JP6955087B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP6955087B2
JP6955087B2 JP2020512666A JP2020512666A JP6955087B2 JP 6955087 B2 JP6955087 B2 JP 6955087B2 JP 2020512666 A JP2020512666 A JP 2020512666A JP 2020512666 A JP2020512666 A JP 2020512666A JP 6955087 B2 JP6955087 B2 JP 6955087B2
Authority
JP
Japan
Prior art keywords
suction
hole
flow path
cylinder
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020512666A
Other languages
Japanese (ja)
Other versions
JP2020532676A (en
Inventor
チャイマニー,アティス
シワポルンファイサルン,スポット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siam Compressor Industry Co Ltd
Original Assignee
Siam Compressor Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siam Compressor Industry Co Ltd filed Critical Siam Compressor Industry Co Ltd
Publication of JP2020532676A publication Critical patent/JP2020532676A/en
Application granted granted Critical
Publication of JP6955087B2 publication Critical patent/JP6955087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、空気調和機等の冷凍サイクル装置の冷媒回路に用いられる、冷媒の圧縮を行うロータリ圧縮機に関する。 The present invention relates to a rotary compressor that compresses a refrigerant used in a refrigerant circuit of a refrigeration cycle device such as an air conditioner.

従来のロータリ圧縮機は、容器内に、電動機と、電動機により駆動される圧縮機構とを備えている。そして、圧縮機構は、円筒状のシリンダと、電動機の回転軸における偏心部に装着されてシリンダ内で偏心運動を行うローリングピストンと、シリンダ内の空間を吸入室と圧縮室とに仕切るベーンとを備えている。シリンダには、吸入孔と吐出口とが形成されており、容器の外部から吸入管及び吸入孔を介して吸入室に吸入された冷媒がローリングピストンの偏心運動に伴って圧縮され、圧縮された冷媒が圧縮室から吐出口を介して圧縮機構外に吐出される構成となっている。そして、回転軸には軸方向に給油通路が形成されており、運転中は容器内に貯留された潤滑油を、給油通路を通して圧縮機構に供給し、圧縮機構の潤滑を行っている。 A conventional rotary compressor includes an electric motor and a compression mechanism driven by the electric motor in a container. The compression mechanism comprises a cylindrical cylinder, a rolling piston mounted on an eccentric portion of the rotating shaft of the motor to perform eccentric movement in the cylinder, and a vane that divides the space inside the cylinder into a suction chamber and a compression chamber. I have. A suction hole and a discharge port are formed in the cylinder, and the refrigerant sucked into the suction chamber from the outside of the container through the suction pipe and the suction hole is compressed and compressed with the eccentric movement of the rolling piston. The refrigerant is discharged from the compression chamber to the outside of the compression mechanism via the discharge port. A lubrication passage is formed in the rotation shaft in the axial direction, and the lubricating oil stored in the container is supplied to the compression mechanism through the lubrication passage during operation to lubricate the compression mechanism.

ロータリ圧縮機において、運転中は回転軸が正方向に回転することで、シリンダ室の吸入室に吸入管を介して冷媒が吸入され、吸入された冷媒がシリンダ室の圧縮室で圧縮され、圧縮室が吸入室よりも圧力が高くなっている。そして、運転停止直後には、圧縮室が吸入室よりも圧力が高いことから、圧力差によって圧縮室から吸入室へと冷媒が流れることで回転軸が逆回転する。このような逆回転が継続すると、容器の底部に溜まっている潤滑油が、回転軸の給油経路を通過して圧縮機構から吸入室を経て冷媒と共に吸入管に逆流し、吸入管を通って容器外部に流出する。潤滑油が容器外部に流出すると、次の起動時に容器内の潤滑油が不足する。 In the rotary compressor, the rotating shaft rotates in the positive direction during operation, so that the refrigerant is sucked into the suction chamber of the cylinder chamber via the suction pipe, and the sucked refrigerant is compressed and compressed in the compression chamber of the cylinder chamber. The chamber is under higher pressure than the suction chamber. Immediately after the operation is stopped, the pressure in the compression chamber is higher than that in the suction chamber, so that the refrigerant flows from the compression chamber to the suction chamber due to the pressure difference, so that the rotating shaft rotates in the reverse direction. When such reverse rotation continues, the lubricating oil accumulated at the bottom of the container passes through the oil supply path of the rotating shaft, flows back from the compression mechanism through the suction chamber to the suction pipe together with the refrigerant, and passes through the suction pipe to the container. It leaks to the outside. If the lubricating oil flows out of the container, the lubricating oil in the container will be insufficient at the next start-up.

そこで、吸入管から吸入室へと繋がる流路に吸入逆止弁を備えたものが知られている(例えば、特許文献1参照)。吸入逆止弁は、吸入管側の圧力が吸入室側の圧力に対して予め設定された圧力を超えると開き、設定圧力を超えないときは閉じる。これにより、吸入逆止弁は、冷媒ガスが吸入管から吸入室に流れるのを許容する一方、冷媒が吸入室から吸入管に逆流するのを防いでいる。 Therefore, there is known one provided with a suction check valve in the flow path connecting the suction pipe to the suction chamber (see, for example, Patent Document 1). The suction check valve opens when the pressure on the suction pipe side exceeds a preset pressure with respect to the pressure on the suction chamber side, and closes when the pressure does not exceed the set pressure. As a result, the suction check valve allows the refrigerant gas to flow from the suction pipe to the suction chamber, while preventing the refrigerant from flowing back from the suction chamber to the suction pipe.

特開2016−102438号公報Japanese Unexamined Patent Publication No. 2016-102438

吸入管から吸入室へと繋がる流路構成としては、特許文献1のように吸入管の容器への接続方向に対して垂直に曲がった方向に吸入室が位置した構成の他、吸入管の容器への接続方向の延長上に吸入室が位置する構成のロータリ圧縮機もある。特許文献1の構成では、流路の曲がり部分の壁面に吸入逆止弁を配置しているが、後者の構成において吸入管から吸入室へ至る流路に吸入逆止弁を設けた技術は見当たらない。このため、吸入管の容器への接続方向の延長上に吸入室が位置する構成のロータリ圧縮機において、運転停止時の回転軸の逆回転を抑制して、潤滑油の容器外への流出を抑制することが難しいという問題があった。 The flow path configuration for connecting the suction pipe to the suction chamber includes a configuration in which the suction chamber is located in a direction bent perpendicular to the connection direction of the suction pipe to the container as in Patent Document 1, and a container for the suction pipe. There is also a rotary compressor in which the suction chamber is located on the extension of the connection direction to. In the configuration of Patent Document 1, a suction check valve is arranged on the wall surface of the curved portion of the flow path, but in the latter configuration, a technique of providing a suction check valve in the flow path from the suction pipe to the suction chamber is found. No. For this reason, in a rotary compressor having a structure in which the suction chamber is located on the extension of the suction pipe in the connection direction to the container, the reverse rotation of the rotating shaft when the operation is stopped is suppressed, and the lubricating oil flows out of the container. There was a problem that it was difficult to suppress.

本発明は、上記のような課題を解決するためになされたもので、吸入管の接続方向の延長線上にシリンダ室が形成された構成のロータリ圧縮機において、運転停止時の回転軸の逆回転を抑制して、潤滑油の容器外への流出を抑制することが可能なロータリ圧縮機を提供することを目的とする。 The present invention has been made to solve the above problems, and in a rotary compressor having a cylinder chamber formed on an extension of the connection direction of the suction pipe, the reverse rotation of the rotating shaft when the operation is stopped It is an object of the present invention to provide a rotary compressor capable of suppressing the outflow of lubricating oil to the outside of a container.

本発明に係るロータリ圧縮機は、潤滑油が貯留される容器と、容器を貫通して外部から接続された吸入管と、容器内に収容され、給油通路が形成された回転軸と、容器内に収容され、回転軸の回転により冷媒を圧縮する圧縮機構とを備え、潤滑油が給油通路を介して圧縮機構に供給されるロータリ圧縮機であって、圧縮機構は、回転軸が通される貫通孔が形成されたシリンダと、回転軸の外周に設けられ、貫通孔の内側を偏心して回転するピストンと、シリンダの軸方向の上下に配置される2つの閉塞部材と、を備え、シリンダの貫通孔が2つの閉塞部材によって閉塞されることで、吸入管から容器内に吸入された冷媒を吸入して圧縮するシリンダ室が形成されており、シリンダには、シリンダの外周に開口し径方向に延びる止まり穴で構成された吸入孔が形成されており、吸入孔の開口側に吸入管が接続されて、吸入管の接続方向の延長線上にシリンダ室が形成された構成を有し、吸入孔には、吸入管からシリンダ室内の吸入室への冷媒の流れを許容し、この逆方向の流れを防ぐ吸入逆止弁が配置され、吸入逆止弁が開いた状態において吸入管からの冷媒を吸入室に導く吸入流路が、2つの閉塞部材の一方又は両方を介して形成され、吸入流路は、吸入孔に連通してシリンダに形成された流路孔と、流路孔が形成されたシリンダの軸方向の上下に配置された2つの閉塞部材の一方又は両方において、吸入逆止弁側の面に形成され、流路孔と吸入室とに連通する流路凹部とで構成されており、吸入逆止弁は、吸入孔の内部を移動することによって吸入管の開口を開閉する弁体と、弁体を吸入管の開口を閉じる方向に付勢するスプリングとを備え、吸入逆止弁が開いた状態では、弁体が流路孔よりも径方向内側に位置して吸入流路が形成されており、圧縮機構は、シリンダとピストンとを備えた圧縮部を軸方向に2つ備え、また、2つの閉塞部材に加えて更にもう1つの閉塞部材を備えており、2つの圧縮部のうちの一方を第1圧縮部、他方を第2圧縮部としたとき、第1圧縮部と第2圧縮部とが軸方向に並んで、第1圧縮部の軸方向の上部、第1圧縮部と第2圧縮部との間、第2圧縮部の軸方向の下部のそれぞれに閉塞部材が配置されており、第1圧縮部及び第2圧縮部の一方のシリンダに形成された吸入孔に、吸入逆止弁が配置されており、第1圧縮部及び第2圧縮部のうち吸入逆止弁が配置された方の軸方向上下に配置された2つの閉塞部材の一方又は両方に吸入流路が形成されており、吸入逆止弁が、第1圧縮部の吸入孔に配置されており、第1圧縮部と第2圧縮部との間の閉塞部材である中間仕切板に流路凹部が形成されており、中間仕切板の流路凹部と第2圧縮部の吸入室とを連通する油逃がし孔が中間仕切板に形成されているものである。 The rotary compressor according to the present invention includes a container in which lubricating oil is stored, a suction pipe that penetrates the container and is connected from the outside, a rotary shaft that is housed in the container and has a refueling passage formed therein, and the inside of the container. It is a rotary compressor that is housed in a rotary compressor and has a compression mechanism that compresses the refrigerant by the rotation of the rotary shaft, and lubricating oil is supplied to the compression mechanism via a lubrication passage. The compression mechanism is passed through the rotary shaft. A cylinder having a through hole, a piston provided on the outer periphery of the rotating shaft and rotating eccentrically inside the through hole, and two closing members arranged vertically above and below the cylinder are provided. By closing the through hole with two closing members, a cylinder chamber is formed in which the refrigerant sucked into the container from the suction pipe is sucked and compressed, and the cylinder opens on the outer periphery of the cylinder in the radial direction. A suction hole composed of a blind hole extending to is formed, a suction pipe is connected to the opening side of the suction hole, and a cylinder chamber is formed on an extension line in the connection direction of the suction pipe. A suction check valve that allows the flow of refrigerant from the suction pipe to the suction chamber in the cylinder chamber and prevents this reverse flow is arranged in the hole, and the refrigerant from the suction pipe is opened when the suction check valve is open. A suction flow path is formed via one or both of the two closing members, and the suction flow path is formed with a flow path hole formed in the cylinder communicating with the suction hole and a flow path hole. One or both of the two closing members arranged above and below the axial direction of the cylinder are formed on the surface on the suction check valve side and are composed of a flow path hole and a flow path recess that communicates with the suction chamber. The suction check valve includes a valve body that opens and closes the opening of the suction pipe by moving inside the suction hole, and a spring that urges the valve body in the direction of closing the opening of the suction pipe. When the check valve is open, the valve body is located radially inside the flow path hole to form a suction flow path, and the compression mechanism is such that the compression unit including the cylinder and piston is axially 2 In addition to the two closing members, another closing member is provided, and when one of the two compression parts is a first compression part and the other is a second compression part, the first compression is performed. The portions and the second compression portion are arranged in the axial direction, and are closed at the upper portion in the axial direction of the first compression portion, between the first compression portion and the second compression portion, and at the lower portion in the axial direction of the second compression portion. A member is arranged, and a suction check valve is arranged in a suction hole formed in one of the cylinders of the first compression part and the second compression part. Placed vertically above and below the side where the check valve is placed A suction flow path is formed in one or both of the two closed members, and a suction check valve is arranged in the suction hole of the first compression portion, and the first compression portion and the second compression portion are connected to each other. A flow path recess is formed in the intermediate partition plate which is a closing member between the spaces, and an oil escape hole is formed in the intermediate partition plate for communicating the flow path recess of the intermediate partition plate and the suction chamber of the second compression portion. It is a thing.

本発明によれば、シリンダの外周に開口し径方向に延びる止まり穴で構成された吸入孔に吸入逆止弁を配置すると共に、吸入逆止弁が開いた状態における吸入流路を2つの閉塞部材の一方又は両方を介して確保することで、吸入管の接続方向の延長線上にシリンダ室が形成された構成における吸入逆止弁の設置及び動作が可能となる。そして、吸入逆止弁を設置したことで、運転停止時の回転軸の逆回転を抑制して、潤滑油の容器外への流出を抑制することができる。 According to the present invention, a suction check valve is arranged in a suction hole formed by a blind hole that opens on the outer periphery of the cylinder and extends in the radial direction, and two suction flow paths are blocked when the suction check valve is open. By securing via one or both of the members, it is possible to install and operate the suction check valve in a configuration in which the cylinder chamber is formed on the extension line in the connection direction of the suction pipe. By installing the suction check valve, it is possible to suppress the reverse rotation of the rotating shaft when the operation is stopped and suppress the outflow of the lubricating oil to the outside of the container.

本発明の実施の形態1に係るロータリ圧縮機の概略縦断面図である。It is a schematic vertical sectional view of the rotary compressor which concerns on Embodiment 1 of this invention. 図1のシリンダの斜視図である。It is a perspective view of the cylinder of FIG. 図1のシリンダの拡大断面図である。It is an enlarged sectional view of the cylinder of FIG. 図1の第1支持部材の斜視図である。It is a perspective view of the 1st support member of FIG. 図1の中間仕切板の斜視図である。It is a perspective view of the intermediate partition plate of FIG. 図1において点線で囲った、吸入逆止弁の周辺構造の拡大図である。It is an enlarged view of the peripheral structure of a suction check valve surrounded by a dotted line in FIG. 図1の吸入逆止弁の分解斜視図である。It is an exploded perspective view of the suction check valve of FIG. 図1において点線で囲った、吸入逆止弁の周辺構造の拡大図で、吸入逆止弁が閉じた状態を示す図である。FIG. 1 is an enlarged view of the peripheral structure of the suction check valve surrounded by a dotted line in FIG. 1, showing a state in which the suction check valve is closed. 本発明の実施の形態1に係るロータリ圧縮機における圧力バランス孔の変形例を示す図である。It is a figure which shows the modification of the pressure balance hole in the rotary compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るロータリ圧縮機における吸入逆止弁の設置位置の変形例を示す図で、吸入逆止弁が開いた状態を示す図であるである。It is a figure which shows the modification of the installation position of the suction check valve in the rotary compressor which concerns on Embodiment 1 of this invention, and is the figure which shows the state which the suction check valve is open. 本発明の実施の形態1に係るロータリ圧縮機における吸入逆止弁の設置位置の変形例を示す図で、吸入逆止弁が閉じた状態を示す図である。It is a figure which shows the modification of the installation position of the suction check valve in the rotary compressor which concerns on Embodiment 1 of this invention, and is the figure which shows the state which the suction check valve is closed.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ及び配置等は、本発明の範囲内で適宜変更することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, etc. of the configurations shown in each figure can be appropriately changed within the scope of the present invention.

実施の形態1.
図1は、本発明の実施の形態1に係るロータリ圧縮機の概略縦断面図である。図2は、図1のシリンダの斜視図である。図2には、シリンダ31内のシリンダ室33に形成される吸入室33aと圧縮室33bとを示すため、ベーン39及びローリングピストン32を点線で図示している。図3は、図1のシリンダの拡大断面図である。図4は、図1の第1支持部材の斜視図である。図5は、図1の中間仕切板の斜視図である。図には、シリンダ31を2つ備えた2気筒のロータリ圧縮機を図示しているが、本発明のロータリ圧縮機は2気筒のものに限られず、1気筒のものでもよいし、更に複数気筒のものでもよい。
Embodiment 1.
FIG. 1 is a schematic vertical sectional view of the rotary compressor according to the first embodiment of the present invention. FIG. 2 is a perspective view of the cylinder of FIG. In FIG. 2, the vane 39 and the rolling piston 32 are shown by dotted lines in order to show the suction chamber 33a and the compression chamber 33b formed in the cylinder chamber 33 in the cylinder 31. FIG. 3 is an enlarged cross-sectional view of the cylinder of FIG. FIG. 4 is a perspective view of the first support member of FIG. FIG. 5 is a perspective view of the intermediate partition plate of FIG. The figure shows a two-cylinder rotary compressor provided with two cylinders 31, but the rotary compressor of the present invention is not limited to a two-cylinder one, and may be a one-cylinder one or a plurality of cylinders. It may be the one.

ロータリ圧縮機100は、容器1内に、電動機2と、電動機2により回転軸4を介して駆動される圧縮機構3とが収容されている。 In the rotary compressor 100, the electric motor 2 and the compression mechanism 3 driven by the electric motor 2 via the rotating shaft 4 are housed in the container 1.

容器1には、容器1を貫通して外部から接続される吸入管5と、圧縮したガスを吐出するための吐出管6とが接続されている。容器1の底部は潤滑油を貯留する油溜め1aとなっており、油溜め1aに溜まった潤滑油は、給油通路4Aに作用する差圧により回転軸4の中心部に軸方向に形成された給油通路4Aを上昇し、圧縮機構3に供給される。 The container 1 is connected to a suction pipe 5 that penetrates the container 1 and is connected from the outside, and a discharge pipe 6 for discharging compressed gas. The bottom of the container 1 is an oil sump 1a for storing lubricating oil, and the lubricating oil collected in the oil sump 1a is formed axially at the center of the rotating shaft 4 by the differential pressure acting on the oil supply passage 4A. The oil supply passage 4A is raised and supplied to the compression mechanism 3.

電動機2は、回転軸4に取り付けられた回転子2aと、回転子2aを回転駆動する固定子2bとを備えている。そして、固定子2bへの通電が開始されることにより回転子2aが回転し、回転軸4を介して圧縮機構3に回転動力が伝達されるようになっている。 The electric motor 2 includes a rotor 2a attached to the rotating shaft 4 and a stator 2b that rotationally drives the rotor 2a. Then, when the energization of the stator 2b is started, the rotor 2a rotates, and the rotational power is transmitted to the compression mechanism 3 via the rotating shaft 4.

圧縮機構3は、上部に設けられた第1圧縮部30Aと、下部に設けられた第2圧縮部30Bと、第1圧縮部30Aの上端面に配置された第1支持部材40と、第2圧縮部30Bの下端面に配置された第2支持部材50とを備えている。 The compression mechanism 3 includes a first compression portion 30A provided at the upper portion, a second compression portion 30B provided at the lower portion, a first support member 40 arranged on the upper end surface of the first compression portion 30A, and a second compression mechanism 3. It includes a second support member 50 arranged on the lower end surface of the compression portion 30B.

第1支持部材40は、回転軸4を回転自在に支持する中空円筒状の軸受部41と、後述のシリンダ31の端面の上方向を閉塞する平板環状の端板部42とから構成されている。第2支持部材50も同様に、回転軸4を回転自在に支持する中空円筒状の軸受部51と、後述のシリンダ31の端面の下方向を閉塞する平板環状の端板部52とから構成されている。そして、端板部42及び端板部52のそれぞれには、吐出弁を備えた吐出口(図示せず)が形成されている。 The first support member 40 is composed of a hollow cylindrical bearing portion 41 that rotatably supports the rotating shaft 4, and a flat plate annular end plate portion 42 that closes the end face of the cylinder 31, which will be described later, in the upward direction. .. Similarly, the second support member 50 is also composed of a hollow cylindrical bearing portion 51 that rotatably supports the rotating shaft 4, and a flat plate annular end plate portion 52 that closes the end face of the cylinder 31, which will be described later, in the downward direction. ing. A discharge port (not shown) provided with a discharge valve is formed in each of the end plate portion 42 and the end plate portion 52.

また、第1圧縮部30Aと第2圧縮部30Bとの間には中間仕切板60が配置され、第1圧縮部30Aと第2圧縮部30Bとを仕切っている。このように、圧縮機構3は、下側から上側に向かって、第2支持部材50、第2圧縮部30B、中間仕切板60、第1圧縮部30A、第1支持部材40が積層されて構成されている。 Further, an intermediate partition plate 60 is arranged between the first compression section 30A and the second compression section 30B to partition the first compression section 30A and the second compression section 30B. As described above, the compression mechanism 3 is configured by laminating the second support member 50, the second compression portion 30B, the intermediate partition plate 60, the first compression portion 30A, and the first support member 40 from the lower side to the upper side. Has been done.

以下、第1圧縮部30A及び第2圧縮部30Bについて説明する。第1圧縮部30A及び第2圧縮部30Bは基本的に同様の構成であるため、以下、第1圧縮部30Aを代表して説明する。 Hereinafter, the first compression unit 30A and the second compression unit 30B will be described. Since the first compression unit 30A and the second compression unit 30B have basically the same configuration, the first compression unit 30A will be described below as a representative.

第1圧縮部30Aは、回転軸4が通される貫通孔31aが形成された円筒状のシリンダ31と、回転軸4の偏心軸部4aの外周に設けられ、貫通孔31aの内側を偏心して回転するローリングピストン32とを備えている。第1圧縮部30Aは更に、シリンダ31に設けられたベーン溝31bに摺動自在に配置されたベーン39を備えている。シリンダ31の貫通孔31aが、第1支持部材40の端板部42と中間仕切板60とによって閉塞されることで、シリンダ31内の貫通孔31aの内周面31c(以下、シリンダ室33の内周面31cという)とローリングピストン32の外周面との間にシリンダ室33が形成されている。そして、シリンダ室33は、ベーン39によって吸入室33aと圧縮室33bとに仕切られている。 The first compression portion 30A is provided on the outer periphery of the eccentric shaft portion 4a of the rotary shaft 4 and the cylindrical cylinder 31 in which the through hole 31a through which the rotary shaft 4 is passed is formed, and eccentricizes the inside of the through hole 31a. It includes a rotating rolling piston 32. The first compression unit 30A further includes a vane 39 slidably arranged in a vane groove 31b provided in the cylinder 31. The through hole 31a of the cylinder 31 is closed by the end plate portion 42 of the first support member 40 and the intermediate partition plate 60, so that the inner peripheral surface 31c of the through hole 31a in the cylinder 31 (hereinafter, the cylinder chamber 33). A cylinder chamber 33 is formed between the inner peripheral surface (referred to as 31c) and the outer peripheral surface of the rolling piston 32. The cylinder chamber 33 is divided into a suction chamber 33a and a compression chamber 33b by a vane 39.

また、シリンダ31には、図2に示すように外周に開口し径方向に延びる止まり穴で構成された吸入孔34が形成されており、吸入孔34の開口側に容器1を貫通して吸入管5が接続されている。また、シリンダ31において、シリンダ室33の内周面31cには吐出切欠き35が形成されている。吐出切欠き35は、第1支持部材40の端板部42に形成された吐出口42a(図4参照)の外形に合わせて切り欠かれて形成されている。そして、吐出切欠き35を介して圧縮室33bが吐出口42aに連通している。 Further, as shown in FIG. 2, the cylinder 31 is formed with a suction hole 34 which is open on the outer periphery and is composed of a blind hole extending in the radial direction, and sucks through the container 1 on the opening side of the suction hole 34. The pipe 5 is connected. Further, in the cylinder 31, a discharge notch 35 is formed on the inner peripheral surface 31c of the cylinder chamber 33. The discharge notch 35 is formed by being cut out according to the outer shape of the discharge port 42a (see FIG. 4) formed in the end plate portion 42 of the first support member 40. Then, the compression chamber 33b communicates with the discharge port 42a via the discharge notch 35.

以上のように構成された第1圧縮部30Aでは、電動機2に電力が供給されると、電動機2によって回転軸4が回転する。この回転は正方向である。回転軸4が回転することにより、圧縮室33b内で偏心軸部4aが偏心回転運動する。偏心軸部4aの偏心回転運動に伴い、ローリングピストン32がシリンダ31内を偏心回転運動する。そして、ローリングピストン32の回転に伴い、低圧の冷媒が吸入室33aに吸入され、圧縮室33bで圧縮されて高圧になり、吐出切欠き35及び吐出口42aを経て容器1の内部空間に吐出される。 In the first compression unit 30A configured as described above, when electric power is supplied to the electric motor 2, the rotating shaft 4 is rotated by the electric motor 2. This rotation is in the positive direction. As the rotating shaft 4 rotates, the eccentric shaft portion 4a moves eccentrically in the compression chamber 33b. With the eccentric rotational movement of the eccentric shaft portion 4a, the rolling piston 32 makes an eccentric rotational movement in the cylinder 31. Then, as the rolling piston 32 rotates, the low-pressure refrigerant is sucked into the suction chamber 33a, compressed in the compression chamber 33b to become high pressure, and discharged into the internal space of the container 1 through the discharge notch 35 and the discharge port 42a. NS.

なお、第2圧縮部30Bは、第2圧縮部30Bのシリンダ31の略中心に形成された貫通孔31aを閉塞する部材が、中間仕切板60と第2支持部材50とである点が第1圧縮部30Aと異なる。また、第1圧縮部30Aと第2圧縮部30Bの配置に関し、第1圧縮部30Aの偏心軸部4aと第2圧縮部30Bの偏心軸部4aとは、位相が180度ずれて設けられている。第2圧縮部30Bのその他の構成及び動作は第1圧縮部30Aと基本的に同様である。そして、第1支持部材40の端板部42と、中間仕切板60と、第2支持部材50の端板部52とが、本発明の閉塞部材に相当する。 The first point of the second compression unit 30B is that the members that close the through hole 31a formed at the substantially center of the cylinder 31 of the second compression unit 30B are the intermediate partition plate 60 and the second support member 50. It is different from the compression unit 30A. Further, regarding the arrangement of the first compression unit 30A and the second compression unit 30B, the eccentric shaft portion 4a of the first compression unit 30A and the eccentric shaft portion 4a of the second compression unit 30B are provided with a phase shift of 180 degrees. There is. Other configurations and operations of the second compression unit 30B are basically the same as those of the first compression unit 30A. The end plate portion 42 of the first support member 40, the intermediate partition plate 60, and the end plate portion 52 of the second support member 50 correspond to the closing member of the present invention.

第1圧縮部30A及び第2圧縮部30Bでは、回転軸4が回転することで、冷媒の吸入、圧縮が繰り返される。そして、第1圧縮部30A及び第2圧縮部30Bのそれぞれで圧縮されて容器1の内部空間に吐出された冷媒ガスは、吐出管6より容器1外へと吐出され、冷媒が冷媒回路を循環する。 In the first compression unit 30A and the second compression unit 30B, the rotation of the rotating shaft 4 causes the suction and compression of the refrigerant to be repeated. Then, the refrigerant gas compressed by each of the first compression unit 30A and the second compression unit 30B and discharged into the internal space of the container 1 is discharged from the discharge pipe 6 to the outside of the container 1, and the refrigerant circulates in the refrigerant circuit. do.

そして、本実施の形態1のロータリ圧縮機は、シリンダ室33が、吸入管5の接続方向の延長線上に形成された構成を有している。本実施の形態1は、この構成において、吸入管5からシリンダ室33内の吸入室33aへの冷媒の流れを許容し、この逆方向の流れを防ぐ吸入逆止弁70を、吸入孔34に配置したことを特徴としている。そして、本実施の形態1は、第1圧縮部30Aの吸入孔34に吸入逆止弁70を配置することで、第1圧縮部30Aのシリンダ室33を貫通する回転軸4の偏心軸部4aに、回転軸4の逆回転を止める力を作用させ、逆回転を抑制することを可能としている。以下、吸入逆止弁70の設置構造及び吸入逆止弁70作用等について説明する。 The rotary compressor of the first embodiment has a structure in which the cylinder chamber 33 is formed on an extension line in the connection direction of the suction pipe 5. In the first embodiment, in this configuration, a suction check valve 70 that allows the flow of the refrigerant from the suction pipe 5 to the suction chamber 33a in the cylinder chamber 33 and prevents the flow in the opposite direction is provided in the suction hole 34. The feature is that it is arranged. Then, in the first embodiment, by arranging the suction check valve 70 in the suction hole 34 of the first compression unit 30A, the eccentric shaft portion 4a of the rotating shaft 4 penetrating the cylinder chamber 33 of the first compression unit 30A In addition, a force for stopping the reverse rotation of the rotating shaft 4 is applied to suppress the reverse rotation. Hereinafter, the installation structure of the suction check valve 70, the operation of the suction check valve 70, and the like will be described.

図6は、図1において点線で囲った、吸入逆止弁の周辺構造の拡大図である。図6には、吸入逆止弁70が開いた状態を示している。図7は、図1の吸入逆止弁の分解斜視図である。 FIG. 6 is an enlarged view of the peripheral structure of the suction check valve surrounded by a dotted line in FIG. FIG. 6 shows a state in which the suction check valve 70 is open. FIG. 7 is an exploded perspective view of the suction check valve of FIG.

吸入逆止弁70は、吸入孔34の内部をシリンダ31の径方向に移動することによって吸入管5の開口を開閉する弁体71と、弁体71を吸入管5の開口を閉じる方向に付勢するスプリング72とを備えている。スプリング72の弾性力は、吸入冷媒の流速に押されて吸入逆止弁70が開ける程度のばね力である。吸入孔34は上述したようにシリンダ31の外周から径方向に延びる止まり穴で構成されており、吸入孔34の底面である深さ方向(図6の左方向)の端面36と弁体71との間にスプリング72が配置されている。 The suction check valve 70 has a valve body 71 that opens and closes the opening of the suction pipe 5 by moving inside the suction hole 34 in the radial direction of the cylinder 31, and a valve body 71 that closes the opening of the suction pipe 5. It is equipped with a spring 72 to force. The elastic force of the spring 72 is such that the suction check valve 70 is opened by being pushed by the flow velocity of the suction refrigerant. As described above, the suction hole 34 is composed of a blind hole extending in the radial direction from the outer circumference of the cylinder 31, and includes an end surface 36 and a valve body 71 in the depth direction (left direction in FIG. 6) which is the bottom surface of the suction hole 34. A spring 72 is arranged between the two.

吸入孔34の端面36は、スプリング72の設置面となっており、端面36に円形凹部36aが形成され、円形凹部36aにスプリング72が着座してスプリング72の位置決めが為されている。具体的には、円形凹部36aの内周面に、スプリング72の径方向内側の端部の外周部が嵌合してスプリング72の位置が固定されている。また、円形凹部36aの中央部に径方向外側に突出する凸部を設け、凸部をスプリング72の内側に嵌合させてスプリング72の位置を固定するようにしてもよい。以下、端面36をスプリング設置面36という。 The end surface 36 of the suction hole 34 is an installation surface of the spring 72, a circular recess 36a is formed in the end surface 36, and the spring 72 is seated in the circular recess 36a to position the spring 72. Specifically, the outer peripheral portion of the radial inner end of the spring 72 is fitted to the inner peripheral surface of the circular recess 36a to fix the position of the spring 72. Further, a convex portion protruding outward in the radial direction may be provided in the central portion of the circular concave portion 36a, and the convex portion may be fitted inside the spring 72 to fix the position of the spring 72. Hereinafter, the end surface 36 is referred to as a spring installation surface 36.

弁体71は、一端が閉塞された筒状に構成され、閉塞部分の径方向外側の面71aは、吸入管5の径方向内側の端面と接触して吸入管5の開口を閉じるシール面71aとなっている。以下、面71aをシール面71aという。 The valve body 71 is formed in a tubular shape with one end closed, and the radially outer surface 71a of the closed portion comes into contact with the radially inner end surface of the suction pipe 5 to close the opening of the suction pipe 5 seal surface 71a. It has become. Hereinafter, the surface 71a is referred to as a sealing surface 71a.

また、第1圧縮部30Aのシリンダ31には、吸入孔34に連通して軸方向に貫通する流路孔80が軸方向上下に2つ形成されている。流路孔80は、図2に示すように平面的に見て周方向に長い長円形状に形成されているが、これに限られたものではなく、平面的に見て長方形状としてもよいし、円形状であってもよい。流路孔80は、吸入逆止弁70が開いている状態(図6参照)において、弁体71のシール面71aよりも径方向外側に位置し、吸入逆止弁70の開時に吸入冷媒が通過する流路となる。 Further, the cylinder 31 of the first compression unit 30A is formed with two flow path holes 80, which communicate with the suction hole 34 and penetrate in the axial direction, vertically and vertically in the axial direction. As shown in FIG. 2, the flow path hole 80 is formed in an oval shape that is long in the circumferential direction when viewed in a plane, but is not limited to this, and may be rectangular in a plan view. However, it may be circular. The flow path hole 80 is located radially outside the sealing surface 71a of the valve body 71 when the suction check valve 70 is open (see FIG. 6), and the suction refrigerant is released when the suction check valve 70 is opened. It becomes a flow path through which it passes.

また、第1支持部材40の端板部42と中間仕切板60とのそれぞれには、図6に示すように吸入逆止弁70側の面に流路凹部81が形成されている。第1支持部材40の端板部42の流路凹部81は端板部42の下端面に開口し、中間仕切板60の流路凹部81は中間仕切板60の上端面に開口して形成される。流路凹部81は、図4及び図5に示すように平面的に見て径方向に延びて形成され、径方向断面で見ると、図6に示すように流路孔80とシリンダ31のシリンダ室33とを跨ぐように形成されている。具体的には、流路凹部81は、外周側端面81aが流路孔80の外周側端面80aと面一に形成されている。ただし、流路凹部81の外周側端面81aは、流路孔80の外周側端面80aよりも径方向外側に位置していてもよい。そして、流路凹部81は、内周側端面81bがシリンダ31の内周面31cよりも径方向内側に位置した構成となっている。そのため、流路凹部81の径方向内側の一部分は、シリンダ31のシリンダ室33に上下方向に面すると共に開口している。 Further, as shown in FIG. 6, each of the end plate portion 42 and the intermediate partition plate 60 of the first support member 40 is formed with a flow path recess 81 on the surface on the suction check valve 70 side. The flow path recess 81 of the end plate portion 42 of the first support member 40 is formed by opening to the lower end surface of the end plate portion 42, and the flow path recess 81 of the intermediate partition plate 60 is formed by opening to the upper end surface of the intermediate partition plate 60. NS. As shown in FIGS. 4 and 5, the flow path recess 81 is formed so as to extend in the radial direction when viewed in a plane, and when viewed in a radial cross section, the flow path hole 80 and the cylinder of the cylinder 31 are formed as shown in FIG. It is formed so as to straddle the chamber 33. Specifically, in the flow path recess 81, the outer peripheral side end surface 81a is formed flush with the outer peripheral side end surface 80a of the flow path hole 80. However, the outer peripheral side end surface 81a of the flow path recess 81 may be located radially outside the outer peripheral side end surface 80a of the flow path hole 80. The flow path recess 81 has a configuration in which the inner peripheral side end surface 81b is located radially inside the inner peripheral surface 31c of the cylinder 31. Therefore, a part of the flow path recess 81 on the inner side in the radial direction faces and opens in the cylinder chamber 33 of the cylinder 31 in the vertical direction.

この構成により、流路凹部81は、流路孔80及びシリンダ室33と連通し、流路孔80と流路凹部81とで、吸入孔34から第1圧縮部30Aの吸入室33aに連通する吸入流路83が形成されている。流路凹部81は、径方向の断面及び周方向の断面については共に長方形状となっているが、特に周方向の断面については底面が円弧形状又は傾斜面としてもよい。 With this configuration, the flow path recess 81 communicates with the flow path hole 80 and the cylinder chamber 33, and the flow path hole 80 and the flow path recess 81 communicate with the suction chamber 33a of the first compression portion 30A from the suction hole 34. A suction flow path 83 is formed. The flow path recess 81 has a rectangular shape in both the radial cross section and the circumferential cross section, but the bottom surface may have an arc shape or an inclined surface particularly in the circumferential cross section.

このように、本実施の形態1では、吸入管5と吸入室33aとを連通する吸入流路83が、シリンダ31の上端面に接して設けられた第1支持部材40の端板部42と、シリンダ31の下端面に接して設けられた中間仕切板60とのそれぞれに形成された流路凹部81を介して構成されている。この構成により、吸入管5の容器1への接続方向の延長線上に吸入室33aが形成された構成において、吸入管5からの冷媒を吸入室33aへと導くことができる。 As described above, in the first embodiment, the suction flow path 83 communicating the suction pipe 5 and the suction chamber 33a is provided with the end plate portion 42 of the first support member 40 provided in contact with the upper end surface of the cylinder 31. , It is configured via a flow path recess 81 formed in each of the intermediate partition plate 60 provided in contact with the lower end surface of the cylinder 31. With this configuration, in a configuration in which the suction chamber 33a is formed on an extension of the suction pipe 5 in the connection direction to the container 1, the refrigerant from the suction pipe 5 can be guided to the suction chamber 33a.

そして、吸入流路83の流路断面積は、吸入流路83における吸入流量を確保するため、吸入孔34の流路断面積よりも大きいことが望ましい。具体的には、吸入流路83は、吸入孔34から流路凹部81に向かう流路孔80の流路と、流路凹部81において径方向内側に向かう流路と、流路凹部81から吸入室33aに向かう流路とから構成される。吸入流路83は上下に2つ形成されているため、各流路を2倍した流路断面積のそれぞれが、吸入管5の流路断面積と同じかそれ以上とすることが望ましい。ここで流路断面積が同じかそれ以上とは、水力直径が同じかそれ以上であるということを意味している。この構成とすることで、吸入圧損を生じさせず吸入流量を確保することができる。 The cross-sectional area of the suction flow path 83 is preferably larger than the cross-sectional area of the flow path of the suction hole 34 in order to secure the suction flow rate in the suction flow path 83. Specifically, the suction flow path 83 includes a flow path of the flow path hole 80 from the suction hole 34 to the flow path recess 81, a flow path inward in the radial direction in the flow path recess 81, and suction from the flow path recess 81. It is composed of a flow path toward the chamber 33a. Since two suction flow paths 83 are formed vertically, it is desirable that each of the flow path cross-sectional areas obtained by doubling each flow path is equal to or larger than the flow path cross-sectional area of the suction pipe 5. Here, the same or larger flow path cross-sectional area means that the hydraulic diameter is the same or larger. With this configuration, it is possible to secure the suction flow rate without causing suction pressure loss.

また、シリンダ31には、スプリング設置面36の近傍(ただしスプリング設置面36よりも径方向外側)で軸方向に貫通して吸入孔34と流路凹部81とを連通する圧力バランス孔90が、吸入孔34の軸方向上下に2つ形成されている。圧力バランス孔90は、弁体71とスプリング設置面36との間の空間37(図6参照)(以下、弁体背面空間37という)と流路凹部81とを連通させ、弁体背面空間37の圧力を調整する作用を有する。なお、圧力バランス孔90は、図6に示した位置及び向きに限らず、吸入逆止弁70が閉じた状態にあるときの弁体71の位置よりも径方向内側で吸入孔34と流路凹部81とを連通するように構成されていればよい。 Further, the cylinder 31 has a pressure balance hole 90 that penetrates in the axial direction in the vicinity of the spring installation surface 36 (however, radially outside the spring installation surface 36) and communicates the suction hole 34 and the flow path recess 81. Two suction holes 34 are formed vertically above and below the suction hole 34. The pressure balance hole 90 communicates the space 37 (see FIG. 6) (hereinafter referred to as the valve body back space 37) between the valve body 71 and the spring installation surface 36 with the flow path recess 81, and the valve body back space 37. It has the function of adjusting the pressure of. The pressure balance hole 90 is not limited to the position and orientation shown in FIG. 6, and the suction hole 34 and the flow path are radially inside the position of the valve body 71 when the suction check valve 70 is in the closed state. It may be configured so as to communicate with the recess 81.

中間仕切板60には、一端が中間仕切板60の流路凹部81に連通し、他端が第2圧縮部30Bの吸入室33aに連通する油逃がし孔61が形成されている。圧縮機100から吐出される高圧冷媒には少量の潤滑油が含まれ、冷媒と共に冷媒回路を循環するため、吸入冷媒にも潤滑油が含まれている。中間仕切板60の流路凹部81には、冷媒と共に潤滑油が流入するため、流路凹部81に流入した潤滑油が流路凹部81に溜まることなく排出されるように油逃がし孔61を設けている。中間仕切板60の流路凹部81に溜まった潤滑油は油逃がし孔61を通って、中間仕切板60よりも下方に位置する第2圧縮部30Bの吸入室33aに供給される。なお、第1支持部材40の端板部42の流路凹部81は下向きに開口しているので、端板部42の流路凹部81に潤滑油が溜まることはない。 The intermediate partition plate 60 is formed with an oil escape hole 61 in which one end communicates with the flow path recess 81 of the intermediate partition plate 60 and the other end communicates with the suction chamber 33a of the second compression portion 30B. The high-pressure refrigerant discharged from the compressor 100 contains a small amount of lubricating oil, and since it circulates in the refrigerant circuit together with the refrigerant, the suction refrigerant also contains the lubricating oil. Since the lubricating oil flows into the flow path recess 81 of the intermediate partition plate 60 together with the refrigerant, an oil escape hole 61 is provided so that the lubricating oil flowing into the flow path recess 81 is discharged without accumulating in the flow path recess 81. ing. The lubricating oil accumulated in the flow path recess 81 of the intermediate partition plate 60 is supplied to the suction chamber 33a of the second compression portion 30B located below the intermediate partition plate 60 through the oil relief hole 61. Since the flow path recess 81 of the end plate portion 42 of the first support member 40 is opened downward, the lubricating oil does not collect in the flow path recess 81 of the end plate portion 42.

なお、吸入逆止弁70が設けられていない第2圧縮部30Bでは、シリンダ31における吸入孔34は、シリンダ31の外周面から内周面31cまで、言い換えればシリンダ31を径方向外周からシリンダ室33に至るまで貫通する貫通穴として形成されている。 In the second compression unit 30B in which the suction check valve 70 is not provided, the suction hole 34 in the cylinder 31 extends the cylinder 31 from the outer peripheral surface to the inner peripheral surface 31c of the cylinder 31, in other words, from the outer peripheral surface in the radial direction to the cylinder chamber. It is formed as a through hole that penetrates up to 33.

次に、吸入逆止弁70の動作について説明する。 Next, the operation of the suction check valve 70 will be described.

図8は、図1において点線で囲った、吸入逆止弁の周辺構造の拡大図で、吸入逆止弁が閉じた状態を示す図である。吸入逆止弁70が開いた状態については上記の図6を参照されたい。
ロータリ圧縮機100の運転中は、吸入管5から吸入孔34に吸入冷媒が流入し、その流れの力によってスプリング72が縮み、弁体71が径方向内側に移動する。弁体71が径方向内側に移動することで、弁体背面空間37の容積が縮小され、その容積縮小に伴って増加する圧力が、圧力バランス孔90を介して流路凹部81に逃される。これにより、弁体背面空間37の圧力上昇が防止され、弁体71の移動方向前後で均圧して、弁体71はスムーズに径方向内側に移動することができる。
FIG. 8 is an enlarged view of the peripheral structure of the suction check valve surrounded by a dotted line in FIG. 1, and is a diagram showing a state in which the suction check valve is closed. See FIG. 6 above for the open state of the suction check valve 70.
During the operation of the rotary compressor 100, the suction refrigerant flows from the suction pipe 5 into the suction hole 34, the spring 72 contracts due to the force of the flow, and the valve body 71 moves inward in the radial direction. As the valve body 71 moves inward in the radial direction, the volume of the valve body back space 37 is reduced, and the pressure increasing with the volume reduction is released to the flow path recess 81 through the pressure balance hole 90. As a result, the pressure rise in the valve body back space 37 is prevented, the pressure is equalized before and after the movement direction of the valve body 71, and the valve body 71 can smoothly move inward in the radial direction.

そして、弁体71が流路孔80よりも更に径方向内側に移動することで吸入孔34が流路孔80を介して流路凹部81と連通し、吸入逆止弁70が開いた状態(図6)となる。このようにして吸入逆止弁70が開いた状態となると、吸入冷媒は、吸入孔34から流路孔80及び流路凹部81を経て吸入室33aへと流入する。 Then, the valve body 71 moves further inward in the radial direction from the flow path hole 80, so that the suction hole 34 communicates with the flow path recess 81 via the flow path hole 80, and the suction check valve 70 is opened (a state in which the suction check valve 70 is opened. FIG. 6). When the suction check valve 70 is opened in this way, the suction refrigerant flows from the suction hole 34 into the suction chamber 33a through the flow path hole 80 and the flow path recess 81.

ロータリ圧縮機100の運転が停止した場合には、スプリング72のばね力によって弁体71が径方向内側から径方向外側へと押圧される。また、圧縮室33bと吸入室33aとの差圧から回転軸4が逆回転し、圧縮室33bの高圧冷媒が吸入室33aを介して流路凹部81に流入する。流路凹部81に流入した冷媒は、圧力バランス孔90を介して弁体背面空間37に流入し、これにより弁体背面空間37内が昇圧して弁体71を径方向外側に押圧する力として作用する。 When the operation of the rotary compressor 100 is stopped, the valve body 71 is pressed from the inside in the radial direction to the outside in the radial direction by the spring force of the spring 72. Further, the rotating shaft 4 rotates in the reverse direction due to the differential pressure between the compression chamber 33b and the suction chamber 33a, and the high-pressure refrigerant in the compression chamber 33b flows into the flow path recess 81 via the suction chamber 33a. The refrigerant that has flowed into the flow path recess 81 flows into the valve body back space 37 through the pressure balance hole 90, and as a result, the inside of the valve body back space 37 is boosted and the valve body 71 is pressed outward in the radial direction. It works.

このようにロータリ圧縮機100の運転が停止すると、弁体71にはスプリング72のばね力と、逆回転による高圧冷媒の圧力とが、弁体71を閉じる向きに作用する。このばね力と圧力とによって弁体71が吸入孔34内を径方向内側から径方向外側に移動し、弁体71のシール面71aによって吸入管5の開口が閉塞され、吸入逆止弁70が閉じられる。このように、吸入逆止弁70によって吸入管5の開口が閉塞されることで回転軸4の逆回転が停止し、シリンダ室33から吸入管5に冷媒が逆流するのを防止すると共に、油溜め1aの潤滑油が、給油通路4Aを通って吸入管5から外部へと流出するのを抑制できる。 When the operation of the rotary compressor 100 is stopped in this way, the spring force of the spring 72 and the pressure of the high-pressure refrigerant due to the reverse rotation act on the valve body 71 in the direction of closing the valve body 71. Due to this spring force and pressure, the valve body 71 moves from the inside in the suction hole 34 to the outside in the radial direction, the opening of the suction pipe 5 is closed by the sealing surface 71a of the valve body 71, and the suction check valve 70 is opened. Closed. In this way, the suction check valve 70 closes the opening of the suction pipe 5, so that the reverse rotation of the rotating shaft 4 is stopped, preventing the refrigerant from flowing back from the cylinder chamber 33 to the suction pipe 5, and also preventing the oil from flowing back. It is possible to prevent the lubricating oil in the reservoir 1a from flowing out from the suction pipe 5 through the oil supply passage 4A.

なお、回転軸4の逆回転によって流路凹部81から圧力バランス孔90を介して弁体背面空間37へ高圧冷媒が導入されると同時に、流路凹部81から流路孔80を通って弁体71のシール面71a側の空間にも同様に高圧冷媒が導入される。しかし、弁体71のシール面71aよりも径方向外側の空間は、吸入管5を介して容器1外部の配管にも連通しており、空間の容量が弁体背面空間37の容量に比べて十分に大きい。このため、弁体71のシール面71aよりも径方向外側の空間では、弁体背面空間37のように圧力上昇が生じない。よって、運転停止直後は弁体背面空間37側の圧力の方が高くなり、その結果、上述したように吸入逆止弁70が閉じる動作が素早く行われる。 The reverse rotation of the rotating shaft 4 introduces the high-pressure refrigerant from the flow path recess 81 into the valve body back space 37 via the pressure balance hole 90, and at the same time, the valve body passes through the flow path hole 80 from the flow path recess 81. Similarly, the high-pressure refrigerant is introduced into the space on the sealing surface 71a side of 71. However, the space radially outside the sealing surface 71a of the valve body 71 is also communicated with the pipe outside the container 1 via the suction pipe 5, and the capacity of the space is larger than the capacity of the valve body back space 37. Large enough. Therefore, unlike the valve body back space 37, the pressure does not increase in the space radially outside the sealing surface 71a of the valve body 71. Therefore, immediately after the operation is stopped, the pressure on the valve body back space 37 side becomes higher, and as a result, the suction check valve 70 is quickly closed as described above.

また、運転停止時に、ばね力に加えて逆回転による高圧冷媒の圧力が弁体71に作用する構成としたことで、スプリング72のばね力が弱くても、吸入逆止弁70を速やかに閉じることができ、吸入逆止弁70の閉じ遅れを防止できる。よって、スプリング72にばね力が弱いものを用いることができる。これにより、運転時に吸入逆止弁70が開き難く、吸入逆止弁70が全開できずに吸入流路83が縮小されてしまうといった事態を避けることができる。このように、吸入逆止弁70は、開き易くかつ閉じ易く構成されているのである。 Further, when the operation is stopped, the pressure of the high-pressure refrigerant due to the reverse rotation acts on the valve body 71 in addition to the spring force, so that the suction check valve 70 is quickly closed even if the spring force of the spring 72 is weak. This makes it possible to prevent a delay in closing the suction check valve 70. Therefore, a spring 72 having a weak spring force can be used. As a result, it is possible to avoid a situation in which the suction check valve 70 is difficult to open during operation, the suction check valve 70 cannot be fully opened, and the suction flow path 83 is reduced. As described above, the suction check valve 70 is configured to be easy to open and close.

以上のようにして吸入逆止弁70が閉じることで、逆回転によって圧縮室33bから吸入孔34へと向かった高圧冷媒の流出口が塞がれるため、回転軸4の逆回転が拘束される。このように逆回転を拘束する力が第1圧縮部30A側で回転軸4に作用することで、第2圧縮部30B側に吸入逆止弁70を設けていなくても、回転軸4は共通のため、逆回転が抑制されて、逆回転を早期に終わらせることができる。 When the suction check valve 70 is closed as described above, the outlet of the high-pressure refrigerant directed from the compression chamber 33b to the suction hole 34 is blocked by the reverse rotation, so that the reverse rotation of the rotating shaft 4 is restricted. .. In this way, the force that restrains the reverse rotation acts on the rotating shaft 4 on the first compression portion 30A side, so that the rotating shaft 4 is common even if the suction check valve 70 is not provided on the second compression portion 30B side. Therefore, the reverse rotation is suppressed, and the reverse rotation can be ended at an early stage.

また、流路凹部81内の潤滑油は中間仕切板60に形成された油逃がし孔61を介して第2圧縮部30Bの吸入室33aへと供給される。このため、中間仕切板60の流路凹部81内に潤滑油が溜まって吸入流路83を塞いでしまうことはない。 Further, the lubricating oil in the flow path recess 81 is supplied to the suction chamber 33a of the second compression portion 30B through the oil relief hole 61 formed in the intermediate partition plate 60. Therefore, the lubricating oil does not accumulate in the flow path recess 81 of the intermediate partition plate 60 and block the suction flow path 83.

以上説明したように、本実施の形態1によれば、吸入孔34に吸入逆止弁70を配置したので、運転停止時の回転軸4の逆回転を抑制することができ、潤滑油の容器1外への流出を抑制することができる。 As described above, according to the first embodiment, since the suction check valve 70 is arranged in the suction hole 34, it is possible to suppress the reverse rotation of the rotating shaft 4 when the operation is stopped, and the lubricating oil container. 1 The outflow to the outside can be suppressed.

ここで、吸入管5から吸入室33aへと繋がる流路構成として、特許文献1のように吸入管の容器への接続方向に対して垂直に曲がった方向に吸入室が位置した構成の場合、その曲がり部分に吸入逆止弁を設置すればよい。しかし、吸入管5の容器1への接続方向の延長上に吸入室33aが位置する構成の場合、特許文献1のような曲がり部分が無い。このため、吸入逆止弁70の設置と、吸入逆止弁70が開いた状態での吸入孔34から吸入室33aに至る流路の確保と、に工夫が必要である。 Here, as a flow path configuration connecting the suction pipe 5 to the suction chamber 33a, in the case of a configuration in which the suction chamber is located in a direction bent perpendicular to the connection direction of the suction pipe to the container as in Patent Document 1. A suction check valve may be installed at the bent portion. However, in the case where the suction chamber 33a is located on the extension of the suction pipe 5 in the connecting direction to the container 1, there is no bent portion as in Patent Document 1. Therefore, it is necessary to devise the installation of the suction check valve 70 and the securing of the flow path from the suction hole 34 to the suction chamber 33a in the state where the suction check valve 70 is open.

これについて、本実施の形態1では、上述したように、シリンダ31に設けた止まり穴で構成した吸入孔34に吸入逆止弁70を配置する構成とした。また、シリンダ31に流路孔80を設けると共に、シリンダ31の軸方向上下に位置する、閉塞部材である第1支持部材40の端板部42と中間仕切板60とのそれぞれに流路凹部81を設け、吸入孔34から吸入室33aに至る吸入流路83を確保する構成とした。これにより、吸入管5の容器1への接続方向の延長上に吸入室33aが位置する構成においても、運転中における吸入流路を確保でき、吸入流量の確保が可能である。また、運転停止時の回転軸4の逆回転の抑制及び潤滑油の容器1外への流出を抑制できる。 Regarding this, in the first embodiment, as described above, the suction check valve 70 is arranged in the suction hole 34 formed by the blind hole provided in the cylinder 31. Further, the cylinder 31 is provided with a flow path hole 80, and the flow path recess 81 is provided in each of the end plate portion 42 of the first support member 40, which is a closing member, and the intermediate partition plate 60, which are located above and below the cylinder 31 in the axial direction. Is provided to secure a suction flow path 83 from the suction hole 34 to the suction chamber 33a. As a result, even in a configuration in which the suction chamber 33a is located on the extension of the suction pipe 5 in the connection direction to the container 1, the suction flow path can be secured during operation, and the suction flow rate can be secured. Further, it is possible to suppress the reverse rotation of the rotating shaft 4 and the outflow of the lubricating oil to the outside of the container 1 when the operation is stopped.

また、運転時に吸入逆止弁70が開く際には、弁体背面空間37内の圧力が圧力バランス孔90から流路凹部81に逃されるため、弁体71をスムーズに径方向内側に移動させることができ、吸入逆止弁70を素早く開くことができる。また、運転停止時は、圧力バランス孔90を介して圧縮室33bからの高圧が弁体背面空間37に作用することで、吸入逆止弁70を素早く閉じることができる。 Further, when the suction check valve 70 is opened during operation, the pressure in the valve body back space 37 is released from the pressure balance hole 90 to the flow path recess 81, so that the valve body 71 is smoothly moved inward in the radial direction. The suction check valve 70 can be opened quickly. Further, when the operation is stopped, the high pressure from the compression chamber 33b acts on the valve body back space 37 through the pressure balance hole 90, so that the suction check valve 70 can be closed quickly.

また、油逃がし孔61を設けたので、中間仕切板60の流路凹部81に潤滑油が溜まるのを避けることができる。 Further, since the oil relief hole 61 is provided, it is possible to prevent the lubricating oil from accumulating in the flow path recess 81 of the intermediate partition plate 60.

なお、本発明のロータリ圧縮機100は、図1に示した構造に限定されるものではなく、本発明の要旨を逸脱しない範囲で例えば以下のように種々の変形例の実施が可能である。 The rotary compressor 100 of the present invention is not limited to the structure shown in FIG. 1, and various modifications can be implemented as follows, for example, as long as the gist of the present invention is not deviated.

図1では、流路凹部81を第1支持部材40の端板部42と中間仕切板60との両方に設けた構成としたが、どちらか一方だけに設ける構成としてもよい。 In FIG. 1, the flow path recess 81 is provided in both the end plate portion 42 and the intermediate partition plate 60 of the first support member 40, but it may be provided in only one of them.

また、図1では、圧力バランス孔90を上下の流路凹部81毎に設け、上下の流路凹部81のそれぞれに吸入孔34が連通する構成としたが、どちらか一方の流路凹部81に設けた構成としてもよい。 Further, in FIG. 1, a pressure balance hole 90 is provided for each of the upper and lower flow path recesses 81, and the suction holes 34 communicate with each of the upper and lower flow path recesses 81. It may be provided.

また、図1では、圧力バランス孔90が軸方向に延びて吸入孔34と流路凹部81とが連通する構成としたが、次の図9に示すように圧力バランス孔90が径方向に延びる構成としてもよい。 Further, in FIG. 1, the pressure balance hole 90 extends in the axial direction so that the suction hole 34 and the flow path recess 81 communicate with each other. However, as shown in FIG. 9, the pressure balance hole 90 extends in the radial direction. It may be configured.

図9は、本発明の実施の形態1に係るロータリ圧縮機における圧力バランス孔の変形例を示す図である。
この変形例では、圧力バランス孔90Aが、スプリング設置面36から径方向内側に延びてシリンダ31の内周面31cまで貫通して形成され、吸入孔34(弁体背面空間37)と吸入室33aとを連通している。
このように構成しても、弁体背面空間37の圧力を圧力バランス孔90Aで調整でき、軸方向に延びる圧力バランス孔90を設けた場合と同様の作用効果を得ることができる。
FIG. 9 is a diagram showing a modified example of the pressure balance hole in the rotary compressor according to the first embodiment of the present invention.
In this modification, the pressure balance hole 90A extends radially inward from the spring installation surface 36 and penetrates to the inner peripheral surface 31c of the cylinder 31, and is formed by the suction hole 34 (valve body back space 37) and the suction chamber 33a. And communicate with.
Even with this configuration, the pressure in the valve body back space 37 can be adjusted by the pressure balance hole 90A, and the same effect as when the pressure balance hole 90 extending in the axial direction is provided can be obtained.

なお、本実施の形態1では、第1圧縮部30Aに吸入逆止弁70を設けた構成を示したが、次の図10に示すように、第2圧縮部30Bに吸入逆止弁70を設けた構成としてもよい。 In the first embodiment, the suction check valve 70 is provided in the first compression section 30A, but as shown in FIG. 10 below, the suction check valve 70 is provided in the second compression section 30B. It may be provided.

図10は、本発明の実施の形態1に係るロータリ圧縮機における吸入逆止弁の設置位置の変形例を示す図で、吸入逆止弁が開いた状態を示す図である。図11は、本発明の実施の形態1に係るロータリ圧縮機における吸入逆止弁の設置位置の変形例を示す図で、吸入逆止弁が閉じた状態を示す図である。
図10に示すように、吸入逆止弁70を第2圧縮部30Bのシリンダ31に設置してもよい。この場合、流路凹部81が、中間仕切板60と第2支持部材50の端板部52とのそれぞれにおいて吸入逆止弁70側の面に形成されている。中間仕切板60の流路凹部81は、中間仕切板60の下端面に開口し、第2支持部材50の端板部52の流路凹部81は、端板部52の上端面に開口して形成される。吸入逆止弁70の動作は、第1圧縮部30Aのシリンダ31に設置された場合と同様である。
なお、この場合、吸入逆止弁70が設けられていない第1圧縮部30Aでは、シリンダ31における吸入孔34は、シリンダ31を径方向外周からシリンダ室33に至るまで貫通する貫通穴として形成されている。
FIG. 10 is a diagram showing a modified example of the installation position of the suction check valve in the rotary compressor according to the first embodiment of the present invention, and is a diagram showing a state in which the suction check valve is open. FIG. 11 is a diagram showing a modified example of the installation position of the suction check valve in the rotary compressor according to the first embodiment of the present invention, and is a diagram showing a state in which the suction check valve is closed.
As shown in FIG. 10, the suction check valve 70 may be installed in the cylinder 31 of the second compression unit 30B. In this case, the flow path recess 81 is formed on the surface of the intermediate partition plate 60 and the end plate portion 52 of the second support member 50 on the suction check valve 70 side, respectively. The flow path recess 81 of the intermediate partition plate 60 opens to the lower end surface of the intermediate partition plate 60, and the flow path recess 81 of the end plate portion 52 of the second support member 50 opens to the upper end surface of the end plate portion 52. It is formed. The operation of the suction check valve 70 is the same as when it is installed in the cylinder 31 of the first compression unit 30A.
In this case, in the first compression portion 30A in which the suction check valve 70 is not provided, the suction hole 34 in the cylinder 31 is formed as a through hole that penetrates the cylinder 31 from the radial outer circumference to the cylinder chamber 33. ing.

このように吸入逆止弁70の設置位置は、第1圧縮部30Aのシリンダ31と第2圧縮部30Bのシリンダ31とのどちらでもよいが、上方に位置する第1圧縮部30Aのシリンダ31側の方が好適である。これは、中間仕切板60の流路凹部81内に溜まった潤滑油を、油逃がし孔61を介して第1圧縮部30Aより下方の第2圧縮部30Bの吸入室33aに供給できるためである。 As described above, the suction check valve 70 may be installed at either the cylinder 31 of the first compression unit 30A or the cylinder 31 of the second compression unit 30B, but the cylinder 31 side of the first compression unit 30A located above. Is more preferable. This is because the lubricating oil accumulated in the flow path recess 81 of the intermediate partition plate 60 can be supplied to the suction chamber 33a of the second compression portion 30B below the first compression portion 30A through the oil relief hole 61. ..

なお、吸入逆止弁70を第2圧縮部30Bのシリンダ31に設置する構成の場合、油逃がし孔は設けない。第2支持部材50の流路凹部81に油逃がし孔を設けると、低圧な流路凹部81と高圧の容器1内とを連通させてしまうことになるためである。この変形例では中間仕切板60の流路凹部81は下向きに開口しているので、中間仕切板60の流路凹部81に潤滑油が溜まることはない。 In the case of the configuration in which the suction check valve 70 is installed in the cylinder 31 of the second compression unit 30B, the oil escape hole is not provided. This is because if an oil escape hole is provided in the flow path recess 81 of the second support member 50, the low pressure flow path recess 81 and the inside of the high pressure container 1 will communicate with each other. In this modification, since the flow path recess 81 of the intermediate partition plate 60 is opened downward, the lubricating oil does not collect in the flow path recess 81 of the intermediate partition plate 60.

また、第2圧縮部30Bに吸入逆止弁70を設けた構成の場合でも、流路凹部81を中間仕切板60と第2支持部材50の端板部52とのどちらか一方だけに設ける構成としてもよい。 Further, even in the case where the suction check valve 70 is provided in the second compression portion 30B, the flow path recess 81 is provided in only one of the intermediate partition plate 60 and the end plate portion 52 of the second support member 50. May be.

また、上記では、シリンダが2つである2シリンダロータリ圧縮機に本発明を適用した場合を示したが、シリンダが1つの1シリンダロータリ圧縮機にも本発明を適用することもできる。 Further, in the above, the case where the present invention is applied to a two-cylinder rotary compressor having two cylinders is shown, but the present invention can also be applied to a one-cylinder rotary compressor having one cylinder.

また、上記では、ローリングピストンとベーンとが別体で構成されたロータリ圧縮機に本発明を適用した場合を示したが、ローリングピストンとベーンとが一体で構成され、ベーンの進退動をガイドする一対のブッシュがベーンの両側面にそれぞれ接して配置されたスイング圧縮機と呼ばれているタイプのロータリ圧縮機にも本発明を適用できる。 Further, in the above, the case where the present invention is applied to a rotary compressor in which the rolling piston and the vane are separately formed is shown, but the rolling piston and the vane are integrally formed to guide the advancement and retreat of the vane. The present invention can also be applied to a type of rotary compressor called a swing compressor in which a pair of bushes are arranged in contact with both side surfaces of the vane.

1 容器、1a 油溜め、2 電動機、2a 回転子、2b 固定子、3 圧縮機構、4 回転軸、4A 給油通路、4a 偏心軸部、5 吸入管、6 吐出管、30A 第1圧縮部、30B 第2圧縮部、31 シリンダ、31a 貫通孔、31b ベーン溝、31c 内周面、32 ローリングピストン、33 シリンダ室、33a 吸入室、33b 圧縮室、34 吸入孔、35 吐出切欠き、36 スプリング設置面(端面)、36a 円形凹部、37 弁体背面空間、39 ベーン、40 第1支持部材、41 軸受部、42 端板部、42a 吐出口、50 第2支持部材、51 軸受部、52 端板部、60 中間仕切板、61 油逃がし孔、70 吸入逆止弁、71 弁体、71a シール面、72 スプリング、80 流路孔、80a 外周側端面、81 流路凹部、81a 外周側端面、81b 内周側端面、83 吸入流路、90 圧力バランス孔、90A 圧力バランス孔、100 ロータリ圧縮機。 1 Container, 1a Oil reservoir, 2 Motor, 2a Rotor, 2b Fixture, 3 Compression mechanism, 4 Rotating shaft, 4A Refueling passage, 4a Eccentric shaft, 5 Suction pipe, 6 Discharge pipe, 30A 1st compression part, 30B 2nd compression part, 31 cylinder, 31a through hole, 31b vane groove, 31c inner peripheral surface, 32 rolling piston, 33 cylinder chamber, 33a suction chamber, 33b compression chamber, 34 suction hole, 35 discharge notch, 36 spring installation surface (End face), 36a circular recess, 37 valve body back space, 39 vanes, 40 first support member, 41 bearing part, 42 end plate part, 42a discharge port, 50 second support member, 51 bearing part, 52 end plate part , 60 Intermediate partition plate, 61 Oil relief hole, 70 Suction check valve, 71 Valve body, 71a Seal surface, 72 Spring, 80 Flow hole, 80a Outer peripheral end face, 81 Flow path recess, 81a Outer peripheral end face, 81b Peripheral end face, 83 suction flow path, 90 pressure balance hole, 90A pressure balance hole, 100 rotary compressor.

Claims (4)

潤滑油が貯留される容器と、前記容器を貫通して外部から接続された吸入管と、前記容器内に収容され、給油通路が形成された回転軸と、前記容器内に収容され、前記回転軸の回転により冷媒を圧縮する圧縮機構とを備え、前記潤滑油が前記給油通路を介して前記圧縮機構に供給されるロータリ圧縮機であって、
前記圧縮機構は、
前記回転軸が通される貫通孔が形成されたシリンダと、
前記回転軸の外周に設けられ、前記貫通孔の内側を偏心して回転するピストンと、
前記シリンダの軸方向の上下に配置される2つの閉塞部材と、を備え、
前記シリンダの前記貫通孔が前記2つの閉塞部材によって閉塞されることで、前記吸入管から前記容器内に吸入された前記冷媒を吸入して圧縮するシリンダ室が形成されており、
前記シリンダには、前記シリンダの外周に開口し径方向に延びる止まり穴で構成された吸入孔が形成されており、前記吸入孔の開口側に前記吸入管が接続されて、前記吸入管の接続方向の延長線上に前記シリンダ室が形成された構成を有し、
前記吸入孔には、前記吸入管から前記シリンダ室内の吸入室への冷媒の流れを許容し、この逆方向の流れを防ぐ吸入逆止弁が配置され、
前記吸入逆止弁が開いた状態において前記吸入管からの冷媒を前記吸入室に導く吸入流路が、前記2つの閉塞部材の一方又は両方を介して形成され、
前記吸入流路は、
前記吸入孔に連通して前記シリンダに形成された流路孔と、
前記流路孔が形成された前記シリンダの前記軸方向の上下に配置された2つの前記閉塞部材の一方又は両方において、前記吸入逆止弁側の面に形成され、前記流路孔と前記吸入室とに連通する流路凹部とで構成されており、
前記吸入逆止弁は、前記吸入孔の内部を移動することによって前記吸入管の開口を開閉する弁体と、前記弁体を前記吸入管の開口を閉じる方向に付勢するスプリングとを備え、前記吸入逆止弁が開いた状態では、前記弁体が前記流路孔よりも径方向内側に位置して前記吸入流路が形成されており、
前記圧縮機構は、前記シリンダと前記ピストンとを備えた圧縮部を前記軸方向に2つ備え、また、前記2つの閉塞部材に加えて更にもう1つの閉塞部材を備えており、
前記2つの前記圧縮部のうちの一方を第1圧縮部、他方を第2圧縮部としたとき、
前記第1圧縮部と前記第2圧縮部とが前記軸方向に並んで、前記第1圧縮部の前記軸方向の上部、前記第1圧縮部と前記第2圧縮部との間、前記第2圧縮部の前記軸方向の下部のそれぞれに前記閉塞部材が配置されており、
前記第1圧縮部及び前記第2圧縮部の一方の前記シリンダに形成された前記吸入孔に、前記吸入逆止弁が配置されており、
前記第1圧縮部及び前記第2圧縮部のうち前記吸入逆止弁が配置された方の軸方向上下に配置された2つの前記閉塞部材の一方又は両方に前記吸入流路が形成されており、
前記吸入逆止弁が、前記第1圧縮部の前記吸入孔に配置されており、
前記第1圧縮部と前記第2圧縮部との間の前記閉塞部材である中間仕切板に前記流路凹部が形成されており、前記中間仕切板の前記流路凹部と前記第2圧縮部の前記吸入室とを連通する油逃がし孔が前記中間仕切板に形成されているロータリ圧縮機。
A container in which lubricating oil is stored, a suction pipe connected from the outside through the container, a rotating shaft housed in the container and formed with a refueling passage, and a rotating shaft housed in the container and rotated. A rotary compressor provided with a compression mechanism that compresses a refrigerant by rotation of a shaft, and the lubricating oil is supplied to the compression mechanism via the lubrication passage.
The compression mechanism
A cylinder with a through hole through which the rotating shaft passes,
A piston provided on the outer circumference of the rotating shaft and rotating eccentrically inside the through hole,
The cylinder is provided with two closing members arranged one above the other in the axial direction.
By closing the through hole of the cylinder with the two closing members, a cylinder chamber is formed in which the refrigerant sucked into the container from the suction pipe is sucked and compressed.
The cylinder is formed with a suction hole formed by a blind hole that opens on the outer periphery of the cylinder and extends in the radial direction, and the suction pipe is connected to the opening side of the suction hole to connect the suction pipe. It has a configuration in which the cylinder chamber is formed on an extension line in the direction.
A suction check valve is arranged in the suction hole to allow the flow of the refrigerant from the suction pipe to the suction chamber in the cylinder chamber and prevent the flow in the opposite direction.
With the suction check valve open, a suction flow path for guiding the refrigerant from the suction pipe to the suction chamber is formed via one or both of the two closing members.
The suction flow path is
A flow path hole formed in the cylinder communicating with the suction hole,
One or both of the two closing members arranged above and below the axial direction of the cylinder in which the flow path hole is formed are formed on the surface on the suction check valve side, and the flow path hole and the suction are formed. It is composed of a flow path recess that communicates with the chamber.
The suction check valve includes a valve body that opens and closes the opening of the suction pipe by moving inside the suction hole, and a spring that urges the valve body in a direction of closing the opening of the suction pipe. When the suction check valve is open, the valve body is located radially inside the flow path hole to form the suction flow path .
The compression mechanism includes two compression portions including the cylinder and the piston in the axial direction, and further includes another closing member in addition to the two closing members.
When one of the two compression units is a first compression unit and the other is a second compression unit,
The first compression section and the second compression section are arranged in the axial direction, and the upper portion of the first compression section in the axial direction, between the first compression section and the second compression section, is the second. The closing member is arranged at each of the lower portions of the compression portion in the axial direction.
The suction check valve is arranged in the suction hole formed in the cylinder of one of the first compression section and the second compression section.
The suction flow path is formed in one or both of the two closing members arranged vertically above and below the first compression portion and the second compression portion on which the suction check valve is arranged. ,
The suction check valve is arranged in the suction hole of the first compression portion.
The flow path recess is formed in the intermediate partition plate which is the closing member between the first compression portion and the second compression portion, and the flow path recess of the intermediate partition plate and the second compression portion A rotary compressor in which an oil relief hole communicating with the suction chamber is formed in the intermediate partition plate.
前記吸入逆止弁が開いた状態の前記弁体の位置よりも径方向内側で前記吸入孔と前記流路凹部とを連通する圧力バランス孔が前記シリンダに形成されている請求項1記載のロータリ圧縮機。 The rotary according to claim 1, wherein a pressure balance hole for communicating the suction hole and the flow path recess is formed in the cylinder on the radial side of the position of the valve body in the state where the suction check valve is open. Compressor. 前記圧力バランス孔は、前記流路凹部毎に形成されている請求項2記載のロータリ圧縮機。 The rotary compressor according to claim 2, wherein the pressure balance holes are formed in each of the flow path recesses. 前記吸入孔の深さ方向の端面から径方向内側に延びて前記吸入孔と前記吸入室とを連通する圧力バランス孔が前記シリンダに形成されている請求項1記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein a pressure balance hole extending radially inward from an end surface of the suction hole in the depth direction and communicating the suction hole and the suction chamber is formed in the cylinder.
JP2020512666A 2017-08-31 2017-08-31 Rotary compressor Active JP6955087B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TH2017/000067 WO2019045656A1 (en) 2017-08-31 2017-08-31 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2020532676A JP2020532676A (en) 2020-11-12
JP6955087B2 true JP6955087B2 (en) 2021-10-27

Family

ID=60331688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020512666A Active JP6955087B2 (en) 2017-08-31 2017-08-31 Rotary compressor

Country Status (2)

Country Link
JP (1) JP6955087B2 (en)
WO (1) WO2019045656A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028396A (en) * 2019-09-04 2021-03-12 삼성전자주식회사 Rotary compressor and home appliance including the same
JP7336052B2 (en) 2020-07-31 2023-08-30 サイアム コンプレッサー インダストリー カンパニー リミテッド compressor
CN112228343B (en) * 2020-10-14 2021-11-16 广东美芝制冷设备有限公司 Compressor and refrigerating system
KR20220061678A (en) * 2020-11-06 2022-05-13 삼성전자주식회사 Rotary compressor and home appliance including the same
KR102508197B1 (en) * 2021-10-21 2023-03-10 엘지전자 주식회사 Rotary compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240418Y2 (en) * 1972-11-07 1977-09-13
JPS5147050Y2 (en) * 1972-11-22 1976-11-13
JPS5573590U (en) * 1978-11-15 1980-05-21
JPS56127393U (en) * 1980-02-25 1981-09-28
JPS6365191A (en) * 1986-09-05 1988-03-23 Matsushita Refrig Co Rotary compressor
IT1211326B (en) * 1986-09-30 1989-10-12 Mitsubishi Electric Corp Multicylinder rotary compressor for air conditioner or refrigerator
JPS6444391U (en) * 1987-09-09 1989-03-16
JPH0823354B2 (en) * 1988-02-29 1996-03-06 三洋電機株式会社 Hermetic rotary compressor
JPH08270580A (en) * 1995-03-31 1996-10-15 Sanyo Electric Co Ltd Hermetically sealed rotary compressor
JP2010150949A (en) * 2008-12-24 2010-07-08 Daikin Ind Ltd Rotary compressor
CN102597523B (en) * 2010-07-08 2015-08-05 松下电器产业株式会社 Rotary compressor and refrigerating circulatory device
WO2013061606A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Rotary compressor and refrigeration cycle device
JP2016102438A (en) 2014-11-27 2016-06-02 カルソニックカンセイ株式会社 Gas compressor

Also Published As

Publication number Publication date
JP2020532676A (en) 2020-11-12
WO2019045656A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6955087B2 (en) Rotary compressor
US7429167B2 (en) Scroll machine having a discharge valve assembly
US20090180912A1 (en) Rotary compressor
US10458408B2 (en) Rotary compressor having communication path hole overlap with discharge chamber concave portion
WO2015085823A1 (en) Scroll compressor
JP6402648B2 (en) Vane type compressor
JP5708570B2 (en) Vane type compressor
JP4016556B2 (en) Compressor
JP2013249737A (en) Rotary compressor
JP5370450B2 (en) Compressor
JP6543094B2 (en) Compressor
EP3712435A2 (en) Motor-operated compressor
KR20210012231A (en) Rotary comppresor
JP2006283590A (en) Fluid machine
US10563655B2 (en) Rotary compressor for compressing refrigerant using cylinder
JP2019190287A (en) Compressor
EP3677783B1 (en) Rotary compressor
JP6394126B2 (en) Rotary compressor
JP5999922B2 (en) Scroll compressor
JP2009127517A (en) Enclosed compressor
JP5494138B2 (en) Rotary compressor
JP6805793B2 (en) Compressor
JP7008874B2 (en) Rotary compressor and refrigeration cycle equipment
US10612548B2 (en) Refrigerant path holes in a rotary compressor
JP6771928B2 (en) Scroll compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6955087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150