JP6958569B2 - Composition, optical film, near-infrared cut filter, image sensor - Google Patents

Composition, optical film, near-infrared cut filter, image sensor Download PDF

Info

Publication number
JP6958569B2
JP6958569B2 JP2018553670A JP2018553670A JP6958569B2 JP 6958569 B2 JP6958569 B2 JP 6958569B2 JP 2018553670 A JP2018553670 A JP 2018553670A JP 2018553670 A JP2018553670 A JP 2018553670A JP 6958569 B2 JP6958569 B2 JP 6958569B2
Authority
JP
Japan
Prior art keywords
group
general formula
substituent
compound represented
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018553670A
Other languages
Japanese (ja)
Other versions
JPWO2018100834A1 (en
Inventor
奈々恵 白石
福坂 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2018100834A1 publication Critical patent/JPWO2018100834A1/en
Application granted granted Critical
Publication of JP6958569B2 publication Critical patent/JP6958569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/02Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/08Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/08Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optical Filters (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、イメージセンサーに好適に用いられる、スクアリリウム化合物を含む組成物またはクロコニウム化合物を含む組成物に関する。また、本発明は、この組成物を含む光学フィルム、近赤外線カットフィルター、イメージセンサーに関する。 The present invention relates to a composition containing a squarylium compound or a composition containing a croconium compound, which is preferably used for an image sensor. The present invention also relates to an optical film containing this composition, a near-infrared cut filter, and an image sensor.

近年、イメージ(撮像)センサーは広波長域の感度を有するものとなっており、例えば、シリコンからなるイメージセンサーは約1100nmまでの感度を有する。このシリコンからなるイメージセンサーを可視光域約380nm〜780nmで利用する場合、可視光域外の波長である約760nm〜1100nmの赤外線域(近赤外線域)が、出力に影響を与えている。また、イメージセンサーは、各々利用する波長領域が異なる場合があり、利用する波長域が異なるセンサーが複数存在する環境下では、誤作動防止として、各々のセンサーで利用する特定波域のみを入力することが求められている。入力に適した特定波長域をイメージセンサーに入力する手段として、近赤外線等の特定波長域を吸収する性能を有する有機化合物をイメージセンサーまたは撮像光学系内の構成材料に混合する、または、特定波長域を吸収する性能を有する有機化合物を有する光学フィルムを追加する手段が知られている。 In recent years, image (imaging) sensors have become sensitive in a wide wavelength range. For example, an image sensor made of silicon has a sensitivity of up to about 1100 nm. When this image sensor made of silicon is used in the visible light region of about 380 nm to 780 nm, the infrared region (near infrared region) of about 760 nm to 1100 nm, which is a wavelength outside the visible light region, affects the output. In addition, each image sensor may use a different wavelength range, and in an environment where there are multiple sensors with different wavelength ranges to use, only the specific wave range used by each sensor is input to prevent malfunction. Is required. As a means for inputting a specific wavelength range suitable for input to the image sensor, an organic compound having the ability to absorb a specific wavelength range such as near infrared rays is mixed with a constituent material in the image sensor or the imaging optical system, or a specific wavelength is used. Means for adding an optical film having an organic compound having the ability to absorb a region are known.

近赤外線域に極大波長を持ち、かつ可視光域に吸収が少ない化合物としては、特許文献1に、耐光性、耐熱性及び耐湿性が高く、色調に優れた光学フィルム用途のクロコニウム化合物が開示されており、また、同性能を有する樹脂組成物として、特許文献2に、カルボン酸エステル及びリン酸エステルの少なくともいずれかと樹脂と、スクアリリウム化合物を有する赤外線吸収性に優れた樹脂組成物が開示されている。 As a compound having a maximum wavelength in the near infrared region and little absorption in the visible light region, Patent Document 1 discloses a croconium compound for optical films having high light resistance, heat resistance and moisture resistance, and excellent color tone. Further, as a resin composition having the same performance, Patent Document 2 discloses a resin composition having at least one of a carboxylic acid ester and a phosphoric acid ester, a resin, and a squarylium compound and having excellent infrared absorption. There is.

また、センサー用途としては、特許文献3に、近赤外線吸収染料として、ジイモニウム化合物、ニッケルジチオール化合物、フタロシアニン系化合物、スクアリリウム化合物、及びクロコニウム化合物から選ばれる2種以上の化合物を含み、うち1種はスクアリリウム化合物であることを特徴としている保存性、耐候性に優れた光学フィルムが開示されているが、いずれの発明においても、より高い、長時間、特定波長を照射された時の近赤外線吸収安定性が求められる。 Further, as a sensor application, Patent Document 3 includes two or more compounds selected from diimonium compounds, nickel dithiol compounds, phthalocyanine compounds, squarylium compounds, and croconium compounds as near-infrared absorbing dyes, one of which is one of them. An optical film having excellent storage stability and weather resistance, which is characterized by being a squarylium compound, has been disclosed. However, in any of the inventions, near-infrared absorption stability when irradiated with a specific wavelength for a longer period of time is higher. Sex is required.

特開2007−169315号公報JP-A-2007-169315 特開2015−91923号公報Japanese Unexamined Patent Publication No. 2015-911923 特開2007−264384号公報Japanese Unexamined Patent Publication No. 2007-264384

本発明は、上記課題に鑑みてなされたものであり、本発明の目的は、近赤外線吸収安定性に優れる光学フィルムに資する組成物、前記組成物を含む光学フィルム、近赤外線カットフィルター、イメージセンサーを提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is a composition contributing to an optical film having excellent near-infrared absorption stability, an optical film containing the composition, a near-infrared cut filter, and an image sensor. Is to provide.

本発明の上記目的は、下記構成により達成される。 The above object of the present invention is achieved by the following configuration.

1.下記一般式2で表される化合物と、下記一般式5で表される化合物のそれぞれ少なくとも1種以上を含む、または、下記一般式5で表される化合物のうち少なくとも2種を含み、前記一般式2で表される化合物が下記一般式6で表され、前記一般式5で表される化合物が下記一般式7で表される、2種の化合物を含む組成物。 1. 1. The compound represented by the following general formula 2 and at least one of the compounds represented by the following general formula 5 are contained, or at least two kinds of the compounds represented by the following general formula 5 are contained, and the general formula is described above. A composition containing two types of compounds, wherein the compound represented by the formula 2 is represented by the following general formula 6, and the compound represented by the general formula 5 is represented by the following general formula 7.

Figure 0006958569
Figure 0006958569

〔一般式2において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕[In the general formula 2, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. If the molecule is not charge-neutral, it has a counter anion. ]

Figure 0006958569
Figure 0006958569

〔一般式5において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。R20 はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R20はさらに置換基を有していてもよい。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕 [In the general formula 5, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. R 20 is one selected from the group consisting of an alkyl group , a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 20 may further have a substituent. If the molecule is not charge-neutral, it has a counter anion. ]

Figure 0006958569
Figure 0006958569

〔一般式6において、A11及びA21はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A11及びA21はさらに置換基を有していてもよい。〕[In the general formula 6, each A 11 and A 21 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 11 and A 21 may further have a substituent. ]

Figure 0006958569
Figure 0006958569

〔一般式7において、A31及びA41はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A31及びA41はさらに置換基を有していてもよい。R11 はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R11はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。〕 [In the general formula 7, respectively A 31 and A 41 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 31 and A 41 may further have a substituent. R 11 is one selected from the group consisting of an alkyl group , a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 11 may further have a substituent. Ctr represents a counter anion. ]

2.前記一般式2で表される化合物と、前記一般式5で表される化合物のそれぞれ少なくとも1種以上を含む、または、前記一般式5で表される化合物のうち少なくとも2種を含み、前記一般式2で表される化合物が下記一般式8で表され、前記一般式5で表される化合物が下記一般式9で表される、2種の化合物を含む組成物。 2. The compound represented by the general formula 2 and at least one of the compounds represented by the general formula 5 are contained, or at least two of the compounds represented by the general formula 5 are contained, and the general formula is used. A composition containing two types of compounds, wherein the compound represented by the formula 2 is represented by the following general formula 8 and the compound represented by the general formula 5 is represented by the following general formula 9.

Figure 0006958569
Figure 0006958569

〔一般式8において、A12及びA22はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A12及びA22はさらに置換基を有していてもよい。〕[In general formula 8, respectively A 12 and A 22 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 12 and A 22 may further have a substituent. ]

Figure 0006958569
Figure 0006958569

〔一般式9において、A32及びA42はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A32及びA42はさらに置換基を有していてもよい。R12 はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R12はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。〕 [In general formula 9, each A 32 and A 42 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 32 and A 42 may further have a substituent. R 12 is one selected from the group consisting of an alkyl group , a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 12 may further have a substituent. Ctr represents a counter anion. ]

3.前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜500000ppmであることを特徴とする請求項1または請求項2に記載の組成物。 3. 3. The composition according to claim 1 or 2, wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 500,000 ppm.

4.前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜100000ppmであることを特徴とする請求項3に記載の組成物。 4. The composition according to claim 3 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 100,000 ppm.

5.前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜10000ppmであることを特徴とする請求項4に記載の組成物。 5. The composition according to claim 4 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 10000 ppm.

6.前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜1000ppmであることを特徴とする請求項5に記載の組成物。 6. The composition according to claim 5, wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 1000 ppm.

7.前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜100ppmであることを特徴とする請求項6に記載の組成物。 7. The composition according to claim 6 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 100 ppm.

8.請求項1請求項7のいずれか1項に記載の組成物を含む光学フィルム。 8. An optical film containing the composition according to any one of claims 1 to 7.

9.請求項8に記載の光学フィルムと誘電体多層膜とを含む近赤外線カットフィルター。 9. A near-infrared cut filter including the optical film according to claim 8 and a dielectric multilayer film.

10.請求項1〜請求項7のいずれか1項に記載の組成物を含むイメージセンサー。 10. An image sensor comprising the composition according to any one of claims 1 to 7.

本発明によって、近赤外線吸収安定性に優れる光学フィルムに資する組成物、前記組成物を含む光学フィルムを提供することができた。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a composition that contributes to an optical film having excellent near-infrared absorption stability, and an optical film containing the composition.

A,B 2成分の混合によりエントロピーが増大することを説明する模式図である。It is a schematic diagram explaining that entropy increases by mixing A and B two components. A,B 本発明の実施形態の光学フィルムの構成を示す図である。A, B It is a figure which shows the structure of the optical film of embodiment of this invention.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "~" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、以下のように推定し、本発明に至った。 In the process of examining the cause of the above problem in order to solve the above problem, the present inventor presumed as follows and came to the present invention.

本発明者は、上記課題の根本的な原因が、前記光学フィルムに用いられる近赤外化合物の相互作用エネルギーの強さであり、膜中での存在状態が経時で変化してしまうのが最大の要因であると考えた。 According to the present inventor, the root cause of the above problems is the strength of the interaction energy of the near-infrared compound used in the optical film, and the maximum state of existence in the film changes with time. I thought it was a factor of.

この問題を解決する手段として、形成した直後の膜の状態を安定化させること、すなわち、ギブズの自由エネルギーを負に大きくすることで膜の状態変化は抑えられる。 As a means to solve this problem, the state change of the film can be suppressed by stabilizing the state of the film immediately after formation, that is, by increasing the free energy of Gibbs negatively.

ギブズの自由エネルギーは熱力学第2法則に則り、エンタルピーとエントロピーで決まるが、エンタルピーは近赤外化合物固有の化学構造が支配的な因子となるため、普遍的に改善することは不可能であるが、エントロピーは、成分数と分布で決まるため、普遍的な技術変動因子として用いることが可能となるはずである。 Gibbs free energy is determined by enthalpy and entropy according to the second law of thermodynamics, but enthalpy cannot be universally improved because the chemical structure peculiar to near-infrared compounds is the dominant factor. However, since entropy is determined by the number of components and distribution, it should be possible to use it as a universal technological variable factor.

これはエントロピー効果から説明するのが合理的である。 It is rational to explain this from the entropy effect.

