JP2004111509A - Laminated iron core having excellent iron loss characteristic and its manufacturing method - Google Patents

Laminated iron core having excellent iron loss characteristic and its manufacturing method Download PDF

Info

Publication number
JP2004111509A
JP2004111509A JP2002269607A JP2002269607A JP2004111509A JP 2004111509 A JP2004111509 A JP 2004111509A JP 2002269607 A JP2002269607 A JP 2002269607A JP 2002269607 A JP2002269607 A JP 2002269607A JP 2004111509 A JP2004111509 A JP 2004111509A
Authority
JP
Japan
Prior art keywords
adhesive
iron core
laminated
iron
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269607A
Other languages
Japanese (ja)
Inventor
Kazutoshi Takeda
竹田 和年
Norito Abe
阿部 憲人
Masakatsu Maeda
前田 昌克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002269607A priority Critical patent/JP2004111509A/en
Publication of JP2004111509A publication Critical patent/JP2004111509A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated iron core having a high iron loss characteristic and a method for manufacturing the laminated iron core. <P>SOLUTION: In the laminated iron core formed by laminating unit iron cores each of which is punched as a prescribed shape and partially fixing the surfaces of the unit iron cores by using an adhesive, the adhesive application positions of respective unit iron cores are arranged on respectively different positions in the lamination direction. The adhesive application positions are arranged on respectively different positions in each prescribed number of units and a thermosetting adhesive or inorganic adhesive is used as the adhesive. While partially fixing the unit iron cores by the adhesive, the fixing positions are made different in each unit iron core. Consequently the iron core having high iron loss characteristic and lamination accuracy can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
【0001】
本発明は、モ−タやトランスの鉄芯に用いる鉄損特性の優れた積層鉄芯、及びその製造方法に関するものである。
【0002】
【従来の技術】
電磁鋼板を用いてモ−タやトランス等の積層鉄芯を製造する方法としては、鋼板を所定の形状に打抜き、所定枚数を単位鉄芯として積層し、ボルト締め、カシメ、溶接等の手段を用いて固着するのが一般的である。固着された積層鉄芯は、防錆用コーティングを塗布したり、巻線コイルの組立て工程等を経て、最終的にモ−タやトランスの一部品として組込まれる。
【0003】
接着により固着された積層鉄芯は、電磁鋼板にボルト締めやカシメによる大きな弾性変形や塑性変形が生じないため、また溶接による大きな熱歪が生じていないため、相対的に鉄損特性が優れている。しかし、接着により固着した積層鉄芯の鉄損特性を電磁鋼板自体のそれと比較した場合、積層鉄芯の鉄損特性は劣っており、接着により固着した積層鉄芯でも鋼板自体の鉄損特性を活かすことができていない。
【0004】
鉄損特性に優れた積層鉄芯の固着方法については、これまでにも様々な技術が開示されている。例えば下記の特許文献1,2及び3が挙げられる。
【0005】
【特許文献1】
特開昭56−44368号公報
【0006】
【特許文献2】
特開昭57−34751号公報
【0007】
【特許文献3】
特開平11−186059号公報
【0008】
特許文献1に開示される技術は、単位鉄芯を打抜く際に鉄芯端部に打抜きによるかえりが焼鈍により単位鉄芯同士で粘着し短絡するため鉄損劣化を引き起こすことから、粘着を完全に防止することで性能劣化を防止しようとするものである。この技術では、積層時に行ったボルト締め、鋲締め、ウェルドによる機械的、あるいは熱的変形による鉄損劣化を防止するものではないため、鋼板自体の鉄損値と比較した場合の大幅な鉄損劣化は解決されていない。
