JP6956706B2 - Substrate with metal nanowire layer formed and its manufacturing method - Google Patents

Substrate with metal nanowire layer formed and its manufacturing method Download PDF

Info

Publication number
JP6956706B2
JP6956706B2 JP2018505962A JP2018505962A JP6956706B2 JP 6956706 B2 JP6956706 B2 JP 6956706B2 JP 2018505962 A JP2018505962 A JP 2018505962A JP 2018505962 A JP2018505962 A JP 2018505962A JP 6956706 B2 JP6956706 B2 JP 6956706B2
Authority
JP
Japan
Prior art keywords
base material
metal
metal nanowire
nanowires
nanowire layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018505962A
Other languages
Japanese (ja)
Other versions
JPWO2017159698A1 (en
Inventor
徹平 荒木
毅 関谷
克昭 菅沼
金▲てい▼ 酒
英樹 大籏
内田 博
真尚 原
恵理 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Osaka University NUC
Original Assignee
Showa Denko KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Osaka University NUC filed Critical Showa Denko KK
Publication of JPWO2017159698A1 publication Critical patent/JPWO2017159698A1/en
Application granted granted Critical
Publication of JP6956706B2 publication Critical patent/JP6956706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/008Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing extensible conductors or cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、金属ナノワイヤ層が形成された基材及びその製造方法に関する。 The present invention relates to a base material on which a metal nanowire layer is formed and a method for producing the same.

金属ナノワイヤは、従来のITOに代表される透明導電膜材料に比べて透明性や導電性が優れた透明導電体を形成しうる材料であるだけでなく、曲げや伸縮などの機械的耐久性に優れるため、可撓性を有するフィルム基材等を用いた透明導電膜の形成等に使用されている。例えば、下記特許文献1には、金属ナノワイヤを使用した導電パターンの製造方法が開示されている。 Metal nanowires are not only materials that can form transparent conductors that are more transparent and conductive than conventional transparent conductive materials such as ITO, but also have mechanical durability such as bending and expansion and contraction. Since it is excellent, it is used for forming a transparent conductive film using a flexible film base material or the like. For example, Patent Document 1 below discloses a method for producing a conductive pattern using metal nanowires.

しかし、銀や銅などで作製される金属ナノワイヤを透明導電膜材料に用いた場合、マイグレーションや硫化・酸化などにより透明導電膜の劣化が進行する場合がある。そこで、金属ナノワイヤの耐久性向上を図るため、グラフェンやポリマーを透明導電膜の全面へコーティングすることが行われてきたが、高い耐久性の確保には至っていない。 However, when metal nanowires made of silver, copper, or the like are used as the transparent conductive film material, the transparent conductive film may deteriorate due to migration, sulfide, oxidation, or the like. Therefore, in order to improve the durability of the metal nanowires, graphene or a polymer has been coated on the entire surface of the transparent conductive film, but high durability has not been ensured.

近年、銀ナノワイヤへめっきを施して耐久性を向上させる技術が提案されている。例えば下記特許文献2には、銀ナノワイヤの表面に銀以外の金属をめっきした構成が開示されている。 In recent years, a technique of plating silver nanowires to improve durability has been proposed. For example, Patent Document 2 below discloses a configuration in which a metal other than silver is plated on the surface of silver nanowires.

また、下記特許文献3には、直線状金属ナノワイヤが互いに交点で接合して網目を形成している導電膜において、上記接合が圧着またはメッキによりされている点が記載されている。 Further, Patent Document 3 below describes that in a conductive film in which linear metal nanowires are joined to each other at intersections to form a mesh, the joining is performed by crimping or plating.

しかし、上記従来技術におけるめっき技術では、金属ナノワイヤが基板から容易に剥離し、安定しためっき処理を行うことができない。さらに、金属ナノワイヤで構成された透明導電膜を単に基板上へ形成しただけでは曲げや伸縮に対する高い機械的強度を得ることができない。 However, in the plating technique in the above-mentioned conventional technique, the metal nanowires are easily peeled off from the substrate, and a stable plating process cannot be performed. Further, it is not possible to obtain high mechanical strength against bending and expansion / contraction simply by forming a transparent conductive film made of metal nanowires on a substrate.

国際公開第2014/175163号パンフレットInternational Publication No. 2014/175163 Pamphlet 特開2013−151752号公報Japanese Unexamined Patent Publication No. 2013-151752 国際公開第2009/035059号パンフレットInternational Publication No. 2009/035059 Pamphlet

本発明の目的は、マイグレーションや硫化・酸化などに対して高い耐久性を有するとともに高い機械的強度を有する金属ナノワイヤ層が形成された基材及びその製造方法を提供することにある。 An object of the present invention is to provide a base material on which a metal nanowire layer having high durability against migration, sulfurization, oxidation and the like and high mechanical strength is formed, and a method for producing the same.

上記目的を達成するために、本発明は以下の実施形態を有する。 In order to achieve the above object, the present invention has the following embodiments.

[1]金属ナノワイヤ層が形成された基材であって、金属ナノワイヤの一部が基材に埋め込まれた状態であり、露出している金属ナノワイヤの一部または全部がめっきされていることを特徴とする金属ナノワイヤ層が形成された基材。 [1] A base material on which a metal nanowire layer is formed, in which a part of the metal nanowire is embedded in the base material, and a part or all of the exposed metal nanowire is plated. A base material on which a characteristic metal nanowire layer is formed.

[2]上記金属ナノワイヤの少なくとも一部が連結されている[1]に記載の金属ナノワイヤ層が形成された基材。 [2] The base material on which the metal nanowire layer according to [1] is formed, in which at least a part of the metal nanowires is connected.

[3]上記基材がポリウレタン、シリコーン樹脂、飽和ポリエステル、ポリカーボネート、ポリパラキシリレン(パリレン(登録商標))、熱可塑性ポリイミド、ポリエーテルスルホン、アクリル樹脂、ポリオレフィン、ポリ塩化ビニルからなる群のいずれかである[1]又は[2]に記載の金属ナノワイヤ層が形成された基材。 [3] Any of the group consisting of polyurethane, silicone resin, saturated polyester, polycarbonate, polyparaxylylene (parylene (registered trademark)), thermoplastic polyimide, polyether sulfone, acrylic resin, polyolefin, and polyvinyl chloride. The base material on which the metal nanowire layer according to [1] or [2] is formed.

[4]上記金属ナノワイヤを構成する金属が銀または銅である[1]〜[3]のいずれかに記載の金属ナノワイヤ層が形成された基材。 [4] The base material on which the metal nanowire layer according to any one of [1] to [3] is formed, wherein the metal constituting the metal nanowire is silver or copper.

[5]金属ナノワイヤ層を基材上に形成する工程と、前記金属ナノワイヤ層が形成された基板に外部エネルギーを付与して金属ナノワイヤの一部を基材に埋め込む工程と、露出している前記金属ナノワイヤの一部または全部をめっきする工程と、を備えることを特徴とする金属ナノワイヤ層が形成された基材の製造方法。 [5] The step of forming the metal nanowire layer on the base material, the step of applying external energy to the substrate on which the metal nanowire layer is formed, and the step of embedding a part of the metal nanowire in the base material, and the exposed parts. A method for producing a base material on which a metal nanowire layer is formed, comprising a step of plating a part or all of the metal nanowires.

[6]めっきをする工程の前又は後にさらに前記金属ナノワイヤの少なくとも一部を連結する工程を含む[5]に記載の金属ナノワイヤ層が形成された基材の製造方法。 [6] The method for producing a base material on which a metal nanowire layer is formed, which further comprises a step of connecting at least a part of the metal nanowires before or after the step of plating.

[7]上記基材がポリウレタン、シリコーン樹脂、飽和ポリエステル、ポリカーボネート、ポリパラキシリレン(パリレン(登録商標))、熱可塑性ポリイミド、ポリエーテルスルホン、アクリル樹脂、ポリオレフィン、ポリ塩化ビニルからなる群のいずれかである[5]又は[6]に記載の金属ナノワイヤ層が形成された基材の製造方法。 [7] Any of the group consisting of polyurethane, silicone resin, saturated polyester, polycarbonate, polyparaxylylene (parylene (registered trademark)), thermoplastic polyimide, polyether sulfone, acrylic resin, polyolefin, and polyvinyl chloride. The method for producing a base material on which a metal nanowire layer is formed according to [5] or [6].

[8]上記金属ナノワイヤを構成する金属が銀または銅である[5]〜[7]のいずれかに記載の金属ナノワイヤ層が形成された基材の製造方法。 [8] The method for producing a base material on which a metal nanowire layer is formed according to any one of [5] to [7], wherein the metal constituting the metal nanowire is silver or copper.

[9]上記[1]〜[4]のいずれかに記載の金属ナノワイヤ層が形成された基材を備えたセンサ又は機能素子。 [9] A sensor or functional element provided with a base material on which the metal nanowire layer according to any one of [1] to [4] above is formed.

本発明によれば、マイグレーションや硫化・酸化などに対して高い耐久性を有するとともに高い機械的強度を有する金属ナノワイヤ層が形成された基材及びその製造方法を提供できる。 According to the present invention, it is possible to provide a base material on which a metal nanowire layer having high durability against migration, sulfurization / oxidation and the like and high mechanical strength is formed, and a method for producing the same.

