により制御される。
The
<1.2:半導体メモリシステムの動作>
以上のように構成された半導体メモリシステム1000の動作について、以下、説明する。
<1.2: Operation of semiconductor memory system>
The operation of the
図2、図3は、半導体メモリシステム1000の動作シーケンス図である。
2 and 3 are operation sequence diagrams of the
図4は、初期状態における半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 4 is a diagram schematically showing a state of the
図5は、半導体メモリ装置100が起動した後のマイクロプロセッサ2で実行される起動処理後の半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 5 is a diagram schematically showing a state of the
図6は、ホスト装置H1が半導体メモリ装置100に対して実行予約命令を送信したときの半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 6 is a diagram schematically showing a state of the
図7は、半導体メモリ装置100において第2記憶部4の外部アクセス許可領域が設定されるときの半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 7 is a diagram schematically showing a state of the
図8は、ホスト装置H1が半導体メモリ装置100に対して演算対象データの書き込み命令を送信したときの半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 8 is a diagram schematically showing a state of the
図9は、ホスト装置H1が半導体メモリ装置100に対して演算実行命令を送信したときの半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 9 is a diagram schematically showing a state of the
図10は、ホスト装置H1が半導体メモリ装置100に対して演算結果の読み出し命令を送信したときの半導体メモリシステム1000の状態を模式的に示す図である。
FIG. 10 is a diagram schematically showing a state of the
以下では、図2、図3の半導体メモリシステム1000の動作シーケンス図を参照しながら説明する。
Hereinafter, description will be made with reference to the operation sequence diagrams of the
まず、初期状態では、図4に示すように、第2記憶部4はデータが記憶されていない状態である。なお、図4において、第2記憶部4のハッチング部分は、データが記憶されていないことを示している。
First, in the initial state, as shown in FIG. 4, the
第1記憶部3には、図4に示すように、常駐コードと、追加機能コードと、秘匿情報とが記憶されている。図4は、常駐コードと、追加機能コードと、秘匿情報とが、それぞれ、第1記憶部3の所定のメモリ領域に記憶されていることを模式的に示している。
As shown in FIG. 4, the
(ステップS1〜ステップS3):
ステップS1において、半導体メモリ装置100が起動され、マイクロプロセッサ2は、起動処理を実行する。
(Step S1 to Step S3):
In step S1, the
そして、マイクロプロセッサ2は、メモリアクセス処理を実行する。具体的には、マイクロプロセッサ2は、第1記憶部3から常駐コードを読み出し(ステップS2)、読み出した常駐コードを第2記憶部4に書き込む(ステップS3)。
Then, the
ステップS3の完了後、マイクロプロセッサ2は、待機状態となる。
After the completion of step S3, the
図5は、ステップS3の処理が終了したときの半導体メモリシステム1000の状態を示している。
FIG. 5 shows the state of the
(ステップS4):
ステップS4において、ホスト装置H1は、半導体メモリ装置100に対して、実行予約命令Dh(RsvExe)を送信する。なお、「Dh(X)」は、ホスト装置H1が半導体メモリ装置100に対して送信するデータであり、当該データには、Xを実行するために必要な、コマンド、引数(例えば、アドレスのデータ)、処理対象データを特定するための情報、所定のデータ等を含ませることができる。
(Step S4):
In step S4, the host device H1 transmits an execution reservation instruction Dh (RsvExe) to the
半導体メモリ装置100のホストIF1は、ホスト装置H1から受信したデータ(コマンド)を解析し、当該データ(コマンド)が実行予約命令Dh(RsvExe)であると判定する。そして、ホストIF1は、ホスト装置H1から受信したデータ(実行予約命令Dh(RsvExe))をマイクロプロセッサ2にバスBusを介して転送する。
The host IF1 of the
マイクロプロセッサ2は、ホストIF1からのデータ(実行予約命令Dh(RsvExe))を受信する。
The
(ステップS5、S6):
ステップS5において、マイクロプロセッサ2は、ホストIF1から受信した実行予約命令Dh(RsvExe)に従い、メモリアクセス処理を実行する。具体的には、マイクロプロセッサ2は、第1記憶部3から、(1)追加機能コード、(2)秘匿情報を読み出す。なお、秘匿情報は、必要に応じて読み出されるものであってもよい。
(Steps S5 and S6):
In step S5, the
ステップS6において、マイクロプロセッサ2は、第1記憶部3から読み出した(1)追加機能コード、(2)秘匿情報を第2記憶部4に書き込む。なお、秘匿情報は、必要に応じて書き込まれるようにしてもよい。
In step S6, the
図6は、ステップS6の処理が終了したときの半導体メモリシステム1000の状態を示している。
FIG. 6 shows the state of the
(ステップS7):
ステップS7において、マイクロプロセッサ2は、第2記憶部4の外部アクセス許可領域を設定する処理を行う。具体的には、マイクロプロセッサ2は、バスBusを介して、ホストIF1のメモリ制御部11に第2記憶部4の外部アクセス許可領域を設定するための情報を出力する。外部アクセス許可領域を設定するための情報は、例えば、第2記憶部4のメモリ領域の先頭アドレスからのオフセットOfstと、および、当該オフセットOfstにより決定される第2記憶部4のメモリ領域のアドレスからの深さDpthである。
(Step S7):
In step S7, the
この場合、「(先頭アドレス)+(オフセットOfst)」で決定されるアドレスから「(先頭アドレス)+(オフセットOfst)+(深さDpth)」で決定されるアドレスまでの第2記憶部4のメモリ領域が、外部アクセス許可領域となる。
In this case, the