図を用いて説明する。図1は2成分の混合により、エントロピーが増大することを説明するための模式図である。図1Aは成分Aと成分Bの混合モデルである。図1Bは成分A同士の混合モデルである。 This will be described with reference to the figures. FIG. 1 is a schematic diagram for explaining that entropy is increased by mixing two components. FIG. 1A is a mixed model of component A and component B. FIG. 1B is a mixed model of components A.

定圧低温での反応におけるギブズの自由エネルギー変化(ΔG)は、エンタルピー変化(ΔH)とエントロピー変化(ΔS)と以下の関係にある。Tは絶対温度を表す。
式(1) ΔG=ΔH−TΔS
例えば、ある膜中に2n個の近赤外化合物(成分A)が存在しているとする。その膜が最初は半分の個数のn個の化合物が入っていたところにあとでn個同じ化合物(成分A)が加わって2n個になり体積も2倍になったとする。この時、化合物の種類は同一であるためエントロピーの変化量はゼロである(図1B)。一方、あとで追加されるn個が違う化合物(成分B)だった場合、最初にあった化合物(成分A)は異なる化合物(成分B)が混入してくるためエントロピーは増大する(図1A)。この増大分がエントロピー効果であり、その分だけギブズの自由エネルギーがマイナス側に、すなわち安定側に推移するため、結果として膜は安定となり、経時での状態変化が小さくなるというのが基本原理である。
The Gibbs free energy change (ΔG) in the reaction at a constant pressure and low temperature has the following relationship with the enthalpy change (ΔH) and the entropy change (ΔS). T represents absolute temperature.
Equation (1) ΔG = ΔH−TΔS
For example, it is assumed that 2n near-infrared compounds (component A) are present in a certain film. It is assumed that the film initially contained half the number of n compounds, but later the same compound (component A) was added to make the film 2n, and the volume was doubled. At this time, since the types of compounds are the same, the amount of change in entropy is zero (FIG. 1B). On the other hand, when n compounds added later are different compounds (component B), the entropy increases because different compounds (component B) are mixed in the first compound (component A) (FIG. 1A). .. The basic principle is that this increase is the entropy effect, and the Gibbs free energy shifts to the minus side, that is, to the stable side by that amount, and as a result, the film becomes stable and the state change with time becomes small. be.

この“異なる化合物”により、このエントロピー効果による膜安定性から、経時での化合物凝集は効果的に抑制することができるようになる。 Due to the film stability due to this entropy effect, this "different compound" makes it possible to effectively suppress compound aggregation over time.

また、この現象は膜のみならず、化合物の溶液においても同じことが言える。つまり副生成物や置換基の異なる化合物を溶剤により完全溶解したすなわち孤立分散状態の溶液模式図が図1Aの右図に相当すると考える。これらの溶液または薄膜のギブズの自由エネルギーは、単一物質からなる化合物の溶液または紛体(図1Bの右図に相当)よりも負に大きく、外乱による変動が小さくなる。すなわち凝集や再結晶化が起こりにくくなると解釈できる。 Moreover, this phenomenon can be said not only in the membrane but also in the solution of the compound. That is, it is considered that the schematic diagram of the solution in which the by-products and compounds having different substituents are completely dissolved by the solvent, that is, in the isolated and dispersed state corresponds to the right figure of FIG. 1A. The Gibbs free energy of these solutions or thin films is negatively greater than the solution or powder of a compound consisting of a single substance (corresponding to the right figure in FIG. 1B), and the fluctuation due to disturbance is small. That is, it can be interpreted that aggregation and recrystallization are less likely to occur.

この効果により、溶液を用いて塗布製膜した際の化合物の分散性及び、塗布製膜した膜の経時変動性が抑えられ、理想的な孤立分散状態に近い化合物分散膜の形成が可能となり、溶媒に対する溶解性の向上、または不必要な結晶成長を防ぎ、経時変動が抑えられた均一な膜を得ることができ、近赤外線吸収安定性に優れる光学フィルターが得られると推定している。 Due to this effect, the dispersibility of the compound when the coating film is formed by using the solution and the variability with time of the coating film are suppressed, and the compound dispersion film close to the ideal isolated dispersion state can be formed. It is presumed that an optical filter having excellent near-infrared absorption stability can be obtained by improving the solubility in a solvent or preventing unnecessary crystal growth and obtaining a uniform film in which fluctuation with time is suppressed.

<<組成物>>
本発明に係る組成物は、下記一般式2または下記一般式5で表される化合物の少なくとも2種を含むことを特徴としている。好ましくは、下記一般式1で表される化合物の少なくとも1種と、該一般式1で表される化合物とは異なる構造を有し、かつ、下記一般式2で表される化合物の少なくとも1種を含む組成物、または、下記一般式3で表される化合物の少なくとも1種と、該一般式3で表される化合物とは異なる構造を有し、かつ、下記一般式5で表される化合物の少なくとも1種を含む組成物である。より好ましくは、下記一般式2で表される化合物のうち1種は下記一般式1で表される化合物を含む組成物、または、下記一般式5で表される化合物のうち1種は下記一般式3で表される化合物を含む組成物である。さらに好ましくは、下記一般式2で表される化合物が下記一般式6で表され、下記一般式5で表される化合物が下記一般式7で表される2種の化合物を含む組成物、または、下記一般式2で表される化合物が下記一般式8で表され、下記一般式5で表される化合物が下記一般式9で表される2種の化合物を含む組成物である。
<< Composition >>
The composition according to the present invention is characterized by containing at least two kinds of compounds represented by the following general formula 2 or the following general formula 5. Preferably, at least one compound represented by the following general formula 1 and at least one compound having a structure different from that of the compound represented by the general formula 1 and represented by the following general formula 2 are preferable. Or at least one compound represented by the following general formula 3 and a compound having a structure different from that of the compound represented by the general formula 3 and represented by the following general formula 5. It is a composition containing at least one of. More preferably, one of the compounds represented by the following general formula 2 is a composition containing the compound represented by the following general formula 1, or one of the compounds represented by the following general formula 5 is the following general. It is a composition containing a compound represented by the formula 3. More preferably, the compound represented by the following general formula 2 is represented by the following general formula 6, and the compound represented by the following general formula 5 is a composition containing two kinds of compounds represented by the following general formula 7. , The compound represented by the following general formula 2 is represented by the following general formula 8, and the compound represented by the following general formula 5 is a composition containing two kinds of compounds represented by the following general formula 9.

<一般式1〜一般式11で表される化合物>
本実施形態において、一般式1〜一般式11で表される化合物は以下の特徴を有する。
<Compounds represented by general formulas 1 to 11>
In the present embodiment, the compounds represented by the general formulas 1 to 11 have the following characteristics.

下記一般式1において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つ以上であり、A及びAはさらに置換基を有していてもよい。

Figure 0006958569
In the following general formula 1, A 1 and A 2 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group, and A 1 And A 2 may further have a substituent.
Figure 0006958569

下記一般式2において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。一般式1と一般式2において、Qは同一であるものが好ましい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。

Figure 0006958569
In the following general formula 2, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. In the general formula 1 and the general formula 2, it is preferable that Q is the same. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. If the molecule is not charge-neutral, it has a counter anion.
Figure 0006958569

下記一般式3において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A及びAはさらに置換基を有していてもよい。R10は水素原子あるいはアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R10はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。

Figure 0006958569
In the following general formula 3, A 1 and A 2 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group, and A 1 and A 2 A 2 may further have a substituent. R 10 is one selected from the group consisting of a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 10 may further have a substituent. good. Ctr represents a counter anion.
Figure 0006958569

下記一般式4において、*は結合点である。Xは酸素原子、硫黄原子またはN−Rを表し、Rはアルキル基、シクロアルキル基またはアリール基を表す。Rはアルキル基、シクロアルキル基、アリール基、複素環基または水素原子を表す。Y及びYはそれぞれ独立に水素原子または、置換または無置換のアルキル基またはアリール基を表す。

Figure 0006958569
In the following general formula 4, * is a connection point. X 1 represents an oxygen atom, a sulfur atom or N-R 4 , and R 4 represents an alkyl group, a cycloalkyl group or an aryl group. R 3 represents an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group or a hydrogen atom. Y 1 and Y 2 independently represent a hydrogen atom or a substituted or unsubstituted alkyl or aryl group, respectively.
Figure 0006958569

特に、芳香族基を有する樹脂バインダーと混合する場合は、Rは水素原子が好ましい。水素原子と芳香族基の相互作用によって、メチン鎖部の運動が抑制され、著しく耐熱性が向上する。In particular, when mixed with a resin binder having an aromatic group, R 3 is preferably a hydrogen atom. The interaction between the hydrogen atom and the aromatic group suppresses the movement of the methine chain and significantly improves the heat resistance.

下記一般式5において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。一般式3と一般式5において、Qは同一であるものが好ましい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。R20は水素原子あるいはアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R20はさらに置換基を有していてもよい。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。

Figure 0006958569
In the following general formula 5, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. In the general formula 3 and the general formula 5, it is preferable that Q is the same. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. R 20 is one selected from the group consisting of a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 20 may further have a substituent. good. If the molecule is not charge-neutral, it has a counter anion.
Figure 0006958569

下記一般式6において、A11及びA21はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A11及びA21はさらに置換基を有していてもよい。

Figure 0006958569
In the following general formula 6, each A 11 and A 21 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 11 and A 21 may further have a substituent.
Figure 0006958569

下記一般式7において、A31及びA41はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A31及びA41はさらに置換基を有していてもよい。R11は水素原子あるいはアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R11はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。

Figure 0006958569
In the following general formula 7, respectively A 31 and A 41 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 31 and A 41 may further have a substituent. R 11 is one selected from the group consisting of a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 11 may further have a substituent. good. Ctr represents a counter anion.
Figure 0006958569

下記一般式8において、A12及びA22はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A12及びA22はさらに置換基を有していてもよい。

Figure 0006958569
In the following general formula 8, respectively A 12 and A 22 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 12 and A 22 may further have a substituent.
Figure 0006958569

下記一般式9において、A32及びA42はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A32及びA42はさらに置換基を有していてもよい。R12は水素原子あるいはアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R12はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。

Figure 0006958569
In the following general formula 9, each A 32 and A 42 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 32 and A 42 may further have a substituent. R 12 is one selected from the group consisting of a hydrogen atom or an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 12 may further have a substituent. good. Ctr represents a counter anion.
Figure 0006958569

下記一般式10において、*は結合点である。Aは複素環基であり、Aはさらに置換基を有していてもよい。Rは置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、複素環基または水素原子を表す。

Figure 0006958569
In the following general formula 10, * is a connection point. A 5 is a heterocyclic group, and A 5 may further have a substituent. R 2 represents a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, heterocyclic group or hydrogen atom.
Figure 0006958569

下記一般式11において、*は結合点である。Xは酸素原子、硫黄原子またはN−Rを表し、Rは置換もしくは無置換のアルキル基、シクロアルキル基またはアリール基を表す。Rは置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、複素環基または水素原子を表す。Y及びYはそれぞれ独立に水素原子または、置換または無置換のアルキル基またはアリール基を表す。Z及びZはそれぞれ独立に水素原子または、置換または無置換のアルキル基またはアリール基を表す。

Figure 0006958569
In the following general formula 11, * is a connection point. X 1 represents an oxygen atom, a sulfur atom or N-R 4 , and R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. R 3 represents a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, heterocyclic group or hydrogen atom. Y 1 and Y 2 independently represent a hydrogen atom or a substituted or unsubstituted alkyl or aryl group, respectively. Z 1 and Z 2 independently represent a hydrogen atom or a substituted or unsubstituted alkyl or aryl group, respectively.
Figure 0006958569

