JP2010178600A - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
JP2010178600A
JP2010178600A JP2009021726A JP2009021726A JP2010178600A JP 2010178600 A JP2010178600 A JP 2010178600A JP 2009021726 A JP2009021726 A JP 2009021726A JP 2009021726 A JP2009021726 A JP 2009021726A JP 2010178600 A JP2010178600 A JP 2010178600A
Authority
JP
Japan
Prior art keywords
applying member
stress
stress applying
teeth
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021726A
Other languages
Japanese (ja)
Inventor
Hisayuki Momijishima
寿行 椛嶌
Nobuo Sakate
宣夫 坂手
Yukihiro Sugimoto
幸弘 杉本
Toshiyuki Gendo
俊行 玄道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009021726A priority Critical patent/JP2010178600A/en
Publication of JP2010178600A publication Critical patent/JP2010178600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electrical machine capable of reducing iron loss by improving the magnetic characteristics of tooth portions. <P>SOLUTION: The rotating electrical machine includes a rotor, and a stator core which has a cylindrical yoke portion, and a plurality of tooth portions protruded from the yoke portion to the inside of a radial direction of the rotor, provided in the circumferential direction of the yoke portion and formed, by laminating a plurality of electromagnetic steel plates in the shaft direction of the rotor. The rotating electrical machine is provided with a stress applying member press-contacting the tooth portion and applying a compressed stress, in a direction orthogonal to the protruding direction of the tooth portion. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電動機、発電機といった回転電機に関する。   The present invention relates to a rotating electrical machine such as an electric motor and a generator.

回転電機のステータコアは複数枚の電磁鋼板を積層して形成される(特許文献1)。そのような電磁鋼板として、磁化容易軸が特定の方向性を有していない無方向性電磁鋼板や、磁化容易軸が一方向に揃っている一方向性電磁鋼板、或いは、直角方向に磁化容易軸を有する二方向性電磁鋼板等が用いられる。   A stator core of a rotating electrical machine is formed by laminating a plurality of electromagnetic steel sheets (Patent Document 1). As such an electrical steel sheet, a non-oriented electrical steel sheet in which the easy magnetization axis does not have a specific direction, a unidirectional electrical steel sheet in which easy magnetization axes are aligned in one direction, or easy magnetization in a perpendicular direction A bi-directional electrical steel sheet having an axis is used.

ステータコアは、円筒状のヨーク部と、ヨーク部からロータの径方向内方に突出するティース部とを有する構造である。このため、ヨーク部については周方向に、ティース部については突出方向に磁気特性が良好であることが、鉄損低減、モータ効率の点で好ましいことが知られている。このため、ティース部、ヨーク部を分割してそれぞれを一方向性電磁鋼板から構成した分割コア方式のステータコアが提案されている。   The stator core has a structure having a cylindrical yoke portion and a teeth portion protruding inward in the radial direction of the rotor from the yoke portion. For this reason, it is known that good magnetic characteristics in the circumferential direction for the yoke part and in the protruding direction for the tooth part are preferable in terms of iron loss reduction and motor efficiency. For this reason, a split core type stator core has been proposed in which the tooth portion and the yoke portion are divided and each made of a unidirectional electrical steel sheet.

また、電磁鋼板の磁化容易軸の方向以外に着目したものとして、特許文献2には、ティース部に、その突出方向の引張応力を付与するものが提案されている。特許文献2に開示されたステータコアは、ティース部の側面において、ティース部先端とヨーク部との間に介在するセラミック板を配置したものである。そして、電磁鋼板の熱収縮を利用して、セラミック板によりティース部に引張応力を付与することで、ティース部の突出方向の磁気特性向上を狙ったものである。   Further, Patent Document 2 proposes that a tensile stress in the protruding direction is applied to the teeth portion as a focus on the direction other than the direction of the easy magnetization axis of the electromagnetic steel sheet. In the stator core disclosed in Patent Document 2, a ceramic plate interposed between the tip of the tooth portion and the yoke portion is disposed on the side surface of the tooth portion. And it aims at the improvement of the magnetic characteristic of the protrusion direction of a teeth part by giving a tensile stress to a teeth part with a ceramic board using the thermal contraction of an electromagnetic steel plate.

特開2002−233090号公報JP 2002-233090 A 特開2008−17612号公報JP 2008-17612 A

しかし、特許文献2のようにティース部先端とヨーク部との間にセラミック板を介在させることによってティース部に引張応力を付与する構造の場合、セラミック板の一方端部がティース部の根元近傍のヨーク部に強く当接し、ヨーク部に局所的な径方向の圧縮応力を集中的に与えてしまう虞がある。ティース部の根元周辺は、ティース部からヨーク部に向かう多くの磁束が通る部位であり、ここに圧縮応力が集中的に作用すると鉄損が増大する。   However, in the case of a structure in which tensile stress is applied to the teeth portion by interposing a ceramic plate between the tip of the teeth portion and the yoke portion as in Patent Document 2, one end portion of the ceramic plate is near the root of the teeth portion. There is a risk that the yoke portion is in strong contact with the yoke portion, and local radial compressive stress is concentrated on the yoke portion. The vicinity of the root of the tooth portion is a portion through which a large amount of magnetic flux from the tooth portion toward the yoke portion passes, and iron stress increases when compressive stress acts intensively here.

本発明の目的は、ティース部の磁気特性を向上し、鉄損を低減することにある。   An object of the present invention is to improve the magnetic characteristics of the tooth portion and reduce iron loss.

本発明によれば、ロータと、円筒状のヨーク部と、前記ヨーク部から前記ロータの径方向内方に突出し、前記ヨーク部の周方向に複数設けられたティース部と、を有し、複数の電磁鋼板を前記ロータの軸方向に積層して形成されたステータコアと、を備えた回転電機において、前記ティース部に圧接して、前記ティース部の突出方向と直交する方向の圧縮応力を付加する応力付加部材を設けたことを特徴とする回転電機が提供される。   According to the present invention, there is provided a rotor, a cylindrical yoke portion, and a plurality of teeth portions protruding inward in the radial direction of the rotor from the yoke portion and provided in the circumferential direction of the yoke portion. And a stator core formed by laminating a plurality of electromagnetic steel plates in the axial direction of the rotor, and compressive stress in a direction perpendicular to the protruding direction of the tooth portion is applied in pressure contact with the tooth portion. There is provided a rotating electrical machine provided with a stress applying member.

この回転電機では、前記応力付加部材が前記ティース部の突出方向と直交する方向の圧縮応力を前記ティース部に付加することで、前記ティース部の突出方向の磁気特性が向上する。よって、ティース部の磁気特性を向上し、鉄損を低減することができる。   In this rotating electrical machine, the stress applying member applies a compressive stress in a direction orthogonal to the protruding direction of the tooth portion to the tooth portion, thereby improving the magnetic characteristics in the protruding direction of the tooth portion. Therefore, the magnetic characteristics of the teeth portion can be improved and the iron loss can be reduced.

本発明においては、前記ティース部に巻き回されたコイルを備え、前記応力付加部材は、前記ティース部の根元部分と先端部分との間の部分において、前記根元部分と前記先端部分とからそれぞれ離間して前記ティース部に圧接し、前記コイルは、前記応力付加部材を介して前記ティース部に巻き回された部分と、前記応力付加部材が前記ティース部に圧接していない部分において前記応力付加部材を介さずに前記ティース部に巻き回された部分と、を有していてもよい。この構成によれば、前記応力付加部材と前記ヨーク部又は前記先端部分との間のスペースをコイルの配設スペースとして利用して、コイルの巻き量を確保できる。   In the present invention, the coil includes a coil wound around the tooth portion, and the stress applying member is separated from the root portion and the tip portion at a portion between the root portion and the tip portion of the tooth portion. The coil is pressed against the teeth portion, and the coil is wound around the tooth portion via the stress applying member and the stress applying member at a portion where the stress applying member is not pressed against the tooth portion. And a portion wound around the teeth portion without being interposed therebetween. According to this configuration, the coil winding amount can be secured by using the space between the stress applying member and the yoke portion or the tip portion as the coil arrangement space.

また、本発明においては、前記応力付加部材は、前記ティース部毎に設けられ、前記ティース部を囲む筒体であり、前記筒体は、互いに接合されて前記筒体を構成する複数の分割体からなってもよい。この構成によれば、前記筒体により前記ティース部に圧縮応力を付加できる。   In the present invention, the stress applying member is a cylindrical body that is provided for each tooth portion and surrounds the tooth portion, and the cylindrical body is joined to each other to constitute the cylindrical body. It may consist of. According to this configuration, compressive stress can be applied to the teeth portion by the cylindrical body.

また、本発明においては、前記応力付加部材は、前記ティース部間に介在し、前記ロータの軸方向と平行な方向の開口部を有する筒体であってもよい。この構成によれば、コイルの配設スペースを確保しつつ、前記筒体により前記ティース部に圧縮応力を付加できる。   In the present invention, the stress applying member may be a cylindrical body that is interposed between the tooth portions and has an opening in a direction parallel to the axial direction of the rotor. According to this configuration, it is possible to apply compressive stress to the teeth portion by the cylindrical body while securing a space for arranging the coil.

また、本発明においては、前記応力付加部材は、前記ティース部毎に設けられ、前記ティース部に巻き回された帯体であってもよい。この構成によれば、前記帯体により前記ティース部に圧縮応力を付加できる。   In the present invention, the stress applying member may be a belt provided for each tooth portion and wound around the tooth portion. According to this configuration, compressive stress can be applied to the teeth portion by the band.

以上述べた通り、本発明によれば、ティース部の磁気特性を向上し、鉄損を低減することができる。   As described above, according to the present invention, the magnetic characteristics of the tooth portion can be improved and the iron loss can be reduced.

(a)は本発明の第1実施形態に係る回転電機Aの断面図、(b)は図1(a)の線X−Xに沿う回転電機Aの断面図である。(A) is sectional drawing of the rotary electric machine A which concerns on 1st Embodiment of this invention, (b) is sectional drawing of the rotary electric machine A in alignment with line XX of Fig.1 (a). (a)は電磁鋼板23の斜視図、(b)はティース部21に設けられた応力付加部材50の斜視図である。(A) is a perspective view of the electromagnetic steel sheet 23, and (b) is a perspective view of the stress applying member 50 provided in the tooth portion 21. (a)及び(b)は応力付加部材50の構成例を示す分解斜視図、(c)は全分割体54を一体化した構成例を示す図である。(A) And (b) is a disassembled perspective view which shows the structural example of the stress addition member 50, (c) is a figure which shows the structural example which integrated all the division bodies 54. FIG. (a)は分割体51、52の接合構造を示す断面図、(b)はコイル30の配設状態を示す図である。(A) is sectional drawing which shows the joining structure of the division bodies 51 and 52, (b) is a figure which shows the arrangement | positioning state of the coil 30. FIG. (a)は応力付加部材50によりティース部21に付加される圧縮応力の説明図、(b)は応力付加部材50の寸法を示す説明図、(c)は本発明の第2実施形態におけるティース部21'、応力付加部材50'の説明図である。(A) is explanatory drawing of the compressive stress added to the teeth part 21 by the stress addition member 50, (b) is explanatory drawing which shows the dimension of the stress addition member 50, (c) is the teeth in 2nd Embodiment of this invention. It is explanatory drawing of part 21 'and stress addition member 50'. (a)は本発明の第3実施形態における応力付加部材150の説明図、(b)は応力付加部材150の斜視図である。(A) is explanatory drawing of the stress application member 150 in 3rd Embodiment of this invention, (b) is a perspective view of the stress application member 150. FIG. 本発明の第4実施形態における応力付加部材250の説明図である。It is explanatory drawing of the stress addition member 250 in 4th Embodiment of this invention.

<第1実施形態>
図1(a)は本発明の第1実施形態に係る回転電機Aの断面図、図1(b)は図1(a)の線X−Xに沿う回転電機Aの断面図である。回転電機Aは、電動機又は発電機であって、ロータ10と、ステータコア20と、コイル30と、ケース40と、応力付加部材50と、を備える。ロータ10は、ロータ軸11とロータ軸の周囲に配設された複数個の永久磁石(不図示)と、を備える。以下、軸方向、周方向、径方向と言うときは、特に断らない限り、ロータ10の軸方向(軸方向と平行な方向を含む)、周方向、径方向を指すものとする。
<First Embodiment>
FIG. 1A is a cross-sectional view of the rotating electrical machine A according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view of the rotating electrical machine A along the line XX of FIG. The rotating electrical machine A is an electric motor or a generator, and includes a rotor 10, a stator core 20, a coil 30, a case 40, and a stress applying member 50. The rotor 10 includes a rotor shaft 11 and a plurality of permanent magnets (not shown) disposed around the rotor shaft. Hereinafter, the axial direction, the circumferential direction, and the radial direction refer to the axial direction (including a direction parallel to the axial direction), the circumferential direction, and the radial direction of the rotor 10 unless otherwise specified.

ステータコア20は、ロータ10と同心円筒状のヨーク部22と、ヨーク部22から径方向内方に突出し、ヨーク部22の周方向に等間隔で複数(本実施形態では8つ)設けられたティース部21と、を備え、各ティース部21にはコイル30が巻き回されている。ステータコア20は、軸方向に積層された複数の電磁鋼板23の積層体である。図2(a)は電磁鋼板23の斜視図であり、ティース部21を構成する部分とヨーク部22を構成する部分とが一体に形成されている。   The stator core 20 has a cylindrical yoke portion 22 concentric with the rotor 10 and teeth that protrude radially inward from the yoke portion 22 and are provided at equal intervals in the circumferential direction of the yoke portion 22 (eight in this embodiment). And a coil 30 is wound around each tooth portion 21. The stator core 20 is a laminate of a plurality of electromagnetic steel plates 23 laminated in the axial direction. FIG. 2A is a perspective view of the electromagnetic steel plate 23, in which a portion constituting the tooth portion 21 and a portion constituting the yoke portion 22 are integrally formed.

本実施形態では、周方向には1つの電磁鋼板23を軸方向に積層してステータコア20を形成したが、ティース部、ヨーク部を分割してそれぞれを一方向性電磁鋼板から構成した分割コア方式のステータコアでもよい。   In the present embodiment, the stator core 20 is formed by laminating one electromagnetic steel plate 23 in the circumferential direction in the circumferential direction. However, the split core method is configured by dividing the teeth portion and the yoke portion and respectively unidirectional electromagnetic steel plates. The stator core may be used.

図1(a)及び(b)を参照して、ケース40は例えばアルミ合金等の金属製であり、ステータコア20が挿入される筒状体をなしている。図1(a)及び(b)においては、ステータコア20の軸方向の両端部が開放されているが、各端部にはロータ軸11を軸支する端部部材(不図示)が設けられる。端部部材はケース40と別体でケース40に固定することで構成できるが、端部部材の一方はケース40と一体であってもよい。   Referring to FIGS. 1A and 1B, case 40 is made of a metal such as an aluminum alloy, for example, and forms a cylindrical body into which stator core 20 is inserted. In FIGS. 1A and 1B, both end portions of the stator core 20 in the axial direction are open, but end members (not shown) for supporting the rotor shaft 11 are provided at the respective end portions. The end member can be configured by being fixed to the case 40 separately from the case 40, but one of the end members may be integrated with the case 40.

応力付加部材50は、各ティース部毎に設けられ、ティース部21に圧接して、ティース部21の突出方向と直交する方向の圧縮応力をティース部21に付加する。応力付加部材50の材料は非磁性材料であり、例えば、アルミ合金やオースナイト系SUS等の非磁性金属材料を用いることができる。   The stress applying member 50 is provided for each tooth part, presses against the tooth part 21, and applies a compressive stress in a direction orthogonal to the protruding direction of the tooth part 21 to the tooth part 21. The material of the stress applying member 50 is a nonmagnetic material, and for example, a nonmagnetic metal material such as an aluminum alloy or austenitic SUS can be used.

図2(b)はティース部21に設けられた応力付加部材50の斜視図である。本実施形態の場合、応力付加部材50は、ティース部21の周方向の各側面に圧接する一対の壁部50aと、ティース部21の軸方向の各側面に圧接する一対の壁部50bと、から構成され、ティース部21を囲む方形の筒体である。   FIG. 2B is a perspective view of the stress applying member 50 provided in the tooth portion 21. In the case of the present embodiment, the stress applying member 50 includes a pair of wall portions 50a that are pressed against each side surface in the circumferential direction of the teeth portion 21, a pair of wall portions 50b that are pressed against each side surface in the axial direction of the teeth portion 21, This is a rectangular cylinder surrounding the teeth portion 21.

本実施形態の場合、ティース部21の先端部分21aが、他の部分よりも幅広となっているため、応力付加部材50は互いに接合されて筒体を構成する複数の分割体から構成されている。図3(a)及び(b)は応力付加部材50の構成例を示す分解斜視図である。これらの構成例は、いずれも、応力付加部材50を2分割構造としたものであるが、3分割以上であってもよい。尤も、組み立て時の利便性を考慮すると2分割構造が望ましい。   In the case of this embodiment, since the front-end | tip part 21a of the teeth part 21 is wider than another part, the stress application member 50 is comprised from the several division body which mutually joins and comprises a cylinder. . 3A and 3B are exploded perspective views showing a configuration example of the stress applying member 50. FIG. In any of these configuration examples, the stress applying member 50 is divided into two parts, but may be divided into three parts or more. However, in consideration of convenience during assembly, a two-part structure is desirable.

図3(a)の例は、応力付加部材50を周方向に2分割した分割体51と52とから構成したものである。また、図3(b)の例は、応力付加部材50を軸方向に2分割した分割体53と54とから構成したものである。図3(b)の例の場合、各ティース部21に応じて周方向に環状に分割体53、54を配し、分割体53及び分割体54毎に一体化してもよい。図3(c)は、全ての分割体54を一体化した構成例を示す図であり、リング状の部材と各分割体54を一体的に構成することで、全分割体54を一体化したものである。   The example of Fig.3 (a) is comprised from the division bodies 51 and 52 which divided the stress addition member 50 into 2 in the circumferential direction. In the example of FIG. 3B, the stress applying member 50 is composed of divided bodies 53 and 54 that are divided into two in the axial direction. In the case of the example of FIG. 3B, the divided bodies 53 and 54 may be arranged annularly in the circumferential direction according to each tooth portion 21, and may be integrated for each of the divided body 53 and the divided body 54. FIG. 3C is a diagram showing a configuration example in which all the divided bodies 54 are integrated, and by integrating the ring-shaped member and each divided body 54, all the divided bodies 54 are integrated. Is.

分割体同士の接合方法としては、溶接のほか、機械的な係合であってもよく、強固に接合できればどのような接合でもよい。溶接等の場合、図3(a)の例のように周方向に2分割した構成の方が、溶接作業がやり易いという利点がある。   As a method for joining the divided bodies, mechanical engagement may be used in addition to welding, and any joining may be used as long as it can be firmly joined. In the case of welding or the like, the configuration divided into two in the circumferential direction as in the example of FIG.

図4(a)は分割体51、52の接合構造を示す断面図であり、機械的な係合構造の例を示す。分割体53、54の接合にも同種構造を用いることもできる。図4(a)の例では、分割体51、52の各接合端面において、分割体51には突起部51aを設け、分割体52には突起部51aが嵌合する溝52aを形成したものである。この突起部51a及び溝52aは接合端面の長手方向に線状に形成することができる。突起部51aと溝52aとを嵌合すると、溝52aが押し広げられて若干塑性変形する場合があるが、応力付加部材50にはコイル30が巻かれるので該変形は解消される。   FIG. 4A is a cross-sectional view showing the joining structure of the divided bodies 51 and 52, and shows an example of a mechanical engagement structure. The same kind of structure can also be used for joining the divided bodies 53 and 54. In the example of FIG. 4A, at each joint end face of the divided bodies 51, 52, the divided body 51 is provided with a protruding portion 51a, and the divided body 52 is formed with a groove 52a into which the protruding portion 51a is fitted. is there. The protrusion 51a and the groove 52a can be formed linearly in the longitudinal direction of the joint end face. When the protrusion 51a and the groove 52a are fitted, the groove 52a may be expanded and slightly plastically deformed. However, since the coil 30 is wound around the stress applying member 50, the deformation is eliminated.

応力付加部材50を設けると、ティース部21間のスペースが小さくなり、コイル30の配設スペースが応力付加部材50を設けない場合よりも小さくなる。本実施形態では、応力付加部材50が、ティース部21の根元部分と先端部分21aとの間の部分において、先端部分と根元部分とからそれぞれ離間してティース部21に圧接するように応力付加部材50の径方向の幅を設定している。そして、先端部分21a側と根元部分側においてはコイル30をティース部21に直接巻くようにしている。   When the stress applying member 50 is provided, the space between the tooth portions 21 is reduced, and the space for arranging the coil 30 is smaller than when the stress applying member 50 is not provided. In the present embodiment, the stress applying member 50 is disposed so that the stress applying member 50 is in pressure contact with the tooth portion 21 at a portion between the root portion and the tip end portion 21a of the tooth portion 21 and spaced apart from the tip portion and the root portion. A radial width of 50 is set. The coil 30 is directly wound around the tooth portion 21 on the tip portion 21a side and the root portion side.

図4(b)はコイル30の配設状態を示す図であり、特に、応力付加部材50の周囲においては、個々のコイル巻き線31の配置を詳細に示した図である。同図に示すように、応力付加部材50がティース部21に圧接した領域R2においてはコイル巻き線31は応力付加部材50を介してティース部21に巻きまわされ、応力付加部材50がティース部21に圧接していない、根元部分側の領域R1及び先端部分21a側の領域R3においてはコイル巻き線31は応力付加部材50を介さずに直接ティース部21に巻きまわされている。このように領域R1、R3をコイル30の配設スペースとして利用して、コイル30の巻き量を確保できる。   FIG. 4B is a diagram showing the arrangement state of the coil 30, and in particular, in the vicinity of the stress applying member 50, the arrangement of the individual coil windings 31 is shown in detail. As shown in the figure, in the region R <b> 2 where the stress applying member 50 is in pressure contact with the tooth portion 21, the coil winding 31 is wound around the tooth portion 21 via the stress applying member 50, and the stress applying member 50 is wound on the tooth portion 21. In the region R1 on the base portion side and the region R3 on the tip portion 21a side that are not pressed against each other, the coil winding 31 is directly wound around the tooth portion 21 without the stress applying member 50 interposed therebetween. Thus, the amount of winding of the coil 30 can be ensured by using the regions R1 and R3 as the arrangement space of the coil 30.

なお、コイル巻き線31とステータコア20との間は絶縁されるようにシート等が設けられることはいうまでもない。また、応力付加部材50を、ティース部21の根元部分と先端部分21aとから離間させることは、ティース部21の根元周辺において応力付加部材50がヨーク部22に圧縮応力を付与してしまうことを確実に回避できるという効果もある。   Needless to say, a sheet or the like is provided between the coil winding 31 and the stator core 20 so as to be insulated. Further, separating the stress applying member 50 from the root portion and the tip end portion 21 a of the tooth portion 21 means that the stress applying member 50 imparts compressive stress to the yoke portion 22 around the root of the tooth portion 21. There is also an effect that it can be surely avoided.

係る構成からなる回転電機Aでは、応力付加部材50がティース部21の突出方向と直交する方向の圧縮応力をティース部21に与えることで、ティース部21の突出方向、つまり、磁束が流れる方向の磁気特性が向上し、その鉄損を低減することができる。図5(a)は応力付加部材50によりティース部21に付加される圧縮応力の説明図である。   In the rotating electrical machine A having such a configuration, the stress applying member 50 applies a compressive stress in a direction orthogonal to the protruding direction of the tooth portion 21 to the tooth portion 21, so that the protruding direction of the tooth portion 21, that is, the direction in which the magnetic flux flows. Magnetic characteristics can be improved and the iron loss can be reduced. FIG. 5A is an explanatory diagram of the compressive stress applied to the tooth portion 21 by the stress applying member 50.

電磁鋼板は、圧縮応力を受けるとその圧縮方向と直交する方向の磁気特性が向上するという性質がある。これは圧縮応力を受けるとその圧縮方向と直交する方向に磁区が向き易くなるためと考えられる。本実施形態の場合、図5(a)に示すように、ティース部21に対して応力付加部材50によって、矢印d2で示す周方向の圧縮応力と矢印d3で示す軸方向の圧縮応力が付加される。このため、矢印d1で示すティース部21の突出方向の磁気特性が向上することになる。本実施形態では応力付加部材50が、矢印d2で示す周方向の圧縮応力と矢印d3で示す軸方向の圧縮応力とを付加するが、周方向又は軸方向のいずれか一方向の圧縮応力を付加するようにしてもよい。   When subjected to compressive stress, the electrical steel sheet has a property that magnetic properties in a direction perpendicular to the compression direction are improved. This is considered to be because when a compressive stress is applied, the magnetic domains are easily oriented in a direction perpendicular to the compression direction. In the case of this embodiment, as shown in FIG. 5A, the stress applying member 50 applies a circumferential compressive stress indicated by an arrow d2 and an axial compressive stress indicated by an arrow d3 to the tooth portion 21. The For this reason, the magnetic characteristic of the protrusion direction of the teeth part 21 shown by the arrow d1 is improved. In this embodiment, the stress applying member 50 applies a circumferential compressive stress indicated by an arrow d2 and an axial compressive stress indicated by an arrow d3, but applies a compressive stress in either the circumferential direction or the axial direction. You may make it do.

応力は材料の熱膨張、熱収縮を利用した残留応力で付加することができる。例えば、応力付加部材50を加熱して熱膨張させた状態でティース部21に装着し、常温に戻すことで応力が付加されるようにする。このとき、応力付加部材50の常温での寸法により圧縮応力を制御できる。図5(b)は応力付加部材50の寸法を示す説明図である。壁部50a間の常温での幅W1をティース部21の周方向の幅よりも短くしておくことで、図5(a)において矢印d2で示す周方向の圧縮応力をティース部21に付加でき、寸法差の度合いにより圧縮応力の大きさを変えることができる。同様に、壁部50b間の常温での幅W2をティース部21の軸方向の幅よりも短くしておくことで、図5(a)において矢印d3で示す軸方向の圧縮応力をティース部21に付加でき、寸法差の度合いにより圧縮応力の大きさを変えることができる。   The stress can be applied as a residual stress utilizing thermal expansion and contraction of the material. For example, the stress applying member 50 is attached to the tooth portion 21 in a state of being heated and thermally expanded, and the stress is applied by returning to the normal temperature. At this time, the compressive stress can be controlled by the dimensions of the stress applying member 50 at room temperature. FIG. 5B is an explanatory view showing the dimensions of the stress applying member 50. By setting the width W1 between the wall portions 50a at normal temperature to be shorter than the circumferential width of the teeth portion 21, the circumferential compressive stress indicated by the arrow d2 in FIG. 5A can be applied to the teeth portion 21. The magnitude of the compressive stress can be changed depending on the degree of dimensional difference. Similarly, by setting the width W2 between the wall portions 50b at normal temperature to be shorter than the width in the axial direction of the tooth portion 21, the axial compressive stress indicated by the arrow d3 in FIG. The magnitude of the compressive stress can be changed according to the degree of dimensional difference.

<第2実施形態>
上記第1実施形態では、先端部分21aを除き、ティース部21の周方向の幅を均一としたが、根元部分から先端部分21aに向かうに従って周方向の幅を狭くしてもよい。このようにすることで、上記第1実施形態の構成よりもコイル30の配設スペースを拡大できる。この場合、応力付加部材50の壁部50aもティース部21の形状に倣ったものとする。
<Second Embodiment>
In the said 1st Embodiment, except for the front-end | tip part 21a, the width | variety of the circumferential direction of the teeth part 21 was made uniform, but you may narrow the circumferential width | variety as it goes to the front-end | tip part 21a from a root part. By doing in this way, the arrangement | positioning space of the coil 30 can be expanded rather than the structure of the said 1st Embodiment. In this case, it is assumed that the wall portion 50 a of the stress applying member 50 also follows the shape of the tooth portion 21.

図5(c)は、本発明の第2実施形態におけるティース部21'、応力付加部材50'の説明図である。ティース部21'は、その根元部分の周方向の幅がW11であって、先端部分21a'側の周方向の幅がW12(<W11)であり、根元部分から先端部分21a'に向かうに従って周方向の幅が狭くなっている。   FIG.5 (c) is explanatory drawing of teeth part 21 'and stress application member 50' in 2nd Embodiment of this invention. The tooth portion 21 ′ has a width in the circumferential direction of the root portion of W11 and a width in the circumferential direction of the tip portion 21a ′ of W12 (<W11), and the tooth portion 21 ′ has a circumferential width from the root portion toward the tip portion 21a ′. The direction width is narrow.

応力付加部材50'は、ティース部21の周方向の各側面に圧接する一対の壁部50a'がティース部21'の形状に倣ったものとなっており、壁部50a'間の幅がティース部21'の根元部分側で大きく、先端部分21a'側で小さくなっている。   The stress applying member 50 ′ has a pair of wall portions 50 a ′ that press-contact with each side surface in the circumferential direction of the tooth portion 21, following the shape of the tooth portion 21 ′, and the width between the wall portions 50 a ′ is the teeth. It is large on the base portion side of the portion 21 'and small on the tip portion 21a' side.

本実施形態の場合、ティース部21'の先端部分21a'側の周方向の幅が狭くなっているため、相対的に先端部分21a'側で磁気特性がよい方が望ましい。一方、圧縮応力の付与による磁気特性の向上は、ある範囲で圧縮応力の大きさに比例する。そこで、応力付加部材50'による圧縮応力が、図5(c)の矢印の長さで示すように、根元部分側で相対的に小さく、先端部分21a'側で相対的に大きいことが好ましい。圧縮応力の大きさは、上記の通り、常温時の応力付加部材50'の寸法で制御でき、ティース部21'の周方向の幅と壁部50a'の幅との常温での寸法差を、根元部分側で相対的に小さく、先端部分21a'側で相対的に大きくすればよい。   In the case of the present embodiment, since the circumferential width on the tip portion 21a ′ side of the tooth portion 21 ′ is narrow, it is desirable that the magnetic properties are relatively good on the tip portion 21a ′ side. On the other hand, the improvement in magnetic properties by applying compressive stress is proportional to the magnitude of the compressive stress within a certain range. Therefore, it is preferable that the compressive stress by the stress applying member 50 ′ is relatively small on the root portion side and relatively large on the tip portion 21a ′ side, as indicated by the length of the arrow in FIG. As described above, the magnitude of the compressive stress can be controlled by the dimension of the stress applying member 50 ′ at room temperature, and the difference in the room temperature between the circumferential width of the tooth portion 21 ′ and the width of the wall portion 50a ′ can be obtained by: What is necessary is just to make it comparatively small by the base part side and relatively large by the front-end | tip part 21a 'side.

<第3実施形態>
上記第1実施形態では、応力付加部材をティース部21を囲む筒体で構成したが、ティース部21間に介在する部材で構成してもよい。図6(a)は本発明の第3実施形態における応力付加部材150の説明図、図6(b)は応力付加部材150の斜視図である。
<Third Embodiment>
In the said 1st Embodiment, although the stress addition member was comprised with the cylinder surrounding the teeth part 21, you may comprise with the member interposed between the teeth parts 21. FIG. FIG. 6A is an explanatory view of the stress applying member 150 according to the third embodiment of the present invention, and FIG. 6B is a perspective view of the stress applying member 150.

応力付加部材150は軸方向の開口部151を有する筒体であり、各ティース部21間に配設されている。開口部151はコイル30を巻きまわすための空間である。なお、上記第1実施形態の図4(b)の構成のように、ティース部21の根元部分側、先端部分側に、応力付加部材150が圧接していないスペースを設けた場合は、開口部151に加えて該スペースもコイル30を巻きまわすスペースとして利用でき、この場合は図4(b)の領域R1、R3のようにティース部21に直接コイル30を巻きまわすことができる。また、本実施形態と上記第2実施形態とを組み合わせることも可能である。   The stress applying member 150 is a cylindrical body having an opening portion 151 in the axial direction, and is disposed between the tooth portions 21. The opening 151 is a space for winding the coil 30. As shown in FIG. 4B of the first embodiment, when a space where the stress applying member 150 is not in pressure contact is provided on the root portion side and the tip portion side of the tooth portion 21, the opening portion In addition to 151, the space can also be used as a space for winding the coil 30. In this case, the coil 30 can be directly wound around the tooth portion 21 as in the regions R1 and R3 in FIG. It is also possible to combine this embodiment and the second embodiment.

応力付加部材150は、ティース部21の周方向の側面に圧接する一対の壁部150aを備え、この壁部150a間の常温での幅を、互いに隣接するティース部21の周方向の側面間の幅よりも大きくすることで、ティース部21に対して周方向の圧縮応力を付加できる。応力付加部材150は、ティース部21間に圧入して設けることができる。また、ステータコア20を加熱して熱膨張させ、熱膨張しているときに応力付加部材150をティース部21間に配置し、ステータコア20が常温に戻って収縮することを利用して圧縮応力を付加するようにしてもよい。   The stress applying member 150 includes a pair of wall portions 150a that press against the circumferential side surface of the teeth portion 21, and the width at room temperature between the wall portions 150a is set between the circumferential side surfaces of the adjacent tooth portions 21. By making it larger than the width, a compressive stress in the circumferential direction can be applied to the tooth portion 21. The stress applying member 150 can be provided by being press-fitted between the tooth portions 21. In addition, the stator core 20 is heated and thermally expanded, and the stress applying member 150 is disposed between the teeth portions 21 when the stator core 20 is thermally expanded, and compressive stress is applied by utilizing the fact that the stator core 20 returns to normal temperature and contracts. You may make it do.

また、壁部150aの径方向の幅Waを、ティース部21の根元部分から先端部分21aまでの幅Wtよりも大きくすることで、ティース部21に対してその突出方向の引張応力も付加できる。これによりティース部21の突出方向の磁気特性を更に向上できる。この場合、ヨーク部22に対して圧縮応力が働くが、本実施形態の場合、壁部150bがヨーク部22の内周面に倣って形成されて面で接触している。このため、ティース部21の根元近傍に局所的名圧縮応力が集中的に作用することを回避でき、ヨーク部22に対する径方向の圧縮応力の集中による鉄損の増大を抑制できる。   Moreover, the tensile stress of the protrusion direction can also be added with respect to the teeth part 21 by making the width Wa of the radial direction of the wall part 150a larger than the width Wt from the root part of the teeth part 21 to the front-end | tip part 21a. Thereby, the magnetic characteristic of the protrusion direction of the teeth part 21 can further be improved. In this case, compressive stress acts on the yoke portion 22, but in the present embodiment, the wall portion 150 b is formed following the inner peripheral surface of the yoke portion 22 and is in contact with the surface. For this reason, it can avoid that a local nominal compressive stress acts intensively in the base vicinity of the teeth part 21, and can suppress the increase in the iron loss by the concentration of the radial compressive stress with respect to the yoke part 22. FIG.

応力付加部材150は、各ティース部21間の配設スペースに応じて周方向に環状に配置し、図3(c)の構成例のように、全応力付加部材150を一体化してもよい。   The stress applying member 150 may be annularly arranged in the circumferential direction according to the arrangement space between the tooth portions 21, and the total stress adding member 150 may be integrated as in the configuration example of FIG.

<第4実施形態>
上記第1及び第3実施形態では応力付加部材を筒体で構成したが、ティース部21毎に設けられ、ティース部21に巻き回された帯体であってもよい。図7は本発明の第4実施形態における応力付加部材250の説明図である。応力付加部材250は、一本の帯体であり、この帯体にテンションをかけながらティース部21に複数周回巻きつけて設けられている。そして、巻きつけ時の帯体のテンションの度合いに応じた圧縮応力をティース部21に付加する。応力付加部材250は、例えば、50μm乃至100μmの帯状金属箔であって、オースナイト系SUS等の非磁性金属箔である。
<Fourth embodiment>
In the first and third embodiments, the stress applying member is formed of a cylindrical body, but may be a belt provided for each tooth portion 21 and wound around the tooth portion 21. FIG. 7 is an explanatory diagram of a stress applying member 250 according to the fourth embodiment of the present invention. The stress applying member 250 is a single band, and is provided by being wound around the teeth portion 21 a plurality of times while applying tension to the band. And the compressive stress according to the degree of tension of the belt at the time of winding is added to teeth part 21. The stress applying member 250 is, for example, a strip-shaped metal foil having a thickness of 50 μm to 100 μm, and is a nonmagnetic metal foil such as austenitic SUS.

なお、上記第1実施形態の図4(b)の構成のように、ティース部21の根元部分側、先端部分側に、応力付加部材250が圧接していないスペースを設けた場合は、該スペースもコイル30を巻きまわすスペースとして利用でき、この場合は図4(b)の領域R1、R3のようにティース部21に直接コイル30を巻きまわすことができる。また、本実施形態と上記第2実施形態とを組み合わせることも可能である。ティース部の根元部分側と先端部分側とで圧縮応力に差をつける場合、部位によって巻きつけ時のテンションを変えるか、或いは、1つのティース部21に対して2本以上の帯体を巻きつけ、各帯体毎に巻きつけ時のテンションを変えることができる。   In addition, when the space which the stress application member 250 does not press-contact is provided in the root part side of the teeth part 21, and the front-end | tip part side like the structure of FIG.4 (b) of the said 1st Embodiment, this space Can also be used as a space for winding the coil 30. In this case, the coil 30 can be directly wound around the teeth portion 21 as in the regions R1 and R3 of FIG. 4B. It is also possible to combine this embodiment and the second embodiment. When making a difference in compressive stress between the root part side and the tip part side of the teeth part, the tension at the time of winding is changed depending on the part, or two or more belts are wound around one tooth part 21 The tension at the time of winding can be changed for each band.

A 回転電機
10 ロータ
20 ステータコア
21 ティース部
22 ヨーク部
23 電磁鋼板
40 ケース
50、150、250 応力付加部材
A Rotating electrical machine 10 Rotor 20 Stator core 21 Teeth part 22 Yoke part 23 Electrical steel sheet 40 Cases 50, 150, 250 Stress applying member

Claims (5)

ロータと、
円筒状のヨーク部と、前記ヨーク部から前記ロータの径方向内方に突出し、前記ヨーク部の周方向に複数設けられたティース部と、を有し、複数の電磁鋼板を前記ロータの軸方向に積層して形成されたステータコアと、
を備えた回転電機において、
前記ティース部に圧接して、前記ティース部の突出方向と直交する方向の圧縮応力を付加する応力付加部材を設けたことを特徴とする回転電機。
A rotor,
A cylindrical yoke portion, and a plurality of teeth portions protruding inward in the radial direction of the rotor from the yoke portion and provided in the circumferential direction of the yoke portion, and a plurality of electromagnetic steel plates are arranged in the axial direction of the rotor A stator core formed by laminating to,
In a rotating electrical machine with
A rotating electrical machine comprising a stress applying member that presses against the tooth portion and applies a compressive stress in a direction orthogonal to a protruding direction of the tooth portion.
前記ティース部に巻き回されたコイルを備え、
前記応力付加部材は、前記ティース部の根元部分と先端部分との間の部分において、前記根元部分と前記先端部分とからそれぞれ離間して前記ティース部に圧接し、
前記コイルは、
前記応力付加部材を介して前記ティース部に巻き回された部分と、
前記応力付加部材が前記ティース部に圧接していない部分において前記応力付加部材を介さずに前記ティース部に巻き回された部分と、
を有することを特徴とする請求項1に記載の回転電機。
Comprising a coil wound around the teeth portion;
The stress applying member is in pressure contact with the teeth portion at a portion between the root portion and the tip portion of the tooth portion, being separated from the root portion and the tip portion, respectively.
The coil is
A portion wound around the teeth portion via the stress applying member;
A portion wound around the teeth portion without the stress applying member in a portion where the stress applying member is not pressed against the teeth portion;
The rotating electrical machine according to claim 1, comprising:
前記応力付加部材は、前記ティース部毎に設けられ、前記ティース部を囲む筒体であり、
前記筒体は、互いに接合されて前記筒体を構成する複数の分割体からなることを特徴とする請求項1又は2に記載の回転電機。
The stress applying member is provided for each tooth portion, and is a cylindrical body surrounding the tooth portion,
The rotating electrical machine according to claim 1, wherein the cylindrical body is composed of a plurality of divided bodies that are joined together to form the cylindrical body.
前記応力付加部材は、前記ティース部間に介在し、前記ロータの軸方向と平行な方向の開口部を有する筒体であることを特徴とする請求項1又は2に記載の回転電機。   3. The rotating electrical machine according to claim 1, wherein the stress applying member is a cylindrical body that is interposed between the teeth portions and has an opening in a direction parallel to the axial direction of the rotor. 前記応力付加部材は、前記ティース部毎に設けられ、前記ティース部に巻き回された帯体であることを特徴とする請求項1又は2に記載の回転電機。   3. The rotating electrical machine according to claim 1, wherein the stress applying member is a belt that is provided for each tooth portion and is wound around the tooth portion.
JP2009021726A 2009-02-02 2009-02-02 Rotating electrical machine Pending JP2010178600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021726A JP2010178600A (en) 2009-02-02 2009-02-02 Rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021726A JP2010178600A (en) 2009-02-02 2009-02-02 Rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2010178600A true JP2010178600A (en) 2010-08-12

Family

ID=42708980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021726A Pending JP2010178600A (en) 2009-02-02 2009-02-02 Rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2010178600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147881A1 (en) * 2020-01-20 2021-07-29 浙江川电钢板加工有限公司 Laminated core fixing structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233090A (en) * 2001-02-02 2002-08-16 Toyota Motor Corp Stator of electric motor
JP2004111509A (en) * 2002-09-17 2004-04-08 Nippon Steel Corp Laminated iron core having excellent iron loss characteristic and its manufacturing method
JP2004208475A (en) * 2002-12-26 2004-07-22 Aisin Aw Co Ltd Insulation structure of, and insulation method for stator core
JP2004242414A (en) * 2003-02-05 2004-08-26 Toyota Motor Corp Manufacturing method for synchronous machine stator
JP2005051941A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Split stator core
JP2006050853A (en) * 2004-08-06 2006-02-16 Yaskawa Electric Corp Motor
JP2006223015A (en) * 2005-02-08 2006-08-24 Jfe Steel Kk Motor with excellent iron core magnet characteristic and manufacturing method therefor
JP2008312379A (en) * 2007-06-15 2008-12-25 Mitsubishi Electric Corp Rotating electrical machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233090A (en) * 2001-02-02 2002-08-16 Toyota Motor Corp Stator of electric motor
JP2004111509A (en) * 2002-09-17 2004-04-08 Nippon Steel Corp Laminated iron core having excellent iron loss characteristic and its manufacturing method
JP2004208475A (en) * 2002-12-26 2004-07-22 Aisin Aw Co Ltd Insulation structure of, and insulation method for stator core
JP2004242414A (en) * 2003-02-05 2004-08-26 Toyota Motor Corp Manufacturing method for synchronous machine stator
JP2005051941A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Split stator core
JP2006050853A (en) * 2004-08-06 2006-02-16 Yaskawa Electric Corp Motor
JP2006223015A (en) * 2005-02-08 2006-08-24 Jfe Steel Kk Motor with excellent iron core magnet characteristic and manufacturing method therefor
JP2008312379A (en) * 2007-06-15 2008-12-25 Mitsubishi Electric Corp Rotating electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147881A1 (en) * 2020-01-20 2021-07-29 浙江川电钢板加工有限公司 Laminated core fixing structure

Similar Documents

Publication Publication Date Title
JP5896937B2 (en) Divided iron core, stator using the divided iron core, and rotating electric machine equipped with the stator
US8432080B2 (en) Rotating electrical machine
JP4938389B2 (en) Laminated core and stator
US11088577B2 (en) Permanent magnet synchronous machine and method for manufacturing permanent magnet synchronous machine stator
JP2007068304A (en) Rotor of rotary electric machine
JP2009112160A (en) Motor
JP2010075027A (en) Stator core and motor
JP2010148329A (en) Stator core structure of rotating electric machine
JP5164026B2 (en) Electric motor stator and permanent magnet type electric motor using the same
JP5287304B2 (en) Rotating electric machine
JP4568639B2 (en) Stator
JP2020089202A (en) Laminated core, stator, and rotor
JP4062723B2 (en) Rotary motor and method of manufacturing the same
JP6232641B2 (en) Manufacturing method of stator core
JP5424821B2 (en) Laminated iron core and armature using the same
JP5428334B2 (en) Electric motor
JP5260951B2 (en) Laminated fixed iron core
JP2009291003A (en) Stator of electric motor
WO2014136145A1 (en) Stator core of rotating machine, rotating machine and method for manufacturing same
JP6828651B2 (en) Laminated core
JP2010178600A (en) Rotating electrical machine
JP6447206B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP2010148225A (en) Rotating electric machine
JP5261080B2 (en) Linear motor
KR100802622B1 (en) Stator structure for reciprocating motor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120306

A521 Written amendment

Effective date: 20120329

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20130514

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A977 Report on retrieval

Effective date: 20130711

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924