実施形態にかかる金属ナノワイヤ層が形成された基材の製造工程例の説明図である。It is explanatory drawing of the manufacturing process example of the base material which formed the metal nanowire layer which concerns on embodiment. 実施例1にかかる無電解ニッケル/金めっき処理された銀ナノワイヤ/ポリウレタン基材のSEM写真を示す図である。It is a figure which shows the SEM photograph of the electroless nickel / gold-plated silver nanowire / polyurethane base material which concerns on Example 1. FIG. 実施例1にかかる無電解ニッケル/金めっき処理された銀ナノワイヤの断面TEM写真を示す図である。It is a figure which shows the cross-sectional TEM photograph of the silver nanowire which was electroless nickel / gold-plated which concerns on Example 1. FIG. 実施例5にかかる電解白金めっき処理された銀ナノワイヤ/ポリウレタン基材のSEM写真を示す図である。It is a figure which shows the SEM photograph of the silver nanowire / polyurethane base material which was electroplatinum-plated which concerns on Example 5. FIG. 実施例5にかかる電解白金めっき処理された銀ナノワイヤの断面TEM写真を示す図である。It is a figure which shows the cross-sectional TEM photograph of the silver nanowire which was electroplatinum-plated according to Example 5.

以下、本発明を実施するための形態(以下、実施形態という)を説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described.

実施形態にかかる金属ナノワイヤ層が形成された基材は、金属ナノワイヤの一部が基材に埋め込まれた状態であり、露出している金属ナノワイヤの一部または全部がめっきされていることを特徴とする。 The base material on which the metal nanowire layer according to the embodiment is formed is characterized in that a part of the metal nanowire is embedded in the base material and a part or all of the exposed metal nanowire is plated. And.

上記金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。なお、本実施形態では、金属ナノワイヤとともに(混合して)、または金属ナノワイヤに代えて、ポーラスあるいはノンポーラスのチューブ状の形状を有する導電性材料である金属ナノチューブを使用してもよい。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。以下、本願明細書において「金属ナノワイヤ」と「金属ナノチューブ」とを続けて表記しない場合、「金属ナノワイヤ」は金属ナノワイヤと金属ナノチューブとを包括する意味で用いる。 The metal nanowire is a metal having a diameter on the order of nanometers, and is a conductive material having a wire-like shape. In this embodiment, metal nanotubes, which are conductive materials having a porous or non-porous tubular shape, may be used together with (mixed with) the metal nanowires or instead of the metal nanowires. In the present specification, both "wire-like" and "tube-like" are linear, but the former is intended to have a hollow center and the latter to be hollow in the center. The properties may be flexible or rigid. Hereinafter, when "metal nanowires" and "metal nanotubes" are not described in succession in the present specification, "metal nanowires" are used in the sense of including metal nanowires and metal nanotubes.

金属ナノワイヤまたは金属ナノチューブの製造方法としては、公知の製造方法を用いることができる。例えば、銀ナノワイヤは、ポリオール(Poly−ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤも同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤおよび金ナノワイヤの大規模な合成および精製の技術に関しては国際公開第2008/073143号パンフレットと国際公開第2008/046058号パンフレットに詳細な記述がある。ポーラス構造を有する金ナノチューブは、銀ナノワイヤを鋳型にして、塩化金酸溶液を還元することにより合成することができる。ここで、鋳型に用いた銀ナノワイヤは塩化金酸との酸化還元反応により溶液中に溶け出し、結果としてポーラス構造を有する金ナノチューブができる(J.Am.Chem.Soc.,2004,126,3892−3901参照)。 As a method for producing metal nanowires or metal nanotubes, a known production method can be used. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Matter., 2002, 14, 4736). Gold nanowires can also be similarly synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). The techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in International Publication No. 2008/073143 and International Publication No. 2008/046058. Gold nanotubes having a porous structure can be synthesized by reducing a gold chloride solution using silver nanowires as a template. Here, the silver nanowires used in the template dissolve in the solution by a redox reaction with chloroauric acid, resulting in gold nanotubes having a porous structure (JAm. Chem. Soc., 2004, 126, 3892). See -3901).

金属ナノワイヤおよび金属ナノチューブの径の太さの平均は、1〜500nmが好ましく、5〜200nmがより好ましく、5〜100nmがさらに好ましく、10〜100nmが特に好ましい。また、金属ナノワイヤおよび金属ナノチューブの長軸の長さの平均は、1〜100μmが好ましく、1〜80μmがより好ましく、2〜70μmがさらに好ましく、5〜50μmが特に好ましい。金属ナノワイヤおよび金属ナノチューブは、径の太さの平均および長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、200以上であることが特に好ましい。ここで、アスペクト比は、金属ナノワイヤおよび金属ナノチューブの径の平均径をb、長軸の平均的な長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)及び光学顕微鏡を用いて測定できる。具体的には、金属ナノワイヤの10本以上の径をSEM(日立ハイテクノロジーズ社製 FE−SEM SU8020)で各々測長、金属ナノワイヤの100本以上の長さを光学顕微鏡(キーエンス社製VHX−600)を用いて各々測長し、それらの相加平均値により平均径及び平均長さを求めることができる。 The average diameter of the metal nanowires and the metal nanotubes is preferably 1 to 500 nm, more preferably 5 to 200 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 100 nm. The average length of the major axis of the metal nanowire and the metal nanotube is preferably 1 to 100 μm, more preferably 1 to 80 μm, further preferably 2 to 70 μm, and particularly preferably 5 to 50 μm. For metal nanowires and metal nanotubes, the average diameter thickness and the average length of the major axis satisfy the above range, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, and 100. The above is more preferable, and 200 or more is particularly preferable. Here, the aspect ratio is a value obtained by a / b when the average diameter of the diameters of the metal nanowires and the metal nanotubes is approximated to b and the average length of the major axis is approximated to a. a and b can be measured using a scanning electron microscope (SEM) and an optical microscope. Specifically, the diameter of 10 or more metal nanowires is measured by SEM (FE-SEM SU8020 manufactured by Hitachi High-Technologies Co., Ltd.), and the length of 100 or more metal nanowires is measured by an optical microscope (VHX-600 manufactured by Keyence Co., Ltd.). ), And the average diameter and average length can be obtained from their additive average values.

このような金属ナノワイヤの材料としては、材料自体がマイグレーションや硫化・酸化などに対する耐久性にやや難があり向上が求められる材料であれば特に制限はないが、導電性が高い点で銀、銅等が好適である。 The material for such metal nanowires is not particularly limited as long as the material itself has some difficulty in durability against migration, sulfurization, oxidation, etc. and needs to be improved, but silver and copper are high in conductivity. Etc. are suitable.

また、上記基材は、熱可塑性樹脂材料であることが好ましい。熱可塑性樹脂は、着色していてもよいが、可視光による透明性は高い方が好ましい。例えばポリウレタン、シリコーン樹脂、飽和ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリカーボネート、ポリパラキシリレン(パリレン(登録商標))、熱可塑性ポリイミド、ポリエーテルスルホン、アクリル樹脂、ポリオレフィン、ポリ塩化ビニル等が挙げられる。これらの中でも金属ナノワイヤの基材との密着性や基材の伸縮性の観点でポリウレタン、ポリエチレンテレフタレート(PET)、ポリパラキシリレン(パリレン(登録商標))、が好ましい。 Further, the base material is preferably a thermoplastic resin material. The thermoplastic resin may be colored, but it is preferable that the thermoplastic resin has high transparency due to visible light. For example, polyurethane, silicone resin, saturated polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate, polyparaxylylene (parylene (registered trademark)), thermoplastic polyimide, polyether sulfone, acrylic resin, polyolefin. , Polyvinyl chloride and the like. Among these, polyurethane, polyethylene terephthalate (PET), and polyparaxylylene (Parylene (registered trademark)) are preferable from the viewpoint of adhesion of the metal nanowire to the base material and elasticity of the base material.

上記金属ナノワイヤは、その一部が基材に埋め込まれた状態となっている。金属ナノワイヤの一部とは、金属ナノワイヤの長手方向のいずれかの一部であり、両端部の一方または両方、両端部の間の部分等が挙げられる。金属ナノワイヤの一部が基材に埋め込まれた状態であることにより、基材に形成された金属ナノワイヤ層が、基材の曲げや伸縮に対して高い機械的強度を得ることができる。基材に埋め込まれた金属ナノワイヤは、その表面積の5〜95%が露出していることが好ましい。なお、基材中に完全に埋められた金属ナノワイヤが存在してもよい。また、基材中に埋めこまれた部分を有さない金属ナノワイヤを含んでもよい。その場合基材中に埋めこまれた部分を有さない金属ナノワイヤは全体の5%以上95%以下とすることが好ましく、10%以上85%以下とすることがより好ましく、15%以上75%以下とすることがさらに好ましい。 A part of the metal nanowire is embedded in a base material. The part of the metal nanowire is a part of any one of the longitudinal directions of the metal nanowire, and examples thereof include one or both of both end portions, a portion between both end portions, and the like. Since a part of the metal nanowires is embedded in the base material, the metal nanowire layer formed on the base material can obtain high mechanical strength against bending and expansion and contraction of the base material. The metal nanowires embedded in the substrate preferably have 5 to 95% of their surface area exposed. There may be metal nanowires completely embedded in the substrate. It may also contain metal nanowires that do not have a portion embedded in the substrate. In that case, the metal nanowires having no portion embedded in the base material are preferably 5% or more and 95% or less, more preferably 10% or more and 85% or less, and 15% or more and 75% or less. The following is more preferable.