【0009】
この特許文献1の記述に対して本発明は、積層鉄板の短絡は完全に防止した固着技術の中で、固着部を一部とすることで、電磁鋼板と接着剤、あるいは接着機能を有する電磁鋼板の絶縁被膜との熱膨張収縮差による残留応力を低減して、さらに鉄損特性を改善したものであり、従来技術を大幅に改善させたものである。
【0010】
同様に特許文献2に記載の発明は、鋼板の一部を凹部に加工しているため、その加工歪により、鋼板自体と比較した場合には大幅な鉄損劣化が問題である。
また特許文献3に記載の発明は溶接方法を特徴とする技術であるが、溶接熱歪により、鋼板自体と比較した場合に大幅な鉄損劣化が問題である。
【0011】
【発明が解決しようとする課題】
このような問題を解決する方法として、下記特許文献4には、特定接着剤を用いて部分的に特定箇所を固着する技術が開示されている。この技術は、積層鉄芯に付与される圧縮応力の影響を最小限に制御することにより、積層鉄芯の鉄損劣化を抑制しようとするものである。
【0012】
【特許文献4】
特開2002−151335号公報
【0013】
しかしながら、特許文献4に開示された技術では、積層鉄芯の固着する特定部分にビルドアップが発生し、形状が確保できないという問題があった。また、積層鉄芯の固着した特定部位に応力が集中し、鉄損劣化抑制効果もあまり大きくないことが判明した。
本発明は、かかる問題を回避し、形状精度および鉄損得性の優れた積層鉄芯とその製造方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明の特徴とするところは、以下の通りである。
(1)鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて単位鉄芯の表面を部分的に固着した積層鉄芯において、接着剤の塗布箇所を積層方向で異なる位置に配置したことを特徴とする鉄損特性の優れた積層鉄芯。
(2)鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて固着した積層鉄芯において、接着剤の塗布箇所を積層方向で所定枚数毎に異なる位置にしたことを特徴とする鉄損特性の優れた積層鉄芯。
(3)接着剤として熱硬化型接着剤を用いたことを特徴とする前記(1)又は  (2)記載の鉄損特性の優れた積層鉄芯。
(4)接着剤として無機系接着剤を用いたことを特徴とする前記(1)又は(2)記載の鉄損特性の優れた積層鉄芯。
(5)鋼板より所定の形状に単位鉄芯を打抜き後、この単位鉄芯を積層して接着剤を用いて固着する積層鉄芯において、接着剤にて単位鉄芯の一部を固着しながら、固着箇所を単位鉄芯毎に分散させることを特徴とする鉄損特性の優れた積層鉄芯の製造方法。
(6)鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて固着された積層鉄芯において、接着剤の塗布箇所を積層方向で所定枚数毎に異なる位置として固着することを特徴とする鉄損特性の優れた積層鉄芯の製造方法。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明者らは、無方向性電磁鋼板を所定の形状に打抜いた後に積層し、接着剤を用いて固着される積層鉄芯、およびその製造方法において、鋼板の接着固着方法を規定することによって、鉄芯形状と鉄損特性の優れた積層鉄芯を経済的に製造することに成功した。
【0016】
まず、積層する各電磁鋼板を固着するための接着剤について説明する。
本発明で使用する接着剤は上市されている通常の接着剤を使用可能であり、特に限定するものではないが、アクリル樹脂接着剤、シアノアクリレート系接着剤、エポキシ樹脂接着剤、ポリエステル接着剤、ポリウレタン接着剤、メラミン樹脂接着剤、フェノール樹脂接着剤などの各種接着剤が使用できる。
【0017】
さらに適しているものとしては、加熱により化学反応が進行する熱硬化性有機樹脂接着剤があり、具体的にはエポキシ樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂などの1種あるいは2種以上を主成分とする接着剤である。
また、ポリエステル、アクリル樹脂などに架橋剤を添加し、熱硬化性を付与したものも好適である。また、加熱により脱水縮合反応が進行して硬化する無機系接着剤や、りん酸カルシウムなどを主成分とする常温硬化型無機接着剤を用いても良い。
【0018】
また、接着剤の形態については特に限定するものではないが、2種混合タイプよりも1液タイプの方が取り扱いが簡便であり、さらに通常の溶剤使用のものよりも無溶剤型、粉体状の方が最近問題となっている環境に及ぼす悪影響が少なく好適である。
【0019】
次に、部分的に接着する固着の形態であるが、従来は鋼板表面の特定箇所に接着剤を塗布し各単位鉄芯同士を固着させていたが、部分的に接着した場合には接着剤の厚み分だけ塗布された部分が厚みを増すため、塗布されていない部分に比べて盛り上がり、結果的に積層鉄芯形状が悪化する。この積層精度の低下を回避するため、単位鉄芯表面に接着剤を塗布した後、次の単位鉄芯には前鉄芯の隣接する部分に接着剤を塗布する。この工程を繰返すことにより積層精度の確保が達成される。
【0020】
隣接部位に塗布する場合、所定枚数毎にまとめて同じところに塗布し、しかる後接着剤の塗布箇所を異なる位置に移動させても良い。また、必ずしも隣接させる必要も無く前単位鉄芯に塗布した位置から離れた位置でも良い。原理的には各塗布箇所での総量が単位鉄芯表面の円周方向でほぼ均一化することで、積層精度は確保できるものと推定される。
塗布形態の例を図1に示す。
【0021】
積層する各単位鉄芯の積層面において、その一部分のみを接着固着することによって鉄損特性が向上する理由は、以下のように考えている。各電磁鋼板を積層して固着した場合、鋼板間には引張りや圧縮の応力が生じると考えられる。接着剤による全面固着では、接着剤や接着被膜と鋼板の膨張収縮差や鋼板のミクロ的に見た場合の凹凸に起因する応力が発生し、全体としては圧縮応力が生じていると考えられる。なおこの時の応力は、主に弾性変形域内の応力であり、カシメで生じている塑性変形域の応力による鉄損劣化とは異なるものである。