なお、メモリ制御部11には、第2記憶部4の全メモリ領域へのアクセスを禁止することを示す値が設定されている。これにより、外部アクセス可能領域が設定されていない状態においても、外部装置(例えば、ホスト装置H1)から第2記憶部4に不正アクセスされることを適切に防止することができる。
The
ホストIF1のメモリ制御部11は、マイクロプロセッサ2からの外部アクセス許可領域を設定するための情報(例えば、オフセットOfstと深さDpth)を保持する。ホストIF1は、メモリ制御部11に保持された外部アクセス許可領域設定情報(例えば、オフセットOfstと深さDpth)に基づいて、第2記憶部4のアクセス制御を行う。
The
図7は、ステップS7の処理が終了したときの半導体メモリシステム1000の状態を示している。
FIG. 7 shows the state of the
(ステップS8):
ステップS8において、ホスト装置H1は、半導体メモリ装置100に対して、演算対象データの書き込み命令Dh(Write)を送信する。
(Step S8):
In step S8, the host device H1 transmits a write command Dh (Write) of the calculation target data to the
半導体メモリ装置100のホストIF1は、ホスト装置H1から受信したデータ(コマンド)を解析し、当該データ(コマンド)が演算対象データの書き込み命令Dh(Write)であると判定する。そして、ホストIF1は、ホスト装置H1から受信したデータ(演算対象データの書き込み命令Dh(Write))に基づいて、メモリアクセス処理を実行する。
The host IF1 of the
(ステップS9):
ステップS9において、ホストIF1は、演算対象データの書き込み命令Dh(Write)に含まれる演算対象データを抽出し、抽出した演算対象データを第2記憶部4に書き込む。このとき、ホストIF1は、メモリ制御部11に保持されている外部アクセス許可領域の情報を参照し、演算対象データを第2記憶部4の外部アクセス許可領域に書き込む。
(Step S9):
In step S9, the host IF1 extracts the calculation target data included in the calculation target data write command Dh (Write), and writes the extracted calculation target data in the
図8は、ステップS9の処理が終了したときの半導体メモリシステム1000の状態を示している。図8から分かるように、ホスト装置H1から送信された演算対象データが第2記憶部4の外部アクセス許可領域に記憶されている。
FIG. 8 shows the state of the
(ステップS10):
ステップS10において、ホスト装置H1は、半導体メモリ装置100に対して、演算実行命令Dh(Exe)(マイクロプロセッサ起動コマンド)を送信する。
(Step S10):
In step S10, the host device H1 transmits an arithmetic execution instruction Dh (Exe) (microprocessor start command) to the
半導体メモリ装置100のホストIF1は、ホスト装置H1から受信したデータ(コマンド)を解析し、当該データ(コマンド)が演算実行命令Dh(Exe)であると判定する。そして、ホストIF1は、ホスト装置H1から受信したデータ(演算実行命令Dh(Exe))をマイクロプロセッサ2にバスBusを介して転送する。
The host IF1 of the
マイクロプロセッサ2は、ホストIF1からのデータ(実行予約命令Dh(Exe))を受信する。
The
(ステップS11〜S13)
ステップS11において、マイクロプロセッサ2は、ホストIF1から受信した演算実行命令Dh(Exe)に従い、メモリアクセス処理を実行する。具体的には、マイクロプロセッサ2は、第2記憶部4から、(1)追加機能コード、(2)演算対象データ、(3)(必要に応じて)秘匿情報を読み出す。
(Steps S11 to S13)
In step S11, the
ステップS12において、マイクロプロセッサ2は、第2記憶部4から読み出した(1)追加機能コード、(2)演算対象データ、(3)(必要であれば)秘匿情報を用いて、演算(CPU演算処理)を実行する。
In step S12, the
ステップS13において、マイクロプロセッサ2は、第2記憶部4に対するメモリアクセス処理を行う。具体的には、マイクロプロセッサ2は、上記演算(CPU演算処理)の実行結果(演算結果)を第2記憶部4の外部アクセス許可領域に書き込む。
In step S13, the
図9は、ステップS13の処理が終了したときの半導体メモリシステム1000の状態を示している。図9から分かるように、マイクロプロセッサ2が(1)追加機能コード、(2)演算対象データ、(3)(必要であれば)秘匿情報を用いて演算した結果が第2記憶部4の外部アクセス許可領域に記憶されている。
FIG. 9 shows the state of the
なお、ホスト装置H1は、例えば、半導体メモリ装置100に対してポーリングし、半導体メモリ装置100のマイクロプロセッサ2による演算処理が完了したことを把握する。
The host device H1 polls the
(ステップS14〜S16)
ステップS14において、ホスト装置H1は、半導体メモリ装置100に対して、演算結果の読み出し命令Dh(Read)を送信する。
(Steps S14 to S16)
In step S14, the host device H1 transmits a read instruction Dh (Read) of the calculation result to the
半導体メモリ装置100のホストIF1は、ホスト装置H1から受信したデータ(コマンド)を解析し、当該データ(コマンド)が演算結果の読み出し命令Dh(Read)であると判定する。そして、ホストIF1は、ホスト装置H1から受信したデータ(演算結果の読み出し命令Dh(Read))に基づいて、メモリアクセス処理を実行する。
The host IF1 of the
ステップS15において、ホストIF1は、外部アクセス許可領域から演算結果を読み出す。 In step S15, the host IF1 reads the calculation result from the external access permission area.
ステップS16において、ホストIF1は、外部アクセス許可領域から読み出した演算結果を含めた送信データを作成し、作成した送信データを送信データDs(Result)として、ホスト装置H1に送信する。 In step S16, the host IF1 creates transmission data including the calculation result read from the external access permission area, and transmits the created transmission data as transmission data Ds (Result) to the host device H1.
ホスト装置H1は、ホストIF1から送信されるデータDs(Result)を受信し、受信したデータDs(Result)から、演算結果を抽出する。 The host device H1 receives the data Ds (Result) transmitted from the host IF1 and extracts the calculation result from the received data Ds (Result).