,A,A,A,A11,A21,A31,A41,A12,A22,A32,A42の具体例として、アルキル基としては、直鎖、分岐を含み、炭素数1〜30のアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert-ブチル基、n−オクチル基、エイコシル基、2−クロロエチル基、2−シアノエチル基、2−エチルヘキシル基等が好ましい。シクロアルキル基としては、炭素数3〜30のシクロアルキル基が好ましく、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等が好ましい。アルケニル基としては炭素数2〜30のアルケニル基が好ましく、例えば、エテニル基、アリル基、2−ペンテニル基、2−エチルブテニル基等が好ましい。アルキニル基としては炭素数2〜30のアルキニル基が好ましく、例えば、エチニル基、2−ブチニル基等が好ましい。アリール基としてはフェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が好ましく、特にフェニル基、ナフチル基、フルオレニル基、フェナントリル基、ビフェニリル基、フルオレノニル基が好ましい。複素環基としてはピリジル基、ピリミジル基、フリル着、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルボリル基(前記、カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったもの)、キノキサリニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が好ましく、特にピリジル基、ピリミジル基、イミダゾリル基、ピラゾリル基、チエニル基、キノリル基、ジベンゾフリル基、カルバゾリル基、カルボリニル基、ジアザカルボリニル基が好ましい。中でも、色味の観点から、一般式9、さらには一般式10であることが好ましい。複素環を含んでいることがさらに好ましい。Specific examples of A 1 , A 2 , A 3 , A 4 , A 11 , A 21 , A 31 , A 41 , A 12 , A 22 , A 32 , and A 42 include linear and branched alkyl groups. Alkyl groups containing 1 to 30 carbon atoms are preferable, for example, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, eicosyl group, 2-chloroethyl group, 2-cyanoethyl group. A group, a 2-ethylhexyl group and the like are preferable. As the cycloalkyl group, a cycloalkyl group having 3 to 30 carbon atoms is preferable, and for example, a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group and the like are preferable. As the alkenyl group, an alkenyl group having 2 to 30 carbon atoms is preferable, and for example, an ethenyl group, an allyl group, a 2-pentenyl group, a 2-ethylbutenyl group and the like are preferable. As the alkynyl group, an alkynyl group having 2 to 30 carbon atoms is preferable, and for example, an ethynyl group, a 2-butynyl group and the like are preferable. As the aryl group, a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, a fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group and the like are preferable. In particular, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, a biphenylyl group and a fluorenonyl group are preferable. Examples of the heterocyclic group include a pyridyl group, a pyrimidyl group, a frilled group, a pyrrolyl group, an imidazolyl group, a benzoimidazolyl group, a pyrazolyl group, a pyrazinyl group and a triazolyl group (for example, 1,2,4-triazole-1-yl group, 1, 2,3-Triazole-1-yl group, etc.), Oxazolyl group, benzoxazolyl group, thiazolyl group, isooxazolyl group, isothiazolyl group, frazathienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carborinyl group, diazacarbolyl group ( One of the carbon atoms constituting the carbolin ring of the carbolinyl group is replaced with a nitrogen atom), a quinoxalinyl group, a triazineyl group, a quinazolinyl group, a phthalazinyl group and the like are preferable, and a pyridyl group, a pyrimidyl group, an imidazolyl group and a pyrazolyl group are particularly preferable. , Thienyl group, quinolyl group, dibenzofuryl group, carbazolyl group, carborinyl group, diazacarbolinyl group are preferable. Above all, from the viewpoint of color, the general formula 9 and further the general formula 10 are preferable. It is more preferable to contain a heterocycle.

10,R20,R11,R21の具体例として、アルキル基としては、直鎖、分岐を含み、炭素数1〜30のアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert-ブチル基、n−オクチル基、エイコシル基、2−クロロエチル基、2−シアノエチル基、2−エチルヘキシル基等が好ましい。シクロアルキル基としては、炭素数3〜30のシクロアルキル基が好ましく、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等が好ましい。アルケニル基としては炭素数2〜30のアルケニル基が好ましく、例えば、エテニル基、アリル基、2−ペンテニル基、2−エチルブテニル基等が好ましい。アルキニル基としては炭素数2〜30のアルキニル基が好ましく、例えば、エチニル基、2−ブチニル基等が好ましい。アリール基としてはフェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が好ましく、特にフェニル基、ナフチル基、フルオレニル基、フェナントリル基、ビフェニリル基、フルオレノニル基が好ましい。複素環基としてはピリジル基、ピリミジル基、フリル着、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルボリル基(前記、カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったもの)、キノキサリニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が好ましく、特にピリジル基、ピリミジル基、イミダゾリル基、ピラゾリル基、チエニル基、キノリル基、ジベンゾフリル基、カルバゾリル基、カルボリニル基、ジアザカルボリニル基が好ましい。アルコキシカルボニル基としては、直鎖、分岐を含み、炭素数1〜30のアルコキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基、n−オクトキシカルボニル基等が好ましい。Specific examples of R 10 , R 20 , R 11 , and R 21 include linear and branched alkyl groups, preferably alkyl groups having 1 to 30 carbon atoms, for example, methyl group, ethyl group, and n-propyl. Groups, isopropyl groups, tert-butyl groups, n-octyl groups, eicosyl groups, 2-chloroethyl groups, 2-cyanoethyl groups, 2-ethylhexyl groups and the like are preferable. As the cycloalkyl group, a cycloalkyl group having 3 to 30 carbon atoms is preferable, and for example, a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group and the like are preferable. As the alkenyl group, an alkenyl group having 2 to 30 carbon atoms is preferable, and for example, an ethenyl group, an allyl group, a 2-pentenyl group, a 2-ethylbutenyl group and the like are preferable. As the alkynyl group, an alkynyl group having 2 to 30 carbon atoms is preferable, and for example, an ethynyl group, a 2-butynyl group and the like are preferable. As the aryl group, a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, a fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group and the like are preferable. In particular, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, a biphenylyl group and a fluorenonyl group are preferable. Examples of the heterocyclic group include a pyridyl group, a pyrimidyl group, a frilled group, a pyrrolyl group, an imidazolyl group, a benzoimidazolyl group, a pyrazolyl group, a pyrazinyl group and a triazolyl group (for example, 1,2,4-triazole-1-yl group, 1, 2,3-Triazole-1-yl group, etc.), Oxazolyl group, benzoxazolyl group, thiazolyl group, isooxazolyl group, isothiazolyl group, frazathienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carborinyl group, diazacarbolyl group ( One of the carbon atoms constituting the carbolin ring of the carbolinyl group is replaced with a nitrogen atom), a quinoxalinyl group, a triazineyl group, a quinazolinyl group, a phthalazinyl group and the like are preferable, and a pyridyl group, a pyrimidyl group, an imidazolyl group and a pyrazolyl group are particularly preferable. , Thienyl group, quinolyl group, dibenzofuryl group, carbazolyl group, carborinyl group, diazacarbolinyl group are preferable. The alkoxycarbonyl group is preferably a linear or branched alkoxycarbonyl group having 1 to 30 carbon atoms, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, or a tert-butoxycarbonyl. Groups, n-octoxycarbonyl groups and the like are preferred.

Ctrとしては、種々の無機アニオン、有機アニオンが挙げられる。無機アニオンとしては、例えば、ハロゲン化物アニオン、炭酸アニオン、炭酸水素アニオン、硫酸アニオン、亜硫酸アニオン、硝酸アニオン、亜硝酸アニオン、スルホン酸アニオン(パラトルエンスルホン酸等)、スルフィン酸アニオン、リン酸アニオン、パーフルオロアニオン(PF 、BF 、SbF )、過酸化物アニオン(塩素酸アニオン、亜塩素酸アニオン、次亜塩素酸アニオン、臭素酸アニオン、沃素酸アニオン等)等が挙げられる。有機アニオンとしては、カルボン酸アニオン(例えば、アセテートアニオン)、アルコキシアニオン、アリールオキシアニオン、アルキルスルホン酸アニオン(フッ素置換されていてもよく、例えば、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸等のアニオン等が挙げられる)、アリールスルホン酸アニオン(アリール基上に置換基を有していてもよく、例えば、ベンゼンスルホン酸、p−トルエンスルホン酸、p−トリフルオロメチルスルホン酸、ペンタフルオロベンゼンスルホン酸、ナフタレンスルホン酸等のアニオン等が挙げられる)、アルキルスルホン酸もしくはアリールスルホン酸の置換したイミドアニオン(例えば、ビストリフルオロメチルスルホン酸イミドアニオン)アセチルアセトンアニオン等が挙げられる。中でも、色味の観点から、ハロゲン化物アニオン、パーフルオロアニオンが好ましい。Examples of Ctr include various inorganic anions and organic anions. Examples of the inorganic anion include halide anion, carbonate anion, hydrogen carbonate anion, sulfate anion, sulfite anion, nitrate anion, nitrite anion, sulfonic acid anion (paratoluene sulfonic acid, etc.), sulfinate anion, phosphate anion, and the like. perfluoro anion (PF 6 -, BF 4 - , SbF 6 -), peroxide anion include (chlorine anion, chlorite anions, hypochlorite anions, bromine anion, iodine anion, etc.) and the like .. Examples of the organic anion include a carboxylate anion (for example, an acetate anion), an alkoxy anion, an aryloxy anion, and an alkyl sulfonic acid anion (which may be fluorine-substituted, for example, methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, etc. Anions such as nonafluorobutane sulfonic acid and the like), aryl sulfonic acid anions (may have a substituent on the aryl group, for example, benzene sulfonic acid, p-toluene sulfonic acid, p-trifluoromethyl Examples thereof include anions such as sulfonic acid, pentafluorobenzene sulfonic acid and naphthalene sulfonic acid), imide anions substituted with alkyl sulfonic acid or aryl sulfonic acid (for example, bistrifluoromethyl sulfonic acid imide anion) and acetylacetone anion. .. Of these, halide anions and perfluoro anions are preferable from the viewpoint of color.

,Y,Z,Zとしては、置換または無置換のアルキル基またはアリール基を表し、互いに結合して環を形成してもよい。Y,Y,Z,Zの置換基としては、A〜Aの置換基に挙げた置換基が好ましく用いられる。複数の置換基は互いに結合して環を形成してもよい。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ベンジル基等が挙げられ、前記アリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。Y,Yとしては、化合物安定性の観点から、置換もしくは無置換のフェニル基、tert-ブチル基からなる群から選択されることが好ましい。Y 1 , Y 2 , Z 1 , and Z 2 represent substituted or unsubstituted alkyl or aryl groups, and may be bonded to each other to form a ring. As the substituents of Y 1 , Y 2 , Z 1 and Z 2 , the substituents listed in the substituents A 1 to A 5 are preferably used. The plurality of substituents may be bonded to each other to form a ring. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a benzyl group and the like, and examples of the aryl group include a phenyl group and a naphthyl group. From the viewpoint of compound stability, Y 1 and Y 2 are preferably selected from the group consisting of a substituted or unsubstituted phenyl group and a tert-butyl group.

は、酸素原子、硫黄原子またはN−Rを表し、Rはアルキル基、シクロアルキル基またはアリール基を表すが、特に色味の観点から、Xが酸素原子または硫黄原子を表すことが好ましい。X 1 represents an oxygen atom, a sulfur atom or N-R 4 , and R 4 represents an alkyl group, a cycloalkyl group or an aryl group, and X 1 represents an oxygen atom or a sulfur atom, especially from the viewpoint of color. Is preferable.