【0022】
一般的に電磁鋼板に圧縮応力を負荷すると鉄損は劣化する。したがって、固着する部分を全面ではなく、部分的にすることによって接着箇所間に引張り応力が生じることで鉄損が向上すると考えられる。固着する面積は、磁気特性面から考えるとできるだけ小さくした方がよいが、固着強度を考えた場合、ある程度の面積が必要となる。望ましくは、全面積に対して5%以上の固着面積が好適である。モ−タコアの場合はさらに巻線の作業性も考慮して、ティ−ス先端部を固着するとよい。
【0023】
ティース先端部を固着する場合、単位鉄芯の全ティースに接着剤を塗布するのではなく、1つ置きあるいは数個置きに接着剤を塗布することにより、接着剤の総量をコントロールし、コアバック部に部分的に塗布された接着剤総量とバランスさせることにより、積層精度を確保できる。
【0024】
次に部分積層鉄芯の製造方法について述べる。
まず電磁鋼板を所定の形状に打ち抜いて単位鉄芯を造る。次に打ち抜いた電磁鋼板を積層して単位積層鉄芯を形成するが、この時に単位鉄芯の積層面の一部分に接着剤を塗布し固着させる。次の単位鉄芯を積層する際に、接着剤を塗布した単位鉄芯を所定量回転させたり、あるいは接着剤塗布装置の吐出部位を移動させることにより塗布部位を変更する。さらに、該単位鉄芯が積層される前に、既に積層されつつある固着中の積層鉄芯を回転させる方が簡便な装置で固着部位を移動させることが可能で、好適である。
【0025】
本発明で熱硬化型接着剤を使用し、硬化させるために加熱する場合、用いる加熱手段としては、通電加熱、誘導加熱、誘電加熱、電磁波照射、直接接触加熱などが使用でき、特に限定するものではないが、電熱ヒーターによる直接接触加熱が構造が簡単で好適である。
本発明では、上記加熱装置を積層部に設置した積層固着装置を用いることにより、積層鉄芯に塗布した接着剤を速やかに加熱硬化させることが可能である。
【0026】
本発明では、単位鉄芯表面を接着剤を用いて固着させるのであるが、単位鉄芯積層後に外周部から低粘性接着剤を用いて鋼板間に含浸させても良い。これは、適度に粘性を低下させた液状接着剤を積層面に滴下あるいは吹き付けることにより、毛細管現象を利用して各単位鉄芯間の空隙に浸透させようとするものであるが、従来の方法ではやはり固着後の積層精度に問題があり、本発明により固着部位を円周方向で分散させることで精度確保が可能である。
なお、ティース部を固着する場合、先端からではなくティースの側面から滴下することで余剰の接着剤の影響を低減することが可能である。
【0027】
【実施例】
公知の製造方法に基づいて冷間圧延および焼鈍され絶縁被膜が施される前の0.20mm厚の無方向性電磁鋼板を、外径60mmφ、内径35mmφ、コアバック幅6mm、ティース幅3mm、スロット数20のモータコア形状に打抜き、図2に示すようにボルト締め(No.1)、カシメ(No.2)、溶接(No.3)、および図3のNo.4〜6、図4のNo.7、表1の実施例5に示す様に積層時に熱硬化性接着剤を用いて加圧、加熱して、種々の固着部位により接着して積層鉄芯とした。
【0028】
また、比較例として従来の固着方法を示した(図4のNo.8、図5のNo.9〜11)。その各固着方法を表1に示す。また、コアバックで8箇所、ティース先端部8箇所の積み高さを測定し、計16箇所の最大値と最小値の差(Δ)を積層精度の目安とした。その後、一次巻線、二次巻線を施して、磁気測定に供した。なお供試材の打抜き後のW10/400は9.98W/kgであった。
【0029】
結果を表1に示す。表1より、ボルト締め、カシメ、溶接、全面接着した鉄芯に比べて、部分接着した鉄芯の方が鉄損特性が優れており、さらに接着箇所を分散させることにより鉄損特性が優れており高い積層精度が得られることが分かる。
【0030】
【表1】

Figure 2004111509
【0031】
【発明の効果】
本発明は、鉄損特性と積層精度の優れた積層鉄芯、およびその製造方法を提供するものであり、その工業的効果は大きい。
【図面の簡単な説明】
【図1】電磁鋼板を単位鉄芯に打抜き、1枚毎に接着剤を塗布した後、積層する際に3枚め以降の接着剤塗布箇所を前単位鉄芯の接着場所と隣接するようにずらしながら積層し固着した状態を積層面から俯瞰した状態を示す図。
【図2】No.1は従来技術であるボルト締めによる固定の様子を、No.2はカシメによる積層鉄芯固定の様子、No.3は溶接による固定の様子を示す図。
【図3】No.4はコアバックを1枚毎に36°時計廻りに回転させながら積層した状態を、No.5はコアバックを5枚毎に36°時計廻りに回転させながら積層し、ティース先端部にも3つ置きに接着剤を塗布した状態を、No.6は5枚毎に72°時計廻りに回転させながら積層しティース先端部にも6つ置きに接着剤を塗布した状態を示す図。なお、コアバック部の白丸(各No.毎に4カ所)は回転させる前のコアバック部の塗布位置を示す。
【図4】電磁鋼板を単位鉄芯に打抜き積層した後、積層端面から瞬間接着剤を滴下する際に、No.7は螺旋状に回転させながら滴下した本発明例を、No.8は従来技術の積層方向に直線状に滴下した状態を示す図。
【図5】従来技術によりNo.9はコアバックを全面接着した状態を、No.10はコアバック6箇所と全ティース先端部に接着剤を塗布した状態を、No.11はコアバック部のみ4個所に接着を塗布し固着した状態をそれぞれ示す。TECHNICAL FIELD OF THE INVENTION
[0001]
The present invention relates to a laminated iron core having excellent iron loss characteristics used for an iron core of a motor or a transformer, and a method of manufacturing the same.