以上のように、半導体メモリシステム1000では、ホストIF1のメモリ制御部11に第2記憶部4の外部アクセス許可領域を特定するための情報(例えば、オフセットOfstと深さDpth)を保持し、当該情報に基づいて、ホストIF1が、ホスト装置H1からの第2記憶部4へのアクセスを許可するか否かを判定する。半導体メモリシステム1000では、メモリ制御部11に保持されている情報に基づいて、ホストIF1が、ホスト装置H1からの第2記憶部4へのアクセスを許可した場合、ホスト装置H1は、ホストIF1を介して、第2記憶部4にアクセスすることができる。つまり、半導体メモリシステム1000では、ホスト装置H1からアクセス速度の速い第2記憶装置(例えば、SRAM)に、直接(バッファや、アクセス速度の遅い不揮発性メモリ等に、暫定的にデータを保持させることなく)、アクセスすることができる。さらに、半導体メモリシステム1000では、上記の通り、ホストIF1が第2記憶部4へのアクセス制御を行い、外部装置(例えば、ホスト装置H1)からアクセスできる領域を外部アクセス許可領域に限定することができる。これにより、半導体メモリシステム1000では、外部装置(例えば、ホスト装置H1)から不正に半導体メモリ装置100の高速メモリである第2記憶部4にアクセスされることがない。
As described above, in the
このように、半導体メモリシステム1000では、外部装置(例えば、ホスト装置H1)から安全に半導体メモリ装置100の高速メモリである第2記憶部4にアクセスすることができる。
In this way, in the
なお、ここで、半導体メモリシステム1000の使用例として、(A)暗号化機能を追加する場合と、(B)乱数生成機能を追加する場合と、(C)出荷時のテスト機能を追加する場合について、説明する。
Here, as an example of using the
≪(A)暗号化機能を追加する場合≫
まず、半導体メモリシステム1000の使用例として、(A)暗号化機能を追加する場合について、説明する。
≪ (A) When adding an encryption function≫
First, as an example of using the
この場合、半導体メモリシステム1000では、以下の処理が実行される。
(1)暗号化機能を実現するファームウェア(F/W)が第1記憶部3に格納される。なお、この暗号化機能を実現するファームウェア(F/W)は、常駐コード、追加機能コード、および、秘匿情報として、第1記憶部3に格納される。
(2)マイクロプロセッサ2は、起動時(ブート時)に第1記憶部3に格納されている常駐コードを、第1記憶部3から読み出し、第2記憶部4に書き込む。その後、マイクロプロセッサ2は待機状態となる。
(3)ホスト装置H1は、半導体メモリ装置100に対して、実行予約命令Dh(RsvExe)を送信する。半導体メモリ装置100は、実行予約命令Dh(RsvExe)を受信すると、第1記憶部3から追加機能コードと秘匿情報とを読み出し、読み出した追加機能コードと秘匿情報とを第2記憶部4に書き込む。
In this case, the
(1) The firmware (F / W) that realizes the encryption function is stored in the
(2) The
(3) The host device H1 transmits an execution reservation command Dh (RsvExe) to the
また、半導体メモリ装置100は、ホストIF1のメモリ制御部11において第2記憶部4の外部アクセス許可領域を設定するための情報を保持する。これにより、半導体メモリ装置100は、ホストIF1により、第2記憶部4の外部アクセス許可領域が設定され、これ以降、ホストIF1により、第2記憶部4へのアクセス制御が実行される。
(4)ホスト装置H1は、半導体メモリ装置100に対して、演算対象データの書き込み命令Dh(Write)を送信する。半導体メモリ装置100は、演算対象データの書き込み命令Dh(Write)を受信し、ホストIF1により、演算対象データを第2記憶部4の外部アクセス許可領域に書き込む。
(5)ホスト装置H1は、半導体メモリ装置100に対して、演算実行命令Dh(Exe)(マイクロプロセッサ起動コマンド)を送信する。
Further, the
(4) The host device H1 transmits a write command Dh (Write) of the calculation target data to the
(5) The host device H1 transmits an arithmetic execution command Dh (Exe) (microprocessor start command) to the
半導体メモリ装置100のマイクロプロセッサ2は、第2記憶部4に記憶されている演算対象データに対して、第2記憶部4に記憶されている追加機能コードを使用し暗号化処理を実行する。
The
そして、暗号化処理の演算結果は、第2記憶部4の外部アクセス許可領域に書き込まれる。
(6)ホスト装置H1は、例えば、ポーリングにより、半導体メモリ装置100でのマイクロプロセッサ2の処理が完了したことを確認した後、半導体メモリ装置100に対して、演算結果の読み出し命令Dh(Read)を送信する。半導体メモリ装置100のホストIF1は、暗号化処理の演算結果を、第2記憶部4から読み出し、ホスト装置H1に送信する。
Then, the calculation result of the encryption process is written in the external access permission area of the
(6) The host device H1 confirms that the processing of the
以上により、半導体メモリシステム1000において、暗号化機能を追加することができる。
As described above, the encryption function can be added to the
≪(B)乱数生成機能を追加する場合≫
次に、半導体メモリシステム1000の使用例として、(B)乱数生成機能を追加する場合について、説明する。
≪ (B) When adding a random number generation function≫
Next, as an example of using the
この場合、半導体メモリシステム1000では、以下の処理が実行される。
(1)乱数生成機能を実現するファームウェア(F/W)が第1記憶部3に格納される。なお、この乱数生成機能を実現するファームウェア(F/W)は、常駐コード、および、追加機能コードとして、第1記憶部3に格納される。
(2)マイクロプロセッサ2は、起動時(ブート時)に第1記憶部3に格納されている常駐コードを、第1記憶部3から読み出し、第2記憶部4に書き込む。その後、マイクロプロセッサ2は待機状態となる。
(3)ホスト装置H1は、半導体メモリ装置100に対して、実行予約命令Dh(RsvExe)を送信する。半導体メモリ装置100は、実行予約命令Dh(RsvExe)を受信すると、第1記憶部3から追加機能コードを読み出し、読み出した追加機能コードを第2記憶部4に書き込む。
In this case, the
(1) The firmware (F / W) that realizes the random number generation function is stored in the
(2) The
(3) The host device H1 transmits an execution reservation command Dh (RsvExe) to the
また、半導体メモリ装置100は、ホストIF1のメモリ制御部11において第2記憶部4の外部アクセス許可領域を設定するための情報を保持する。これにより、半導体メモリ装置100は、ホストIF1により、第2記憶部4の外部アクセス許可領域が設定され、これ以降、ホストIF1により、第2記憶部4へのアクセス制御が実行される。
(4)ホスト装置H1は、半導体メモリ装置100に対して、演算実行命令Dh(Exe)(マイクロプロセッサ起動コマンド)を送信する。
Further, the
(4) The host device H1 transmits an arithmetic execution command Dh (Exe) (microprocessor start command) to the
半導体メモリ装置100のマイクロプロセッサ2は、第2記憶部4に記憶されている追加機能コードを使用し乱数生成処理を実行する。
The
そして、乱数生成処理の演算結果は、第2記憶部4の外部アクセス許可領域に書き込まれる。
(6)ホスト装置H1は、例えば、ポーリングにより、半導体メモリ装置100でのマイクロプロセッサ2の処理が完了したことを確認した後、半導体メモリ装置100に対して、演算結果の読み出し命令Dh(Read)を送信する。半導体メモリ装置100のホストIF1は、乱数生成処理の演算結果を、第2記憶部4から読み出し、ホスト装置H1に送信する。
Then, the calculation result of the random number generation process is written in the external access permission area of the
(6) The host device H1 confirms that the processing of the
以上により、半導体メモリシステム1000において、乱数生成機能を追加することができる。
As described above, the random number generation function can be added to the
≪(C)出荷時のテスト機能を追加する場合≫
次に、半導体メモリシステム1000の使用例として、(C)出荷時のテスト機能を追加する場合について、説明する。
≪ (C) When adding a factory test function≫
Next, as an example of using the
この場合、半導体メモリシステム1000では、以下の処理が実行される。
(1)第2記憶部4の特定番地Adrs_specの命令を実行する機能を実現するファームウェア(F/W)が第1記憶部3に格納される。なお、この機能を実現するファームウェア(F/W)は、常駐コードとして、第1記憶部3に格納される。