本発明の一般式1〜一般式10で表される化合物の共鳴構造は、文献:有機合成化学協会誌vol.66,No.5,2008と特開2001−117201号公報を参考に、例えば、下記式のような共鳴構造をとると考えられる。また、例示化合物は表記Aで示すが、これは表記Bと同義である。

Figure 0006958569
The resonance structure of the compound represented by the general formulas 1 to 10 of the present invention is described in the literature: Journal of Synthetic Organic Chemistry vol. 66, No. With reference to 5,2008 and Japanese Patent Application Laid-Open No. 2001-117201, for example, it is considered that the resonance structure is as shown in the following formula. Further, the exemplified compound is shown by notation A, which is synonymous with notation B.
Figure 0006958569

一般式2をより詳細に説明すると、下記式で表される。

Figure 0006958569
The general formula 2 will be described in more detail by the following formula.
Figure 0006958569

また、上記式のうち平衡状態が存在するものは、それぞれ下記式で表される。

Figure 0006958569
Further, among the above equations, those having an equilibrium state are represented by the following equations, respectively.
Figure 0006958569

一般式5をより詳細に説明すると、下記式で表される。

Figure 0006958569
The general formula 5 will be described in more detail by the following formula.
Figure 0006958569

一般式9は、具体的には下記式で表される。

Figure 0006958569
Figure 0006958569
The general formula 9 is specifically represented by the following formula.
Figure 0006958569
Figure 0006958569

また、一般式10は、具体的には下記式で表される。

Figure 0006958569
Figure 0006958569
Further, the general formula 10 is specifically represented by the following formula.
Figure 0006958569
Figure 0006958569

本発明においては、一般式1〜一般式3、一般式5において、Qを含んで形成される環が四員環の場合をスクアリリウム化合物と呼び、五員環の場合をクロコニウム化合物と呼ぶ。 In the present invention, in the general formulas 1 to 3 and 5, the case where the ring formed containing Q is a four-membered ring is referred to as a squarylium compound, and the case of a five-membered ring is referred to as a croconium compound.

本発明において、一般式2または一般式5で表される少なくとも2種の化合物が混合して用いられ、どのような組み合わせでもよいが、優れた波形を提供し、かつスクアリリウム化合物及びクロコニウム化合物の優れた可視域透過率を維持できる観点から、好ましくは一般式1で表されるスクアリリウム化合物及び一般式3で表されるスクアリリウム化合物からなる組成物、または、一般式1で表されるクロコニウム化合物及び一般式3で表されるクロコニウム化合物からなる組成物であり、さらに好ましくは一般式1で表されるスクアリリウム化合物及び一般式3で表されるスクアリリウム化合物からなる組成物である。 In the present invention, at least two compounds represented by the general formula 2 or the general formula 5 are mixed and used, and any combination may be used, but an excellent waveform is provided and the squarylium compound and the croconium compound are excellent. From the viewpoint of maintaining the visible transmittance, the composition is preferably composed of a squalylium compound represented by the general formula 1 and a squalylium compound represented by the general formula 3, or a croconium compound represented by the general formula 1 and the general. It is a composition composed of a croconium compound represented by the formula 3, and more preferably a composition composed of a squarylium compound represented by the general formula 1 and a squarylium compound represented by the general formula 3.

本発明において、一般式2または一般式5で表される少なくとも2種の化合物が混合して用いられるが、添加剤や色素等の機能材料を混合してもよく、添加剤としては好ましくは酸化防止剤、紫外線吸収剤、界面活性剤であり、色素としては好ましくはシアニン色素、ニッケルキレート、フタロシアニン色素、ジインモニウム色素である。 In the present invention, at least two compounds represented by the general formula 2 or the general formula 5 are mixed and used, but functional materials such as additives and dyes may be mixed, and the additive is preferably oxidized. It is an inhibitor, an ultraviolet absorber, and a surfactant, and the pigment is preferably a cyanine pigment, a nickel chelate, a phthalocyanine pigment, or a diimmonium pigment.

下記に一般式1〜一般式11で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of the compounds represented by the general formulas 1 to 11 are shown below, but the present invention is not limited thereto.

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

Figure 0006958569
Figure 0006958569

<<光学フィルム>>
本実施形態における光学フィルムは、どのような形態であってもよいが、前記一般式2及び前記一般式5で表される化合物の少なくとも2種を含む組成物を含む本実施形態において、光学フィルムの構成としては、例えば、基材表面に前記組成物を含む塗布液により塗布形成された近赤外線吸収層を形成する構成(図2A)でもよいし、樹脂バインダーに前記組成物を混合した構成(図2B)でもよい。
<< Optical film >>
The optical film in the present embodiment may be in any form, but in the present embodiment, the optical film includes a composition containing at least two kinds of the compounds represented by the general formula 2 and the general formula 5. The configuration may be, for example, a configuration in which a near-infrared absorbing layer formed by coating with a coating liquid containing the composition is formed on the surface of the base material (FIG. 2A), or a configuration in which the composition is mixed with a resin binder (FIG. 2A). FIG. 2B) may be used.

<基板>
本発明に用いられる基板は、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、ITO等の透明電極、透明樹脂フィルムを挙げることができる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。ガラス基板としては、主成分として、珪酸塩を含むガラス基板であれば、特に限定されるものではなく、結晶構造を有する石英ガラス基板等が挙げることができる。ほかに、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型ガラス基板、ホウ珪酸ガラス基板、ソーダガラス基板、色ガラス基板、無アルカリガラス基板、石英ガラス基板等を用いることができるが、とりわけ、無アルカリガラス基板、低α線ガラス基板等のガラス基板が好ましい。特に吸収型ガラス基板は、広域の近赤外域700〜1200nmで吸収作用を有し、斜入射の光に対する吸収特性も安定するため好ましい。不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
<Board>
The type of the substrate used in the present invention is not particularly limited to glass, plastic, etc., and may be transparent or opaque. When light is taken out from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include transparent electrodes such as glass, quartz and ITO, and transparent resin films. Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate. CAP), cellulose acetate phthalate, cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name: JSR) or Appel. Examples thereof include cycloolefin resins (trade name: manufactured by Mitsui Kagaku Co., Ltd.). The glass substrate is not particularly limited as long as it is a glass substrate containing a silicate as a main component, and examples thereof include a quartz glass substrate having a crystal structure. In addition, absorbent glass substrates, borosilicate glass substrates, soda glass substrates, colored glass substrates, non-alkali glass substrates, quartz glass substrates, etc., in which CuO or the like is added to fluoride-based glass or phosphate-based glass, etc. are used. However, glass substrates such as non-alkali glass substrates and low α-ray glass substrates are particularly preferable. In particular, the absorption type glass substrate is preferable because it has an absorption action in a wide range of 700 to 1200 nm in the near infrared region and has stable absorption characteristics for obliquely incident light. Examples of the opaque support substrate include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.

<樹脂バインダー>
本実施形態に用いる樹脂は、特に限定されるものではないが、耐熱性に優れる樹脂が好ましい。耐熱性に優れる樹脂としては、ポリイミド系樹脂、ポリエチレンナフタレート系樹脂、ポリエーテルスルホン系樹脂、ポリエーテル系樹脂、ポリカーボネート、ポリアリレート、及び環状オレフィン系樹脂等を挙げることができる。これらの樹脂は、1種単独でも、2種以上を混合して用いても良い。
<Resin binder>
The resin used in this embodiment is not particularly limited, but a resin having excellent heat resistance is preferable. Examples of the resin having excellent heat resistance include a polyimide resin, a polyethylene naphthalate resin, a polyether sulfone resin, a polyether resin, a polycarbonate, a polyarylate, and a cyclic olefin resin. These resins may be used alone or in admixture of two or more.

特に、本発明の化合物と相互作用することで、本発明の化合物の耐熱性が向上することから、芳香族基を有する樹脂バインダーが好ましい。 In particular, a resin binder having an aromatic group is preferable because the heat resistance of the compound of the present invention is improved by interacting with the compound of the present invention.

中でも、耐熱性の観点から、ポリイミド系樹脂が最も好ましい。具体的には、半脂環式ポリイミド(三菱ガス化学製C3450等)や芳香族ポリイミド(ソマール社製SPIXAREA HR001、新日本理化社製JL−20等)、フッ素が導入された芳香族ポリイミド等が挙げられる。 Among them, a polyimide resin is most preferable from the viewpoint of heat resistance. Specifically, semi-alicyclic polyimide (C3450 manufactured by Mitsubishi Gas Chemical Company, etc.), aromatic polyimide (SPIXAREA HR001 manufactured by Somar Corporation, JL-20 manufactured by Shin Nihon Rika Co., Ltd., etc.), aromatic polyimide with fluorine introduced, etc. Can be mentioned.

<添加剤>
本実施形態に用いる樹脂には、本発明の効果を損なわない範囲において、あらゆるものを添加することが可能であるが、さらに酸化防止剤、紫外線吸収剤及び界面活性剤等のその他の成分を添加することができる。酸化防止剤としては、例えば2,6−ジ−t−ブチル−4−メチルフェノール、2,2'−ジオキシ−3,3'−ジ−t−ブチル−5,5'−ジメチルジフェニルメタン及びテトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンが挙げられる。
紫外線吸収剤としては、例えば2,4−ジヒドロキシベンゾフェノン及び2−ヒドロキシ−4−メトキシベンゾフェノンが挙げられる。
<Additives>
Anything can be added to the resin used in the present embodiment as long as the effects of the present invention are not impaired, but other components such as antioxidants, ultraviolet absorbers and surfactants are further added. can do. Antioxidants include, for example, 2,6-di-t-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-t-butyl-5,5'-dimethyldiphenylmethane and tetrakis [ Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane can be mentioned.
Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone.

<近赤外線吸収層>
本実施形態において、近赤外線吸収層の構成は特に限定されるものではないが、前記樹脂バインダーと、前記添加剤と、前記組成物によって形成されるものが好ましい。本発明において、前記組成物の使用量は所望の特性に応じて適宜選択されるが、本発明に用いる樹脂100質量%に対して、通常0.01〜10.0質量%、好ましくは0.01〜0.8質量%、さらに好ましくは0.01〜5.0質量%である。
前記組成物の使用量が上記範囲内にあると、近赤外線吸収能、430〜580nmの範囲における透過率及び強度に優れた近赤外線吸収層を得ることができる。
<Near infrared absorption layer>
In the present embodiment, the structure of the near-infrared absorbing layer is not particularly limited, but one formed by the resin binder, the additive, and the composition is preferable. In the present invention, the amount of the composition used is appropriately selected according to the desired properties, but is usually 0.01 to 10.0% by mass, preferably 0.% by mass, based on 100% by mass of the resin used in the present invention. It is 01 to 0.8% by mass, more preferably 0.01 to 5.0% by mass.
When the amount of the composition used is within the above range, a near-infrared absorbing layer having excellent near-infrared absorbing ability, transmittance and strength in the range of 430 to 580 nm can be obtained.

近赤外線吸収層の膜厚としては、樹脂フィルムの場合、通常20〜200μm、好ましくは50〜100μmである。スピンコートやダイコートでコーティングする場合には、通常0.1〜20μmであり、好ましくは0.5〜10μmである。
膜厚が上記範囲内にあると、近赤外線吸収能、430〜580nmの範囲における透過率及び強度に優れた近赤外線吸収層を得ることができる。
In the case of a resin film, the film thickness of the near-infrared absorbing layer is usually 20 to 200 μm, preferably 50 to 100 μm. When coated with spin coating or die coating, it is usually 0.1 to 20 μm, preferably 0.5 to 10 μm.
When the film thickness is within the above range, a near-infrared absorbing layer having excellent near-infrared absorbing ability, transmittance and strength in the range of 430 to 580 nm can be obtained.