また、上記金属ナノワイヤは、基材から露出している部分、すなわち基材に埋め込まれた状態ではない部分の一部または全部がめっきされている。特に無電解めっき工程において、触媒液に浸漬した後に熱処理を実施することにより、金属ナノワイヤ上に形成されためっき層が安定化し、剥離耐性向上などの耐久性に優れたメッキ層が得られ、これにより、マイグレーションの発生や硫化・酸化などによる劣化を抑制することができる。熱処理条件は、基材の耐熱温度にも依存するため、一概には決められないが、好ましくは基材の耐熱温度の範囲内で、0℃〜200℃、更に好ましくは20℃〜150℃の範囲が好ましい。また処理時間についても、基材へのダメージを与えない範囲で、触媒液の溶媒が揮発する条件であれば制約を受けないが、好ましくは1秒〜1時間、更に好ましくは30秒〜30分の範囲である。 Further, the metal nanowires are plated with a part or all of a portion exposed from the base material, that is, a part not embedded in the base material. In particular, in the electroless plating step, by performing heat treatment after immersion in the catalyst solution, the plating layer formed on the metal nanowires is stabilized, and a plating layer having excellent durability such as improved peeling resistance can be obtained. Therefore, it is possible to suppress the occurrence of migration and deterioration due to sulfide / oxidation. The heat treatment conditions are not unconditionally determined because they depend on the heat resistant temperature of the base material, but are preferably 0 ° C. to 200 ° C., more preferably 20 ° C. to 150 ° C. within the heat resistant temperature range of the base material. The range is preferred. Further, the treatment time is not restricted as long as the solvent of the catalyst solution volatilizes within a range that does not damage the substrate, but is preferably 1 second to 1 hour, more preferably 30 seconds to 30 minutes. Is the range of.

上記金属ナノワイヤ層を構成する金属ナノワイヤは、その少なくとも一部が連結されているのが好適である。ここでいう「連結」とは、金属ナノワイヤ同士の交差部で単に接触しているのではなく、交差部で熔融一体化していることを意味する。連結方法については後述する。 It is preferable that at least a part of the metal nanowires constituting the metal nanowire layer is connected. The term "connection" as used herein means that the metal nanowires are not simply in contact with each other at the intersection, but are fused and integrated at the intersection. The connection method will be described later.

以上に述べた本実施形態にかかる金属ナノワイヤ層が形成された基材は、例えば金属マイグレーションを促進する溶液(水や食塩水など)に接触する部材内や部材外において信頼性が必要とされる導電性部材に対して適用が可能であり、その例として、湿気や水などと接触するデバイス中の可撓性を有する基材に形成された透明導電膜、汗や生体液と接するウェアラブルデバイスや埋込型センサ、ケミカルセンサ、マイクロ流路デバイス、雨や海水にさらされるインフラや農林用のセンサ等のセンサ部材として使用することが可能である。センサ以外にもマイグレーション耐性が必要とされる機能素子の導電部材、例えば有機または無機半導体を用いた太陽電池、LED、及びトランジスタ等の導電部材に使用することができる。 The base material on which the metal nanowire layer according to the present embodiment described above is formed is required to have reliability inside or outside a member that comes into contact with a solution (water, saline solution, etc.) that promotes metal migration, for example. It can be applied to conductive members, such as transparent conductive films formed on flexible substrates in devices that come into contact with moisture, water, etc., wearable devices that come into contact with sweat, biological fluids, etc. It can be used as a sensor member such as an embedded sensor, a chemical sensor, a microchannel device, an infrastructure exposed to rain or seawater, or a sensor for agriculture and forestry. In addition to sensors, it can be used for conductive members of functional elements that require migration resistance, for example, conductive members such as solar cells, LEDs, and transistors using organic or inorganic semiconductors.

図1(a)、(b)、(c)には、実施形態にかかる金属ナノワイヤ層が形成された基材の製造工程例の説明図が示される。図1(a)において、金属ナノワイヤの分散液を可撓性を有する基材10上に塗布し、金属ナノワイヤ層12を形成する(金属ナノワイヤ層形成工程)。 1 (a), (b), and (c) show explanatory views of a manufacturing process example of a base material on which the metal nanowire layer according to the embodiment is formed. In FIG. 1A, a dispersion liquid of metal nanowires is applied onto a flexible base material 10 to form a metal nanowire layer 12 (metal nanowire layer forming step).

次に、図1(b)において、金属ナノワイヤ層12が形成された基材10に外部エネルギーを付与して金属ナノワイヤの一部を基材10に埋め込む(埋込工程)。ここで、外部エネルギーを付与する方法としては、光照射、誘電加熱や誘導加熱等の電磁波による加熱、オーブンやホットプレート等による加熱が挙げられる。外部エネルギーが付与されることにより、基材10の表層が熔融し、基材10の表面に形成された金属ナノワイヤ層12に含まれる金属ナノワイヤの一部が、熔融した基材10の表層内部に侵入する。その結果、図1(b)に示されるように、金属ナノワイヤの一部が基材10に埋め込まれた状態となる。また、外部エネルギーを付与する工程により、基材の残留応力等に起因する膨張あるいは収縮などの物理的変化によって、金属ナノワイヤと基材との接着面積が増加し、密着性が向上する。なお、上述したように、金属ナノワイヤの一部とは、その両端部の少なくとも一方や、両端部の間の部分等である。付与する外部エネルギー量は基材により異なるが、光照射や誘電加熱、誘導加熱等の電磁波を適用する場合、オーブン、ホットプレート等による加熱を適用する場合いずれも、基材のガラス転移点(Tg)以上または軟化点以上に加熱できる条件が採用され、その条件及び温度は用いる基材によって適宜選択される。 Next, in FIG. 1B, external energy is applied to the base material 10 on which the metal nanowire layer 12 is formed, and a part of the metal nanowires is embedded in the base material 10 (embedding step). Here, examples of the method of applying external energy include light irradiation, heating by electromagnetic waves such as dielectric heating and induction heating, and heating by an oven, a hot plate, or the like. When external energy is applied, the surface layer of the base material 10 is melted, and a part of the metal nanowires contained in the metal nanowire layer 12 formed on the surface of the base material 10 is inside the surface layer of the melted base material 10. invade. As a result, as shown in FIG. 1B, a part of the metal nanowires is embedded in the base material 10. Further, in the step of applying external energy, the adhesive area between the metal nanowire and the base material is increased due to physical changes such as expansion or contraction caused by the residual stress of the base material, and the adhesion is improved. As described above, a part of the metal nanowire is at least one of both end portions, a portion between both end portions, and the like. The amount of external energy to be applied differs depending on the base material, but the glass transition point (Tg) of the base material is applied in both cases where electromagnetic waves such as light irradiation, dielectric heating, and induction heating are applied, and when heating by an oven, hot plate, etc. is applied. ) Or above or above the softening point is adopted, and the conditions and temperature are appropriately selected depending on the substrate to be used.

上記の通り実施形態にかかる金属ナノワイヤ層が形成された基材の製造方法において、金属ナノワイヤ層12は基材10上に形成された後、外部エネルギーの付与により金属ナノワイヤの一部が基材10に侵入するものであって、金属ナノワイヤ層12を基材10上に形成後金属ナノワイヤ層12の少なくとも一部を覆うように塗布層を形成するものではない。すなわち、基材10自体に金属ナノワイヤの一部が埋め込まれており、塗布層のみに埋め込まれた構造ではない。 In the method for producing a base material on which the metal nanowire layer is formed as described above, after the metal nanowire layer 12 is formed on the base material 10, a part of the metal nanowire is applied to the base material 10 by applying external energy. The coating layer is not formed so as to cover at least a part of the metal nanowire layer 12 after the metal nanowire layer 12 is formed on the base material 10. That is, a part of the metal nanowires is embedded in the base material 10 itself, and the structure is not embedded only in the coating layer.

金属ナノワイヤ層12を構成する金属ナノワイヤの一部が基材10に埋め込まれた状態となることにより、その後のめっき工程において、金属ナノワイヤが基材10から剥離することを抑制でき、めっき処理を安定して行うことができる。 Since a part of the metal nanowires constituting the metal nanowire layer 12 is embedded in the base material 10, it is possible to prevent the metal nanowires from peeling off from the base material 10 in the subsequent plating step, and the plating process is stable. Can be done.

その後、図1(c)に示されるように、金属ナノワイヤ層12を構成する、基材から露出している金属ナノワイヤの一部または全部をめっきする(めっき工程)。めっき方法としては、公知の技術を適用でき、例えば無電解めっきに代表される化学還元めっき、置換めっき、または電解めっき等が好適であり、市販のめっき液を用いることができる。本めっきにより金属ナノワイヤの骨格を被覆することとなり、新たに構造的な強化が図れる。めっきする金属の種類は金、ニッケル/金、白金等が挙げられる。めっき厚みとしては、めっきによる耐久性向上の効果が発現できる厚みであれば制限を受けないが、例えば、1nm〜100nm、好ましくは3nm〜70nm、更に好ましくは5nm〜50nmである。めっき層は単層で形成されてもよいが、2〜4層の複数層が積層形成されていることが好ましい。5層以上になると、工業的な観点でめっき層形成工程が煩雑になり、また透明導電膜としての特性上、光学的な特性を犠牲にすることになる。 Then, as shown in FIG. 1 (c), a part or all of the metal nanowires exposed from the base material forming the metal nanowire layer 12 are plated (plating step). As a plating method, a known technique can be applied. For example, chemical reduction plating typified by electroless plating, replacement plating, electrolytic plating and the like are suitable, and a commercially available plating solution can be used. This plating covers the skeleton of the metal nanowires, and new structural reinforcement can be achieved. Examples of the metal to be plated include gold, nickel / gold, platinum and the like. The plating thickness is not limited as long as it can exhibit the effect of improving durability by plating, but is, for example, 1 nm to 100 nm, preferably 3 nm to 70 nm, and more preferably 5 nm to 50 nm. The plating layer may be formed as a single layer, but it is preferable that a plurality of layers of 2 to 4 are laminated. When the number of layers is five or more, the plating layer forming step becomes complicated from an industrial point of view, and the optical characteristics are sacrificed in terms of the characteristics as a transparent conductive film.