(2)マイクロプロセッサ2は、第1記憶部3に記憶されている常駐コードにより起動処理を行い、常駐コードから、第2記憶部4の特定番地Adrs_specの情報を取得する。そして、マイクロプロセッサ2は、取得した特定番地Adrs_specに基づいて、ホストIF1のメモリ制御部11において、第2記憶部4の外部アクセス許可領域を設定するための情報を保持する。
In this case, the
(1) The firmware (F / W) that realizes the function of executing the instruction of the specific address Adrs_spec of the
(2) The
図11は、第2記憶部4の外部アクセス許可領域が設定されたときの半導体メモリシステム1000の状態を模式的に示す図である。図11から分かるように、この場合、常駐コードが記憶されているメモリ領域の次の番地(メモリアドレス)に特定番地Adrs_specが設定されており、特定番地Adrs_spec以降のメモリ領域が、外部アクセス許可領域に設定されている。
(3)ホスト装置H1は、半導体メモリ装置100に対して、テストコードの書き込み命令Dh(Write)を送信する。半導体メモリ装置100は、テストコードの書き込み命令Dh(Write)を受信し、ホストIF1により、テストコードを第2記憶部4の特定番地Adrs_spec以降のメモリ領域、すなわち、外部アクセス許可領域に書き込む。
(4)ホスト装置H1は、半導体メモリ装置100に対して、演算実行命令Dh(Exe)(マイクロプロセッサ起動コマンド)を送信する。
FIG. 11 is a diagram schematically showing a state of the
(3) The host device H1 transmits a test code write command Dh (Write) to the
(4) The host device H1 transmits an arithmetic execution command Dh (Exe) (microprocessor start command) to the
半導体メモリ装置100のマイクロプロセッサ2は、第2記憶部4に記憶されているテストコードを用いてテスト処理を実行する、
そして、テスト処理の演算結果は、第2記憶部4の外部アクセス許可領域に書き込まれる。
(6)ホスト装置H1は、例えば、ポーリングにより、半導体メモリ装置100でのマイクロプロセッサ2の処理が完了したことを確認した後、半導体メモリ装置100に対して、演算結果の読み出し命令Dh(Read)を送信する。半導体メモリ装置100のホストIF1は、テスト処理の演算結果を、第2記憶部4から読み出し、ホスト装置H1に送信する。
The
Then, the calculation result of the test process is written in the external access permission area of the
(6) The host device H1 confirms that the processing of the
以上により、半導体メモリシステム1000において、テスト機能(出荷時のテスト機能)を追加することができる。
As described above, the test function (test function at the time of shipment) can be added to the
[第2実施形態]
次に、第2実施形態について、説明する。
[Second Embodiment]
Next, the second embodiment will be described.
第1実施形態と同様の部分については、同一符号を付し、詳細な説明を省略する。 The same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
<2.1:半導体メモリシステムの構成>
図12は、第2実施形態に係る半導体メモリシステム2000の概略構成図である。
<2.1: Configuration of semiconductor memory system>
FIG. 12 is a schematic configuration diagram of the
図12に示すように、第2実施形態の半導体メモリシステム2000は、第1実施形態の半導体メモリシステム1000において、さらに、ラッパー部5と、アクセス禁止情報保持部6とを備える。
As shown in FIG. 12, the
ラッパー部5は、第2記憶部4とバスBusとの間に設置されており、アクセス禁止情報保持部6と接続されている。ラッパー部5は、例えば、ラッパー(Wrapper)回路により実現される。ラッパー部5は、アクセス禁止情報保持部6から、第2記憶部4のアクセス禁止領域を設定するためのアクセス禁止情報を取得し、取得したアクセス禁止情報に基づいて、第2記憶部4へのアクセス制御を行う。また、ラッパー部5は、マイクロプロセッサ2からバスBusを介して出力されるフェッチアクセス信号を入力する。ラッパー部5は、フェッチアクセス信号がイネーブルであるとき(イネーブルを示す信号値であるとき)、第2記憶部4からデータを読み出し、読み出したデータをマイクロプロセッサ2にバスBusを介して出力する。
The wrapper unit 5 is installed between the
アクセス禁止情報保持部6は、第2記憶部4のアクセス禁止領域を設定するためのアクセス禁止情報を記憶保持している。そして、アクセス禁止情報保持部6は、ラッパー部5からの要求に従い、保持しているアクセス禁止情報をラッパー部5に出力する。
The access prohibition
<2.2:半導体メモリシステムの動作>
以上のように構成された半導体メモリシステム2000の動作について、以下、説明する。
<2.2: Operation of semiconductor memory system>
The operation of the
なお、第1実施形態と同様の部分については、説明を省略する。 The description of the same part as that of the first embodiment will be omitted.
半導体メモリシステム2000の基本動作は、図2、図3の動作シーケンスに示した第1実施形態の半導体メモリシステム1000と同様である。
The basic operation of the
図13は、第2実施形態に係る半導体メモリシステム2000の動作を説明するための図である。
FIG. 13 is a diagram for explaining the operation of the
アクセス禁止情報保持部6には、第2記憶部4のアクセス禁止領域を設定するためのアクセス禁止情報が記憶されている。アクセス禁止情報保持部6は、例えば、OTP(One Time Programmable)方式のROMにより実現される。したがって、アクセス禁止情報保持部6に保持されているアクセス禁止情報は、後から変更することはできない。したがって、アクセス禁止情報保持部6に保持されているアクセス禁止情報のセキュリティ強度は高いものとなる。
The access prohibition
なお、アクセス禁止情報保持部6は、ハードウェア実装されるものであってもよい(ハードワイヤードロジックにより実装されるものであってもよい)。この場合、アクセス禁止情報保持部6を実現するハードウェアは変更できないため、アクセス禁止情報保持部6から出力されるアクセス禁止情報は、後から変更することはできない。したがって、アクセス禁止情報保持部6に保持されているアクセス禁止情報のセキュリティ強度は高いものとなる。
The access prohibition
ラッパー部5は、アクセス禁止情報保持部6から、第2記憶部4のアクセス禁止領域を設定するためのアクセス禁止情報を取得する。そして、ラッパー部5は、取得したアクセス禁止情報に基づいて、第2記憶部4へのアクセス制御を行う。具体的には、ラッパー部5は、アクセス禁止情報に基づいて、第2記憶部4のアクセス禁止領域を設定する。このアクセス禁止領域は、外部装置(例えば、ホスト装置H1)からのアクセスが禁止されるメモリ領域である。なお、アクセス禁止領域は、マイクロプロセッサ2からの命令フェッチによる読み出しは可能であるメモリ領域である。具体的には、マイクロプロセッサ2からラッパー部5に入力されるフェッチアクセス信号がフェッチイネーブルを示す信号値である場合のみ、マイクロプロセッサ2からの命令フェッチにより、第2記憶部4のアクセス禁止領域のデータ(命令コード)を読み出すことができる。
The wrapper unit 5 acquires the access prohibition information for setting the access prohibition area of the
図13は、ラッパー部5により設定されたアクセス禁止領域の一例を模式的に示している。具体的には、図13において、メモリ領域prohibit_AR1、prohibit_AR2が、ラッパー部5により設定されたアクセス禁止領域である。この場合、第2記憶部4において、常駐コードが記憶されているメモリ領域(メモリ領域prohibit_AR1として設定されている領域)と、秘匿情報が記憶されているメモリ領域(メモリ領域prohibit_AR1)が、ラッパー部5により設定されたアクセス禁止領域である。
FIG. 13 schematically shows an example of an access prohibited area set by the wrapper unit 5. Specifically, in FIG. 13, the memory areas prohibit_AR1 and prohibit_AR2 are access prohibited areas set by the wrapper unit 5. In this case, in the
このようにアクセス禁止領域を設定することで、第2記憶部4の常駐コードが記憶されているメモリ領域、および、秘匿情報が記憶されているメモリ領域が、外部装置(例えば、ホスト装置H1)から不正アクセスされることを適切に防止することができる。
By setting the access prohibited area in this way, the memory area in which the resident code of the
なお、アクセス禁止領域に記憶されているデータ(コード)の読み出しは、命令フェッチにより、以下のようにして実行される。 The data (code) stored in the access prohibited area is read by instruction fetch as follows.