<溶媒>
本実施形態に用いる溶媒は、特に限定されるものではないが、炭化水素系溶剤を挙げることができ、より好ましくは脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒を好ましい例として挙げることができる。脂肪族炭化水素系溶媒としては、例えば、ヘキサン、ヘプタン等の非環状脂肪族炭化水素系溶媒、シクロヘキサン等の環状脂肪族炭化水素系溶媒、メタノール、エタノール、n−プロパノール、エチレングリコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、エチレングリコールモノメチルエーテル等のエーテル系溶媒等が挙げられる。芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、イソプロピルビフェニル等が挙げられる。ハロゲン系溶媒としては、例えば、塩化メチレン、1,1,2−トリクロロエタン、クロロホルム等を挙げることができる。更に具体的には、2−エチルヘキサン、sec−ブチルエーテル、2−ペンタノール、2−メチルテトラヒドロフラン、2−プロピレングリコールモノメチルエーテル、2,3−ジメチル−1,4−ジオキサン、sec−ブチルベンゼン、2−メチルシクロヘキシルベンゼン等を挙げることができる。前記樹脂バインダーを溶解させる観点で、塩化メチレンやN−メチル−2−ピロリドンが好ましい。
<Solvent>
The solvent used in this embodiment is not particularly limited, and examples thereof include hydrocarbon solvents, more preferably aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, and halogen solvents. Can be mentioned as. Examples of the aliphatic hydrocarbon solvent include acyclic aliphatic hydrocarbon solvents such as hexane and heptane, cyclic aliphatic hydrocarbon solvents such as cyclohexane, and alcohol solvents such as methanol, ethanol, n-propanol and ethylene glycol. Examples thereof include a solvent, a ketone solvent such as acetone and methyl ethyl ketone, and an ether solvent such as diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol monomethyl ether. Examples of the aromatic hydrocarbon solvent include toluene, xylene, mesitylene, cyclohexylbenzene, isopropylbiphenyl and the like. Examples of the halogen-based solvent include methylene chloride, 1,1,2-trichloroethane, chloroform and the like. More specifically, 2-ethylhexane, sec-butyl ether, 2-pentanol, 2-methyltetrahydrofuran, 2-propylene glycol monomethyl ether, 2,3-dimethyl-1,4-dioxane, sec-butylbenzene, 2 -Methylcyclohexylbenzene and the like can be mentioned. From the viewpoint of dissolving the resin binder, methylene chloride and N-methyl-2-pyrrolidone are preferable.

<その他の構成層>
本実施形態の一つとして、イメージセンサーを構成するその他の構成層としては、特に限定されるものではないが、例えば撮像素子支持基板、受光部、混在型偏光フィルター、混在型カラーフィルター、マイクロレンズ、誘電体多層膜等が挙げられる。好ましくは、誘電体多層膜である。
<Other constituent layers>
As one of the present embodiments, the other constituent layers constituting the image sensor are not particularly limited, but for example, an image sensor support substrate, a light receiving portion, a mixed polarizing filter, a mixed color filter, and a microlens. , Dielectric multilayer film and the like. A dielectric multilayer film is preferable.

誘電体多層膜は、低屈折率の誘電体膜と高屈折率の誘電体膜とを交互に積層して構成される。ここで、低屈折率と高屈折率とは、隣接する層の屈折率に対して低い屈折率と高い屈折率を有することを意味する。
高屈折率の誘電体膜は、好ましくは、屈折率(nd)が1.6以上であり、より好ましくは2.2〜2.5である。高屈折率の誘電体材料としては、例えば、Ta,TiO,Nb等が挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性の観点からTiOが好ましい。
一方、低屈折率の誘電体膜は、好ましくは、屈折率(nd)が1.6未満であり、より好ましくは1.45以上1.55未満であり、よりいっそう好ましくは1.45〜1.47である。低屈折率の誘電体材料としては、例えば、SiO等が挙げられる。成膜の再現性、安定性、経済性等の点から、SiOが望ましい。
誘電体多層膜は、例えば、CVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用して作製できる。
本発明に用いる誘電体多層膜は、入射角0°の分光透過率曲線において、波長430〜620nmの光の平均透過率は90%以上が好ましく、92%以上がより好ましく、95%以上がさらに好ましい。また、入射角0°の分光透過率曲線において、波長710〜1100nmの光の平均透過率は、10%以下が好ましく、8%以下がより好ましく、5%以下がさらに好ましい。さらに、入射角0°の分光透過率曲線において、波長350〜430nmに透過率50%となる波長を有し、波長650〜750nmに透過率50%となる波長を有するとよい。
この目的のためには、誘電体多層膜は、低屈折率の誘電体層と高屈折率の誘電体層との合計積層数として15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、誘電体多層膜の反り等が大きくなり、また全体の膜厚が増加するため、100層以下が好ましく、75層以下がより好ましく、60層以下がさらに好ましい。膜厚としては、好ましい積層数を満たした上で、光学フィルターの薄膜化の観点から薄い方が好ましい。このような誘電体多層膜の膜厚としては、2〜10μmが好ましい。
The dielectric multilayer film is formed by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film. Here, the low refractive index and the high refractive index mean having a low refractive index and a high refractive index with respect to the refractive index of the adjacent layer.
A dielectric film having a high refractive index preferably has a refractive index (nd) of 1.6 or more, more preferably 2.2 to 2.5. Examples of the dielectric material having a high refractive index include Ta 2 O 5 , TiO 2 , Nb 2 O 5, and the like. Of these, TiO 2 is preferable from the viewpoint of film formation property, reproducibility in refractive index and the like, and stability.
On the other hand, the low refractive index dielectric film preferably has a refractive index (nd) of less than 1.6, more preferably 1.45 or more and less than 1.55, and even more preferably 1.45 to 1. It is .47. Examples of the low refractive index dielectric material include SiO x N y and the like. SiO 2 is desirable from the viewpoint of film formation reproducibility, stability, economy, and the like.
The dielectric multilayer film can be produced by using, for example, a vacuum film forming process such as a CVD method, a sputtering method, or a vacuum vapor deposition method, or a wet film forming process such as a spray method or a dip method.
In the dielectric multilayer film used in the present invention, the average transmittance of light having a wavelength of 430 to 620 nm is preferably 90% or more, more preferably 92% or more, and further 95% or more in the spectral transmittance curve at an incident angle of 0 °. preferable. Further, in the spectral transmittance curve at an incident angle of 0 °, the average transmittance of light having a wavelength of 710 to 1100 nm is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less. Further, in the spectral transmittance curve at an incident angle of 0 °, it is preferable to have a wavelength having a transmittance of 50% at a wavelength of 350 to 430 nm and a wavelength having a transmittance of 50% at a wavelength of 650 to 750 nm.
For this purpose, the dielectric multilayer film preferably has 15 or more layers, more preferably 25 or more layers, and 30 or more layers as the total number of layers of the low refractive index dielectric layer and the high refractive index dielectric layer. Is even more preferable. However, as the total number of layers increases, the warp of the dielectric multilayer film increases and the overall film thickness increases. Therefore, 100 layers or less is preferable, 75 layers or less is more preferable, and 60 layers or less is further preferable. As the film thickness, it is preferable that the film thickness satisfies a preferable number of layers and is thin from the viewpoint of thinning the optical filter. The film thickness of such a dielectric multilayer film is preferably 2 to 10 μm.

<例示化合物M−29の合成>
下記の化学反応式により、例示化合物M−29を合成した。
<Synthesis of Exemplified Compound M-29>
Exemplified compound M-29 was synthesized by the following chemical reaction formula.

Figure 0006958569
Figure 0006958569

(中間体Aの合成)
水素化ナトリウム28.0gとジエチレングリコールジメチルエーテル(以下、DMEと称す)270mLを混合し、加熱還流を行った。加熱還流下、ベンゾイルアセトン22.8g、ピバル酸エチル27.2g及びDME270mLを混合した溶液を30分かけて滴下した。滴下終了後、加熱還流を4時間行った後、DMEを500mL留去した。反応液を水で冷却し、メタノール30mLをゆっくり加えた。さらに反応溶液を氷水冷却し、水570mLを加え、1時間撹拌を行った。酢酸エチル200mL、濃塩酸68mLを順次加え、有機層を分取した。分取した有機層を硫酸ナトリウムで乾燥させ、減圧濃縮で溶媒を留去することにより中間体Aを30g得た。
(Synthesis of Intermediate A)
28.0 g of sodium hydride and 270 mL of diethylene glycol dimethyl ether (hereinafter referred to as DME) were mixed, and reflux was performed by heating. A mixed solution of 22.8 g of benzoylacetone, 27.2 g of ethyl pivalate and 270 mL of DME was added dropwise over 30 minutes under heating under reflux. After completion of the dropping, heating and refluxing was carried out for 4 hours, and then 500 mL of DME was distilled off. The reaction was cooled with water and 30 mL of methanol was added slowly. Further, the reaction solution was cooled with ice water, 570 mL of water was added, and the mixture was stirred for 1 hour. 200 mL of ethyl acetate and 68 mL of concentrated hydrochloric acid were added in that order, and the organic layer was separated. The separated organic layer was dried over sodium sulfate, and the solvent was distilled off by concentration under reduced pressure to obtain 30 g of Intermediate A.

(中間体Bの合成)
濃硫酸450mLを氷水冷却し、中間体Aをトルエン60mLに溶解した溶液を加えた。氷水冷却下、2時間撹拌を行った後、反応溶液を氷水冷却した水5Lに滴下した。滴下終了後、氷水冷却下で2時間撹拌を行い、析出結晶をろ取することにより、中間体Bを18g得た。
(Synthesis of Intermediate B)
450 mL of concentrated sulfuric acid was cooled with ice water, and a solution of Intermediate A in 60 mL of toluene was added. After stirring for 2 hours under cooling with ice water, the reaction solution was added dropwise to 5 L of water cooled with ice water. After completion of the dropping, the mixture was stirred for 2 hours under cooling with ice water, and the precipitated crystals were collected by filtration to obtain 18 g of Intermediate B.

(中間体Cの合成)
窒素雰囲気下、中間体B10gをテトラヒドロフラン(以下、THFと称す)100mLに溶解した。臭化メチルマグネシウム(0.84M、THF溶液)105mLを滴下し、室温で1時間撹拌した。飽和臭化アンモニウム水溶液1Lをゆっくりと加えた後、酢酸エチル500mLを加え、有機層を分取した。有機層を硫酸ナトリウムで乾燥した後、減圧濃縮で溶媒を除去し、中間体Cを6.3g得た。
(Synthesis of Intermediate C)
Under a nitrogen atmosphere, 10 g of Intermediate B was dissolved in 100 mL of tetrahydrofuran (hereinafter referred to as THF). 105 mL of methylmagnesium bromide (0.84 M, THF solution) was added dropwise, and the mixture was stirred at room temperature for 1 hour. After slowly adding 1 L of saturated aqueous ammonium bromide solution, 500 mL of ethyl acetate was added, and the organic layer was separated. After drying the organic layer with sodium sulfate, the solvent was removed by concentration under reduced pressure to obtain 6.3 g of Intermediate C.

(例示化合物M−29の合成)
中間体C6.3g、スクアリン酸1.03g、メタノール28mL、ピリジン1.5gを順次混合し、3時間加熱還流を行った。反応溶液を放冷後、氷水冷却下で5時間撹拌を行い、析出結晶をろ取した。得られた結晶をシリカゲルカラムクロマトグラフィーで精製することにより、例示化合物M−29を1.6g得た。また、シリカゲルカラムクロマトグラフィーで精製することにより、副生成物であるs−5をそれぞれ8mg、s−6を16mg得た。
(Synthesis of Exemplified Compound M-29)
Intermediate C 6.3 g, squaric acid 1.03 g, methanol 28 mL, and pyridine 1.5 g were sequentially mixed, and the mixture was heated under reflux for 3 hours. After allowing the reaction solution to cool, the mixture was stirred under ice-water cooling for 5 hours, and the precipitated crystals were collected by filtration. The obtained crystals were purified by silica gel column chromatography to obtain 1.6 g of Exemplified Compound M-29. Further, by purification by silica gel column chromatography, 8 mg of s-5 and 16 mg of s-6, which are by-products, were obtained, respectively.

例示化合物M−29と同様の合成処方で、その他の例示化合物も合成した。 Other exemplary compounds were also synthesized using the same synthetic formulation as the exemplary compound M-29.

例示化合物M−35は、中間体Cの合成において臭化エチルマグネシウム(1M、THF溶液)を用いた以外は、例示化合物M−29と同様の合成処方で合成した。 Exemplified compound M-35 was synthesized by the same synthetic formulation as Exemplified compound M-29 except that ethylmagnesium bromide (1M, THF solution) was used in the synthesis of intermediate C.

例示化合物M−113は、中間体Cの代わりに4−メチル−1−オクチルキノリン−1−イウム ブロミドを用いた以外は、例示化合物M−29と同様の合成処方で合成した。 Exemplified compound M-113 was synthesized by the same synthetic formulation as Exemplified compound M-29 except that 4-methyl-1-octylquinoline-1-ium bromide was used instead of intermediate C.

<例示化合物M−60の合成>
下記の化学反応式により、例示化合物M−60を合成した。
<Synthesis of Exemplified Compound M-60>
Exemplified compound M-60 was synthesized by the following chemical reaction formula.

Figure 0006958569
Figure 0006958569

(中間体Dの合成)
氷水冷却下、臭化エチルマグネシウム(0.96M、THF溶液)69.3mLに3−メチル−1−ブチン8gを滴下した。滴下終了後、室温で3時間撹拌し、溶液Aとした。
(Synthesis of Intermediate D)
Under ice water cooling, 8 g of 3-methyl-1-butyne was added dropwise to 69.3 mL of ethylmagnesium bromide (0.96 M, THF solution). After completion of the dropping, the mixture was stirred at room temperature for 3 hours to prepare a solution A.

THF45mLに蟻酸エチル4.5gを溶解した。−5℃に冷却し、溶液Aを滴下した。滴下終了後、−5℃で2時間撹拌を行った後、さらに5℃で2時間撹拌を行った。反応溶液にTHF20mL、6M塩酸40mLを順次加えた。反応溶液を室温まで戻し、エーテル100mLを加え、有機層を分取した。有機層を硫酸マグネシウムで乾燥させ、減圧濃縮で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーで精製することにより、中間体Dを5.7g得た。 4.5 g of ethyl formate was dissolved in 45 mL of THF. The mixture was cooled to −5 ° C., and the solution A was added dropwise. After completion of the dropping, the mixture was stirred at −5 ° C. for 2 hours and then further stirred at 5 ° C. for 2 hours. 20 mL of THF and 40 mL of 6M hydrochloric acid were sequentially added to the reaction solution. The reaction solution was returned to room temperature, 100 mL of ether was added, and the organic layer was separated. The organic layer was dried over magnesium sulfate, and the solvent was distilled off by concentration under reduced pressure. The residue was purified by silica gel column chromatography to obtain 5.7 g of Intermediate D.

(中間体Eの合成)
中間体D5.7gをトルエン67mLに溶解し、二酸化マンガン粉末3.6gを加えて40℃で1時間撹拌を行った。反応溶液に二酸化マンガン3.6gを加え、さらに40℃で2時間撹拌を行った。さらに二酸化マンガン3.6gを加え、40℃で3時間撹拌を行った後、二酸化マンガンをろ別した。ろ液を減圧濃縮で留去することにより、中間体Eを5.3g得た。
(Synthesis of intermediate E)
5.7 g of Intermediate D was dissolved in 67 mL of toluene, 3.6 g of manganese dioxide powder was added, and the mixture was stirred at 40 ° C. for 1 hour. 3.6 g of manganese dioxide was added to the reaction solution, and the mixture was further stirred at 40 ° C. for 2 hours. Further, 3.6 g of manganese dioxide was added, and the mixture was stirred at 40 ° C. for 3 hours, and then manganese dioxide was filtered off. By distilling off the filtrate by concentration under reduced pressure, 5.3 g of Intermediate E was obtained.

(中間体Fの合成)
中間体E5.3gをナトリウムエトキシド(0.05M、エタノール溶液)114mLに溶解し、室温で1時間撹拌を行い、溶液Bとした。
(Synthesis of Intermediate F)
5.3 g of the intermediate E was dissolved in 114 mL of sodium ethoxide (0.05 M, ethanol solution), and the mixture was stirred at room temperature for 1 hour to prepare a solution B.

硫黄1.9gにナトリウムエトキシド(0.5M、エタノール溶液)180mLを加え、さらに水素化ホウ素ナトリウム2.5gを加えた。反応溶液を60℃に加熱して30分撹拌を行った後、減圧濃縮でエタノール230mLを留去し、反応溶液に飽和塩化ナトリウム水溶液を加えた。酢酸エチル100mLを加え、有機層を分取し、飽和塩化ナトリウム水溶液、水、飽和塩化ナトリウム水溶液で順次洗浄を行った。有機層を硫酸マグネシウムで乾燥し、減圧濃縮で溶媒を留去することにより、中間体Fを5.1g得た。 180 mL of sodium ethoxide (0.5 M, ethanol solution) was added to 1.9 g of sulfur, and 2.5 g of sodium borohydride was further added. The reaction solution was heated to 60 ° C. and stirred for 30 minutes, then 230 mL of ethanol was distilled off by concentration under reduced pressure, and a saturated aqueous sodium chloride solution was added to the reaction solution. 100 mL of ethyl acetate was added, the organic layer was separated, and the mixture was washed successively with saturated aqueous sodium chloride solution, water and saturated aqueous sodium chloride solution. The organic layer was dried over magnesium sulfate, and the solvent was distilled off by concentration under reduced pressure to obtain 5.1 g of Intermediate F.

(中間体Gの合成)
窒素雰囲気下、中間体F5.1gをTHF30mLに溶解した。臭化メチルマグネシウム(0.84M、THF溶液)34mLを滴下し、室温で1時間撹拌した。飽和臭化アンモニウム水溶液120mLをゆっくりと加えた後、酢酸エチル100mLを加え、有機層を分取した。有機層を硫酸ナトリウムで乾燥した後、減圧濃縮で溶媒を留去し、中間体Gを6.2g得た。
(Synthesis of intermediate G)
Under a nitrogen atmosphere, 5.1 g of Intermediate F was dissolved in 30 mL of THF. 34 mL of methylmagnesium bromide (0.84 M, THF solution) was added dropwise, and the mixture was stirred at room temperature for 1 hour. After slowly adding 120 mL of a saturated aqueous ammonium bromide solution, 100 mL of ethyl acetate was added, and the organic layer was separated. After drying the organic layer with sodium sulfate, the solvent was distilled off by concentration under reduced pressure to obtain 6.2 g of Intermediate G.

(例示化合物M−60の合成)
中間体G6.2g、クロコン酸1.5g、メタノール35mL、ピリジン1.68gを順次混合し、3時間加熱還流を行った。反応溶液を放冷後、氷水冷却下で5時間撹拌を行い、析出結晶をろ取した。得られた結晶をシリカゲルカラムクロマトグラフィーで精製することにより、例示化合物M−60を1.8g得た。また、シリカゲルカラムクロマトグラフィーで精製することにより、副生成物であるs−17を0.01mg、s−18を0.024g得た。
(Synthesis of Exemplified Compound M-60)
6.2 g of Intermediate G, 1.5 g of croconic acid, 35 mL of methanol, and 1.68 g of pyridine were sequentially mixed, and the mixture was heated under reflux for 3 hours. After allowing the reaction solution to cool, the mixture was stirred under ice-water cooling for 5 hours, and the precipitated crystals were collected by filtration. The obtained crystals were purified by silica gel column chromatography to obtain 1.8 g of Exemplified Compound M-60. Further, by purification by silica gel column chromatography, 0.01 mg of s-17 and 0.024 g of s-18, which are by-products, were obtained.

例示化合物M−60と同様の合成処方で、その他の例示化合物も合成した。 Other exemplary compounds were also synthesized using the same synthetic formulation as the exemplary compound M-60.

<例示化合物M−152の合成>
下記の化学反応式により、例示化合物M−152を合成した。
<Synthesis of Exemplified Compound M-152>
Exemplified compound M-152 was synthesized by the following chemical reaction formula.

Figure 0006958569
Figure 0006958569

(例示化合物M−152の合成)
例示化合物M−6、2.2g、塩化メチレン36mL、ジメチル硫酸3.0g、を順次混合し、6時間加熱還流を行った。反応溶液を放冷後、ソジウムメトキシド(28%メタノール溶液)を3.8g滴下し、室温で4時間撹拌したのちHBF溶液を滴下し1時間撹拌した。その後有機層を分取し、硫酸ナトリウムで乾燥した後、減圧濃縮で溶媒を留去し、例示化合物M−152を1.5g得た。
(Synthesis of Exemplified Compound M-152)
Exemplified compound M-6, 2.2 g, methylene chloride 36 mL, and dimethyl sulfate 3.0 g were sequentially mixed and heated under reflux for 6 hours. After cooling the reaction solution, sodium methoxide (28% methanol solution) was 3.8g dropwise, and stirred HBF 4 solution was added dropwise to 1 hour After stirring at room temperature for 4 hours. Then, the organic layer was separated, dried over sodium sulfate, and then the solvent was distilled off by concentration under reduced pressure to obtain 1.5 g of Exemplified Compound M-152.

例示化合物M−152と同様の合成処方で、その他の例示化合物も合成した。 Other exemplary compounds were also synthesized using the same synthetic formulation as the exemplary compound M-152.

(分光吸収スペクトルの測定)
ポリイミド系樹脂(SPIXAREA HR001(ソマール(株)製))に前記組成物を樹脂/組成物の比が100質量部/0.12質量部となるように添加し、固形分濃度が5wt%となるようにN−メチル−2−ピロリドンにて希釈した後、これをガラス板に塗布し、90℃のホットプレートで1時間加熱減圧して溶剤(N−メチル−2−ピロリドンに)を蒸発させた後、ガラス板からはがしてフィルムを得た。作製したフィルムの分光吸収スペクトルを、紫外可視分光光度計V−570(日本分光(株)製)にて測定した。
また、ポリイミド系樹脂Aに、前記組成物を、樹脂/組成物の比が100質量部/0.1質量部となるように添加し、固形分濃度が5wt%となるように塩化メチレンとエタノールにて希釈した後、これをガラス板に塗布し、90℃のホットプレートで1時間加熱して溶剤(塩化メチレンとエタノール)を蒸発させた後、ガラス板からはがして前記と同様のフィルムを得ることができた。
ここで、ポリイミド系樹脂Aは、以下のように合成した。
攪拌機、窒素注入装置、滴下漏斗、温度調節器及び冷却器の全てを付着させた、200mL三口丸底フラスコを、反応器として使用した。そして、この反応器に、窒素を通過させながらN,N−ジメチルアセトアミド(DMAc)88.13gを充填した後、2,2’−ビス(トリフルオロメチル)―4,4’−ジアミノビフェニル(2,2’−TFDB)9.6gを溶解した。反応温度を10℃に降温した後、これに6−FDA13.32gを添加して、この溶液を常温で放置して3時間攪拌した。
反応が終わった後、収得されたポリアミド酸溶液にピリジン4.75g、無水酢酸6.13gを投入して、30分攪拌後再び80℃で2時間攪拌して常温で冷やして、これをメタノール1Lが盛られている容器に徐々に投入して沈殿させて、沈殿させた固形分を濾過して粉砕した後、真空中80℃で6時間乾燥して、固形分粉末を乾燥して18.5gのポリイミド系樹脂Aを得た。
(Measurement of spectral absorption spectrum)
The composition is added to a polyimide resin (SPIXAREA HR001 (manufactured by Somar Co., Ltd.)) so that the resin / composition ratio is 100 parts by mass / 0.12 parts by mass, and the solid content concentration becomes 5 wt%. After diluting with N-methyl-2-pyrrolidone as described above, this was applied to a glass plate, and the solvent (to N-methyl-2-pyrrolidone) was evaporated by heating and reducing pressure on a hot plate at 90 ° C. for 1 hour. Later, it was peeled off from the glass plate to obtain a film. The spectral absorption spectrum of the produced film was measured with an ultraviolet-visible spectrophotometer V-570 (manufactured by JASCO Corporation).
Further, the composition is added to the polyimide resin A so that the resin / composition ratio is 100 parts by mass / 0.1 parts by mass, and methylene chloride and ethanol are added so that the solid content concentration is 5 wt%. After diluting with, this is applied to a glass plate, heated on a hot plate at 90 ° C. for 1 hour to evaporate the solvent (methylene chloride and ethanol), and then peeled off from the glass plate to obtain a film similar to the above. I was able to.
Here, the polyimide resin A was synthesized as follows.
A 200 mL three-necked round-bottom flask equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler was used as a reactor. Then, this reactor was filled with 88.13 g of N, N-dimethylacetamide (DMAc) while passing nitrogen, and then 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2). , 2'-TFDB) 9.6 g was dissolved. After lowering the reaction temperature to 10 ° C., 13.32 g of 6-FDA was added thereto, and the solution was left at room temperature and stirred for 3 hours.
After the reaction was completed, 4.75 g of pyridine and 6.13 g of anhydrous acetic acid were added to the obtained polyamic acid solution, and the mixture was stirred again at 80 ° C. for 2 hours to cool at room temperature, and 1 L of methanol was stirred. Gradually put into a container in which The polyimide-based resin A of the above was obtained.

(溶解性評価)
前記組成物を10wt%となるようにN−メチル−2−ピロリドンに溶解させ、24時間静置して結晶析出の量(溶液中の全溶質量に対して析出した溶質の量)を評価した。
◎:全く結晶が析出していない
○:析出した結晶が1%未満
△:析出した結晶が5%未満
×:析出した結晶が5%以上
(Solubility evaluation)
The composition was dissolved in N-methyl-2-pyrrolidone so as to be 10 wt%, and allowed to stand for 24 hours to evaluate the amount of crystal precipitation (the amount of solute precipitated with respect to the total dissolved mass in the solution). ..
⊚: No crystals are precipitated ○: Precipitated crystals are less than 1% Δ: Precipitated crystals are less than 5% ×: Precipitated crystals are 5% or more

(近赤外線吸収安定性評価)
前記組成物を添加して作製したポリイミド系樹脂を、耐環境試験として温度60℃、湿度90%で600時間静置し、その前後で分光吸収スペクトルを測定した。耐環境試験前のλmaxの波長の吸光度をλ0、耐環境試験後の前記波長の吸光度をλ1とし、下記式を用いて近赤外線吸収安定性(S1)を計算し、評価した。
式 S1=λ1/λ0×100
(Evaluation of near-infrared absorption stability)
The polyimide resin prepared by adding the above composition was allowed to stand at a temperature of 60 ° C. and a humidity of 90% for 600 hours as an environmental resistance test, and the spectral absorption spectrum was measured before and after that. The absorbance at the wavelength of λmax before the environmental resistance test was λ0, and the absorbance at the wavelength after the environmental resistance test was λ1, and the near-infrared absorption stability (S1) was calculated and evaluated using the following formula.
Equation S1 = λ1 / λ0 × 100

(単独色素の分光吸収スペクトルのλmaxの波長とのずれの評価)
前記組成物の分光吸収スペクトルを測定し、λmaxのときの波長をXnm、一般式1単独のときの分光吸収スペクトルを測定し、λmaxのときの波長をYnmとし、下記式を用いて単独色素の分光吸収スペクトルのλmaxの波長とのずれ(D1)を評価した。
式 D1=|Y−X|
(Evaluation of the deviation of the spectral absorption spectrum of a single dye from the wavelength of λmax)
The spectral absorption spectrum of the composition was measured, the wavelength at λmax was Xnm, the spectral absorption spectrum at the time of general formula 1 alone was measured, the wavelength at λmax was Ynm, and the following formula was used to determine the single dye. The deviation (D1) of the spectral absorption spectrum from the wavelength of λmax was evaluated.
Equation D1 = | YX |

<実施例1〜27、比較例1〜9>
下記表1に示すように前記組成物をそれぞれ用意した。
<Examples 1-27, Comparative Examples 1-9>
Each of the above compositions was prepared as shown in Table 1 below.

Figure 0006958569
Figure 0006958569

<実施例1〜27、比較例1〜9の評価>
それぞれの組成物に関して、溶解性、近赤外線吸収安定性(S1)を評価した。結果について、下記表2にまとめて示す。
<Evaluation of Examples 1-27 and Comparative Examples 1-9>
Solubility and near-infrared absorption stability (S1) were evaluated for each composition. The results are summarized in Table 2 below.

Figure 0006958569
Figure 0006958569

<実施例28〜32、比較例10〜15>
下記表3に示すように前記組成物をそれぞれ用意した。
<Examples 28 to 32, Comparative Examples 10 to 15>
The compositions were prepared as shown in Table 3 below.

Figure 0006958569
Figure 0006958569

<実施例28〜32、比較例10〜15の評価>
それぞれの組成物に関して、溶解性、単独色素の分光吸収スペクトルのλmaxの波長とのずれ(D1)を評価した。結果について、下記表4にまとめて示す。
<Evaluation of Examples 28 to 32 and Comparative Examples 10 to 15>
For each composition, the solubility and the deviation (D1) of the spectral absorption spectrum of the single dye from the wavelength of λmax were evaluated. The results are summarized in Table 4 below.

Figure 0006958569
Figure 0006958569

<実施例33〜57、比較例16〜24>
下記表5に示すように前記組成物をそれぞれ用意した。
<Examples 33 to 57, Comparative Examples 16 to 24>
The compositions were prepared as shown in Table 5 below.

Figure 0006958569
Figure 0006958569

<実施例33〜57、比較例16〜24の評価>
それぞれの組成物に関して、溶解性、近赤外線吸収安定性(S1)を評価した。結果について、下記表6にまとめて示す。
<Evaluation of Examples 33 to 57 and Comparative Examples 16 to 24>
Solubility and near-infrared absorption stability (S1) were evaluated for each composition. The results are summarized in Table 6 below.

Figure 0006958569
Figure 0006958569

<実施例58〜63、比較例25〜31>
下記表7に示すように前記組成物をそれぞれ用意した。
<Examples 58 to 63, Comparative Examples 25 to 31>
The compositions were prepared as shown in Table 7 below.

Figure 0006958569
Figure 0006958569

<実施例58〜63、比較例25〜31の評価>
それぞれの組成物に関して、溶解性、単独色素の分光吸収スペクトルのλmaxの波長とのずれ(D1)を評価した。結果について、下記表8にまとめて示す。
<Evaluation of Examples 58 to 63 and Comparative Examples 25 to 31>
For each composition, the solubility and the deviation (D1) of the spectral absorption spectrum of the single dye from the wavelength of λmax were evaluated. The results are summarized in Table 8 below.

Figure 0006958569
Figure 0006958569

以上から、一般式2で表される化合物または一般式5で表される化合物のうち少なくとも2種を含む組成物を用いることで、溶解性を向上でき、近赤外線吸収安定性に優れるフィルムを得られることがわかる。 From the above, by using a composition containing at least two of the compound represented by the general formula 2 or the compound represented by the general formula 5, the solubility can be improved and a film having excellent near-infrared absorption stability can be obtained. It turns out that it can be done.

前記組成物を添加して作製したポリイミド系樹脂を、特開2012−103340号公報を参考に近赤外線カットフィルターとして用いたところ、近赤外線カットフィルターとして機能した。 When the polyimide resin produced by adding the above composition was used as a near-infrared cut filter with reference to Japanese Patent Application Laid-Open No. 2012-103340, it functioned as a near-infrared cut filter.

前記組成物を添加して作製したポリイミド系樹脂は、高い耐熱性を有することがわかった。 It was found that the polyimide resin produced by adding the above composition has high heat resistance.

前記組成物を添加して作製したポリメタクリル酸メチル樹脂の耐熱性は、前記ポリイミド樹脂よりも低い耐熱性であった。 The heat resistance of the polymethyl methacrylate resin produced by adding the composition was lower than that of the polyimide resin.

また、特許第6103152号明細書の実施例[0277]〜[0291]と同様の方法で、前記組成物を添加して作製した樹脂フィルムと、誘電体多層膜を組み合わせたところ、吸収波形のさらなる制御が可能となった。 Further, when the resin film produced by adding the above composition and the dielectric multilayer film are combined in the same manner as in Examples [0277] to [0291] of Patent No. 6103152, the absorption waveform is further increased. Control became possible.

さらに、下記の方法で、ガラス基板上に誘電体多層膜と色素を添加したポリイミド薄膜を成膜することで、IRカットフィルターを作製した。 Further, an IR cut filter was produced by forming a dielectric multilayer film and a polyimide thin film to which a dye was added on a glass substrate by the following method.

(第1の誘電体多層膜としての近赤外線反射性の誘電体多層膜の成膜)
76mm×76mm×0.214mmの旭硝子製フツリン酸ガラス基板NF−50TX(以下、ガラス基板Aと呼ぶ。)を、旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000(商品名)を用いて、超音波洗浄機で10分間洗浄した。
上記で得られた洗浄したガラス基板Aの一方の主面上に、IAD真空蒸着装置を用いて、高屈折率膜から始めて、高屈折率膜と低屈折率膜を交互に成膜して、合計40層(合計層厚さ:5950nm)の、第1の誘電体多層膜としての近赤外線反射性の誘電体多層膜(以下、誘電体多層膜Rと呼ぶ。)を成膜した。なお、高屈折率材料としてTiOを用い、低屈折率材料としてSiOを用いた。
(Formation of a near-infrared reflective dielectric multilayer film as the first dielectric multilayer film)
A 76 mm × 76 mm × 0.214 mm borosilicate glass substrate NF-50TX (hereinafter referred to as glass substrate A) manufactured by Asahi Glass was used with Asahi Glass hydrofluoroether-based solvent Asahiclean (registered trademark) AE3000 (trade name). , Washed with an ultrasonic cleaner for 10 minutes.
Using an IAD vacuum vapor deposition apparatus, a high refractive index film and a low refractive index film are alternately formed on one main surface of the cleaned glass substrate A obtained above, starting with a high refractive index film. A near-infrared reflective dielectric multilayer film (hereinafter referred to as a dielectric multilayer film R) as a first dielectric multilayer film having a total of 40 layers (total layer thickness: 5950 nm) was formed. TiO 2 was used as the high refractive index material, and SiO 2 was used as the low refractive index material.

(誘電体層の成膜)
上記で得られた誘電体多層膜Rを有するガラス基板Aを、再び旭硝子製ハイドロフルオロエーテル系溶剤アサヒクリン(登録商標)AE3000を用いて、超音波洗浄機で20分間洗浄した。上記で得られた洗浄したガラス基板Aの誘電体多層膜Rを有する側とは反対側の面に、真空蒸着装置を用いて、Alからなる30nmの層とSiOからなる170nmの層の2層からなる誘電体層を、この順に成膜した。成膜したAlからなる層の屈折率は1.60、成膜したSiOからなる層の屈折率は1.45であった。
(Dielectric layer film formation)
The glass substrate A having the dielectric multilayer film R obtained above was washed again with an ultrasonic cleaner for 20 minutes using Asahi Clean (registered trademark) AE3000, a hydrofluoroether-based solvent manufactured by Asahi Glass. On the surface of the washed glass substrate A obtained above opposite to the side having the dielectric multilayer film R, a vacuum vapor deposition apparatus was used to form a 30 nm layer made of Al 2 O 3 and a 170 nm layer made of SiO 2. A dielectric layer composed of two layers was formed in this order. The refractive index of the formed layer made of Al 2 O 3 was 1.60, and the refractive index of the formed layer made of SiO 2 was 1.45.

(近赤外線吸収層の成膜)
ポリイミド樹脂として前記ポリイミド樹脂Aの5wt%塩化メチレン/エタノール溶液に、前記組成物をポリイミド樹脂A100質量部に対して1質量部となる割合で混合した後、室温にて攪拌・溶解することで、塗工液を得た。
得られた塗工液を、上記で得られた両主面に誘電体多層膜R及び誘電体層を有するガラス基板Aの誘電体層上にスピンコーターにより塗布し、100℃で5分間加熱乾燥させて、膜厚1μmの近赤外線吸収層を形成した。このようにして、誘電体多層膜R、ガラス基板A、誘電体層、近赤外線吸収層の順に積層された積層体を得た。
(Formation of near-infrared absorbing layer)
As the polyimide resin, the composition is mixed with a 5 wt% methylene chloride / ethanol solution of the polyimide resin A at a ratio of 1 part by mass with respect to 100 parts by mass of the polyimide resin A, and then stirred and dissolved at room temperature. A coating solution was obtained.
The obtained coating liquid is applied on the dielectric layer of the glass substrate A having the dielectric multilayer film R and the dielectric layer on both main surfaces obtained above by a spin coater, and dried by heating at 100 ° C. for 5 minutes. A near-infrared absorbing layer having a film thickness of 1 μm was formed. In this way, a laminate in which the dielectric multilayer film R, the glass substrate A, the dielectric layer, and the near-infrared absorbing layer were laminated in this order was obtained.

さらに、特開2016−72266号公報を参考にして、前記組成物を混在型カラーフィルターに用いて撮像素子を作製したところ、CMOSセンサー、CCDセンサーとして機能した。 Further, when an image sensor was prepared by using the composition as a mixed color filter with reference to Japanese Patent Application Laid-Open No. 2016-722666, it functioned as a CMOS sensor and a CCD sensor.

1 基材、2 近赤外線吸収層、3 光学フィルム 1 base material, 2 near-infrared absorbing layer, 3 optical film

Claims (10)

下記一般式2で表される化合物と、下記一般式5で表される化合物のそれぞれ少なくとも1種以上を含む、または、下記一般式5で表される化合物のうち少なくとも2種を含み、前記一般式2で表される化合物が下記一般式6で表され、前記一般式5で表される化合物が下記一般式7で表される、2種の化合物を含む組成物。
Figure 0006958569
〔一般式2において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕
Figure 0006958569
〔一般式5において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。R20はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R20はさらに置換基を有していてもよい。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕
Figure 0006958569
〔一般式6において、A11及びA21はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A11及びA21はさらに置換基を有していてもよい。〕
Figure 0006958569
〔一般式7において、A31及びA41はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A31及びA41はさらに置換基を有していてもよい。R11はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R11はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。〕
The compound represented by the following general formula 2 and at least one of the compounds represented by the following general formula 5 are contained, or at least two kinds of the compounds represented by the following general formula 5 are contained, and the general formula is described above. A composition containing two types of compounds, wherein the compound represented by the formula 2 is represented by the following general formula 6, and the compound represented by the general formula 5 is represented by the following general formula 7.
Figure 0006958569
[In the general formula 2, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. If the molecule is not charge-neutral, it has a counter anion. ]
Figure 0006958569
[In the general formula 5, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. R 20 is one selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 20 may further have a substituent. If the molecule is not charge-neutral, it has a counter anion. ]
Figure 0006958569
[In the general formula 6, each A 11 and A 21 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 11 and A 21 may further have a substituent. ]
Figure 0006958569
[In the general formula 7, respectively A 31 and A 41 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 31 and A 41 may further have a substituent. R 11 is one selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 11 may further have a substituent. Ctr represents a counter anion. ]
下記一般式2で表される化合物と、下記一般式5で表される化合物のそれぞれ少なくとも1種以上を含む、または、下記一般式5で表される化合物のうち少なくとも2種を含み、前記一般式2で表される化合物が下記一般式8で表され、前記一般式5で表される化合物が下記一般式9で表される、2種の化合物を含む組成物。
Figure 0006958569
〔一般式2において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕
Figure 0006958569
〔一般式5において、A及びAはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つである。A及びAはさらに置換基を有していてもよい。nは1または2である。Rは水素原子または置換もしくは無置換のアルキル基を表す。R20はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R20はさらに置換基を有していてもよい。分子が電荷的にニュートラルでない場合にはカウンターアニオンを持つ。〕
Figure 0006958569
〔一般式8において、A12及びA22はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A12及びA22はさらに置換基を有していてもよい。〕
Figure 0006958569
〔一般式9において、A32及びA42はそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、複素環基からなる群から選択される1つであり、A32及びA42はさらに置換基を有していてもよい。R12はアルキル基、シクロアルキル基、アルケニル基、アリール基、複素環基、アルコキシカルボニル基からなる群から選択される1つであり、R12はさらに置換基を有していてもよい。Ctrはカウンターアニオンを表す。〕
The compound represented by the following general formula 2 and at least one of the compounds represented by the following general formula 5 are contained, or at least two kinds of the compounds represented by the following general formula 5 are contained, and the general formula is described above. A composition containing two types of compounds, wherein the compound represented by the formula 2 is represented by the following general formula 8 and the compound represented by the general formula 5 is represented by the following general formula 9.
Figure 0006958569
[In the general formula 2, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. If the molecule is not charge-neutral, it has a counter anion. ]
Figure 0006958569
[In the general formula 5, A 3 and A 4 are each independently selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heterocyclic group. A 3 and A 4 may further have a substituent. n is 1 or 2. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. R 20 is one selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 20 may further have a substituent. If the molecule is not charge-neutral, it has a counter anion. ]
Figure 0006958569
[In general formula 8, respectively A 12 and A 22 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 12 and A 22 may further have a substituent. ]
Figure 0006958569
[In general formula 9, each A 32 and A 42 are independently an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, is one selected from the group consisting of heterocyclic group, A 32 and A 42 may further have a substituent. R 12 is one selected from the group consisting of an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a heterocyclic group and an alkoxycarbonyl group, and R 12 may further have a substituent. Ctr represents a counter anion. ]
前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜500000ppmであることを特徴とする請求項1または請求項2に記載の組成物。 The composition according to claim 1 or 2, wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 500,000 ppm. 前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜100000ppmであることを特徴とする請求項3に記載の組成物。 The composition according to claim 3 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 100,000 ppm. 前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜10000ppmであることを特徴とする請求項4に記載の組成物。 The composition according to claim 4 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 10000 ppm. 前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜1000ppmであることを特徴とする請求項5に記載の組成物。 The composition according to claim 5, wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 1000 ppm. 前記一般式2または前記一般式5で表される化合物の濃度が1ppm〜100ppmであることを特徴とする請求項6に記載の組成物。 The composition according to claim 6 , wherein the concentration of the compound represented by the general formula 2 or the general formula 5 is 1 ppm to 100 ppm. 請求項1〜請求項7のいずれか1項に記載の組成物を含む光学フィルム。 An optical film containing the composition according to any one of claims 1 to 7. 請求項8に記載の光学フィルムと誘電体多層膜とを含む近赤外線カットフィルター。 A near-infrared cut filter including the optical film according to claim 8 and a dielectric multilayer film. 請求項1〜請求項7のいずれか1項に記載の組成物を含むイメージセンサー。 An image sensor comprising the composition according to any one of claims 1 to 7.
JP2018553670A 2016-11-29 2017-09-12 Composition, optical film, near-infrared cut filter, image sensor Active JP6958569B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016231871 2016-11-29
JP2016231871 2016-11-29
JP2017053511 2017-03-17
JP2017053511 2017-03-17
PCT/JP2017/032774 WO2018100834A1 (en) 2016-11-29 2017-09-12 Composition, optical film, near-infrared ray cut-off filter, and image sensor

Publications (2)

Publication Number Publication Date
JPWO2018100834A1 JPWO2018100834A1 (en) 2019-10-17
JP6958569B2 true JP6958569B2 (en) 2021-11-02

Family

ID=62242458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018553670A Active JP6958569B2 (en) 2016-11-29 2017-09-12 Composition, optical film, near-infrared cut filter, image sensor

Country Status (3)

Country Link
JP (1) JP6958569B2 (en)
KR (1) KR20190053231A (en)
WO (1) WO2018100834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145699A1 (en) * 2022-01-31 2023-08-03 富士フイルム株式会社 Infrared absorbing composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154784A (en) * 2017-03-21 2018-10-04 コニカミノルタ株式会社 Infrared absorption compound, resin composition, optical film, infrared cut filter, and image sensor
JP2019213151A (en) * 2018-06-08 2019-12-12 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus
TWI822853B (en) * 2018-09-14 2023-11-21 日商富士軟片股份有限公司 Near-infrared absorbing composition, dispersion manufacturing method, film, optical filter, pattern forming method, laminated body, solid-state imaging element, image display device, and infrared sensor
WO2020116642A1 (en) * 2018-12-07 2020-06-11 富士フイルム株式会社 Resin composition, optical filter, image display device, solid-state imaging element, and dye mixture
JP7167350B2 (en) * 2019-08-13 2022-11-08 富士フイルム株式会社 COMPOSITION, MEMBRANE, OPTICAL FILTER AND MANUFACTURING METHOD THEREOF, SOLID-STATE IMAGE SENSOR, INFRARED SENSOR, CAMERA MODULE, AND COMPOUND
CN114402235B (en) * 2019-09-11 2023-09-19 Agc株式会社 Optical filter and imaging device
JP2022189736A (en) 2021-06-10 2022-12-22 Jsr株式会社 Composition, optical member, and device with optical member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140923B2 (en) * 2005-12-19 2013-02-13 コニカミノルタホールディングス株式会社 Croconium compound
JP2007171244A (en) * 2005-12-19 2007-07-05 Konica Minolta Medical & Graphic Inc Optical film, method for manufacturing optical film and front filter for plasma display
JP2007264384A (en) * 2006-03-29 2007-10-11 Konica Minolta Medical & Graphic Inc Optical filter
JP2015091923A (en) 2013-10-01 2015-05-14 富士ゼロックス株式会社 Resin composition, thiopyran-based squarylium compound and image forming material
JP6268997B2 (en) * 2013-12-05 2018-01-31 富士ゼロックス株式会社 Infrared absorbing ink and electrophotographic toner
JP6470650B2 (en) * 2015-03-05 2019-02-13 株式会社日本触媒 Oxocarbon-based compound-containing resin composition and optical filter including the resin composition
JP6599194B2 (en) * 2015-09-30 2019-10-30 株式会社日本触媒 Mixture of oxocarbon compounds
JP6630161B2 (en) * 2016-01-21 2020-01-15 株式会社日本触媒 Light selective transmission filter and method of manufacturing the same
JP6658031B2 (en) * 2016-02-04 2020-03-04 富士ゼロックス株式会社 Resin composition, electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP6811602B2 (en) * 2016-03-28 2021-01-13 株式会社日本触媒 Optical selective transmission filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145699A1 (en) * 2022-01-31 2023-08-03 富士フイルム株式会社 Infrared absorbing composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module

Also Published As

Publication number Publication date
WO2018100834A1 (en) 2018-06-07
KR20190053231A (en) 2019-05-17
JPWO2018100834A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6958569B2 (en) Composition, optical film, near-infrared cut filter, image sensor
JP6202230B1 (en) Optical filter and imaging device
KR101390248B1 (en) Dye-containing negative curable composition, color filter and method for producing the same
JP2021001342A (en) Near-infrared absorbing dye, optical filter and imaging device
JP5596668B2 (en) Schiff base type compound and coloring material containing the compound
WO2019151344A1 (en) Optical filter and imaging device
Krayushkin Synthesis of Photochromic Dihetarylethenes.
JP5405719B2 (en) Phthalocyanine compound, and semiconductor and electronic device using the same
JP6771880B2 (en) Resin composition and laminate
TWI770982B (en) Dye compound
TW202204526A (en) Optical filter
JP5909936B2 (en) Optical filter, solid-state imaging device, camera module
JPWO2015076171A1 (en) Solvent for organic transistor manufacturing
JP5194626B2 (en) Fullerene derivative and its solution, production method and membrane
WO2019230570A1 (en) Near-infrared absorbing dye, optical filter and imaging device
JP2005232158A (en) Method for producing dithiolate-based metal complex
US4062867A (en) Metal 1,2 dithiolene thiophene derivatives
TW201910442A (en) Near infrared absorbing dye, optical filter, and imaging device
JP4318462B2 (en) Filter for electronic display device
KR20210042029A (en) Novel squarylium compounds, and compositions comprising same
JPWO2007091683A1 (en) Bisquaryllium compound
CN114730028A (en) Optical filter and fingerprint detection device using same
KR102009148B1 (en) Adhesive sheet having excellent property of block uv light, adhesive composition, and display device comprising the same
JP7415788B2 (en) Squarylium compounds, pigment compositions, films, optical filters, solid-state imaging devices, image display devices, and infrared sensors
KR102591097B1 (en) Pyridone based compound, resin composition for near-infrared ray absorption containing the same, and near-infrared ray blocking filter manufactured by using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150