なお、上記めっき工程の前又は後に、金属ナノワイヤ層12を構成する金属ナノワイヤの少なくとも一部を連結する工程を設けてもよい。ここで、金属ナノワイヤの少なくとも一部を連結する工程とは、基板表層に存在する金属ナノワイヤの複数の交差部の少なくとも一部を熔融一体化する工程を意味する。連結させる方法としては、金属ナノワイヤが溶融切断することなく相互に連結するのに必要なエネルギーが付与できる方法であれば制限はなく、オーブン等の加熱、マイクロ波照射、パルス光照射が好適である。 A step of connecting at least a part of the metal nanowires constituting the metal nanowire layer 12 may be provided before or after the plating step. Here, the step of connecting at least a part of the metal nanowires means a step of melting and integrating at least a part of a plurality of intersections of the metal nanowires existing on the surface layer of the substrate. The method of connecting is not limited as long as the energy required for connecting the metal nanowires to each other can be applied without melting and cutting, and heating of an oven or the like, microwave irradiation, and pulsed light irradiation are preferable. ..

パルス光照射とは、光照射時間(照射時間)が短時間の光の照射であり、光照射を複数回繰り返す場合には第一の照射時間と第二の照射時間との間に光が照射されない期間を有する光照射を意味する。光照射時間内で光強度が変化してもよい。上記パルス光はキセノンフラッシュランプ等のフラッシュランプを備える光源から照射される。 Pulsed light irradiation is light irradiation with a short light irradiation time (irradiation time), and when light irradiation is repeated a plurality of times, light is irradiated between the first irradiation time and the second irradiation time. Means light irradiation with a period of non-existence. The light intensity may change within the light irradiation time. The pulsed light is emitted from a light source including a flash lamp such as a xenon flash lamp.

上記パルス光としては1pm〜1mの波長範囲の電磁波を使用することができ、好ましくは10nm〜1000μmの波長範囲の電磁波、さらに好ましくは100nm〜2000nmの波長範囲の電磁波を使用することができる。このような電磁波の例としてはガンマ線、X線、紫外線、可視光、赤外線、マイクロ波、マイクロ波より長波長側の電磁波等が挙げられる。熱エネルギーへの変換を考えた場合にはあまりに波長が短い場合には樹脂基板へのダメージが大きく好ましくない。また波長が長すぎる場合には効率的に吸収して発熱することができないので好ましくない。波長の範囲としては上述の波長の中でも特に紫外から赤外の範囲が好ましく、より好ましくは100nm〜2000nmの範囲の波長である。パルス光を照射する雰囲気に特に制限はない。大気雰囲気下で実施することができる。必要に応じて不活性雰囲気下で実施することもできる。 As the pulsed light, an electromagnetic wave having a wavelength range of 1 pm to 1 m can be used, preferably an electromagnetic wave having a wavelength range of 10 nm to 1000 μm, and more preferably an electromagnetic wave having a wavelength range of 100 nm to 2000 nm can be used. Examples of such electromagnetic waves include gamma rays, X-rays, ultraviolet rays, visible light, infrared rays, microwaves, electromagnetic waves on the longer wavelength side than microwaves, and the like. Considering the conversion to thermal energy, if the wavelength is too short, the damage to the resin substrate is large, which is not preferable. Further, if the wavelength is too long, it cannot be efficiently absorbed and generate heat, which is not preferable. Among the above-mentioned wavelengths, the wavelength range is particularly preferably ultraviolet to infrared, and more preferably 100 nm to 2000 nm. There is no particular limitation on the atmosphere in which the pulsed light is irradiated. It can be carried out in an air atmosphere. If necessary, it can be carried out in an inert atmosphere.

パルス光の1回の照射時間は光強度にもよるが、20マイクロ秒〜50ミリ秒の範囲が好ましい。20マイクロ秒よりも短いと金属ナノワイヤの焼結が進み難く、また50ミリ秒よりも長いと光劣化、熱劣化により基板へ悪影響を及ぼすことがある。より好ましくは40マイクロ秒〜10ミリ秒である。 The duration of one irradiation of pulsed light depends on the light intensity, but is preferably in the range of 20 microseconds to 50 milliseconds. If it is shorter than 20 microseconds, it is difficult to proceed with sintering of metal nanowires, and if it is longer than 50 milliseconds, photodegradation and thermal deterioration may adversely affect the substrate. More preferably, it is 40 microseconds to 10 milliseconds.

パルス光の照射は単発で実施しても効果はあるが、上記の通り繰り返し実施することもできる。繰り返し実施する場合、照射間隔は生産性を考慮すると20マイクロ秒〜5秒の範囲とすることが好ましく、2ミリ秒〜2秒の範囲とすることがより好ましい。20マイクロ秒よりも短いと連続光に近くなってしまい、1回の照射後に放冷されるまもなく照射されるので基板が加熱され温度が高くなって劣化する可能性がある。また5秒よりも長いとプロセス時間が長くなる。 Although it is effective to irradiate the pulsed light in a single shot, it can be repeated as described above. When repeated, the irradiation interval is preferably in the range of 20 microseconds to 5 seconds, more preferably in the range of 2 milliseconds to 2 seconds, in consideration of productivity. If it is shorter than 20 microseconds, it becomes close to continuous light, and since it is irradiated shortly after being allowed to cool after one irradiation, the substrate may be heated and the temperature may rise, resulting in deterioration. If it is longer than 5 seconds, the process time will be long.

マイクロ波加熱する場合に使用するマイクロ波は、波長範囲が1m〜1mm(周波数が300MHz〜300GHz)の電磁波である。マイクロ波の照射は、金属ナノワイヤ層が形成された基板の面をマイクロ波の電気力線方向(電界の方向)と略平行に維持した状態で行う。ここで、略平行とは、基板の面とマイクロ波の電気力線方向とが平行又は電気力線方向に対して30度以内の角度を維持した状態をいう。なお、上記30度以内の角度とは、基板の面に立てた法線と電気力線方向とが60度以上の角度をなしている状態をいう。これにより、基板上に形成された金属ナノワイヤ層(印刷パターン又はベタパターン)を貫通する電気力線の本数が制限され、スパークの発生を抑制できる。マイクロ波を照射する雰囲気に特に制限はない。大気雰囲気下で実施することができる。必要に応じて不活性雰囲気下で実施することもできる。 The microwave used for microwave heating is an electromagnetic wave having a wavelength range of 1 m to 1 mm (frequency is 300 MHz to 300 GHz). Microwave irradiation is performed in a state where the surface of the substrate on which the metal nanowire layer is formed is maintained substantially parallel to the direction of the electric lines of force (direction of the electric field) of the microwave. Here, substantially parallel means a state in which the surface of the substrate and the direction of the electric lines of force of the microwave are parallel or maintain an angle within 30 degrees with respect to the direction of the electric lines of force. The angle within 30 degrees means a state in which the normal line standing on the surface of the substrate and the direction of the electric lines of force form an angle of 60 degrees or more. As a result, the number of electric lines of force penetrating the metal nanowire layer (printed pattern or solid pattern) formed on the substrate is limited, and the generation of sparks can be suppressed. There is no particular limitation on the atmosphere of irradiating microwaves. It can be carried out in an air atmosphere. If necessary, it can be carried out in an inert atmosphere.

また、金属ナノワイヤを先にめっきし、めっき後の金属ナノワイヤを使用して金属ナノワイヤ層形成工程及び埋込工程を実施してもよい。 Further, the metal nanowires may be plated first, and the metal nanowires after plating may be used to carry out the metal nanowire layer forming step and the embedding step.

以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Hereinafter, examples of the present invention will be specifically described. The following examples are for facilitating the understanding of the present invention, and the present invention is not limited to these examples.

実施例1.
銀ナノワイヤはポリビニルピロリドン(PVP)及び塩化物イオンが溶解しているエチレングリコール(EG)溶媒中で、硝酸銀を還元する化学合成により得た。
Example 1.
Silver nanowires were obtained by chemical synthesis to reduce silver nitrate in an ethylene glycol (EG) solvent in which polyvinylpyrrolidone (PVP) and chloride ions were dissolved.

まず、EG溶媒にPVP(和光純薬工業株式会社製、重量平均分子量36万(カタログ値))を混合してPVP溶液を準備した。そのPVP溶液中へ、硝酸銀と塩化鉄(III)溶液(600μmol/L、溶媒はEG)を順に加えて反応前の混合液を室温下で調製した。混合液は、PVPを0.006質量%、硝酸銀を0.006質量%、塩化鉄(III)を0.1質量%含む。混合液を110℃で12時間攪拌せず保持することで、銀ナノワイヤを合成した。合成後は遠心分離して上済みを除去後、エタノールを添加、溶媒置換して、銀ナノワイヤの濃度が0.1質量%になるようにエタノールへ分散させた。なお、得られた銀ナノワイヤの平均径は90nmであり、平均長さは44μmであった。銀ナノワイヤの平均径は、走査型電子顕微鏡(FE−SEM SU8020、日立ハイテクノロジーズ社製)を用いて10本の銀ナノワイヤを測長し、また平均長は光学顕微鏡(VHX−600、キーエンス社製)を用いて200本の銀ナノワイヤを測長して、それぞれ相加平均値を求めた。 First, a PVP solution was prepared by mixing PVP (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 360,000 (catalog value)) with an EG solvent. Silver nitrate and iron (III) chloride solution (600 μmol / L, solvent is EG) were added in order to the PVP solution to prepare a mixed solution before the reaction at room temperature. The mixed solution contains 0.006% by mass of PVP, 0.006% by mass of silver nitrate, and 0.1% by mass of iron (III) chloride. Silver nanowires were synthesized by holding the mixture at 110 ° C. for 12 hours without stirring. After the synthesis, the mixture was centrifuged to remove the upper part, ethanol was added and the solvent was replaced, and the silver nanowires were dispersed in ethanol so that the concentration of silver nanowires was 0.1% by mass. The average diameter of the obtained silver nanowires was 90 nm, and the average length was 44 μm. The average diameter of silver nanowires is measured by measuring 10 silver nanowires using a scanning electron microscope (FE-SEM SU8020, manufactured by Hitachi High-Technologies), and the average length is an optical microscope (VHX-600, manufactured by Keyence). ) Was used to measure the length of 200 silver nanowires, and the additive average value was obtained for each.

得られた銀ナノワイヤ/エタノール分散液を、可撓性を有する基材としてポリウレタン基材(MG90、長さ120mm、幅50mm、厚さ50μm、武田産業製)上へ全面スプレー塗布(PEACE 3、Airtex社製塗布装置を使用)し、塗布全面を覆うように厚み1mmのガラス基板を載せ、100℃で2分間熱風循環式のオーブンで熱処理をして、銀ナノワイヤの一部が基材に埋め込まれたポリウレタン基材を得た。なお、以下実施例及び比較例においては、所望の初期シート抵抗となるように、基材上の銀ナノワイヤ量が、1cmあたり0.0001〜100μgの範囲となるように、任意に塗布量を変えた。上記ポリウレタン基材を0.1規定に調製した希硫酸で10秒間処理、所定量のPd触媒液(JX金属商事社製 KG−529)と0.1規定に調製した希塩酸との混合液で1分間処理、その後、100℃で5分間熱風循環式のオーブンで熱処理、80℃の無電解Ni−Pめっき液(JX金属商事社製 KG−531とKG−531H)で10秒間処理、80℃の所定量の非シアン系Auめっき液(JX金属商事社製 CF−500SS)と亜硫酸金ナトリウム水溶液との混合液で1分間処理を行うことにより、銀ナノワイヤの表面にニッケル層(約10〜30nm)及び金層(約1〜30nm)の無電解めっき層を形成した。The obtained silver nanowire / ethanol dispersion is spray-coated on a polyurethane base material (MG90, length 120 mm, width 50 mm, thickness 50 μm, manufactured by Takeda Sangyo) as a flexible base material (PEACE 3, Airtex). A glass substrate with a thickness of 1 mm is placed so as to cover the entire surface of the coating, and heat-treated in a hot air circulation type oven at 100 ° C. for 2 minutes, and a part of silver nanowires is embedded in the substrate. A polyurethane substrate was obtained. In the following Examples and Comparative Examples, the coating amount is arbitrarily adjusted so that the amount of silver nanowires on the substrate is in the range of 0.0001 to 100 μg per 1 cm 2 so as to obtain the desired initial sheet resistance. changed. The polyurethane substrate was treated with dilute sulfuric acid prepared to 0.1 regulation for 10 seconds, and a mixture of a predetermined amount of Pd catalyst solution (KG-529 manufactured by JX Nippon Mining & Metals Co., Ltd.) and dilute hydrochloric acid prepared to 0.1 regulation was used. Minute treatment, then heat treatment in a hot air circulation oven at 100 ° C for 5 minutes, treatment with 80 ° C electroless Ni-P plating solution (KG-531 and KG-531H manufactured by JX Nippon Mining & Metals Co., Ltd.) for 10 seconds, 80 ° C. A nickel layer (about 10 to 30 nm) was formed on the surface of the silver nanowire by treating with a mixture of a predetermined amount of non-cyan-based Au plating solution (CF-500SS manufactured by JX Nippon Mining & Metals Co., Ltd.) and an aqueous solution of gold sodium sulfite for 1 minute. And a gold layer (about 1 to 30 nm) was formed without electrolytic plating.

サンプルの外観(径および長さ)観察は走査型電子顕微鏡(FE−SEM SU8020、日立ハイテクノロジーズ社製)で、めっき層の厚み測定は原子分解能分析電子顕微鏡(JEM−ARM200F、日本電子社製)を用いて行った。 The appearance (diameter and length) of the sample is observed with a scanning electron microscope (FE-SEM SU8020, manufactured by Hitachi High-Technologies Corporation), and the thickness of the plating layer is measured with an atomic resolution analysis electron microscope (JEM-ARM200F, manufactured by JEOL Ltd.). Was used.

図2には、実施例1にかかる無電解ニッケル/金めっきされた銀ナノワイヤが基材に埋め込まれたポリウレタン基材のSEM写真が示される。図2において、銀ナノワイヤの一部はめっき膜が形成されておらず、外部エネルギー(実施例1では、熱処理)によって基材に埋め込まれている様子を確認することができる(白線囲い部分)。また表層に露出している銀ナノワイヤのみにめっき膜が形成されていることも同図より、合わせて確認することができる。 FIG. 2 shows an SEM photograph of a polyurethane base material in which electroless nickel / gold-plated silver nanowires according to Example 1 are embedded in the base material. In FIG. 2, it can be confirmed that a part of the silver nanowires does not have a plating film formed and is embedded in the base material by external energy (heat treatment in Example 1) (white line enclosed portion). It can also be confirmed from the figure that the plating film is formed only on the silver nanowires exposed on the surface layer.

また、図3には、実施例1にかかる無電解ニッケル/金めっきされた銀ナノワイヤの断面TEM写真が示される。図3において、断面が五角形の銀ナノワイヤの外層にニッケルが約10〜30nmの厚みでめっきされ、さらにその外側に金のめっき層が形成されているのがわかる。(TEM像の濃淡でそれぞれの層が区別される。) Further, FIG. 3 shows a cross-sectional TEM photograph of the electroless nickel / gold-plated silver nanowires according to Example 1. In FIG. 3, it can be seen that nickel is plated on the outer layer of the silver nanowire having a pentagonal cross section to a thickness of about 10 to 30 nm, and a gold plating layer is further formed on the outer layer. (Each layer is distinguished by the shade of the TEM image.)

実施例2.
混合液の保持温度を150℃に変更した以外は実施例1同様に銀ナノワイヤを作製し、基材をPET基材(ルミラー(登録商標)S、幅30mm、長さ50mm、厚さ100μm、東レ社製)に変更した以外は同様に基板全面に銀ナノワイヤ層を形成し、その後レーザーエッチング加工により幅10mm、長さ50mmの銀ナノワイヤのパターンを形成した。
Example 2.
Silver nanowires were prepared in the same manner as in Example 1 except that the holding temperature of the mixed solution was changed to 150 ° C., and the base material was a PET base material (Lumilar® S, width 30 mm, length 50 mm, thickness 100 μm, Toray. A silver nanowire layer was formed on the entire surface of the substrate in the same manner except for the change to (manufactured by the company), and then a pattern of silver nanowires having a width of 10 mm and a length of 50 mm was formed by laser etching.

この基材を、0.1規定に調製した希硫酸で10秒間処理、所定量のPd触媒液(JX金属商事社製 KG−529)と0.1規定に調製した希塩酸との混合液で1分間処理、その後、100℃で5分間熱風循環式のオーブンで熱処理、無電解Ni−Pめっき液(JX金属商事社製 KG−531とKG−531H)で80℃で10秒間処理、所定量のシアン系Auめっき液(JX金属商事社製 KG−545Y)と0.1〜1g/Lの濃度範囲で調製したKAu(CN)との混合液で80℃にて1分間処理を行うことにより、無電解めっきしてニッケル層(15nm)および金層(15nm)を形成した。This base material was treated with dilute sulfuric acid prepared to 0.1 regulation for 10 seconds, and a mixture of a predetermined amount of Pd catalyst solution (KG-529 manufactured by JX Nippon Mining & Metals Co., Ltd.) and dilute hydrochloric acid prepared to 0.1 regulation was used. Treatment for 1 minute, then heat treatment in a hot air circulation type oven at 100 ° C for 5 minutes, treatment with electroless Ni-P plating solution (KG-531 and KG-531H manufactured by JX Nippon Mining & Shoji Co., Ltd.) at 80 ° C for 10 seconds, and a predetermined amount. By treating with a mixed solution of a cyan-based Au plating solution (KG-545Y manufactured by JX Nippon Mining & Trading Co., Ltd.) and KAu (CN) 2 prepared in a concentration range of 0.1 to 1 g / L at 80 ° C. for 1 minute. , Electroless plating was performed to form a nickel layer (15 nm) and a gold layer (15 nm).

曲げ試験として、上記サンプルの両端(幅側)を卓上引張試験機(EZ−TEST、島津製作所製、チャック間15mm)の上下チャック部に取り付け、折り曲げ部がおおよそ半径2.5mmの半円周形状(銀ナノワイヤ層が折り曲げ部の外側となる)になるまで上下動させ、これを一サイクル時間13.2秒で繰り返した。所定回数毎に、両端に取り付けた端子を介して抵抗値を測定した。 As a bending test, both ends (width side) of the above sample are attached to the upper and lower chuck parts of a desktop tensile tester (EZ-TEST, manufactured by Shimadzu Corporation, between chucks 15 mm), and the bent part has a semicircular shape with a radius of approximately 2.5 mm. It was moved up and down until (the silver nanowire layer was on the outside of the bent portion), and this was repeated with a cycle time of 13.2 seconds. The resistance value was measured at predetermined times via the terminals attached to both ends.

比較例1.
めっき処理しない以外は実施例2と同様の処理により銀ナノワイヤを塗布したPET基材を作製して、曲げ試験評価を実施した。
Comparative example 1.
A PET base material coated with silver nanowires was prepared by the same treatment as in Example 2 except that it was not plated, and a bending test evaluation was carried out.