マイクロプロセッサ2は、フェッチアクセス信号および命令フェッチ信号を、バスBusを介して、ラッパー部5に出力する。
The
ラッパー部5は、マイクロプロセッサ2からのフェッチアクセス信号および命令フェッチ信号を受信し、受信した命令フェッチ信号から、命令フェッチ対象のアドレスを取得する。また、ラッパー部5は、受信したフェッチアクセス信号がイネーブルを示す信号値であるか否かを判定する。そして、ラッパー部5は、受信したフェッチアクセス信号がイネーブルを示す信号値である場合、取得した命令フェッチ対象のアドレスが、第2記憶部4のアクセス禁止領域内のアドレスであるときであっても、当該アドレスからデータ(命令コード)を読み出す。そして、ラッパー部5は、読み出したデータ(命令コード)を、バスBusを介して、マイクロプロセッサ2に出力する。
The wrapper unit 5 receives the fetch access signal and the instruction fetch signal from the
なお、半導体メモリシステム2000では、秘匿情報が命令コードの形式で、第2記憶部4に記憶される。これにより、半導体メモリシステム2000では、図13に示すように、秘匿情報が記憶されているメモリ領域がアクセス禁止領域prohibit_AR2に設定されても、上記処理により、マイクロプロセッサ2からのみ読み出すことができる。
In the
つまり、(1)ラッパー部5に入力されているフェッチアクセス信号がイネーブルを示す信号値であり、かつ、(2)ラッパー部5が、マイクロプロセッサ2から、アクセス禁止領域prohibit_AR2に含まれるアドレスのコードを読み出すための命令フェッチ信号を受信したとき、アクセス禁止領域prohibit_AR2から秘匿情報(命令コード形式のデータとして記憶されている秘匿情報)を読み出すことができる。
That is, (1) the fetch access signal input to the wrapper unit 5 is a signal value indicating enable, and (2) the wrapper unit 5 is the code of the address included in the access prohibited area prohibit_AR2 from the
なお、秘匿情報は、例えば、命令コードのフォーマットにおいて、任意のデータを含ませることができるフィールドに含ませるようにしてもよい。 The confidential information may be included in a field in which arbitrary data can be included, for example, in the format of the instruction code.
以上のように、半導体メモリシステム2000では、ラッパー部5により、アクセス禁止領域を設定することができ、第2記憶部4のアクセス禁止領域に記憶されているデータは、マイクロプロセッサ2から、フェッチアクセス信号がイネーブルであるときのみ、命令フェッチにより読み出される。
As described above, in the
したがって、半導体メモリシステム2000では、外部装置(例えば、ホスト装置H1)が、第2記憶部4でアクセス禁止領域に設定されたメモリ領域に不正にアクセスすることを効果的に防止することができる。
Therefore, in the
≪第1変形例≫
次に、第2実施形態の第1変形例について説明する
なお、上記実施形態と同様の部分については、詳細な説明を省略する。
≪First modification≫
Next, a first modification of the second embodiment will be described. A detailed description of the same parts as those of the above embodiment will be omitted.
図14は、第2実施形態の第1変形例の半導体メモリシステム2000Aの概略構成図である。
FIG. 14 is a schematic configuration diagram of the
本変形例の半導体メモリシステム2000Aは、第2実施形態の半導体メモリシステム2000において、マイクロプロセッサ2をマイクロプロセッサ2Aに置換し、ラッパー部5をラッパー部5Aに置換した構成を有している。
The
マイクロプロセッサ2Aは、フェッチアクセス信号を出力するための信号線L1によりラッパー部5Aと接続されている。マイクロプロセッサ2Aは、信号線L1により、ラッパー部5Aに、バスBusを介することなく直接、フェッチアクセス信号を出力する。なお、上記以外について、マイクロプロセッサ2Aは、マイクロプロセッサ2と同様である。
The
ラッパー部5Aは、信号線L1によりマイクロプロセッサ2Aと接続されている。ラッパー部5Aは、信号線L1により、マイクロプロセッサ2Aからフェッチアクセス信号を入力する。なお、上記以外について、ラッパー部5Aは、ラッパー部5と同様である。
The
本変形例の半導体メモリシステム2000Aでは、ラッパー部5Aが、マイクロプロセッサ2Aから出力されるフェッチアクセス信号を、信号線L1を介して受信する。
In the
そして、半導体メモリシステム2000Aでは、受信したフェッチアクセス信号を用いて、第2実施形態と同様の動作が実行される。
Then, in the
これにより、半導体メモリシステム2000Aでは、半導体メモリシステム2000と同様に、外部装置(例えば、ホスト装置H1)が、第2記憶部4でアクセス禁止領域に設定されたメモリ領域に不正にアクセスすることを効果的に防止することができる。
As a result, in the
≪第2変形例≫
次に、第2実施形態の第2変形例について説明する
なお、上記実施形態、変形例と同様の部分については、詳細な説明を省略する。
≪Second modification≫
Next, a second modification of the second embodiment will be described. In addition, detailed description of the same parts as those of the above-described embodiment and modification will be omitted.
