JP6954195B2 - Motor core - Google Patents

Motor core Download PDF

Info

Publication number
JP6954195B2
JP6954195B2 JP2018047621A JP2018047621A JP6954195B2 JP 6954195 B2 JP6954195 B2 JP 6954195B2 JP 2018047621 A JP2018047621 A JP 2018047621A JP 2018047621 A JP2018047621 A JP 2018047621A JP 6954195 B2 JP6954195 B2 JP 6954195B2
Authority
JP
Japan
Prior art keywords
adhesive
mpa
sagging
motor core
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047621A
Other languages
Japanese (ja)
Other versions
JP2019161928A (en
Inventor
智 鹿野
智 鹿野
藤村 浩志
浩志 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018047621A priority Critical patent/JP6954195B2/en
Publication of JP2019161928A publication Critical patent/JP2019161928A/en
Application granted granted Critical
Publication of JP6954195B2 publication Critical patent/JP6954195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、電磁鋼板を積層して接着剤で固着したモータコアに関する。 The present invention relates to a motor core in which electromagnetic steel sheets are laminated and fixed with an adhesive.

近年、地球環境問題に対する取り組みへの高まりから、例えば、自動車(ハイブリッド自動車、電気自動車、燃料電池自動車など)や家電製品(エアコン、冷蔵庫など)の分野では、消費エネルギーの少ない製品の普及が進んでいる。これらの製品には、高速回転する高効率モータが使用されており、高効率モータのコアの材料として無方向性電磁鋼板が使用されている。 In recent years, due to the growing efforts to address global environmental issues, for example, in the fields of automobiles (hybrid vehicles, electric vehicles, fuel cell vehicles, etc.) and home appliances (air conditioners, refrigerators, etc.), products with low energy consumption have become widespread. There is. High-efficiency motors that rotate at high speed are used in these products, and non-oriented electrical steel sheets are used as the core material of the high-efficiency motors.

モータコアには、ステータコアと、その内側に配置されるロータコアがある。それぞれ、無方向性電磁鋼板(以下、電磁鋼板と略称する。)を環状に切り出し、切り出し後の複数の板片を2枚以上積層して固定することで構成される。一般に積層した電磁鋼板を固定する方法は、かしめ、溶接あるいはボルト締めが広く採用される。 The motor core includes a stator core and a rotor core arranged inside the stator core. Each is configured by cutting out a non-oriented electrical steel sheet (hereinafter, abbreviated as an electromagnetic steel sheet) in an annular shape, and laminating and fixing two or more pieces of the cut-out sheet. Generally, caulking, welding, or bolting is widely adopted as a method for fixing laminated electromagnetic steel sheets.

電磁鋼板を切り出し後、複数の板片を2枚以上積層して固定するまでの過程で積層した電磁鋼板をかしめやボルト締め、溶接で固定すると、電磁鋼板にひずみが導入される。このため、従来から知られている方法で電磁鋼板を固定した積層鉄心は、鉄損が増大する。そのため、モータ製造時に積層鉄心に導入されるひずみを低減して、磁気特性を向上するための種々の技術が検討されている。 After cutting out the electrical steel sheet, strain is introduced into the electrical steel sheet when the laminated electromagnetic steel sheet is fixed by caulking, bolting, or welding in the process of laminating and fixing two or more pieces of the sheet. Therefore, the iron loss of the laminated steel core to which the electromagnetic steel sheet is fixed by a conventionally known method increases. Therefore, various techniques for reducing the strain introduced into the laminated iron core at the time of manufacturing the motor and improving the magnetic characteristics are being studied.

この課題を解決するものとして、例えば電磁鋼板を打ち抜いた後、接着して鉄心を組む方法がある。特許文献1には、積層したモータコアの側面(バックヨーク側面)に接着剤を塗布したモータコア、特許文献2〜5には打ち抜いた電磁鋼板の板面に接着材を塗布したモータコアが記載されている。また、特許文献6、7には、モータコアに塗布する接着剤のはみ出しを防止する技術が記載されている。 As a solution to this problem, for example, there is a method of punching an electromagnetic steel sheet and then adhering it to form an iron core. Patent Document 1 describes a motor core in which an adhesive is applied to the side surface (back yoke side surface) of the laminated motor core, and Patent Documents 2 to 5 describe a motor core in which an adhesive is applied to the plate surface of a punched electromagnetic steel plate. .. Further, Patent Documents 6 and 7 describe a technique for preventing the adhesive applied to the motor core from squeezing out.

特開2003−282330号公報Japanese Unexamined Patent Publication No. 2003-282330 特開2010−136467号公報JP-A-2010-136467 特開2017−169249号公報JP-A-2017-169249 特開2012−120299号公報Japanese Unexamined Patent Publication No. 2012-120299 特開2015−142453号公報Japanese Unexamined Patent Publication No. 2015-142453 特開2014−096429号公報Japanese Unexamined Patent Publication No. 2014-096429 WO2017−199527WO2017-199527

従来の技術では、乾燥後の接着剤のはみ出し量が増加するとともに接着強度が低下するため、打ち抜き端面からはみ出した接着剤を除去する必要があり、製造コストが増加する問題があった。 In the conventional technique, since the amount of adhesive squeezed out after drying increases and the adhesive strength decreases, it is necessary to remove the adhesive squeezed out from the punched end face, which causes a problem of increasing the manufacturing cost.

そこで、本発明者らは、接着強度の高いモータコアを安価で製造する技術について検討した。その結果、電磁鋼板の打ち抜き端面からのダレ高さとダレ幅の比を所定の範囲にすることで、乾燥後の接着剤がはみ出しても接着強度が高く、はみ出した接着剤を除去する工程を省略することができ、製造コストを下げられる知見を得るに至った。 Therefore, the present inventors have studied a technique for inexpensively manufacturing a motor core having high adhesive strength. As a result, by setting the ratio of the sagging height to the sagging width from the punched end face of the electrical steel sheet within a predetermined range, the adhesive strength is high even if the adhesive after drying squeezes out, and the step of removing the spilled adhesive is omitted. It was possible to obtain the knowledge that the manufacturing cost can be reduced.

本発明は前記知見に基づいてなされたもので、積層された電磁鋼板の接着強度が高いモータコアを提供することを目的とする。 The present invention has been made based on the above findings, and an object of the present invention is to provide a motor core having high adhesive strength of laminated electromagnetic steel sheets.

前記目的を達成するために、本発明のモータコアは、打ち抜き加工された複数の電磁鋼板を積層、板面を接着して構成されるモータコアにおいて、
前記電磁鋼板の打ち抜き端面に発生しているダレのダレ高さL(mm)、ダレ幅W(mm)、および前記電磁鋼板の板面に設けられている前記接着層の前記電磁鋼板の打ち抜き端面からのはみ出し量F(μm)が、下記式(1)かつ式(2)を満足することを特徴とする。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W)(2)
In order to achieve the above object, the motor core of the present invention is a motor core formed by laminating a plurality of punched electromagnetic steel sheets and adhering the plate surfaces.
The sagging height L (mm) and the sagging width W (mm) generated on the punched end face of the electromagnetic steel sheet, and the punched end face of the electromagnetic steel sheet of the adhesive layer provided on the plate surface of the electromagnetic steel sheet. The amount of protrusion F (μm) from the surface satisfies the following equations (1) and (2).
0.01 ≤ L / W ≤ 0.04 (1)
1 μm ≤ F ≤ 1 μm + 250 μm × (L / W) (2)

ここで、打ち抜き端面に発生しているダレとは、打ち抜き加工によって電磁鋼板を形成する場合において、当該電磁鋼板の板面と打ち抜き端面との間に形成された傾斜面のことを言う。ダレ高さとは、ダレ(傾斜面)の上端と下端との間の板厚方向の寸法のことを言い、ダレ幅とは、ダレ(傾斜面)の上端と下端との間の幅方向の寸法のことを言う。 Here, the sagging generated on the punched end face means an inclined surface formed between the plate surface and the punched end face of the electromagnetic steel sheet when the electromagnetic steel sheet is formed by punching. The sagging height is the dimension in the plate thickness direction between the upper end and the lower end of the sagging (tilted surface), and the sagging width is the dimension in the width direction between the upper end and the lower end of the sagging (tilted surface). Say that.

本発明のモータコアによれば、モータコアサイズ、電磁鋼板の板厚、接着剤の塗布量、接着剤の組成にかかわらず、打ち抜き端面に発生しているダレのダレ高さとダレ幅のダレ比L/Wと接着剤はみ出し量を所定の範囲に制御することで、電磁鋼板の接着強度が高いモータコアを得ることができる。 According to the motor core of the present invention, regardless of the size of the motor core, the thickness of the electromagnetic steel plate, the amount of the adhesive applied, and the composition of the adhesive, the sagging height and sagging width ratio L / By controlling the amount of W and the adhesive squeezing out within a predetermined range, it is possible to obtain a motor core having a high adhesive strength of the electromagnetic steel plate.

また、本発明のモータコアの製造方法は、前記モータコアを製造する方法であって、平面視において前記打ち抜き端面からの接着剤塗布位置をX(mm)、接着時の加圧圧力をP(MPa)としたとき、ダレ比L/Wと接着時の加圧圧力Pに応じて、前記電磁鋼板の内側の板面に下記式(3)〜(7)のいずれかを満足する位置Xに接着剤を塗布することを特徴とする。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
Further, the method for manufacturing the motor core of the present invention is a method for manufacturing the motor core, in which the adhesive application position from the punched end face is X (mm) and the pressurizing pressure at the time of bonding is P (MPa) in a plan view. Then, depending on the sagging ratio L / W and the pressurizing pressure P at the time of bonding, the adhesive is placed on the inner plate surface of the electromagnetic steel plate at the position X satisfying any of the following formulas (3) to (7). It is characterized by applying.
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 3.5 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa 0.1 mm × P -12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (7)

本発明のモータコアの製造方法によれば、ダレ比と接着時の加圧圧力に応じて(3)〜(7)式のいずれか1つを満足する位置に接着剤を塗布すれば、はみ出し量を規定範囲に制御できるので、高い接着強度が得られる。 According to the method for manufacturing a motor core of the present invention, if the adhesive is applied to a position satisfying any one of the formulas (3) to (7) according to the sagging ratio and the pressurizing pressure at the time of bonding, the amount of protrusion Can be controlled within the specified range, so high adhesive strength can be obtained.

本発明によれば、安価で積層された電磁鋼板の接着強度が高いモータコアが得られる。 According to the present invention, a motor core having high adhesive strength of laminated electromagnetic steel sheets can be obtained at low cost.

本発明の実施の形態に係るモータコアを示すもので、モータコアを構成する電磁鋼板の平面図である。A motor core according to an embodiment of the present invention is shown, and is a plan view of an electromagnetic steel sheet constituting the motor core. 同、正面図である。The same is the front view. 同、(a)はモータコアの要部の断面図、(b)は他のモータコアの要部の断面図、(c)電磁鋼板の要部の断面図である。(d)は電磁鋼板の腰部の断面図であり接着剤を塗布した図である。In the same, (a) is a cross-sectional view of a main part of a motor core, (b) is a cross-sectional view of a main part of another motor core, and (c) is a cross-sectional view of a main part of an electromagnetic steel sheet. (D) is a cross-sectional view of a waist portion of an electromagnetic steel sheet, and is a view to which an adhesive is applied. 同、(a)は接着剤を塗布した状態の電磁鋼板の平面図、(b)は(a)における要部の拡大図である。In the same, (a) is a plan view of the electromagnetic steel sheet in a state where an adhesive is applied, and (b) is an enlarged view of a main part in (a). 接着強度を調査するときの引張方法を示す図である。It is a figure which shows the tension method at the time of investigating the adhesive strength. 接着強度とダレ比L/W、接着剤はみ出し量Fとの関係を示す図である。It is a figure which shows the relationship between the adhesive strength, the sagging ratio L / W, and the adhesive squeeze amount F. ダレ比L/W=0.013における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between the adhesive strength, the pressurizing pressure P, and the adhesive application position X at a sagging ratio L / W = 0.013. ダレ比L/W=0.024における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between the adhesive strength, the pressurizing pressure P, and the adhesive application position X at a sagging ratio L / W = 0.024. ダレ比L/W=0.037における、接着強度と加圧圧力P、接着剤塗布位置Xとの関係を示す図である。It is a figure which shows the relationship between the adhesive strength, the pressurizing pressure P, and the adhesive application position X at a sagging ratio L / W = 0.037.

(モータコア)
以下、図面を参照して本発明に係るモータコアの実施の形態について説明する。図1は実施の形態に係るモータコアを構成する電磁鋼板10の平面図、図2はモータコア101の正面図である。電磁鋼板10は、無方向性電磁鋼板や方向性電磁鋼板等の従来から知られている電磁鋼板を円環状に打ち抜き加工することで形成されたものであり、モータコア101の軸方向(図1において紙面と直交する方向、図2において上下方向)に複数積層されるとともに軸方向に隣接する電磁鋼板10、10どうしが接着剤で接着されることで、モータコア101を構成するものである。
(Motor core)
Hereinafter, embodiments of the motor core according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of the electromagnetic steel sheet 10 constituting the motor core according to the embodiment, and FIG. 2 is a front view of the motor core 101. The electromagnetic steel sheet 10 is formed by punching a conventionally known electrical steel sheet such as a non-oriented electrical steel sheet or a grain-oriented electrical steel sheet in an annular shape, and is formed in the axial direction of the motor core 101 (in FIG. 1). The motor core 101 is formed by stacking a plurality of electrical steel sheets 10 and 10 adjacent to each other in the axial direction with an adhesive while being laminated in a plurality of directions perpendicular to the paper surface (vertical direction in FIG. 2).

電磁鋼板10の表面には、モータコア(積層鉄心)101における各電磁鋼板10の電気的絶縁を維持するために絶縁被膜(図示略)が形成されている。絶縁被膜は、無機物や有機物からなる被膜あるいは無機物と有機物を混合した被膜等の従来から知られている絶縁被膜が使用されている。 An insulating film (not shown) is formed on the surface of the electrical steel sheet 10 in order to maintain electrical insulation of each electrical steel sheet 10 in the motor core (laminated steel core) 101. As the insulating film, a conventionally known insulating film such as a film composed of an inorganic substance or an organic substance or a film obtained by mixing an inorganic substance and an organic substance is used.

打ち抜き加工された電磁鋼板10の打ち抜き端面11には、図3(a)〜図3(c)に示すように、ダレ12が発生する。打ち抜き端面11のダレ12とは、図3(c)に示すように、電磁鋼板10の板面10aと打ち抜き端面11との間に形成された傾斜面12のことを言う。 As shown in FIGS. 3A to 3C, sagging 12 occurs on the punched end surface 11 of the punched electrical steel sheet 10. As shown in FIG. 3C, the sagging 12 of the punched end surface 11 refers to an inclined surface 12 formed between the plate surface 10a of the electrical steel sheet 10 and the punched end surface 11.

また、図3(a)に示すように、乾燥後の接着剤の先端が、平面視において打ち抜き端面11より電磁鋼板10の外側にある場合が多いが、図3(b)に示すように、平面視において打ち抜き端面11より電磁鋼板10の内側にある場合もある。
この場合、乾燥後の接着剤の先端が打ち抜き端面11より電磁鋼板10の外側にある場合、乾燥後はみ出し量Fは、打ち抜き端面11から何μmとし、電磁鋼板10の内側にある場合、乾燥後はみ出し量Fは、打ち抜き端面11から−(マイナス)何μmとする。
また、本実施の形態では、モータコアサイズ、電磁鋼板の板厚、接着剤の塗布量、接着剤の組成にかかわらず乾燥後の接着剤はみ出し量F(μm)と、平面視において電磁鋼板10の打ち抜き端面11から電磁鋼板10の内側にあるダレ高さL(mm)、ダレ幅W(mm)の比L/Wが下記式(1)、(2)を満足する。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
Further, as shown in FIG. 3A, the tip of the adhesive after drying is often outside the electrical steel sheet 10 from the punched end surface 11 in a plan view, but as shown in FIG. 3B, In a plan view, it may be inside the electromagnetic steel sheet 10 from the punched end surface 11.
In this case, when the tip of the adhesive after drying is outside the electrical steel sheet 10 from the punched end surface 11, the amount of protrusion F after drying is several μm from the punched end surface 11, and when it is inside the electromagnetic steel sheet 10, after drying. The protrusion amount F is − (minus) several μm from the punched end face 11.
Further, in the present embodiment, the adhesive squeeze amount F (μm) after drying is determined regardless of the motor core size, the thickness of the electromagnetic steel sheet, the amount of the adhesive applied, and the composition of the adhesive, and the electromagnetic steel sheet 10 is viewed in plan view. The ratio L / W of the sagging height L (mm) and the sagging width W (mm) inside the electromagnetic steel sheet 10 from the punched end face 11 satisfies the following formulas (1) and (2).
0.01 ≤ L / W ≤ 0.04 (1)
1 μm ≤ F ≤ 1 μm + 250 μm × (L / W) (2)

式(1)の限定理由について実験結果に基づいて説明する。
(A)接着剤はみ出し量及び接着強度に及ぼすモータコアサイズの影響
表1のA−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、モータコアの外径、内径、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、以下の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
なお、前記クリアランスとは、素材から電磁鋼板を打ち抜く際に使用されるパンチとダイとの間の隙間のことを言う。
(1)接着強度
接着強度として、特許文献5の方法に倣い図5に矢印で示すように、モータコア101を軸方向に平行に引張って、板面どうしが接着された電磁鋼板10,10に剥離が生じたときの荷重を測定し、80N以上を合格とした。
(2)ダレ高さL、ダレ幅W、接着剤はみ出し量Fの評価
剥離した箇所について図3(a)のような観察面になるようにモータコアの断面を切り出した。その後、ダレは高さとダレ幅は、図3(c)の通り測定した。一方接着剤はみ出し量は図3(a)の通り、打ち抜き端面から最も張り出した箇所を測定した。
The reason for the limitation of the formula (1) will be described based on the experimental results.
(A) Effect of motor core size on adhesive squeeze amount and adhesive strength As shown in A-1 to 15 of Table 1, an electromagnetic steel sheet with a plate thickness of 0.25 mm is punched with different clearances, and the outer diameter, inner diameter, and punching of the motor core. The sagging ratio L / W of the end face was changed. After that, an adhesive was applied to the outer peripheral portion and the inner peripheral portion of the motor core at a position 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, and 12 sheets were laminated and then pressurized at 3 MPa. Glued. After the adhesive was dried, the adhesive strength, sagging height, sagging width, and adhesive squeeze amount were evaluated by the following methods.
The clearance refers to a gap between a punch and a die used when punching an electromagnetic steel sheet from a material.
(1) Adhesive strength As the adhesive strength, as shown by an arrow in FIG. 5, following the method of Patent Document 5, the motor core 101 is pulled in parallel in the axial direction and peeled off to the electromagnetic steel plates 10 and 10 in which the plate surfaces are adhered to each other. The load at the time of occurrence was measured, and 80 N or more was regarded as acceptable.
(2) Evaluation of sagging height L, sagging width W, and adhesive squeeze amount F A cross section of the motor core was cut out so that the peeled portion had an observation surface as shown in FIG. 3 (a). After that, the height of the sagging and the sagging width were measured as shown in FIG. 3 (c). On the other hand, as shown in FIG. 3A, the amount of adhesive squeezed out was measured at the most protruding portion from the punched end face.

(B)接着剤はみ出し量及び接着強度に及ぼす板厚の影響
表1のB−1〜15の通り、板厚0.15〜0.30mmの電磁鋼板をクリアランスを変えて打ち抜き、モータコアの打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(B) Effect of plate thickness on adhesive squeeze amount and adhesive strength As shown in Table 1 B-1 to 15, an electromagnetic steel sheet with a plate thickness of 0.15 to 0.30 mm is punched with different clearances, and the punched end face of the motor core. The sagging ratio L / W was changed. After that, an adhesive was applied to the outer peripheral portion and the inner peripheral portion of the motor core at a position 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, and 12 sheets were laminated and then pressurized at 3 MPa. Glued. After the adhesive was dried, the adhesive strength, sagging height, sagging width, and adhesive squeeze amount were evaluated by the same method as in (A).

(C)接着剤はみ出し量及び接着強度に及ぼす接着剤塗布量の影響
表1のC−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1〜1.0mm、幅0.03〜0.3mm、またはモータコアの板面全体として塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(C) Effect of adhesive application amount on adhesive squeeze amount and adhesive strength As shown in C-1 to C-1 of Table 1, an electromagnetic steel plate with a plate thickness of 0.25 mm was punched with different clearances, and the sagging ratio of the punched end face was L. / W was changed. After that, the adhesive is punched out from the outer peripheral portion and the inner peripheral portion of the motor core at a position of 0.3 mm from the end face, and the height is 0.1 to 1.0 mm, the width is 0.03 to 0.3 mm, or the entire plate surface of the motor core. After laminating 12 sheets, the mixture was pressurized at 3 MPa and adhered. After the adhesive was dried, the adhesive strength, sagging height, sagging width, and adhesive squeeze amount were evaluated by the same method as in (A).

(D)接着剤はみ出し量及び接着強度に及ぼす接着剤の組成の影響
表1のC−1〜15の通り、板厚0.25mmの電磁鋼板をクリアランスを変えて打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤組成を変えて、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mm塗布し、12枚積層したのち、3MPaで加圧して接着した。接着剤が乾燥した後、(A)と同様の方法によって接着強度とダレ高さ、ダレ幅、接着剤はみ出し量を評価した。
(D) Effect of adhesive composition on adhesive squeeze amount and adhesive strength As shown in C-1 to C-1 of Table 1, an electromagnetic steel sheet having a thickness of 0.25 mm was punched with different clearances, and the sagging ratio of the punched end face was L. / W was changed. After that, the adhesive composition was changed for each of the outer peripheral portion and the inner peripheral portion of the motor core, and the adhesive was applied at a position 0.3 mm from the punched end face at a height of 0.1 mm and a width of 0.03 mm, and 12 sheets were laminated. The mixture was pressurized at 3 MPa and adhered. After the adhesive was dried, the adhesive strength, sagging height, sagging width, and adhesive squeeze amount were evaluated by the same method as in (A).

Figure 0006954195
Figure 0006954195

(A)〜(D)の実験結果からダレ比が同等であれば、モータコアサイズ、電磁鋼板の板厚、モータコア1枚当たりの接着剤塗布量、接着剤の組成が異なっても、はみ出し量や接着強度には影響しないことが分かる。その一方で、ダレ比が異なれば、はみ出し量、接着強度が変化することが分かる。 If the sagging ratio is the same from the experimental results of (A) to (D), the amount of protrusion and the amount of protrusion even if the size of the motor core, the thickness of the electromagnetic steel plate, the amount of adhesive applied per motor core, and the composition of the adhesive are different. It can be seen that it does not affect the adhesive strength. On the other hand, it can be seen that if the sagging ratio is different, the amount of protrusion and the adhesive strength will change.

式(2)の限定理由について実験結果に基づいて説明する。
板厚0.25mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部についてそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層したのち、1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、表1と同様の方法で打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。
The reason for limiting the formula (2) will be described based on the experimental results.
A non-oriented electrical steel sheet having a plate thickness of 0.25 mm was punched into a hollow circular shape having an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sagging ratio L / W of the punched end face was changed. After that, an adhesive was applied to the outer peripheral portion and the inner peripheral portion of the motor core at a position of 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, and 12 sheets were laminated and then added at 1 to 10 MPa. Pressure treatment was performed to change the amount of protrusion F. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured by the same method as in Table 1, and the adhesive strength of this motor core was investigated.

Figure 0006954195
Figure 0006954195

図6に、横軸を接着剤はみ出し量F(μm)、縦軸をダレ比(L/W)として表2の結果をプロットした。なお、図6において「〇」は、接着強度が80N以上で高い場合、「×」は接着強度が80N未満で低い場合を示している。
表2および図6に示すように、ダレ比L/Wが0.01未満または0.04超の場合には、接着剤はみ出し量が変化しても接着強度80N未満と比較的低い。これに対し、ダレ比が0.01〜0.04の場合には、接着強度を80N以上得るための接着剤はみ出し量の上限は、ダレ比が大きいほど許容範囲が広くなる。すなわち、接着剤のはみ出し量の上限は、ダレ比L/Wに依存し、F≦1μm+250μm×(L/W)の時に80N以上になることが分かる。
In FIG. 6, the results of Table 2 are plotted with the horizontal axis representing the amount of adhesive squeeze out F (μm) and the vertical axis representing the sagging ratio (L / W). In FIG. 6, “◯” indicates a case where the adhesive strength is high at 80 N or more, and “x” indicates a case where the adhesive strength is low at less than 80 N.
As shown in Table 2 and FIG. 6, when the sagging ratio L / W is less than 0.01 or more than 0.04, the adhesive strength is relatively low, less than 80 N, even if the amount of adhesive squeeze out changes. On the other hand, when the sagging ratio is 0.01 to 0.04, the upper limit of the amount of adhesive squeeze out to obtain the adhesive strength of 80 N or more becomes wider as the sagging ratio is larger. That is, it can be seen that the upper limit of the amount of adhesive squeeze out depends on the sagging ratio L / W and becomes 80 N or more when F ≦ 1 μm + 250 μm × (L / W).

(1)ダレ比:L/W(−)
0.01≦L/W≦0.04
表1の結果より、ダレ比の下限は0.01以上とする。ダレ比が0.01未満であると接着に必要な空間が少なくなるため、接着強度の向上が見込めない。
一方、ダレ比の上限は0.04以下とする。ダレ比が0.04超であると接着剤とその上に積層した電磁鋼板の接着面積が減少するため、接着強度の向上が見込めない。
(1) Sagging ratio: L / W (-)
0.01 ≤ L / W ≤ 0.04
From the results in Table 1, the lower limit of the sagging ratio is 0.01 or more. If the sagging ratio is less than 0.01, the space required for bonding is reduced, so that the bonding strength cannot be expected to be improved.
On the other hand, the upper limit of the sagging ratio is 0.04 or less. If the sagging ratio exceeds 0.04, the adhesive area of the adhesive and the electromagnetic steel sheet laminated on the adhesive is reduced, so that the adhesive strength cannot be expected to be improved.

(2)打ち抜き端面からの乾燥後接着剤はみ出し量:F(μm)
1μm≦F≦1μm+250μm×(L/W)
打ち抜き端面からの乾燥後接着剤はみ出し量F(μm)は、板面接着において接着強度を低下させる。Fが1μm未満(はみ出し量が負の値を含む)では接着面積が減少するため、接着強度が80N未満である。したがってFの下限は1μm以上とする。
一方、表2の結果より、Fが大きくなると接着強度が低下する。また、ダレ比によって接着強度が変化するためFの上限は変化する。そのため接着強度を確保する観点からFの上限は1μm+250μm×(L/W)以下とする。したがって、打ち抜き端面からの接着剤はみ出し量は1μm≦F≦1μm+250μm×(L/W)とする。
(2) Amount of adhesive squeezed out from the punched end face after drying: F (μm)
1 μm ≤ F ≤ 1 μm + 250 μm × (L / W)
The amount of adhesive squeeze out F (μm) after drying from the punched end surface reduces the adhesive strength in plate surface adhesion. When F is less than 1 μm (including a negative value in the amount of protrusion), the adhesive area is reduced, so that the adhesive strength is less than 80 N. Therefore, the lower limit of F is set to 1 μm or more.
On the other hand, from the results in Table 2, the adhesive strength decreases as F increases. Further, since the adhesive strength changes depending on the sagging ratio, the upper limit of F changes. Therefore, from the viewpoint of ensuring the adhesive strength, the upper limit of F is set to 1 μm + 250 μm × (L / W) or less. Therefore, the amount of adhesive squeezed out from the punched end face is 1 μm ≦ F ≦ 1 μm + 250 μm × (L / W).

(モータコアの製造方法)
以下、図面を参照して本発明に係るモータコアの製造方法の実施の形態について説明する。
(Manufacturing method of motor core)
Hereinafter, embodiments of the method for manufacturing a motor core according to the present invention will be described with reference to the drawings.

接着剤塗布位置13は、図4に示すように、電磁鋼板10の板面10aにおいて、電磁鋼板10の外周側に設けられた接着剤塗布位置13a、電磁鋼板10の内周側に設けられた接着剤塗布位置13b、ティース15の側面側に設けられた接着剤塗布位置13c、およびティース15の先端側に設けられた接着剤塗布位置13dによって構成されている。
接着剤塗布位置13aは電磁鋼板10の外周に沿って平面視円形状に配置し、平面視において打ち抜き端面(バックヨーク端面)11aからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13bは電磁鋼板10の内周に沿って平面視間欠円形状に配置し、平面視において打ち抜き端面(ヨーク内周端面)11bからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13cは各ティース15の互いに平行な側面に沿って直線状に配置し、平面視において打ち抜き端面(ティース側面)11cからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
接着剤塗布位置13dは各ティース15の先端に沿って直線状に配置し、平面視において打ち抜き端面(ティース端面)11dからX(mm)、電磁鋼板10の内側にあるように接着剤を塗布する。
As shown in FIG. 4, the adhesive coating position 13 is provided on the plate surface 10a of the electromagnetic steel plate 10 at the adhesive coating position 13a provided on the outer peripheral side of the electromagnetic steel plate 10 and on the inner peripheral side of the electromagnetic steel plate 10. It is composed of an adhesive application position 13b, an adhesive application position 13c provided on the side surface side of the tooth 15, and an adhesive application position 13d provided on the tip side of the tooth 15.
The adhesive application position 13a is arranged in a circular shape in a plan view along the outer circumference of the electromagnetic steel plate 10, and the adhesive is formed so as to be X (mm) from the punched end face (back yoke end face) 11a in the plan view and inside the electromagnetic steel plate 10. Is applied.
The adhesive application position 13b is arranged in an intermittent circular shape in a plan view along the inner circumference of the electromagnetic steel plate 10, and is located inside the electromagnetic steel plate 10 from the punched end surface (yoke inner peripheral end surface) 11b to X (mm) in the plan view. Apply adhesive to.
The adhesive application position 13c is arranged linearly along the side surfaces parallel to each other of each tooth 15, and the adhesive is arranged so as to be inside the electromagnetic steel plate 10 from the punched end surface (teeth side surface) 11c to X (mm) in a plan view. Is applied.
The adhesive application position 13d is arranged linearly along the tip of each tooth 15, and the adhesive is applied so as to be inside the electromagnetic steel plate 10 from the punched end face (teeth end face) 11d to X (mm) in a plan view. ..

接着剤塗布位置Xはダレ比L/Wと加圧圧力Pの値によって、接着剤はみ出し量が(2)式の範囲に入るように決定される。打ち抜き端面11から下記式(3)〜(7)のいずれか一つを満足する範囲で電磁鋼板10の内側にX(mm)の範囲で塗布する。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
The adhesive application position X is determined by the values of the sagging ratio L / W and the pressurizing pressure P so that the amount of adhesive squeeze out falls within the range of the equation (2). From the punched end face 11, the coating is applied to the inside of the electrical steel sheet 10 in the range of X (mm) within the range satisfying any one of the following formulas (3) to (7).
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 3.5 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa 0.1 mm × P -12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (7)

接着剤塗布位置Xの下限について説明する。X<0.02mm、またはX<0.1mm×P−12.5mm×(L/W)−0.03mmの場合、接着材はみ出し量が増えすぎて、接着強度80N以上が得られない。したがって接着剤塗布位置の下限はX≧0.02mmまたはX≧0.1mm×P−12.5mm×(L/W)−0.03mmとする。
接着剤塗布位置Xの上限について説明する。X>0.5mm、またはX>0.1mm×P+0.15mmの場合、接着材はみ出し量は1μm未満になり、はみ出し量としては従来通りであるが、ダレ部分に接着剤が十分に行きわたらないため、その上に積層した電磁鋼板の接着面積が減少する。その結果、接着強度80N以上が得られない。したがって接着剤塗布位置の上限はX≦0.5mmまたはX≦0.1mm×P+0.15mmとする。
The lower limit of the adhesive application position X will be described. When X <0.02 mm or X <0.1 mm × P-12.5 mm × (L / W) −0.03 mm, the amount of adhesive squeeze out is too large to obtain an adhesive strength of 80 N or more. Therefore, the lower limit of the adhesive application position is X ≧ 0.02 mm or X ≧ 0.1 mm × P-12.5 mm × (L / W) −0.03 mm.
The upper limit of the adhesive application position X will be described. When X> 0.5 mm or X> 0.1 mm × P + 0.15 mm, the amount of adhesive squeeze out is less than 1 μm, and the amount of squeeze out is the same as before, but the adhesive does not sufficiently reach the sagging part. Therefore, the adhesive area of the electromagnetic steel plate laminated on it is reduced. As a result, an adhesive strength of 80 N or more cannot be obtained. Therefore, the upper limit of the adhesive application position is X ≦ 0.5 mm or X ≦ 0.1 mm × P + 0.15 mm.

接着時の加圧圧力Pはダレ比L/Wに応じて、接着剤のはみ出しが生じない範囲で変化させることができる。好ましくは0〜10MPaである。 The pressurizing pressure P at the time of bonding can be changed according to the sagging ratio L / W within a range in which the adhesive does not squeeze out. It is preferably 0 to 10 MPa.

本実施の形態では、接着剤として、2液混合タイプのエポキシ系接着剤を使用する例について説明したが、他に、加熱により硬化する1液型熱硬化性エポキシ系接着剤を用いることができる。
エポキシ樹脂としては、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、線状脂肪族エポキサイド型、脂環族エポキサイド型等から選ばれるエポキシ樹脂が挙げられる。特にグリシジルエーテル型のエポキシ等量150〜300の範囲のものが好ましい。これらのエポキシ樹脂は、強度、靭性、誘電性、浸透性、歪み抑制性、速硬化性等の所望の特性に応じて、その1種を単独で用いるか、あるいは2種以上を組み合わせて使用する。組み合わせとしては、ウレタン変性のエポキシ樹脂との併用が好ましい。通常のエポキシ樹脂とウレタン変性エポキシ樹脂との割合は、所望の強靭性を付与するために、0.2:0.8 〜 0.7:0.3の範囲が好ましい。
In the present embodiment, an example in which a two-component mixed type epoxy adhesive is used as the adhesive has been described, but in addition, a one-component thermosetting epoxy adhesive that cures by heating can be used. ..
Examples of the epoxy resin include epoxy resins selected from glycidyl ether type, glycidyl ester type, glycidyl amine type, linear aliphatic epoxiside type, alicyclic epoxiside type and the like. In particular, glycidyl ether type epoxy equivalents in the range of 150 to 300 are preferable. These epoxy resins may be used alone or in combination of two or more, depending on desired properties such as strength, toughness, dielectric property, permeability, strain suppression property, and quick curing property. .. As a combination, it is preferable to use it in combination with a urethane-modified epoxy resin. The ratio of the normal epoxy resin to the urethane-modified epoxy resin is preferably in the range of 0.2: 0.8 to 0.7: 0.3 in order to impart the desired toughness.

その他、必要に応じて防錆剤(たとえばトリポリリン酸二水素アルミニウム、リン酸亜鉛、リン酸アルミニウム等)、充填剤(たとえば炭酸カルシウム、クレー、タルク、シリカ、カーボン、酸化鉄、マイカ等)、反応性希釈剤(たとえばアリルグリシジルエーテル、フェニルグリシジルエーテル等)、可塑剤(たとえばフタル酸エステル、フルフリルアルコール等)、合成ゴム(たとえばNBR、SBR等)を適宜配合できる。 In addition, if necessary, rust preventives (for example, aluminum dihydrogen tripolyphosphate, zinc phosphate, aluminum phosphate, etc.), fillers (for example, calcium carbonate, clay, talc, silica, carbon, iron oxide, mica, etc.), reaction A sex diluent (for example, allyl glycidyl ether, phenyl glycidyl ether, etc.), a plasticizer (for example, phthalate ester, furfuryl alcohol, etc.), and a synthetic rubber (for example, NBR, SBR, etc.) can be appropriately blended.

接着剤を硬化させる際には、室温硬化させても良いが、加熱して硬化させることも可能である。加熱硬化は、接着剤固着積層鉄心の生産性を向上できる。 When the adhesive is cured, it may be cured at room temperature, but it can also be cured by heating. Heat curing can improve the productivity of the adhesive-fixed laminated iron core.

成分のゴム成分は、合成ゴムが好ましく、特に常温でゴム状弾性を有するものが好ましい。ゴム成分としては、アクリルゴム、ニトリルゴム、スチレンブタジエンゴム、ブタジエンメチルアクリレートアクリロニトリルゴム、ブタジエンゴム、カルボキシ含有アクリロニトリルブタジエンゴム、ビニル含有アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、ポリビニルブチラール等の合成ゴム、ゴム変性のエポキシ樹脂等のゴム変性高分子化合物、質量平均分子量1万以上の高分子エポキシ樹脂等が挙げられる。 As the rubber component of the component, synthetic rubber is preferable, and one having rubber-like elasticity at room temperature is particularly preferable. Rubber components include acrylic rubber, nitrile rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxy-containing acrylonitrile butadiene rubber, vinyl-containing acrylonitrile butadiene rubber, silicone rubber, urethane rubber, synthetic rubber such as polyvinyl butyral, and rubber. Examples thereof include rubber-modified polymer compounds such as modified epoxy resins, and polymer epoxy resins having a mass average molecular weight of 10,000 or more.

ゴム成分の含有量は、熱硬化性樹脂組成物の固形分中、40質量%以上を用いる。ゴム成分の含有量40質量%未満であると、加熱加圧時の熱硬化性樹脂組成物の流動性が大きくなり、積層コアとしたときに電磁鋼板の内外周部からの熱硬化性樹脂組成物(接着層)のはみ出し量が多くなる。ゴム成分の含有量は、熱硬化性樹脂組成物の固形分中、80質量%以下が好ましい。 As the content of the rubber component, 40% by mass or more is used in the solid content of the thermosetting resin composition. When the content of the rubber component is less than 40% by mass, the fluidity of the thermosetting resin composition at the time of heating and pressurizing becomes large, and when the laminated core is formed, the thermosetting resin composition from the inner and outer peripheral portions of the electromagnetic steel plate is used. The amount of protrusion of the object (adhesive layer) increases. The content of the rubber component is preferably 80% by mass or less in the solid content of the thermosetting resin composition.

塗布する接着材の厚みは、0.2mm以下が好ましい。0.2mmを超えると、接着コストが増加するため、0.2mm以下が好ましい。 The thickness of the adhesive to be applied is preferably 0.2 mm or less. If it exceeds 0.2 mm, the bonding cost increases, so 0.2 mm or less is preferable.

塗布する接着材の幅は、0.1mmを超えると、接着コストが増加するため、0.1mm以下が好ましい。 If the width of the adhesive to be applied exceeds 0.1 mm, the bonding cost increases, so that the width is preferably 0.1 mm or less.

打ち抜いた電磁鋼板1枚あたりに塗布する接着材の重量は、2.0mg/枚を超えると、接着コストが増加するため、2.0mg/枚以下が好ましい。 If the weight of the adhesive material applied to each punched electrical steel sheet exceeds 2.0 mg / sheet, the adhesive cost increases, so the weight is preferably 2.0 mg / sheet or less.

モータコアに使用する電磁鋼板の板厚は限定しない。しかし、板厚が薄くなるほどモータコアをカシメることが困難になる。したがってかしめることが困難になる板厚0.25mm以下の電磁鋼板を用いることが好ましい。 The thickness of the electromagnetic steel sheet used for the motor core is not limited. However, the thinner the plate, the more difficult it is to crimp the motor core. Therefore, it is preferable to use an electromagnetic steel sheet having a thickness of 0.25 mm or less, which makes it difficult to crimp.

電磁鋼板から打ち抜くときのモータコアの寸法は特に限定しない。必要な用途に応じて打ち抜き寸法を可変することができる。 The dimensions of the motor core when punched from the electrical steel sheet are not particularly limited. The punching dimensions can be changed according to the required application.

次に実施例について説明する。 Next, an embodiment will be described.

板厚0.20mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを変化させた。その後、モータコアの外周部と内周部にそれぞれ、接着剤を打ち抜き端面から0.3mmの位置に高さ0.1mm、幅0.03mmとして塗布し、12枚積層接着したのち、1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、表1と同様の方法で打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。接着強度は80N以上を合格とした。結果を表3、図6に示す。











A non-oriented electrical steel sheet having a plate thickness of 0.20 mm was punched into a hollow circular shape having an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sagging ratio L / W of the punched end face was changed. After that, an adhesive was applied to the outer peripheral portion and the inner peripheral portion of the motor core at a position 0.3 mm from the punched end face with a height of 0.1 mm and a width of 0.03 mm, respectively, and 12 sheets were laminated and bonded, and then at 1 to 10 MPa. The pressure treatment was performed to change the amount of protrusion F. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured by the same method as in Table 1, and the adhesive strength of this motor core was investigated. Adhesive strength of 80 N or more was accepted. The results are shown in Table 3 and FIG.











Figure 0006954195
Figure 0006954195

ダレ比L/W=0.004であるNo.1〜7ではいずれも接着強度が80Nに未満であった。
ダレ比L/W=0.013、0.024、0.037であるNo.8、15、22は、いずれもはみ出し量が従来例である1μm未満であり、接着強度は80N未満であった。No.11〜14、20〜21、28は接着剤はみ出し量の増加とともに接着強度は減少し、接着強度は80Nに未満であった。
ダレ比L/W=0.045であるNo.29〜35ではいずれも接着強度が80Nに未満であった。
これらに対しNo.9〜10、16〜19、23〜27は、ダレ比L/Wと接着剤はみ出し量Fが適正な範囲にあるので接着強度が80N以上となった。
No. with a sagging ratio L / W = 0.004. In each of 1 to 7, the adhesive strength was less than 80 N.
No. with a sagging ratio L / W = 0.013, 0.024, 0.037. In each of 8, 15 and 22, the amount of protrusion was less than 1 μm, which is a conventional example, and the adhesive strength was less than 80 N. No. In 11 to 14, 20 to 21, 28, the adhesive strength decreased as the amount of adhesive squeeze out increased, and the adhesive strength was less than 80 N.
No. with a sagging ratio L / W = 0.045. In each of 29 to 35, the adhesive strength was less than 80 N.
In contrast to these, No. In 9 to 10, 16 to 19, 23 to 27, the adhesive strength was 80 N or more because the sagging ratio L / W and the adhesive squeeze amount F were in an appropriate range.

図6より、ダレ比L/Wが0.01未満では接着に必要な空間が少なくなるため、接着強度の向上が見込めない。ダレ比が0.04超では、接着面積が減少したため接着強度の向上が見込めない。ダレ比が0.01〜0.04では、はみ出し量Fが1μm未満でも接着強度の向上が見込めない。はみ出し量F(μm)が1μm+250μm×(L/W)を超えると接着強度が80N未満となる。これらに対して、ダレ比が0.01〜0.04においてはみ出し量が下記式(1)、(2)を満足する場合に十分な接着強度が得られることが分かる。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
From FIG. 6, when the sagging ratio L / W is less than 0.01, the space required for bonding is reduced, so that the bonding strength cannot be expected to be improved. If the sagging ratio exceeds 0.04, the adhesive area is reduced and the adhesive strength cannot be expected to improve. When the sagging ratio is 0.01 to 0.04, improvement in adhesive strength cannot be expected even if the protrusion amount F is less than 1 μm. When the protrusion amount F (μm) exceeds 1 μm + 250 μm × (L / W), the adhesive strength becomes less than 80 N. On the other hand, it can be seen that when the sagging ratio is 0.01 to 0.04 and the amount of protrusion satisfies the following formulas (1) and (2), sufficient adhesive strength can be obtained.
0.01 ≤ L / W ≤ 0.04 (1)
1 μm ≤ F ≤ 1 μm + 250 μm × (L / W) (2)

板厚0.20mmの無方向性電磁鋼板を、クリアランスを変えて外径180mm、内径120mmの中空円形状にモータコアを打ち抜き、打ち抜き端面のダレ比L/Wを0.013、0.024、0.037にそれぞれ変化させた。その後、モータコアの外周部と内周部についてそれぞれ12枚積層して接着剤の厚さは0.1mm、幅は0.03mmとし、内外周それぞれの打ち抜き端面から0.01mm、0.03mm、0.15mm、0.30mm、0.45mm、0.60mm位置に塗布した。接着後に圧力は1〜10MPaで加圧処理して、はみ出し量Fを変化させた。接着剤を硬化、乾燥させた後、打ち抜き端面からのはみ出し量を測定し、このモータコアの接着強度を調査した。結果を表4〜表6に示す。また、図7〜9にそれぞれダレ比L/Wが0.013、0.024、0.037の場合について、接着強度が80N以上になる接着剤塗布位置と加圧圧力の範囲を示す。
図7〜図9は、それぞれ横軸を接着剤塗布位置X(mm)、縦軸を加圧圧力P(MPa)として表4〜表6の結果をプロットした。なお、図7〜図9において「〇」は、接着強度が80N以上で高い場合、「×」は接着強度が80N未満で低い場合を示している。




















A non-oriented electrical steel sheet with a plate thickness of 0.20 mm is punched into a hollow circular shape with an outer diameter of 180 mm and an inner diameter of 120 mm by changing the clearance, and the sagging ratio L / W of the punched end face is 0.013, 0.024, 0. It was changed to .037 respectively. After that, 12 sheets were laminated on the outer peripheral portion and the inner peripheral portion of the motor core to make the thickness of the adhesive 0.1 mm and the width 0.03 mm, and 0.01 mm, 0.03 mm, and 0 from the punched end faces of the inner and outer circumferences, respectively. It was applied at the positions of .15 mm, 0.30 mm, 0.45 mm and 0.60 mm. After bonding, pressure treatment was performed at a pressure of 1 to 10 MPa to change the amount of protrusion F. After the adhesive was cured and dried, the amount of protrusion from the punched end face was measured, and the adhesive strength of this motor core was investigated. The results are shown in Tables 4-6. Further, FIGS. 7 to 9 show the adhesive application position and the range of the pressurizing pressure at which the adhesive strength becomes 80 N or more when the sagging ratios L / W are 0.013, 0.024, and 0.037, respectively.
In FIGS. 7 to 9, the results of Tables 4 to 6 are plotted with the horizontal axis representing the adhesive application position X (mm) and the vertical axis representing the pressurizing pressure P (MPa). In FIGS. 7 to 9, "◯" indicates a case where the adhesive strength is 80 N or more and high, and "x" indicates a case where the adhesive strength is less than 80 N and low.




















Figure 0006954195
Figure 0006954195







Figure 0006954195
Figure 0006954195







Figure 0006954195
Figure 0006954195



表4および図7に示すように、ダレ比L/W=0.013の時、a−1、a−4〜7、a−11〜14、a−18〜21、a−24〜28、a−30〜42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または4μm超となり、接着強度が80N未満となり不合格であった。これに対し、a−2〜3、a−8〜10、a−15〜17、a−22〜23、a−29での接着剤塗布位置と加圧圧力の組合せでは、(3)〜(5)式を満足し、接着剤はみ出し量が1〜4μmとなり、接着強度が80N以上となり合格であった。 As shown in Table 4 and FIG. 7, when the sagging ratio L / W = 0.013, a-1, a-4 to 7, a-11 to 14, a-18 to 21, a-24 to 28, In the combination of the adhesive application position and the pressurizing pressure in a-30 to 42, the amount of adhesive squeeze out was less than 1 μm or more than 4 μm, and the adhesive strength was less than 80 N, which was unacceptable. On the other hand, in the combination of the adhesive application position and the pressurizing pressure at a-2 to 3, a-8 to 10, a-15 to 17, a-22 to 23, and a-29, (3) to (3) to ( The equation 5) was satisfied, the amount of adhesive squeezing out was 1 to 4 μm, and the adhesive strength was 80 N or more, which was acceptable.

表5および図8に示すように、ダレ比L/W=0.024の時、b−1、b−4〜7、b−11〜13、b−18〜20、b−24〜27、b−30〜34、b−36〜42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または7μm超となり、接着強度が80N未満となり不合格であった。これに対し、b−2〜3、b−8〜10、b−14〜17、b−21〜23、b−28〜29、b−35での接着剤塗布位置と加圧圧力の組合せでは、(3)〜(5)式を満足し、接着剤はみ出し量が1〜7μmとなり、接着強度が80N以上となり合格であった。 As shown in Table 5 and FIG. 8, when the sagging ratio L / W = 0.024, b-1, b-4 to 7, b-11 to 13, b-18 to 20, b-24 to 27, In the combination of the adhesive application position and the pressure pressure at b-30 to 34 and b-36 to 42, the amount of adhesive squeeze out was less than 1 μm or more than 7 μm, and the adhesive strength was less than 80 N, which was unacceptable. On the other hand, in the combination of the adhesive application position and the pressurizing pressure at b-2 to 3, b-8 to 10, b-14 to 17, b-21 to 23, b-28 to 29, and b-35, , (3) to (5) were satisfied, the amount of adhesive squeezed out was 1 to 7 μm, and the adhesive strength was 80 N or more, which was acceptable.

表6および図9に示すように、ダレ比L/W=0.037の時、c−1、c−4〜7、c−11〜13、c−18〜19、c−24〜26、c−30〜33、c−36〜40、c−42での接着剤塗布位置と加圧圧力の組合せでは、接着剤はみ出し量が1μm未満、または10μm超となり、接着強度が80N未満となり不合格であった。これに対し、c−2〜3、c−8〜10、c−14〜17、c−20〜23、c−28〜29、c−34〜35、c−41での接着剤塗布位置と加圧圧力の組合せでは、(3)、(6)、(7)式を満足し、接着剤はみ出し量が1〜10μmとなり、接着強度が80N以上となり合格であった。 As shown in Table 6 and FIG. 9, when the sagging ratio L / W = 0.037, c-1, c-4 to 7, c-11 to 13, c-18 to 19, c-24 to 26, In the combination of the adhesive application position and the pressurizing pressure at c-30 to 33, c-36 to 40, and c-42, the amount of adhesive squeeze out is less than 1 μm or more than 10 μm, and the adhesive strength is less than 80 N, which is a failure. Met. On the other hand, the adhesive application positions at c-2 to 3, c-8 to 10, c-14 to 17, c-20 to 23, c-28 to 29, c-34 to 35, and c-41. The combination of pressurizing pressure satisfied the equations (3), (6), and (7), the amount of adhesive squeezing out was 1 to 10 μm, and the adhesive strength was 80 N or more, which was acceptable.

以上により、接着剤塗布位置Xはダレ比L/Wと加圧圧力Pの値によって、接着剤はみ出し量が前記(2)式の範囲に入るように決定され、打ち抜き端面11から前記(3)〜(7)式のいずれか一つを満足する範囲で電磁鋼板10の内側にX(mm)の範囲で塗布することによって、はみ出し量を規定範囲に制御して、高い接着強度が得られることが分かる。 Based on the above, the adhesive application position X is determined by the values of the sagging ratio L / W and the pressurizing pressure P so that the amount of adhesive squeeze out falls within the range of the above equation (2), and the punched end face 11 to the above (3). By coating the inside of the electromagnetic steel plate 10 in the range of X (mm) within the range satisfying any one of the formulas (7), the amount of protrusion can be controlled within the specified range and high adhesive strength can be obtained. I understand.

10 電磁鋼板
10a 板面
11、11a〜11d 打ち抜き端面
12 ダレ
13、13a〜13d 接着層
15 ティース
101 モータコア
10 Electrical steel sheet 10a Plate surface 11, 11a to 11d Punched end surface 12 Dripping 13, 13a to 13d Adhesive layer 15 Teeth 101 Motor core

Claims (2)

打ち抜き加工された複数の電磁鋼板を積層し、複数の前記電磁鋼板の板面を互いに接着したモータコアにおいて、
前記電磁鋼板の打ち抜き端面のダレ高さをL(mm)、打ち抜き端面のダレ幅をW(mm)、および前記電磁鋼板の板面に設けられている前記接着層の前記電磁鋼板の打ち抜き端面からの乾燥後はみ出し量をF(μm)として、下記式(1)かつ式(2)を満足することを特徴とするモータコア。
0.01≦L/W≦0.04 (1)
1μm≦F≦1μm+250μm×(L/W) (2)
In a motor core in which a plurality of punched electrical steel sheets are laminated and the plate surfaces of the plurality of electrical steel sheets are bonded to each other.
The sagging height of the punched end face of the electromagnetic steel sheet is L (mm), the sagging width of the punched end face is W (mm), and from the punched end face of the electromagnetic steel sheet of the adhesive layer provided on the plate surface of the electromagnetic steel sheet. A motor core characterized in that the following equations (1) and (2) are satisfied, where the amount of protrusion after drying is F (μm).
0.01 ≤ L / W ≤ 0.04 (1)
1 μm ≤ F ≤ 1 μm + 250 μm × (L / W) (2)
請求項1に記載のモータコアを製造するモータコアの製造方法であって、
平面視において前記打ち抜き端面からの接着剤塗布位置をX(mm)、接着時の加圧圧力をP(MPa)としたとき、ダレ比L/Wと接着時の加圧圧力Pに応じて、前記電磁鋼板の内側の板面に下記式(3)〜(7)のいずれかを満足する位置に接着剤を塗布することを特徴とするモータコアの製造方法。
(A1)ダレ比0.01≦L/W≦0.024の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.1mm×P+0.15mm (3)
(A2)ダレ比0.01≦L/W≦0.024の場合でかつ125MPa×(L/W)+0.5MPa≦P≦3.5MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.1mm×P+0.15mm (4)
(A3)ダレ比0.01≦L/W≦0.024の場合でかつ3.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合、
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (5)
(B1)ダレ比0.024<L/W≦0.04の場合でかつ0≦P≦125MPa×(L/W)+0.5MPaである場合、
0.02mm≦X≦0.1mm×P+0.15mm(3)
(B2)ダレ比0.024<L/W≦0.04の場合でかつ3.5MPa≦P≦125MPa×(L/W)+0.5MPaの場合、
0.02mm≦X≦0.5mm (6)
(B3)ダレ比0.024<L/W≦0.04の場合でかつ125MPa×(L/W)+0.5MPa≦P≦125MPa×(L/W)+5.3MPaの場合
0.1mm×P−12.5mm×(L/W)−0.03mm≦X≦0.5mm (7)
A method for manufacturing a motor core according to claim 1, wherein the motor core is manufactured.
When the adhesive application position from the punched end face is X (mm) and the pressurizing pressure at the time of bonding is P (MPa) in a plan view, the sagging ratio L / W and the pressurizing pressure P at the time of bonding are affected. A method for manufacturing a motor core, which comprises applying an adhesive to a plate surface inside the electromagnetic steel plate at a position satisfying any of the following formulas (3) to (7).
(A1) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(A2) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 3.5 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (4)
(A3) When the sagging ratio is 0.01 ≦ L / W ≦ 0.024 and when 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa
0.1 mm x P-12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (5)
(B1) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 0 ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.1 mm x P + 0.15 mm (3)
(B2) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 3.5 MPa ≦ P ≦ 125 MPa × (L / W) + 0.5 MPa
0.02 mm ≤ X ≤ 0.5 mm (6)
(B3) When the sagging ratio is 0.024 <L / W ≦ 0.04 and 125 MPa × (L / W) + 0.5 MPa ≦ P ≦ 125 MPa × (L / W) + 5.3 MPa 0.1 mm × P -12.5 mm x (L / W) -0.03 mm ≤ X ≤ 0.5 mm (7)
JP2018047621A 2018-03-15 2018-03-15 Motor core Active JP6954195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047621A JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047621A JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Publications (2)

Publication Number Publication Date
JP2019161928A JP2019161928A (en) 2019-09-19
JP6954195B2 true JP6954195B2 (en) 2021-10-27

Family

ID=67992697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047621A Active JP6954195B2 (en) 2018-03-15 2018-03-15 Motor core

Country Status (1)

Country Link
JP (1) JP6954195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381940B2 (en) * 2019-10-08 2023-11-16 日本製鉄株式会社 Rotor, rotor design method, and rotor manufacturing method
US20230396137A1 (en) * 2021-03-02 2023-12-07 Mitsubishi Electric Corporation Stacked core, stacked core manufacturing method, and stacked core manufacturing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442742A (en) * 1990-06-07 1992-02-13 Toshiba Corp Machine method of core for electric rotating machine
JP3740882B2 (en) * 1999-03-24 2006-02-01 Jfeスチール株式会社 1/4 hard cold-rolled steel sheet and manufacturing method thereof
JP2003282330A (en) * 2002-03-27 2003-10-03 Jfe Steel Kk Adhesive-fixed laminated iron core and its manufacturing method
JP4938389B2 (en) * 2006-09-06 2012-05-23 三菱電機株式会社 Laminated core and stator
JP6134497B2 (en) * 2012-11-08 2017-05-24 京セラ株式会社 Manufacturing method of laminated core
JP6065032B2 (en) * 2014-01-29 2017-01-25 Jfeスチール株式会社 Laminated core manufacturing method and laminated core
JP6064923B2 (en) * 2014-01-29 2017-01-25 Jfeスチール株式会社 Manufacturing method of laminated iron core

Also Published As

Publication number Publication date
JP2019161928A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR102583082B1 (en) Adhesive laminated core, its manufacturing method and rotary electric machine
JP7486434B2 (en) Adhesive laminated core for stator and rotating electric machine
KR101967690B1 (en) Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
JP6954195B2 (en) Motor core
EP3872963A1 (en) Laminated core, core block, rotating electric machine, and method of manufacturing core block
WO2020129921A1 (en) Adhered/layered core for stator and rotating electrical machine
US11915860B2 (en) Laminated core and electric motor
JPWO2020129948A1 (en) Laminated core, its manufacturing method and rotary electric machine
KR102335462B1 (en) Composite materials for stator laminates and rotor laminates
KR102365884B1 (en) Method of manufacturing electrical steel sheet with adhesive insulating coating and method of manufacturing stacked electrical steel sheet
JP2004111509A (en) Laminated iron core having excellent iron loss characteristic and its manufacturing method
JP2006257228A (en) Adhesive composition
JP2016042771A (en) Rotor and electric motor including the rotor
EP4170690A1 (en) Electromagnetic steel sheet, lamianted core, and rotating electric machine
JP5732718B2 (en) Motor core
JP2011114952A (en) Motor core
JP2015042014A (en) Motor with reduced iron loss deterioration caused by shrink-fit
JP2003282330A (en) Adhesive-fixed laminated iron core and its manufacturing method
JP5750275B2 (en) Insulated steel sheet and laminated iron core
JP2014237281A (en) Honeycomb sandwich panel, method of producing honeycomb sandwich panel and elevator car using the honeycomb sandwich panel
EP3902108B1 (en) Laminated core and rotating electric machine
JP7406061B2 (en) Laminated core and its manufacturing method, rotating electric machine
JP7096016B2 (en) Manufacturing method of electrical steel sheet
KR20220010609A (en) Core blocks, laminated cores and rotating electric machines
CN104553181A (en) Composite material relay housing and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6954195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151