表1には実施例2及び比較例1にかかる曲げ試験評価結果を示す。比較例1においては曲げ回数が増えるにつれ抵抗値が上昇していくのに対し、実施例2では、曲げ試験中でも低い抵抗値を維持しており、機械的強度が向上していることがわかる。 Table 1 shows the bending test evaluation results of Example 2 and Comparative Example 1. In Comparative Example 1, the resistance value increases as the number of bendings increases, whereas in Example 2, the low resistance value is maintained even during the bending test, and it can be seen that the mechanical strength is improved.

Figure 0006956706
Figure 0006956706

実施例3.
30mm×30mm×1mm厚のガラス基板にdix(登録商標)−SR(KISCO社製)を真空下の化学蒸着により成膜し、厚さ3μmのパリレン(登録商標)のコーティング膜を得た。そのガラス基板上に形成されたパリレン(登録商標)を基材として用いて、無電解ニッケルめっきをせずに無電解金めっき(約5nm)のみした点以外は実施例1同様に処理し、銀ナノワイヤの一部がパリレン(登録商標)のコーティング膜に埋め込まれた銀ナノワイヤ層に無電解めっきが施された基材を得た。
Example 3.
Dix (registered trademark) -SR (manufactured by KISCO) was deposited on a glass substrate having a thickness of 30 mm × 30 mm × 1 mm by chemical vapor deposition under vacuum to obtain a coating film of parylene (registered trademark) having a thickness of 3 μm. Using parylene (registered trademark) formed on the glass substrate as a base material, silver was treated in the same manner as in Example 1 except that electroless gold plating (about 5 nm) was performed without electroless nickel plating. A base material obtained by electroless plating a silver nanowire layer in which a part of nanowires was embedded in a coating film of Parylene (registered trademark) was obtained.

次に、この基材上の無電解めっきが施されたナノワイヤ層をレーザーエッチング加工することにより配線(幅0.5mm、長さ4mm)を形成した。銀のマイグレーションを加速させるため、金めっきされた銀ナノワイヤ配線へ蒸留水を配線中央部へ1滴ドロップして0.5mm長の配線を水滴で覆った後、電流値1mAで20分間通電後、10mAで20分間、20mAで20分間、30mAで20分間、40mAで20分間と段階的に電流値を増加させて通電し、途中の配線抵抗値変化を連続的に測定した。配線抵抗測定に用いた機器は、B2900A(Keysight社製)であり、試験前の抵抗値測定には三菱アナリテック社製、LorestaGP T610を用いた。配線の初期抵抗値は150Ωであった。耐マイグレーション試験結果を表2に示す。 Next, wiring (width 0.5 mm, length 4 mm) was formed by laser-etching the electroless-plated nanowire layer on the substrate. In order to accelerate the migration of silver, drop one drop of distilled water on the gold-plated silver nanowire wiring to the center of the wiring, cover the 0.5 mm long wiring with water droplets, and then energize for 20 minutes at a current value of 1 mA. The current value was gradually increased to 20 minutes at 10 mA, 20 minutes at 20 mA, 20 minutes at 30 mA, and 20 minutes at 40 mA, and the change in wiring resistance value during the process was continuously measured. The device used for measuring the wiring resistance was B2900A (manufactured by Keysight), and the resistance value measured before the test was measured using LorestaGP T610 manufactured by Mitsubishi Analytech. The initial resistance value of the wiring was 150Ω. Table 2 shows the migration resistance test results.

実施例4.
銀ナノワイヤの塗布量を変えた以外は実施例3同様に処理したガラス基板に成膜したパリレン(登録商標)基材を準備した。配線の初期抵抗値は35Ωであった。耐マイグレーション試験結果を表2に示す。断面が五角形の銀ナノワイヤの外側に金が5nm以下の厚みでめっきされている。
Example 4.
A parylene (registered trademark) base material formed on a glass substrate treated in the same manner as in Example 3 except that the coating amount of silver nanowires was changed was prepared. The initial resistance value of the wiring was 35Ω. Table 2 shows the migration resistance test results. Gold is plated on the outside of silver nanowires with a pentagonal cross section to a thickness of 5 nm or less.

比較例2.
無電解金めっきをしない以外は実施例3同様に処理したガラス基板に成膜したパリレン(登録商標)基材を準備し、耐マイグレーション試験を実施した。配線の初期抵抗値は140Ωであった。耐マイグレーション試験結果を表2に示す。
Comparative example 2.
A parylene (registered trademark) substrate formed on a glass substrate treated in the same manner as in Example 3 except that electroless gold plating was not performed was prepared, and a migration resistance test was carried out. The initial resistance value of the wiring was 140Ω. Table 2 shows the migration resistance test results.

Figure 0006956706
Figure 0006956706

表2に示されるように、比較例2の配線は、一定電流(1mA)を20分間流したのち、10mAまで電流値を上昇させると直ちに配線は断線した。一方、実施例3の配線は、10mAの一定電流を20分間流している間は断線せず、20mAへ電流値を上昇した後に断線した。マイグレーションが進行すると、配線の一部が溶解し、端子間の断線が生じる現象を評価している。これにより、めっきすることにより銀のマイグレーションを抑制する効果があり、銀ナノワイヤの耐マイグレーション特性が向上したと考えられる。更に初期抵抗値の低い、実施例4で準備した配線は、40mAまで電流値を増加しても断線が認められず、更に特性が向上しているのがわかる。 As shown in Table 2, the wiring of Comparative Example 2 was disconnected as soon as the current value was increased to 10 mA after passing a constant current (1 mA) for 20 minutes. On the other hand, the wiring of Example 3 was not broken while a constant current of 10 mA was passed for 20 minutes, and was broken after the current value was increased to 20 mA. We are evaluating the phenomenon that part of the wiring melts as the migration progresses, causing disconnection between the terminals. It is considered that this has the effect of suppressing the migration of silver by plating, and the migration resistance characteristics of the silver nanowires are improved. It can be seen that the wiring prepared in Example 4, which has a lower initial resistance value, does not show any disconnection even when the current value is increased to 40 mA, and the characteristics are further improved.

実施例5.
めっき方法が異なる以外、実施例1と同じ処理を行い、基材に一部銀ナノワイヤが埋め込まれたポリウレタン基材を作製した。
Example 5.
The same treatment as in Example 1 was carried out except that the plating method was different, to prepare a polyurethane base material in which silver nanowires were partially embedded in the base material.

銀ナノワイヤが形成されたポリウレタン基材に、Ag変色除去剤(日本エレクトロプレイティング・エンジニヤース(EEJA)社製 EETOREX70)で10秒間処理、0.1規定の希硫酸で10秒間処理、70℃のPtめっき液(EEJA社製 PRECIOUSFAB Pt3000)で処理を施してPtめっき層を形成した。Ptめっき中、対極に対して被めっき物には約1.0A/dmの電流を約10秒間印加している。それにより、銀ナノワイヤの表面にPt層(約1〜100nm)の電解めっき層を形成した。A polyurethane base material on which silver nanowires are formed is treated with an Ag discoloration remover (EETOREX 70 manufactured by Nippon Electroplating Engineers (EEJA)) for 10 seconds, treated with 0.1-specified dilute sulfuric acid for 10 seconds, at 70 ° C. A Pt plating layer was formed by treating with a Pt plating solution (PRECIOUSFAB Pt3000 manufactured by EEJA). During Pt plating, a current of about 1.0 A / dm 2 is applied to the object to be plated with respect to the counter electrode for about 10 seconds. As a result, an electrolytic plating layer of a Pt layer (about 1 to 100 nm) was formed on the surface of the silver nanowires.

サンプルの観察は走査型電子顕微鏡(FE−SEM SU8020、日立ハイテクノロジーズ社製)及び原子分解能分析電子顕微鏡(JEM−ARM200F、日本電子社製)を用いて行った。 The samples were observed using a scanning electron microscope (FE-SEM SU8020, manufactured by Hitachi High-Technologies Corporation) and an atomic resolution analysis electron microscope (JEM-ARM200F, manufactured by JEOL Ltd.).

図4には、実施例5にかかるPtめっきされた銀ナノワイヤが基材に埋め込まれたポリウレタン基材のSEM写真が示される。図4は、上記走査型電子顕微鏡(FE−SEM SU8020、日立ハイテクノロジーズ社製)を使用して取得した写真である。図4において、銀ナノワイヤの一部はめっき膜が形成されておらず、外部エネルギー(実施例1同様の熱処理)によって基材に埋め込まれている様子を確認することができる。また表層に露出している銀ナノワイヤのみにめっき膜が形成されていることも同図より合わせて確認することができる。 FIG. 4 shows an SEM photograph of a polyurethane base material in which Pt-plated silver nanowires according to Example 5 are embedded in the base material. FIG. 4 is a photograph taken using the scanning electron microscope (FE-SEM SU8020, manufactured by Hitachi High-Technologies Corporation). In FIG. 4, it can be confirmed that a part of the silver nanowires does not have a plating film formed and is embedded in the base material by external energy (heat treatment similar to Example 1). It can also be confirmed from the figure that the plating film is formed only on the silver nanowires exposed on the surface layer.

また、図5には、実施例5にかかるPtめっきされた銀ナノワイヤの断面TEM写真が示される。図5は、上記原子分解能分析電子顕微鏡(JEM−ARM200F、日本電子社製)を使用して取得した写真である。図5において、断面が五角形の銀ナノワイヤの外層にPtが平均約30nmの厚みでめっきされているのがわかる。(TEM像の濃淡でそれぞれの層が区別される。) Further, FIG. 5 shows a cross-sectional TEM photograph of the Pt-plated silver nanowires according to Example 5. FIG. 5 is a photograph taken using the atomic resolution analysis electron microscope (JEM-ARM200F, manufactured by JEOL Ltd.). In FIG. 5, it can be seen that Pt is plated on the outer layer of the silver nanowire having a pentagonal cross section with an average thickness of about 30 nm. (Each layer is distinguished by the shade of the TEM image.)

次に、実施例3同様レーザーエッチング加工にて配線(幅0.5mm、長さ4mm)を形成した。銀のマイグレーションを加速させるため、白金めっきされた銀ナノワイヤ配線へ生理食塩水を1滴ドロップして配線0.5mm長を水滴で覆った後、一定電圧1Vで20分間電圧印加し、途中の配線抵抗値変化を連続的に測定した。配線抵抗測定に用いた機器は、B2900A(Keysight社製)であり、耐マイグレーション試験結果を表3に示す。 Next, wiring (width 0.5 mm, length 4 mm) was formed by laser etching as in Example 3. In order to accelerate the migration of silver, drop one drop of physiological saline on the platinum-plated silver nanowire wiring, cover the wiring 0.5 mm length with water droplets, apply a voltage at a constant voltage of 1 V for 20 minutes, and wire in the middle. The change in resistance value was continuously measured. The device used for measuring the wiring resistance is B2900A (manufactured by Keysight), and the migration resistance test results are shown in Table 3.

比較例3.
電解めっき処理しない銀ナノワイヤのポリウレタン基材を用いた以外は実施例5同様の評価を行った。耐マイグレーション試験結果を表3に示す。
Comparative example 3.
The same evaluation as in Example 5 was performed except that a polyurethane base material of silver nanowires not subjected to electroplating was used. Table 3 shows the migration resistance test results.

Figure 0006956706
Figure 0006956706

表3に示されるように、比較例3の配線は、一定電圧(1V)を5分間印加すると、配線が断線したのに対し、実施例5の配線は、1Vの一定電圧を5分間印加している間は断線せず、さらに同一電圧を20分間追加して印加しても断線は認められなかった。めっきすることにより銀のマイグレーションを抑制する効果があり、銀ナノワイヤの耐マイグレーション特性が向上したと考えられる。 As shown in Table 3, in the wiring of Comparative Example 3, when a constant voltage (1V) was applied for 5 minutes, the wiring was broken, whereas in the wiring of Example 5, a constant voltage of 1V was applied for 5 minutes. No disconnection was observed during the period, and no disconnection was observed even when the same voltage was additionally applied for 20 minutes. It is considered that plating has the effect of suppressing the migration of silver, and the migration resistance characteristics of silver nanowires are improved.

実施例6.
実施例1と同様に、無電解金めっきされた銀ナノワイヤ/ポリウレタン基材を準備した。この基材にパルス光照射装置PulseForge3300(Novacentrix社製)を用いて、大気室温雰囲気下655V、50msecの条件でパルス光を単発照射した。
Example 6.
Similar to Example 1, an electroless gold-plated silver nanowire / polyurethane substrate was prepared. This base material was irradiated with pulsed light in a single shot under the conditions of 655 V and 50 msec under an atmosphere of air temperature and room temperature using a pulsed light irradiating device PulseForge 3300 (manufactured by Novacentrix).

サンプル(幅15mm、長さ30mmの基板上へ銀ナノワイヤ層が全面に形成されている)を卓上引っ張り試験機(EZ−test、島津製作所社製、試験速度:15−60mm/min、チャック間隔:12mm、負荷:0%−20%歪)に取り付けて、繰り返し伸縮試験を行い、34410A multimeter and 11059A(Agilent Technologies社製)を治具に取り付けた端子でサンプルの抵抗値を測定した。伸縮試験の結果を表4に示す。 A sample (a silver nanowire layer is formed on the entire surface of a substrate having a width of 15 mm and a length of 30 mm) is subjected to a desktop tensile tester (EZ-test, manufactured by Shimadzu Corporation, test speed: 15-60 mm / min, chuck interval: It was attached to 12 mm, load: 0% -20% strain), repeated expansion and contraction tests were performed, and the resistance value of the sample was measured at a terminal attached to a jig with 34410A multimeter and 11059A (manufactured by Agilent Technologies). The results of the expansion and contraction test are shown in Table 4.

比較例4.
無電解めっき処理せず、かつパルス光照射(金属ナノワイヤの連結処理)しない銀ナノワイヤのポリウレタン基材を用いた以外は実施例6同様の評価を行った。伸縮試験の結果を表4に示す。
Comparative example 4.
The same evaluation as in Example 6 was performed except that a polyurethane base material of silver nanowires which was not electroless plated and was not irradiated with pulsed light (connection treatment of metal nanowires) was used. The results of the expansion and contraction test are shown in Table 4.

Figure 0006956706
Figure 0006956706

比較例4では、20回の伸縮試験で断線が生じているのに対し、めっき及びパルス光照射(金属ナノワイヤの連結処理)した実施例6では、比較例4に比べて初期抵抗値は大きくなるが、100回後も抵抗値測定が可能であり、耐伸縮性が向上していることがわかる。 In Comparative Example 4, the wire was broken in 20 expansion and contraction tests, whereas in Example 6 after plating and pulsed light irradiation (metal nanowire connection treatment), the initial resistance value was larger than that in Comparative Example 4. However, the resistance value can be measured even after 100 times, and it can be seen that the stretch resistance is improved.

実施例7.
銀ナノワイヤ/エタノール分散液の塗布量を変えた以外は、実施例1と同様に銀ナノワイヤ/ポリウレタン基材を準備し、実施例2に記載の無電解金めっき(無電解Ni−Pめっき処理はせず直接シアン系Auめっき液(JX金属商事社製 KG−545Y)とKAu(CN)との混合液で無電解金めっき処理)を同様に施した。めっき前後の配線抵抗は、B2900A(Keysight社製)を用いて測定した。その結果を表5に示す。
Example 7.
A silver nanowire / polyurethane base material was prepared in the same manner as in Example 1 except that the coating amount of the silver nanowire / ethanol dispersion was changed, and the electroless gold plating described in Example 2 (the electroless Ni-P plating treatment was performed. Instead, a cyan-based Au plating solution (KG-545Y manufactured by JX Metal Trading Co., Ltd.) and KAu (CN) 2 were directly subjected to electroless gold plating. The wiring resistance before and after plating was measured using B2900A (manufactured by Keysight). The results are shown in Table 5.

比較例5.
基材上への銀ナノワイヤ/エタノール分散液塗布後の熱処理(100℃、2分間)及びPd触媒処理後のオーブン熱処理(100℃、5分間)のいずれも省略した以外は実施例7と同様に銀ナノワイヤ/ポリウレタン基材を準備し、無電解金めっきを施し、実施例7と同様に抵抗評価した。その結果を表5に示す。
Comparative example 5.
Similar to Example 7 except that both the heat treatment after coating the silver nanowire / ethanol dispersion on the substrate (100 ° C., 2 minutes) and the oven heat treatment after Pd catalyst treatment (100 ° C., 5 minutes) were omitted. A silver nanowire / polyurethane base material was prepared, electroless gold-plated, and resistance was evaluated in the same manner as in Example 7. The results are shown in Table 5.

Figure 0006956706
Figure 0006956706

表5より、銀ナノワイヤ/エタノール分散液塗布後の熱処理により、銀ナノワイヤが基材中に埋め込まれ、その後の銀ナノワイヤへの金めっきが安定的に実施されたことがわかる。 From Table 5, it can be seen that the silver nanowires were embedded in the base material by the heat treatment after the application of the silver nanowires / ethanol dispersion, and the subsequent gold plating on the silver nanowires was stably performed.

実施例8.
実施例7と同様に無電解金めっきされた銀ナノワイヤ/ポリウレタン基材を準備した。めっき前の初期抵抗値と、8000時間大気中に放置した後の抵抗値を表6に示す。
Example 8.
An electroless gold-plated silver nanowire / polyurethane substrate was prepared in the same manner as in Example 7. Table 6 shows the initial resistance value before plating and the resistance value after being left in the air for 8000 hours.

比較例6.
無電解金めっきを省略した以外は実施例7と同様に無電解金めっきをしない銀ナノワイヤ/ポリウレタン基材を準備した。初期抵抗値と8000時間大気雰囲気中に放置した後の抵抗値を表6に示す。

Figure 0006956706
Comparative example 6.
A silver nanowire / polyurethane base material not subjected to electroless gold plating was prepared in the same manner as in Example 7 except that electroless gold plating was omitted. Table 6 shows the initial resistance value and the resistance value after being left in the atmosphere for 8000 hours.
Figure 0006956706

表6より大気下保存に置いてもめっき後の基材は抵抗値に変化がないことからも、大気雰囲気中放置による酸化、硫化の影響を受けない耐久性を有していることがわかる。 From Table 6, it can be seen that the base material after plating has no change in resistance value even when stored in the atmosphere, and thus has durability that is not affected by oxidation and sulfurization due to being left in the atmosphere.

10 基材、12 金属ナノワイヤ層。 10 substrates, 12 metal nanowire layers.

Claims (9)

複数の金属ナノワイヤの交差部を有する金属ナノワイヤ層が形成された基材であって、金属ナノワイヤの一部が基材に埋め込まれ、他部は基材から露出した状態であり、
露出している金属ナノワイヤの部分のみにつき、その金属ナノワイヤの側面の一部または全部がめっきされていることを特徴とする金属ナノワイヤ層が形成された基材。
A base material on which a metal nanowire layer having intersections of a plurality of metal nanowires is formed, in which a part of the metal nanowires is embedded in the base material and the other part is exposed from the base material.
A substrate on which a metal nanowire layer is formed, characterized in that only a portion of the exposed metal nanowire is plated on part or all of the side surface of the metal nanowire.
前記金属ナノワイヤの少なくとも一部が連結されている請求項1に記載の金属ナノワイヤ層が形成された基材。 The base material on which the metal nanowire layer according to claim 1 is formed, in which at least a part of the metal nanowires is connected. 前記基材がポリウレタン、シリコーン樹脂、飽和ポリエステル、ポリカーボネート、ポリパラキシリレン(パリレン(登録商標))、熱可塑性ポリイミド、ポリエーテルスルホン、アクリル樹脂、ポリオレフィン、ポリ塩化ビニルからなる群のいずれかである請求項1又は2に記載の金属ナノワイヤ層が形成された基材。 The base material is any one of the group consisting of polyurethane, silicone resin, saturated polyester, polycarbonate, polyparaxylylene (parylene (registered trademark)), thermoplastic polyimide, polyether sulfone, acrylic resin, polyolefin, and polyvinyl chloride. A base material on which the metal nanowire layer according to claim 1 or 2 is formed. 前記金属ナノワイヤを構成する金属が銀または銅である請求項1〜3のいずれかに記載の金属ナノワイヤ層が形成された基材。 The base material on which the metal nanowire layer according to any one of claims 1 to 3 is formed, wherein the metal constituting the metal nanowire is silver or copper. 複数の金属ナノワイヤの交差部を有する金属ナノワイヤ層を基材上に形成する工程と、前記金属ナノワイヤ層が形成された基板に外部エネルギーを付与して金属ナノワイヤの一部を基材に埋め込み、他部は基材から露出した状態とする工程と、
露出している前記金属ナノワイヤの部分のみにつき、その金属ナノワイヤの側面の一部または全部をめっきする工程と、を備えることを特徴とする金属ナノワイヤ層が形成された基材の製造方法。
A step of forming a metal nanowire layer having intersections of a plurality of metal nanowires on a base material, and applying external energy to the substrate on which the metal nanowire layers are formed to embed a part of the metal nanowires in the base material, and the like. The process of leaving the part exposed from the base material,
A method for producing a base material on which a metal nanowire layer is formed, which comprises a step of plating a part or all of a side surface of the metal nanowire only on an exposed portion of the metal nanowire.
めっきをする工程の前又は後にさらに前記金属ナノワイヤの少なくとも一部を連結する工程を含む請求項5に記載の金属ナノワイヤ層が形成された基材の製造方法。 The method for producing a base material on which a metal nanowire layer is formed according to claim 5, further comprising a step of connecting at least a part of the metal nanowires before or after the step of plating. 前記基材がポリウレタン、シリコーン樹脂、飽和ポリエステル、ポリカーボネート、ポリパラキシリレン(パリレン(登録商標))、熱可塑性ポリイミド、ポリエーテルスルホン、アクリル樹脂、ポリオレフィン、ポリ塩化ビニルからなる群のいずれかである請求項5又は6に記載の金属ナノワイヤ層が形成された基材の製造方法。 The base material is any one of the group consisting of polyurethane, silicone resin, saturated polyester, polycarbonate, polyparaxylylene (parylene (registered trademark)), thermoplastic polyimide, polyether sulfone, acrylic resin, polyolefin, and polyvinyl chloride. The method for producing a base material on which a metal nanowire layer is formed according to claim 5 or 6. 前記金属ナノワイヤを構成する金属が銀または銅である請求項5〜7のいずれかに記載の金属ナノワイヤ層が形成された基材の製造方法。 The method for producing a base material on which a metal nanowire layer is formed according to any one of claims 5 to 7, wherein the metal constituting the metal nanowire is silver or copper. 請求項1〜4のいずれかに記載の金属ナノワイヤ層が形成された基材を備えたセンサ又は機能素子。 A sensor or functional element provided with a base material on which the metal nanowire layer according to any one of claims 1 to 4 is formed.
JP2018505962A 2016-03-18 2017-03-14 Substrate with metal nanowire layer formed and its manufacturing method Active JP6956706B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016055502 2016-03-18
JP2016055502 2016-03-18
PCT/JP2017/010264 WO2017159698A1 (en) 2016-03-18 2017-03-14 Substrate having metal nanowire layer formed thereon and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017159698A1 JPWO2017159698A1 (en) 2019-01-24
JP6956706B2 true JP6956706B2 (en) 2021-11-02

Family

ID=59850328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505962A Active JP6956706B2 (en) 2016-03-18 2017-03-14 Substrate with metal nanowire layer formed and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6956706B2 (en)
KR (1) KR20180098372A (en)
CN (1) CN108604482A (en)
TW (1) TWI804462B (en)
WO (1) WO2017159698A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204195B2 (en) * 2018-01-26 2023-01-16 ユニチカ株式会社 Plating primer and laminate using the same
CN108899279B (en) * 2018-06-30 2021-03-02 广州国显科技有限公司 Nano silver wire structure, preparation method thereof and display panel
CN110504068A (en) * 2019-08-11 2019-11-26 东北师范大学 A kind of high conductivity and the transparent silver nanowires electrode preparation method having good stability
CN111333901B (en) * 2020-03-04 2022-09-20 上海海事大学 Flexible composite material and preparation method thereof and method for regulating and controlling negative dielectric property
CN114089854A (en) * 2020-08-25 2022-02-25 宸美(厦门)光电有限公司 Touch panel, manufacturing method of touch panel and touch device
CN114089853A (en) * 2020-08-25 2022-02-25 宸美(厦门)光电有限公司 Touch panel, manufacturing method of touch panel and touch device
US11347359B2 (en) 2020-09-30 2022-05-31 Tpk Advanced Solutions Inc. Touch panel, manufacturing method of touch panel, and device thereof
CN113744931A (en) * 2021-09-07 2021-12-03 浙江星隆新材料科技有限公司 Preparation method of patterned conductive film
CN117219796B (en) * 2023-11-07 2024-02-13 武汉理工大学 Pt-Pd dendrite hollow nanowire catalyst, and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151825A (en) * 1991-11-27 1993-06-18 Sekisui Chem Co Ltd Conductive transparent body
EP3595016A1 (en) * 2006-10-12 2020-01-15 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and method of making them
WO2009017852A2 (en) * 2007-04-20 2009-02-05 Cambrios Technologies Corporation High contrast transparent conductors and methods of forming the same
TW200923971A (en) 2007-09-12 2009-06-01 Kuraray Co Conductive films, conductive parts and manufacturing methods thereof
GB0908300D0 (en) * 2009-05-14 2009-06-24 Dupont Teijin Films Us Ltd Polyester films
KR20130048717A (en) * 2010-02-24 2013-05-10 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and methods of patterning same
CN104838342B (en) * 2012-12-07 2018-03-13 3M创新有限公司 The method that transparent conductor is made on substrate
JP2013151752A (en) * 2013-03-01 2013-08-08 Konica Minolta Inc Method for manufacturing metal nano-wire
EP2991083B1 (en) 2013-04-26 2021-06-09 Showa Denko K.K. Method for manufacturing electroconductive pattern and electroconductive pattern-formed substrate
JP6022424B2 (en) * 2013-08-01 2016-11-09 日本写真印刷株式会社 Transparent conductive sheet and touch panel using transparent conductive sheet

Also Published As

Publication number Publication date
WO2017159698A1 (en) 2017-09-21
TWI804462B (en) 2023-06-11
TW201801901A (en) 2018-01-16
CN108604482A (en) 2018-09-28
KR20180098372A (en) 2018-09-03
JPWO2017159698A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6956706B2 (en) Substrate with metal nanowire layer formed and its manufacturing method
An et al. Self-Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating.
JP6563811B2 (en) Transparent electrode and manufacturing method thereof
Yim et al. Hybrid copper–silver conductive tracks for enhanced oxidation resistance under flash light sintering
JP5245110B2 (en) Electrode, transparent conductive film, and manufacturing method thereof
Lee et al. Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes
JP2016538693A (en) Process for making materials with micro- or nanostructured conductive layers
WO2013128458A1 (en) Conductive nanowire films
EP2961801A2 (en) Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
CN109844178A (en) A method of forming conductive trace on surfaces of polymeric articles
KR101704693B1 (en) Pattern on the flexible substrate using for intense pulsed photo-sintering and method for forming the same
WO2012168941A1 (en) Flexible transparent conductive coatings by direct room temperature evaporative lithography
JP5829746B1 (en) Conductive film, manufacturing method thereof, resin product with plating film, and manufacturing method thereof
JP6356453B2 (en) Transparent conductive pattern forming substrate, transparent conductive pattern forming substrate, and method of manufacturing transparent conductive pattern forming substrate
Pyo et al. Thermally stable and flexible transparent heaters based on silver nanowire-colorless polyimide composite electrode
Abdulrhman et al. Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless plating
WO2013129030A1 (en) Primer composition for electrolytic plating, manufacturing method for plated article, and plated article
Pirsalami et al. An overview of metallic nanowire networks, promising building blocks for next generation transparent conductors: Emergence, fundamentals and challenges
KR20200022876A (en) Manufacturing method of transparent heater using metal nanofiber
KR101783752B1 (en) Heating plate and manufacturing method of the same
KR101987387B1 (en) Light sintering conductive electrode, and method of manufacturing the same
JP6753300B2 (en) Manufacturing method of transparent conductor
JP6542572B2 (en) Stretchable conductive film and method of producing stretchable conductive film
KR20150098982A (en) Graphene nanowire (graphene copper nanowire) substrate.
KR101891222B1 (en) Preparing method of metal nanotube for transparent electrode using electrospinning

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210824

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350