図15は、第2実施形態の第2変形例の半導体メモリシステムにおける第2記憶部4に対するアクセス制御方法を決定するための条件を示した表を示す図である。
FIG. 15 is a diagram showing a table showing conditions for determining an access control method for the
本変形例の半導体メモリシステムの構成は、第2実施形態の半導体メモリシステム2000、または、第2実施形態の第1変形例の半導体メモリシステム2000Aの構成と同様である。
The configuration of the semiconductor memory system of this modification is the same as the configuration of the
ラッパー部5(またはラッパー部5A)の処理内容が異なる。
The processing contents of the wrapper unit 5 (or the
本変形例のラッパー部5(またはラッパー部5A)は、図15に示した条件(パターン)により、第2記憶部4に対するアクセス制御方法を決定する。
The wrapper unit 5 (or
具体的には、本変形例のラッパー部5(またはラッパー部5A)は、以下のパターン1〜パターン4により、アクセス制御方法を決定する。
Specifically, the wrapper unit 5 (or
(パターン1):
本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1のメモリ制御部11に保持されているデータ(オフセットOfstおよび深さDpth)から、外部アクセス許可領域を決定する。また、本変形例のラッパー部5(またはラッパー部5A)は、アクセス禁止情報保持部6に保持されているアクセス禁止情報から、アクセス禁止領域を決定する。
(Pattern 1):
The wrapper unit 5 (or
そして、本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1からアクセスしようとしている第2記憶部4のアドレスが、
(1)外部アクセス許可領域外のアドレスであり、かつ、
(2)アクセス禁止領域内のアドレスである場合、
第2記憶部4の当該アドレスへのアクセスを禁止する。
Then, in the wrapper unit 5 (or
(1) The address is outside the external access permission area, and
(2) If the address is within the access prohibited area
Access to the address of the
なお、本変形例のラッパー部5(またはラッパー部5A)は、フェッチアクセス信号がイネーブルであることを示す信号である場合、マイクロプロセッサ2(または2A)からの命令フェッチによる当該アドレスへのアクセスは許可する。
If the wrapper unit 5 (or
(パターン2):
本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1のメモリ制御部11に保持されているデータ(オフセットOfstおよび深さDpth)から、外部アクセス許可領域を決定する。また、本変形例のラッパー部5(またはラッパー部5A)は、アクセス禁止情報保持部6に保持されているアクセス禁止情報から、アクセス禁止領域を決定する。
(Pattern 2):
The wrapper unit 5 (or
そして、本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1からアクセスしようとしている第2記憶部4のアドレスが、
(1)外部アクセス許可領域外のアドレスであり、かつ、
(2)アクセス禁止領域外のアドレスである場合、
第2記憶部4の当該アドレスへのアクセスを禁止する。
Then, in the wrapper unit 5 (or
(1) The address is outside the external access permission area, and
(2) If the address is outside the access prohibited area
Access to the address of the
なお、本変形例のラッパー部5(またはラッパー部5A)は、フェッチアクセス信号がイネーブルであることを示す信号である場合、マイクロプロセッサ2(または2A)からの命令フェッチによる当該アドレスへのアクセスは許可する。
If the wrapper unit 5 (or
(パターン3):
本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1のメモリ制御部11に保持されているデータ(オフセットOfstおよび深さDpth)から、外部アクセス許可領域を決定する。また、本変形例のラッパー部5(またはラッパー部5A)は、アクセス禁止情報保持部6に保持されているアクセス禁止情報から、アクセス禁止領域を決定する。
(Pattern 3):
The wrapper unit 5 (or
そして、本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1からアクセスしようとしている第2記憶部4のアドレスが、
(1)外部アクセス許可領域内のアドレスであり、かつ、
(2)アクセス禁止領域内のアドレスである場合、
第2記憶部4の当該アドレスへのアクセスを全て禁止する。
Then, in the wrapper unit 5 (or
(1) It is an address in the external access permission area and
(2) If the address is within the access prohibited area
All access to the address of the
この場合、外部装置(例えば、ホスト装置H1)からの不正アクセスである可能性が高いため、第2記憶部4の当該アドレスへのアクセスを全て禁止する。
In this case, since there is a high possibility that the access is unauthorized from the external device (for example, the host device H1), all access to the address of the
(パターン4):
本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1のメモリ制御部11に保持されているデータ(オフセットOfstおよび深さDpth)から、外部アクセス許可領域を決定する。また、本変形例のラッパー部5(またはラッパー部5A)は、アクセス禁止情報保持部6に保持されているアクセス禁止情報から、アクセス禁止領域を決定する。
(Pattern 4):
The wrapper unit 5 (or
そして、本変形例のラッパー部5(またはラッパー部5A)は、ホストIF1からアクセスしようとしている第2記憶部4のアドレスが、
(1)外部アクセス許可領域内のアドレスであり、かつ、
(2)アクセス禁止領域外のアドレスである場合、
第2記憶部4の当該アドレスへのアクセスを許可する。
Then, in the wrapper unit 5 (or
(1) It is an address in the external access permission area and
(2) If the address is outside the access prohibited area
The access to the address of the
なお、上記パターン1〜3において、アクセス許可、アクセス禁止の設定内容が異なる状態となるのは、外部アクセス許可領域の設定情報、および/または、アクセス禁止領域の設定情報が不正に変更された、あるいは、ノイズ等により変更されたためと予想される。 In the above patterns 1 to 3, the access permission and access prohibition settings are different because the external access permission area setting information and / or the access prohibition area setting information is illegally changed. Alternatively, it is presumed that it was changed due to noise or the like.
本変形例の半導体メモリシステムでは、ラッパー部5(またはラッパー部5A)により、上記のようにアクセス制御を行うので、さらにセキュリティ強度の高い、第2記憶部4へのアクセス制御を実現することができる。
In the semiconductor memory system of this modification, the wrapper unit 5 (or the
[他の実施形態]
上記実施形態および変形例を組み合わせて、半導体メモリシステム、半導体メモリ装置を構成するようにしてもよい。
[Other Embodiments]
A semiconductor memory system and a semiconductor memory device may be configured by combining the above embodiments and modifications.
また、上記実施形態(変形例を含む)において、ホストIF1のメモリ制御部11により設定される外部アクセス許可領域を設定するための情報は、固定のデータ(値)である必要はなく、例えば、半導体メモリ装置が動作しているときに、所定のタイミングで変更されるものであってもよい。これにより、動的に、第2記憶部4の外部アクセス許可領域を変更することができる。また、外部アクセス許可領域を設定するための情報は、常駐コードの中に含まれるものであってもよい。この場合、ホストIF1は、当該常駐コードから外部アクセス許可領域を設定するための情報を抽出し、当該情報により、第2記憶部4の外部アクセス許可領域を設定(変更)するようにしてもよい。
Further, in the above embodiment (including a modification), the information for setting the external access permission area set by the
また、上記実施形態(変形例を含む)で説明した半導体メモリ装置において、各ブロックは、LSIなどの半導体装置により個別に1チップ化されても良いし、一部又は全部を含むように1チップ化されても良い。 Further, in the semiconductor memory device described in the above embodiment (including a modification), each block may be individually integrated into one chip by a semiconductor device such as an LSI, or one chip so as to include a part or all of the blocks. It may be converted.
なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Although it is referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。 Further, the method of making an integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
また、上記各実施形態の各機能ブロックの処理の一部または全部は、プログラムにより実現されるものであってもよい。そして、上記各実施形態の各機能ブロックの処理の一部または全部は、コンピュータにおいて、中央演算装置(CPU)により行われる。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。 In addition, a part or all of the processing of each functional block of each of the above embodiments may be realized by a program. Then, a part or all of the processing of each functional block of each of the above embodiments is performed by the central processing unit (CPU) in the computer. Further, the program for performing each process is stored in a storage device such as a hard disk or a ROM, and is read and executed in the ROM or the RAM.
また、上記実施形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。 Further, each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware.
例えば、上記実施形態(変形例を含む)の各機能部を、ソフトウェアにより実現する場合、図16に示したハードウェア構成(例えば、CPU、ROM、RAM、入力部、出力部等をバスBusにより接続したハードウェア構成)を用いて、各機能部をソフトウェア処理により実現するようにしてもよい。 For example, when each functional unit of the above embodiment (including a modified example) is realized by software, the hardware configuration (for example, CPU, ROM, RAM, input unit, output unit, etc.) shown in FIG. 16 is realized by a bus Bus. Each functional part may be realized by software processing by using the connected hardware configuration).
また、上記実施形態における処理方法の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えることができるものである。 Further, the execution order of the processing methods in the above-described embodiment is not necessarily limited to the description of the above-described embodiment, and the execution order can be changed without departing from the gist of the invention.
前述した方法をコンピュータに実行させるコンピュータプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体は、本発明の範囲に含まれる。ここで、コンピュータ読み取り可能な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、CD−ROM、MO、DVD、DVD−ROM、DVD−RAM、大容量DVD、次世代DVD、半導体メモリを挙げることができる。 A computer program that causes a computer to perform the above-mentioned method and a computer-readable recording medium on which the program is recorded are included in the scope of the present invention. Here, examples of computer-readable recording media include flexible disks, hard disks, CD-ROMs, MOs, DVDs, DVD-ROMs, DVD-RAMs, large-capacity DVDs, next-generation DVDs, and semiconductor memories. ..
上記コンピュータプログラムは、上記記録媒体に記録されたものに限られず、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク等を経由して伝送されるものであってもよい。 The computer program is not limited to the one recorded on the recording medium, and may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, or the like.
また、文言「部」は、「サーキトリー(circuitry)」を含む概念であってもよい。サーキトリーは、ハードウェア、ソフトウェア、あるいは、ハードウェアおよびソフトウェアの混在により、その全部または一部が、実現されるものであってもよい。 Further, the wording "part" may be a concept including "circuitity". The circuit may be realized in whole or in part by hardware, software, or a mixture of hardware and software.
なお、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。 The specific configuration of the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the gist of the invention.
1000、2000、2000A 半導体メモリシステム
100、100A、100B 半導体メモリ装置
1 ホストインターフェース(インターフェース部)
11 メモリ制御部
2、2A マイクロプロセッサ
3 第1記憶部
4 第2記憶部
5、5A ラッパー部
6 アクセス禁止情報保持部
Bus 内部バス
H1 ホスト装置
1000, 2000, 2000A
11
Claims (12)
バスと、
前記バスに接続されており、第1のアクセス速度によりデータの読み出しおよび書き込みの少なくとも一方を行う第1記憶部と、
前記バスに接続されており、前記第1のアクセス速度よりも速い第2のアクセス速度によりデータの読み出しおよび書き込みの少なくとも一方を行う揮発性の第2記憶部と、
前記バスに接続されているマイクロプロセッサと、
前記バスに接続されており、前記第2記憶部の外部アクセス可能領域が設定されて、前記ホスト装置から前記第2記憶部の前記外部アクセス可能領域に対して直接アクセス可能なインターフェースを提供するインターフェース部と、
を備え、
前記第1記憶部は、前記マイクロプロセッサが演算するためのコードを記憶することができ、
前記マイクロプロセッサは、
前記マイクロプロセッサが演算するためのコードを前記第1記憶部から読み出し、前記第2記憶部に記憶し、
前記ホスト装置から前記インターフェース部を介して演算実行命令が受信されることに応じて前記第2記憶部に記憶された前記コードを実行し、前記コードを実行したときの演算結果を前記第2記憶部の前記外部アクセス可能領域に記憶し、
前記インターフェース部は、
演算結果の読み出し命令が前記ホスト装置から受信されることに応じて、前記演算結果を前記第2記憶部の前記外部アクセス可能領域から読み出し、前記ホスト装置に送信する、
半導体メモリ装置。 A semiconductor memory device that can communicate with the host device
With the bus
A first storage unit connected to the bus and performing at least one of reading and writing data at a first access speed, and a first storage unit.
A volatile second storage unit that is connected to the bus and performs at least one of reading and writing data at a second access speed that is faster than the first access speed.
With the microprocessor connected to the bus
An interface unit that is connected to the bus, has an externally accessible area of the second storage unit set, and provides an interface that allows the host device to directly access the externally accessible area of the second storage unit. When,
With
The first storage unit can store a code for calculation by the microprocessor.
The microprocessor
A code for calculation by the microprocessor is read from the first storage unit and stored in the second storage unit.
The code stored in the second storage unit is executed in response to the operation execution command being received from the host device via the interface unit, and the calculation result when the code is executed is stored in the second storage unit. Stored in the externally accessible area of the unit
The interface unit
In response to the operation result read instruction being received from the host device, the calculation result is read from the externally accessible area of the second storage unit and transmitted to the host device.
Semiconductor memory device.
前記ホスト装置から受信したコードを前記第2記憶部の前記外部アクセス可能領域に記憶し、
前記マイクロプロセッサは、前記第2記憶部の前記外部アクセス可能領域に記憶された前記コードを実行する、
請求項1に記載の半導体メモリ装置。 The interface unit
The code received from the host device is stored in the externally accessible area of the second storage unit, and the code is stored in the externally accessible area.
The microprocessor executes the code stored in the externally accessible area of the second storage unit.
The semiconductor memory device according to claim 1.
前記外部アクセス可能領域を設定し、設定した前記外部アクセス可能領域の情報に基づいて、前記第2記憶部へのアクセス制御を行う、
請求項1または2に記載の半導体メモリ装置。 The interface unit
The external accessible area is set, and access control to the second storage unit is performed based on the set information of the external accessible area.
The semiconductor memory device according to claim 1 or 2.
請求項3に記載の半導体メモリ装置。 The initial value of the information of the externally accessible area is a value indicating that access to the entire memory area of the second storage unit is prohibited.
The semiconductor memory device according to claim 3.
前記アクセス禁止情報に基づいて、前記第2記憶部のアクセス禁止領域を設定するラッパー部と、をさらに備える、
請求項1から4のいずれかに記載の半導体メモリ装置。 An access prohibition information holding unit that holds access prohibition information, which is information for setting an access prohibited area of the second storage unit, and an access prohibition information holding unit.
A wrapper unit for setting an access prohibited area of the second storage unit based on the access prohibited information is further provided.