[0002]
[Prior art]
As a method of manufacturing a laminated iron core such as a motor or a transformer using an electromagnetic steel sheet, a steel sheet is punched into a predetermined shape, a predetermined number of sheets are laminated as a unit iron core, and bolting, caulking, welding, and other means are used. It is common to use and fix. The fixed laminated iron core is finally assembled as one part of a motor or a transformer after applying a rust-preventive coating or assembling a wound coil.
[0003]
The laminated iron core fixed by bonding does not cause large elastic deformation or plastic deformation due to bolting or caulking of the electromagnetic steel sheet, and does not generate large thermal distortion due to welding, so it has relatively excellent iron loss characteristics. I have. However, when the iron loss characteristics of the laminated iron core fixed by bonding are compared with those of the electromagnetic steel sheet itself, the iron loss characteristics of the laminated iron core are inferior. I haven't been able to take advantage of it.
[0004]
Various techniques have been disclosed so far for a method of fixing a laminated iron core having excellent iron loss characteristics. For example, Patent Documents 1, 2, and 3 below are mentioned.
[0005]
[Patent Document 1]
JP-A-56-44368 [0006]
[Patent Document 2]
JP-A-57-34751
[Patent Document 3]
Japanese Patent Application Laid-Open No. H11-186059
According to the technology disclosed in Patent Document 1, when punching a unit iron core, the burrs formed by punching at the ends of the iron core adhere to each other due to annealing and short-circuit, thereby causing iron loss deterioration. In this case, the performance is prevented from being deteriorated. This technology does not prevent iron loss deterioration due to mechanical or thermal deformation due to bolting, tacking, welding, etc. performed during lamination, so significant iron loss compared to the iron loss value of the steel sheet itself Deterioration has not been resolved.
[0009]
In contrast to the description of Patent Literature 1, the present invention provides a fixing technology in which a short circuit of a laminated iron plate is completely prevented. The residual stress due to the difference in thermal expansion and contraction with the insulating coating of the steel sheet is reduced, and the iron loss characteristics are further improved.
[0010]
Similarly, in the invention described in Patent Literature 2, since a part of the steel sheet is processed into the concave portion, a significant iron loss deterioration is a problem when compared with the steel sheet itself due to the processing strain.
Further, the invention described in Patent Document 3 is a technique characterized by a welding method, but has a problem of significant iron loss deterioration as compared with the steel sheet itself due to welding heat distortion.
[0011]
[Problems to be solved by the invention]
As a method for solving such a problem, Patent Literature 4 below discloses a technique of partially fixing a specific portion using a specific adhesive. This technique is intended to suppress the core loss deterioration of the laminated iron core by controlling the influence of the compressive stress applied to the laminated iron core to a minimum.
[0012]
[Patent Document 4]
JP-A-2002-151335
However, the technique disclosed in Patent Document 4 has a problem that build-up occurs at a specific portion to which the laminated iron core is fixed, and the shape cannot be secured. In addition, it was found that stress was concentrated on a specific portion where the laminated iron core was fixed, and the effect of suppressing iron loss deterioration was not so large.
An object of the present invention is to provide a laminated iron core excellent in shape accuracy and iron loss obtainability while avoiding such a problem, and a method for manufacturing the same.
[0014]
[Means for Solving the Problems]
The features of the present invention are as follows.
(1) In a laminated iron core obtained by laminating unit iron cores punched out of a steel sheet into a predetermined shape and partially fixing the surface of the unit iron core using an adhesive, the application location of the adhesive is determined in the laminating direction. A laminated iron core with excellent iron loss characteristics characterized by being arranged at different positions.
(2) Unit iron cores punched out of a steel sheet into a predetermined shape are laminated, and in the laminated iron core fixed using an adhesive, the application point of the adhesive is set to a different position every predetermined number in the laminating direction. A laminated iron core with excellent iron loss characteristics.
(3) The laminated iron core having excellent core loss characteristics according to the above (1) or (2), wherein a thermosetting adhesive is used as the adhesive.
(4) The laminated iron core excellent in iron loss characteristics according to the above (1) or (2), wherein an inorganic adhesive is used as the adhesive.
(5) After punching a unit iron core into a predetermined shape from a steel plate, the unit iron core is laminated and fixed using an adhesive. And a method for manufacturing a laminated iron core having excellent iron loss characteristics, characterized in that fixing portions are dispersed for each unit iron core.
(6) Unit iron cores punched into a predetermined shape from a steel plate are laminated and fixed using an adhesive, and the adhesive application locations are fixed at different positions for each predetermined number of sheets in the laminating direction. A method for producing a laminated iron core having excellent iron loss characteristics.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The present inventors provide a laminated iron core that is laminated after punching a non-oriented electrical steel sheet into a predetermined shape, and is fixed using an adhesive, and a method of manufacturing and bonding the steel sheet. As a result, a laminated iron core excellent in iron core shape and iron loss characteristics was successfully manufactured economically.
[0016]
First, an adhesive for fixing the electromagnetic steel sheets to be laminated will be described.
The adhesive used in the present invention may be a normal adhesive on the market, and is not particularly limited. An acrylic resin adhesive, a cyanoacrylate-based adhesive, an epoxy resin adhesive, a polyester adhesive, Various adhesives such as a polyurethane adhesive, a melamine resin adhesive, and a phenol resin adhesive can be used.
[0017]
A more suitable material is a thermosetting organic resin adhesive in which a chemical reaction proceeds by heating. Specifically, one or more of epoxy resin, phenol resin, urethane resin, and melamine resin are mainly used. An adhesive as a component.
Further, those obtained by adding a crosslinking agent to polyester, acrylic resin, or the like to impart thermosetting properties are also suitable. Further, an inorganic adhesive which cures by the progress of a dehydration condensation reaction by heating, or a room temperature curing inorganic adhesive mainly containing calcium phosphate or the like may be used.
[0018]
The form of the adhesive is not particularly limited, but the handling of the one-liquid type is easier than that of the two-mixed type. Is preferred because it has less adverse effects on the environment, which has recently become a problem.
[0019]
Next, it is a form of fixation that partially adheres. Conventionally, an adhesive was applied to a specific portion of the steel sheet surface and the unit iron cores were fixed to each other. In this case, the thickness of the portion to which the coating is applied is increased by an amount corresponding to the thickness of the iron core, so that the swelling is increased as compared with the portion where the coating is not applied, and as a result, the shape of the laminated iron core deteriorates. In order to avoid this reduction in lamination accuracy, an adhesive is applied to the surface of the unit iron core, and then the next unit iron core is applied to the portion adjacent to the front iron core. By repeating this process, the lamination accuracy is ensured.
[0020]
In the case where the adhesive is applied to an adjacent part, the adhesive may be applied to the same place for every predetermined number of sheets, and then the adhesive may be moved to a different position. Further, it is not always necessary to make them adjacent to each other, and may be a position apart from the position applied to the front unit iron core. In principle, it is presumed that lamination accuracy can be ensured by making the total amount at each application location substantially uniform in the circumferential direction of the unit iron core surface.
FIG. 1 shows an example of a coating form.
[0021]
The reason why the core loss property is improved by bonding and fixing only a part of the laminated surfaces of the unit iron cores to be laminated is considered as follows. When the magnetic steel sheets are laminated and fixed, it is considered that tensile or compressive stress occurs between the steel sheets. It is considered that the entire surface is fixed by the adhesive, and a stress is generated due to a difference in expansion and contraction between the adhesive or the adhesive coating and the steel sheet or a microscopic unevenness of the steel sheet, and a compressive stress is generated as a whole. The stress at this time is mainly the stress in the elastic deformation region, and is different from the iron loss deterioration due to the stress in the plastic deformation region caused by caulking.
[0022]
Generally, when compressive stress is applied to an electromagnetic steel sheet, iron loss deteriorates. Therefore, it is considered that iron loss is improved by generating a tensile stress between bonding portions by partially fixing the portion to be fixed instead of the entire surface. The area to be fixed is preferably as small as possible from the viewpoint of magnetic properties, but a certain area is required in consideration of the fixing strength. Desirably, a fixing area of 5% or more with respect to the entire area is suitable. In the case of a motor core, the tip of the tooth is preferably fixed in consideration of the workability of the winding.
[0023]
When fixing the tips of the teeth, instead of applying the adhesive to all the teeth of the unit iron core, the adhesive is applied every other or every few to control the total amount of the adhesive, and the core back By balancing the total amount of the adhesive partially applied to the portion, the lamination accuracy can be ensured.
[0024]
Next, a method for manufacturing a partially laminated iron core will be described.
First, an electromagnetic steel plate is punched into a predetermined shape to produce a unit iron core. Next, the punched electromagnetic steel sheets are laminated to form a unit laminated iron core. At this time, an adhesive is applied and fixed to a part of the laminated surface of the unit iron core. When laminating the next unit iron core, the application site is changed by rotating the unit iron core to which the adhesive has been applied by a predetermined amount, or by moving the discharge site of the adhesive application device. Furthermore, it is preferable to rotate the laminated iron core that is already being laminated before the unitary iron cores are laminated, because it is possible to move the adhered portion with a simple device.
[0025]
When using a thermosetting adhesive in the present invention and heating for curing, as a heating means to be used, electric heating, induction heating, dielectric heating, electromagnetic wave irradiation, direct contact heating and the like can be used, and particularly limited ones can be used. However, direct contact heating by an electric heater is simple and preferable.
In the present invention, the adhesive applied to the laminated iron core can be quickly heated and cured by using the laminated fixing device in which the above-described heating device is installed in the laminated portion.
[0026]
In the present invention, the surface of the unit iron core is fixed by using an adhesive. However, after laminating the unit iron core, it may be impregnated between the steel plates by using a low-viscosity adhesive from the outer periphery. This is a method in which a liquid adhesive having a moderately reduced viscosity is dropped or sprayed on a lamination surface to make use of a capillary phenomenon to penetrate into a gap between each unit iron core. However, there is still a problem in the lamination accuracy after fixing, and the present invention can secure the accuracy by dispersing the fixing portions in the circumferential direction.
When the teeth portion is fixed, it is possible to reduce the influence of excess adhesive by dropping from the side of the teeth instead of from the tip.
[0027]
【Example】
A non-oriented electrical steel sheet having a thickness of 0.20 mm, an inner diameter of 35 mm, a core back width of 6 mm, a tooth width of 3 mm, a slot of 3 mm, and a 0.20 mm thick non-oriented electrical steel sheet before being subjected to cold rolling and annealing according to a known production method and subjected to an insulating coating. Punched into a number 20 motor core shape, bolted (No. 1), swaged (No. 2), welded (No. 3) as shown in FIG. 4 to 6 and No. 4 in FIG. 7. As shown in Example 5 in Table 1, a laminated iron core was formed by applying pressure and heating using a thermosetting adhesive during lamination and bonding at various fixing sites.
[0028]
As a comparative example, a conventional fixing method was shown (No. 8 in FIG. 4, and Nos. 9 to 11 in FIG. 5). Table 1 shows the respective fixing methods. In addition, the stacking height of eight places at the core back and eight places at the tip of the tooth was measured, and the difference (Δ) between the maximum value and the minimum value at a total of 16 places was used as a measure of lamination accuracy. After that, a primary winding and a secondary winding were applied and subjected to magnetic measurement. In addition, W10 / 400 after punching of the test material was 9.98 W / kg.
[0029]
Table 1 shows the results. From Table 1, it can be seen that the partially bonded iron core has better iron loss characteristics than the bolted, caulked, welded, and fully bonded iron core, and the iron loss characteristics are more excellent by dispersing the bonded portions. It can be seen that high lamination accuracy can be obtained.
[0030]
[Table 1]
Figure 2004111509
[0031]
【The invention's effect】
The present invention provides a laminated iron core excellent in iron loss characteristics and lamination accuracy, and a method for producing the same, and has a great industrial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example in which an electromagnetic steel sheet is punched into a unit iron core, an adhesive is applied to each sheet, and then, when laminating, the third and subsequent adhesive application points are adjacent to the bonding points of the front unit iron core. The figure which shows the state which looked at the state which laminated | stacked and fixed while shifting from the lamination surface.
FIG. No. 1 shows the state of fixing by bolting which is a conventional technique. No. 2 shows the state of fixing the laminated iron core by caulking. 3 is a diagram showing a state of fixing by welding.
FIG. No. 4 shows a state in which the core backs are stacked while rotating clockwise by 36 ° for each sheet. No. 5 shows a state in which the core back was laminated every five sheets while rotating clockwise by 36 °, and an adhesive was applied at every third end of the teeth. FIG. 6 is a view showing a state in which every five sheets are laminated while being rotated clockwise by 72 °, and an adhesive is applied to every six tips at the tips of the teeth. The white circles (4 locations for each No.) of the core back portion indicate the application position of the core back portion before rotating.
FIG. 4 is a diagram showing a case where an instantaneous adhesive is dropped from the lamination end face after punching and laminating an electromagnetic steel sheet on a unit iron core. No. 7 shows an example of the present invention in which the solution was dropped while being spirally rotated. FIG. 8 is a diagram showing a state of the prior art in which the liquid is dropped linearly in the stacking direction.
FIG. No. 9 shows a state in which the core back was completely adhered, and No. 9 No. 10 shows a state in which the adhesive was applied to six core backs and all the tips of the teeth. Numeral 11 indicates a state in which the adhesive is applied to and fixed to four portions only in the core back portion.

Claims (6)

鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて単位鉄芯の表面を部分的に固着した積層鉄芯において、接着剤の塗布箇所を積層方向で異なる位置に配置したことを特徴とする鉄損特性の優れた積層鉄芯。In a laminated iron core obtained by laminating unit iron cores punched into a predetermined shape from a steel plate and partially fixing the surface of the unit iron core using an adhesive, the application points of the adhesive are placed at different positions in the laminating direction. Laminated iron core with excellent core loss characteristics characterized by being arranged. 鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて固着した積層鉄芯において、接着剤の塗布箇所を積層方向で所定枚数毎に異なる位置にしたことを特徴とする鉄損特性の優れた積層鉄芯。Unit iron cores punched into a predetermined shape from a steel sheet are laminated, and in a laminated iron core fixed by using an adhesive, the application point of the adhesive is set to a different position for every predetermined number in the laminating direction. A laminated iron core with excellent iron loss characteristics. 接着剤として熱硬化型接着剤を用いたことを特徴とする請求項1又は2記載の鉄損特性の優れた積層鉄芯。3. The laminated iron core having excellent iron loss characteristics according to claim 1, wherein a thermosetting adhesive is used as the adhesive. 接着剤として無機系接着剤を用いたことを特徴とする請求項1又は2記載の鉄損特性の優れた積層鉄芯。3. The laminated iron core having excellent iron loss characteristics according to claim 1, wherein an inorganic adhesive is used as the adhesive. 鋼板より所定の形状に単位鉄芯を打抜き後、この単位鉄芯を積層して接着剤を用いて固着する積層鉄芯において、接着剤にて単位鉄芯の一部を固着しながら、固着箇所を単位鉄芯毎に分散させることを特徴とする鉄損特性の優れた積層鉄芯の製造方法。After punching a unit iron core into a predetermined shape from a steel plate, the unitary iron core is laminated and fixed using an adhesive. A method for producing a laminated iron core having excellent iron loss characteristics, comprising dispersing iron per unit iron core. 鋼板より所定の形状に打抜いた単位鉄芯を積層して、接着剤を用いて固着された積層鉄芯において、接着剤の塗布箇所を積層方向で所定枚数毎に異なる位置として固着することを特徴とする鉄損特性の優れた積層鉄芯の製造方法。Unit iron cores punched into a predetermined shape from a steel plate are laminated, and in the laminated iron core fixed using an adhesive, the adhesive application location is fixed at a different position for each predetermined number of sheets in the laminating direction. A method for manufacturing a laminated iron core having excellent iron loss characteristics.
JP2002269607A 2002-09-17 2002-09-17 Laminated iron core having excellent iron loss characteristic and its manufacturing method Pending JP2004111509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269607A JP2004111509A (en) 2002-09-17 2002-09-17 Laminated iron core having excellent iron loss characteristic and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269607A JP2004111509A (en) 2002-09-17 2002-09-17 Laminated iron core having excellent iron loss characteristic and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004111509A true JP2004111509A (en) 2004-04-08

Family

ID=32267495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269607A Pending JP2004111509A (en) 2002-09-17 2002-09-17 Laminated iron core having excellent iron loss characteristic and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004111509A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311765A (en) * 2006-03-10 2007-11-29 Kienle & Spiess Stanz & Druckgiesswerk Gmbh Lamination, and lamination packing method, tool and device
JP2008067459A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Laminated core and stator
JP2010178600A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2012029458A (en) * 2010-07-23 2012-02-09 Jfe Steel Corp Motor
JP2019022341A (en) * 2017-07-18 2019-02-07 本田技研工業株式会社 Manufacturing method of laminate steel plate and manufacturing apparatus
JP2020065314A (en) * 2018-10-15 2020-04-23 北陸電気工業株式会社 Vibration type power generator
WO2020129926A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
JP6894616B1 (en) * 2020-12-25 2021-06-30 田中精密工業株式会社 Heating device for laminated iron core
CN113140385A (en) * 2020-01-16 2021-07-20 丰田自动车株式会社 Laminated core
CN113141065A (en) * 2020-01-16 2021-07-20 丰田自动车株式会社 Laminated core
WO2022038945A1 (en) * 2020-08-21 2022-02-24 日立Astemo株式会社 Stator core of rotating electric machine and rotating electric machine
US20220069640A1 (en) * 2018-12-17 2022-03-03 Nippon Steel Corporation Laminated core and electric motor
WO2023095496A1 (en) * 2021-11-25 2023-06-01 日本製鉄株式会社 Laminated core and rotating electrical machine
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
US11979059B2 (en) 2018-12-17 2024-05-07 Nippon Steel Corporation Laminated core and electric motor
US11990795B2 (en) 2018-12-17 2024-05-21 Nippon Steel Corporation Adhesively-laminated core for stator, method of manufacturing same, and electric motor
US11996231B2 (en) 2018-12-17 2024-05-28 Nippon Steel Corporation Laminated core and electric motor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311765A (en) * 2006-03-10 2007-11-29 Kienle & Spiess Stanz & Druckgiesswerk Gmbh Lamination, and lamination packing method, tool and device
JP2008067459A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Laminated core and stator
JP2010178600A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2012029458A (en) * 2010-07-23 2012-02-09 Jfe Steel Corp Motor
JP2019022341A (en) * 2017-07-18 2019-02-07 本田技研工業株式会社 Manufacturing method of laminate steel plate and manufacturing apparatus
JP2020065314A (en) * 2018-10-15 2020-04-23 北陸電気工業株式会社 Vibration type power generator
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
JP7288201B2 (en) 2018-12-17 2023-06-07 日本製鉄株式会社 Laminated core and rotating electric machine
KR20210080522A (en) * 2018-12-17 2021-06-30 닛폰세이테츠 가부시키가이샤 Laminated Cores and Rotating Electrical Machines
US11996231B2 (en) 2018-12-17 2024-05-28 Nippon Steel Corporation Laminated core and electric motor
US11990795B2 (en) 2018-12-17 2024-05-21 Nippon Steel Corporation Adhesively-laminated core for stator, method of manufacturing same, and electric motor
CN113169592A (en) * 2018-12-17 2021-07-23 日本制铁株式会社 Laminated iron core and rotating electrical machine
TWI744741B (en) * 2018-12-17 2021-11-01 日商日本製鐵股份有限公司 Laminated iron core and rotating electric machine
JPWO2020129926A1 (en) * 2018-12-17 2021-11-04 日本製鉄株式会社 Laminated core and rotary electric machine
US11979059B2 (en) 2018-12-17 2024-05-07 Nippon Steel Corporation Laminated core and electric motor
US20220069640A1 (en) * 2018-12-17 2022-03-03 Nippon Steel Corporation Laminated core and electric motor
US11973369B2 (en) 2018-12-17 2024-04-30 Nippon Steel Corporation Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets
EP3902104A4 (en) * 2018-12-17 2022-10-05 Nippon Steel Corporation Laminated core and rotating electric machine
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
KR102573694B1 (en) * 2018-12-17 2023-09-04 닛폰세이테츠 가부시키가이샤 Laminated cores and rotating electrical appliances
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
WO2020129926A1 (en) * 2018-12-17 2020-06-25 日本製鉄株式会社 Laminated core and rotating electric machine
CN113141065A (en) * 2020-01-16 2021-07-20 丰田自动车株式会社 Laminated core
CN113140385A (en) * 2020-01-16 2021-07-20 丰田自动车株式会社 Laminated core
JP7431336B2 (en) 2020-08-21 2024-02-14 日立Astemo株式会社 rotating electric machine
WO2022038945A1 (en) * 2020-08-21 2022-02-24 日立Astemo株式会社 Stator core of rotating electric machine and rotating electric machine
JP6894616B1 (en) * 2020-12-25 2021-06-30 田中精密工業株式会社 Heating device for laminated iron core
JP2022101882A (en) * 2020-12-25 2022-07-07 田中精密工業株式会社 Heating device for laminated iron core
WO2023095496A1 (en) * 2021-11-25 2023-06-01 日本製鉄株式会社 Laminated core and rotating electrical machine

Similar Documents

Publication Publication Date Title
JP2004111509A (en) Laminated iron core having excellent iron loss characteristic and its manufacturing method
KR102573664B1 (en) Manufacturing method of laminated core, core block, rotary electric machine and core block
JP3725776B2 (en) Method for manufacturing laminated iron core and apparatus for manufacturing the same
KR102602877B1 (en) Adhesive laminated cores for stators and rotating electrical machines
KR102607691B1 (en) Adhesive laminated cores for stators and rotating electric machines
KR20210083337A (en) Adhesive laminated cores for stators and rotating electric machines
CN113056859A (en) Bonded laminated core, method for manufacturing same, and rotating electrical machine
KR102572555B1 (en) Laminated cores and rotating electrical appliances
KR20210091242A (en) Adhesive laminated core for stator, manufacturing method thereof, and rotating electric machine
JP4345480B2 (en) Manufacturing apparatus and manufacturing method of laminated iron core
US5558735A (en) Method for making laminate with U. V. cured polymer coating
JP2002151335A (en) Laminated iron core having superior iron loss characteristics, and its manufacturing method
JP7207610B2 (en) Coating composition for electromagnetic steel sheet, surface-coated electromagnetic steel sheet for bonding, and laminated core
EP3363028B1 (en) Tank comprising a magnetic shunt assembly for magnetic shielding of a power device
KR102109279B1 (en) A manufacturing method of stacked core for transformer with excellent no-load loss
JP3607804B2 (en) Laminated iron core manufacturing method
TW202203262A (en) Electromagnetic steel sheet, lamianted core, and rotating electric machine
JP2000173815A (en) Bonded steel sheet for stacked core
JP2003100523A (en) Low-noise laminated core and wound core using high- silicon steel plate
JPH066960A (en) Binding method for laminated core
JP2005019643A (en) Laminated core excellent in dimensional accuracy and its manufacturing method
JP3806236B2 (en) Method and apparatus for manufacturing laminated iron core
EP4354474A1 (en) Iron core of transformer, and manufacturing method therefor
JPH08107022A (en) Lamination core and wound core of low noise wherein high silicon steel plate is used
JP2022001013A (en) Laminated core and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107