The semiconductor memory device according to any one of claims 1 to 4.
前記アクセス禁止情報は、前記ROMに書き込まれる、
請求項5に記載の半導体メモリ装置。 The access prohibition information holding unit includes a ROM that can be written only once.
The access prohibition information is written in the ROM.
The semiconductor memory device according to claim 5.
前記アクセス禁止情報を保持するための回路を含み、
前記アクセス禁止情報を、前記回路から出力される信号として、前記ラッパー部に出力する、
請求項5に記載の半導体メモリ装置。 The access prohibition information holding unit is
Includes a circuit for holding the access prohibition information
The access prohibition information is output to the wrapper unit as a signal output from the circuit.
The semiconductor memory device according to claim 5.
前記マイクロプロセッサからのフェッチアクセス信号がイネーブルを示す信号値であり、かつ、前記マイクロプロセッサから受信した命令フェッチ信号が示すアドレスが前記アクセス禁止領域内である場合に、前記第2記憶部の前記アクセス禁止領域へのアクセスを許可するように前記第2記憶部に対するアクセス制御を行う、
請求項5から7のいずれかに記載の半導体メモリ装置。 The wrapper part
When the fetch access signal from the microprocessor is a signal value indicating enable and the address indicated by the instruction fetch signal received from the microprocessor is within the access prohibited area, the access of the second storage unit is performed. Access control to the second storage unit is performed so as to allow access to the prohibited area.
The semiconductor memory device according to any one of claims 5 to 7.
前記アクセス禁止情報に基づいて、前記第2記憶部のアクセス禁止領域を設定するラッパー部と、をさらに備え、
前記ラッパー部は、
前記アクセス禁止情報および前記インターフェース部により設定された前記外部アクセス可能領域の情報に基づいて、前記第2記憶部に対するアクセス制御を行う、
請求項1または2に記載の半導体メモリ装置。 An access prohibition information holding unit that holds access prohibition information, which is information for setting an access prohibited area of the second storage unit, and an access prohibition information holding unit.
A wrapper unit for setting an access prohibited area of the second storage unit based on the access prohibited information is further provided .
Before Symbol wrapper part,
Access control to the second storage unit is performed based on the access prohibition information and the information of the external accessible area set by the interface unit.
The semiconductor memory device according to claim 1 or 2.
前記インターフェース部から前記第2記憶部へのアクセス要求をしているアドレスが、前記外部アクセス可能領域内のアドレスであり、かつ、前記アクセス禁止領域内であると判定した場合、前記第2記憶部への全てのアクセスを禁止する、
請求項9に記載の半導体メモリ装置。 The wrapper part
When it is determined that the address requesting access from the interface unit to the second storage unit is an address in the external accessible area and within the access prohibited area, the second storage unit Prohibit all access to,
The semiconductor memory device according to claim 9.
前記ホスト装置から、前記第2記憶部の全メモリ領域をアクセスするコマンドを受信した場合、前記第2記憶部に記憶されているデータを正常に読み出すことができないことを示すレスポンスを前記ホスト装置に送信する、
請求項1から10のいずれかに記載の半導体メモリ装置。 The interface unit
When a command for accessing the entire memory area of the second storage unit is received from the host device, a response indicating that the data stored in the second storage unit cannot be normally read is sent to the host device. Send,
The semiconductor memory device according to any one of claims 1 to 10.
請求項1から11のいずれかに記載の半導体メモリ装置と、を備える半導体メモリシステム。 With the host device
A semiconductor memory system comprising the semiconductor memory device according to any one of claims 1 to 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017014964A JP6958962B2 (en) | 2017-01-31 | 2017-01-31 | Semiconductor memory devices and semiconductor memory systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017014964A JP6958962B2 (en) | 2017-01-31 | 2017-01-31 | Semiconductor memory devices and semiconductor memory systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018124688A JP2018124688A (en) | 2018-08-09 |
JP6958962B2 true JP6958962B2 (en) | 2021-11-02 |
Family
ID=63110299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017014964A Active JP6958962B2 (en) | 2017-01-31 | 2017-01-31 | Semiconductor memory devices and semiconductor memory systems |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6958962B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4945053B2 (en) * | 2003-03-18 | 2012-06-06 | ルネサスエレクトロニクス株式会社 | Semiconductor device, bus interface device, and computer system |
JP2006302168A (en) * | 2005-04-25 | 2006-11-02 | Hitachi Ltd | Coprocessor and arithmetic control method therefor |
JP2009301343A (en) * | 2008-06-13 | 2009-12-24 | Oki Semiconductor Co Ltd | Access restriction circuit |
JP2011222055A (en) * | 2011-08-12 | 2011-11-04 | Renesas Electronics Corp | Microcomputer and control method for memory access |
US9407642B2 (en) * | 2013-03-13 | 2016-08-02 | Samsung Electronics Co., Ltd. | Application access control method and electronic apparatus implementing the same |
-
2017
- 2017-01-31 JP JP2017014964A patent/JP6958962B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018124688A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6985011B2 (en) | Equipment and methods for ensuring access protection schemes | |
US8239663B2 (en) | System and method for maintaining the security of memory contents and computer architecture employing the same | |
US9715601B2 (en) | Secure access in a microcontroller system | |
JP2010525456A (en) | Logical device with write protected memory management unit register | |
JP4591163B2 (en) | Bus access control device | |
CN112749397A (en) | System and method | |
CN113557500A (en) | Multi-mode protected memory | |
US10628611B2 (en) | Exclusive execution environment within a system-on-a-chip computing system | |
JP6958962B2 (en) | Semiconductor memory devices and semiconductor memory systems | |
CN112068904A (en) | Chip boot operation method, device and related assembly | |
KR101110550B1 (en) | Processor, Multi-processor System And Method For Controlling Access Authority For Shared Memory In Multi-processor System | |
JP2007109053A (en) | Bus access controller | |
JP2010009454A (en) | Information processing apparatus | |
US11307904B2 (en) | Configurable peripherals | |
KR101137297B1 (en) | Mobile storage control method | |
US7913129B2 (en) | Method of testing data paths in an electronic circuit | |
JP7274069B2 (en) | TRACE CONTROL DEVICE, EMULATOR, TRACE CONTROL METHOD, AND TRACE CONTROL PROGRAM | |
US20240370382A1 (en) | System-on-chip having a memory controller and corresponding memory control method | |
JP2011150457A (en) | Information processing apparatus and memory access control method | |
JP6626216B2 (en) | controller | |
US20190370041A1 (en) | Semiconductor device for providing a virtualization technique | |
CN110569205A (en) | Security system single chip and method of operation thereof | |
JP5380392B2 (en) | Semiconductor device, bus interface device, and computer system | |
JP2005078369A (en) | Semiconductor processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6958962 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |