JP2016042771A - Rotor and electric motor including the rotor - Google Patents
Rotor and electric motor including the rotor Download PDFInfo
- Publication number
- JP2016042771A JP2016042771A JP2014166324A JP2014166324A JP2016042771A JP 2016042771 A JP2016042771 A JP 2016042771A JP 2014166324 A JP2014166324 A JP 2014166324A JP 2014166324 A JP2014166324 A JP 2014166324A JP 2016042771 A JP2016042771 A JP 2016042771A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- magnet
- permanent magnet
- embedding hole
- wall surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本発明は、回転子の磁石埋設孔に永久磁石を埋設する構成を具備する電動機及び回転子に関する。 The present invention relates to an electric motor and a rotor having a configuration in which a permanent magnet is embedded in a magnet embedding hole of a rotor.
家電分野や産業機器分野、電装分野等のモータにおいて、その運転効率の高さや堅牢さから磁石埋込型モータ(以降、IPMモータと記載)が用いられている。このIPMモータは回転子は回転子鉄心の内部に永久磁石を埋設したものであり、磁石埋設孔への樹脂注入やカシメ方式により永久磁石を固定したものが一般的である。 In motors in the home appliance field, industrial equipment field, electrical field, etc., a magnet-embedded motor (hereinafter referred to as an IPM motor) is used because of its high operational efficiency and robustness. In this IPM motor, the rotor has a permanent magnet embedded in the rotor core, and a permanent magnet is generally fixed by injecting resin into the magnet embedding hole or by a caulking method.
図1、2を用いて代表的な産業機器用IPMモータの回転子構造の一例について説明する。図1は鋼板1を積層した回転子鉄心2に磁石埋設孔3を形成し、この磁石埋設孔3に永久磁石4を挿入して埋め込んだ構造である。図2は図1の回転子の軸方向に対して直交する面の断面図である。永久磁石及び永久磁石の埋設孔の形状は、平板型やかまぼこ型、半円型の断面形状等、様々な形状のものがある。
An example of a typical rotor structure of an IPM motor for industrial equipment will be described with reference to FIGS. FIG. 1 shows a structure in which a magnet embedding hole 3 is formed in a
IPMモータの回転子鉄心に形成された磁石埋設孔に永久磁石を挿入して固定する際、各磁石埋設孔内で永久磁石の固定位置のばらつきが発生する。この永久磁石固定位置のずれに伴い、回転子のアンバランスやトルクリプルが増大し、モータ特性が悪化することが知られている。この課題を解決するため、従来より以下のような検討がなされてきた。 When permanent magnets are inserted and fixed in the magnet embedding holes formed in the rotor core of the IPM motor, variations in the fixing positions of the permanent magnets occur in the respective magnet embedding holes. With this displacement of the permanent magnet fixing position, it is known that rotor imbalance and torque ripple increase and motor characteristics deteriorate. In order to solve this problem, the following studies have been made conventionally.
例えば特許文献1などには、回転子鉄心の磁石埋設孔の内側の角部に溝を設け、その溝に永久磁石を固定するためにバネ等の弾性体を圧入装着することで、永久磁石を磁石埋設孔の半径方向外側に付勢し、永久磁石を固定した回転子を有するモータが記載されている。
For example, in
例えば特許文献2などには、回転子鉄心の磁石埋設孔と永久磁石の隙間に、回転子の軸方向に伸張した状態で紐状のゴム弾性体を挿入することにより、永久磁石を磁石埋設孔の半径方向外周側壁面に押圧した状態で保持した永久磁石埋込型の回転子の構造が記載されている。
For example, in
例えば特許文献3などには、回転子鉄心の磁石埋設孔の内側に、磁石埋設孔と連通する樹脂注入用の孔部を設け、その孔部から金型を用いて樹脂を注入することで永久磁石を磁石埋設孔の半径方向外周側壁面に押圧した永久磁石埋込型の回転子の構造が記載されている。 For example, in Patent Document 3 and the like, a hole for resin injection that communicates with the magnet embedding hole is provided inside the magnet embedding hole of the rotor core, and the resin is injected by using a mold from the hole. The structure of a permanent magnet embedded rotor in which a magnet is pressed against the radially outer peripheral side wall surface of the magnet embedded hole is described.
例えば特許文献4などには、永久磁石と回転子鉄心の磁石埋設孔の間に接着剤シートを介することにより、永久磁石を磁石埋設孔に接着固定した回転子の構造が記載されている。
For example,
しかしながら、従来技術における、磁石埋設孔の半径方向内側の壁面と永久磁石の間にバネやゴムのような弾性体を圧入装着する方法は、耐衝撃性や耐環境性の面から長期的な信頼性を確保することは困難性を伴う。また、永久磁石の磁束を有効に活用するために、回転子鉄心のブリッジ部の薄肉化した回転子では、上記の技術では弾性体を圧入する際に回転子鉄心を変形させ、モータ特性の低下を招くことも考察される。 However, the conventional method of press-fitting an elastic body such as a spring or rubber between the inner wall surface in the radial direction of the magnet embedding hole and the permanent magnet has long-term reliability in terms of impact resistance and environmental resistance. Ensuring sex is difficult. Moreover, in order to effectively use the magnetic flux of the permanent magnet, the rotor with a thin bridge portion of the rotor core is deformed when the elastic body is press-fitted in the above-described technology, and the motor characteristics are deteriorated. Is also considered.
また、従来技術においては、回転子鉄心の半径方向内側に磁石埋設孔と連通する樹脂注入用の孔部を設け、その孔部から成形金型を用いて樹脂を注入する方法は、樹脂成型時の成型圧により、回転子鉄心の積層した鋼板と鋼板の隙間に成型樹脂が流動し、回転子鉄心が変形させ、モータ特性の低下を招くことも考察される。また、回転子鉄心の孔部が完全に樹脂で充填されている場合は、永久磁石の周辺部位との熱抵抗が高い傾向になり易く、電動機の駆動が過負荷の場合には、永久磁石の発熱が過剰となり、減磁することも考察される。 Further, in the prior art, a method for injecting resin using a molding die from a hole provided for injecting a resin in a radial inner side of a rotor core and communicating with a magnet embedding hole is a method of resin molding. It is also considered that the molding resin flows into the gap between the steel plates on which the rotor cores are laminated due to the molding pressure of the rotor core, causing the rotor cores to be deformed, resulting in a decrease in motor characteristics. Also, when the hole of the rotor core is completely filled with resin, the thermal resistance with the peripheral part of the permanent magnet tends to be high, and when the motor drive is overloaded, the permanent magnet It is also considered that heat generation becomes excessive and demagnetization occurs.
さらに、従来技術においては、永久磁石を回転子鉄心の磁石埋設孔の中に接着剤シートで接着固定した場合に、接着剤シートの厚みで永久磁石が回転子の半径方向内側に寄るため、永久磁石とステータ鉄心の間のギャップが大きくなり、回転子の磁束を有効に活かすことができず、モータの性能低下を招く可能性も考察される。また、回転子の製造工程が複雑になり、量産性の乏しい傾向となる。 Furthermore, in the prior art, when the permanent magnet is bonded and fixed in the magnet embedding hole of the rotor core with an adhesive sheet, the permanent magnet moves closer to the inner side in the radial direction of the rotor due to the thickness of the adhesive sheet. It is also considered that the gap between the magnet and the stator iron core becomes large, and the magnetic flux of the rotor cannot be utilized effectively, leading to a reduction in motor performance. Moreover, the manufacturing process of the rotor becomes complicated, and the mass productivity tends to be poor.
本発明は、上記の課題を解決するものであり、永久磁石を回転子鉄心の磁石埋設孔に信頼性の高い方法で固定することで、高いモータ特性と長期的な信頼性を有する回転子の構造を提供することを目的とする。 The present invention solves the above problems, and by fixing a permanent magnet to a magnet embedding hole of a rotor core in a highly reliable manner, a rotor having high motor characteristics and long-term reliability is achieved. The purpose is to provide a structure.
本発明は、鋼板を積層してなる電動機の回転子の鉄心に、永久磁石を挿入して埋設する複数の磁石埋設孔を有する磁石埋込型の回転子において、前記永久磁石と前記磁石埋設孔の回転子半径方向外側の壁面とが接する構造を具備し、かつ、前記永久磁石と前記磁石埋設孔の回転子内側壁面との間に空間層を具備する回転子である。 The present invention relates to a permanent magnet and a magnet embedding hole in an embedded magnet type rotor having a plurality of magnet embedding holes that are embedded by embedding permanent magnets in an iron core of an electric motor rotor formed by laminating steel plates. The rotor has a structure in contact with the outer wall surface in the radial direction of the rotor, and has a space layer between the permanent magnet and the rotor inner wall surface of the magnet embedding hole.
本発明によれば、回転子の構造は、永久磁石が磁石埋設孔の回転子外側の壁面と接した構造を有しており、回転子のアンバランスやトルクリプルを低減することで誘起電圧の低下を抑制し、高いモータ特性を実現する回転子を提供可能である。また、永久磁石を固定するための押圧部材を用いることがないため、永久磁石へかかる応力を低減し、永久磁石の割れや抜けを防ぐことができ、信頼性の高い回転子を提供することが可能である。 According to the present invention, the structure of the rotor has a structure in which the permanent magnet is in contact with the wall surface outside the rotor of the magnet embedding hole, and the induced voltage is reduced by reducing the rotor imbalance and torque ripple. And a rotor that realizes high motor characteristics. In addition, since a pressing member for fixing the permanent magnet is not used, stress applied to the permanent magnet can be reduced, and the permanent magnet can be prevented from cracking or coming off, thereby providing a highly reliable rotor. Is possible.
このように、本発明の回転子構造は高いモータ特性及び信頼性を実現できる回転子であり、従来の回転子と比べて使用環境に制限されることが少なく、モータの小型化、薄型化及び高出力に有用である。 As described above, the rotor structure of the present invention is a rotor that can achieve high motor characteristics and reliability, and is less restricted by the use environment as compared with conventional rotors. Useful for high output.
以下、本発明について、図面及び表を参照しながら説明する。なお、以下の本実施例又は実施例によって本発明が限定されるものではない。 The present invention will be described below with reference to the drawings and tables. In addition, this invention is not limited by the following this Example or Example.
図3は、本発明を用いた永久磁石埋込型の回転子の断面図を示したものである。回転子鉄心は積層された鋼板により構成されており、回転子鉄心に設けられた磁石埋設孔内に永久磁石が配されている。図3において、永久磁石及び磁石埋設孔の断面形状は平板となっているが、それぞれの形状はこれに限るものでない。磁石埋設孔において、永久磁石は回転子鉄心の半径方向外側に配する壁面と接着剤5を介して固定されている。 FIG. 3 is a cross-sectional view of a permanent magnet embedded rotor using the present invention. The rotor core is composed of laminated steel plates, and a permanent magnet is arranged in a magnet embedding hole provided in the rotor core. In FIG. 3, the sectional shape of the permanent magnet and the magnet embedding hole is a flat plate, but each shape is not limited thereto. In the magnet embedding hole, the permanent magnet is fixed via a wall surface and an adhesive 5 arranged on the outer side in the radial direction of the rotor core.
本実施形態に用いる接着剤としては、接着強度や耐薬品に優れたエポキシ系の接着剤を用いることが好ましい。 As the adhesive used in the present embodiment, it is preferable to use an epoxy adhesive excellent in adhesive strength and chemical resistance.
表1に接着剤の種類と性質について示す。嫌気性接着剤を用いた場合、回転子鉄心は鋼板を積層して形成されているために、各鋼板と鋼板の隙間の空気層8や磁石埋設孔の回転子鉄心軸方向端面部に存在する接着剤は硬化不良を起こす。同様に、湿気硬化型接着剤を用いた場合、鋼板と永久磁石の隙間等の空気に触れない箇所では接着剤の硬化不良が起こる。また、紫外線硬化型の接着剤を用いた場合、紫外線を照射しても磁石埋設孔内部に紫外線に晒されない部分が存在するため、接着剤の硬化不良が発生する。
Table 1 shows the types and properties of adhesives. When an anaerobic adhesive is used, the rotor core is formed by laminating steel plates, and therefore exists in the
また、永久磁石にネオジウム磁石やサマリウム鉄窒素磁石等の希土類磁石を用いる場合、湿潤雰囲気中で錆びやすいため、防錆を目的とした表面処理が必須である。表2に希土類永久磁石の表面処理方法とエポキシ系接着剤の強度測定結果及び表面処理の耐食性を示す。これらの接着強度の結果から、回転子の信頼性を考慮した際、希土類磁石の表面処理方法としてニッケルを用いることが望ましい。 In addition, when a rare earth magnet such as a neodymium magnet or a samarium iron nitrogen magnet is used as the permanent magnet, it is easy to rust in a humid atmosphere, and therefore surface treatment for the purpose of rust prevention is essential. Table 2 shows the surface treatment method of the rare earth permanent magnet, the strength measurement result of the epoxy adhesive, and the corrosion resistance of the surface treatment. From the results of these adhesive strengths, it is desirable to use nickel as the surface treatment method of the rare earth magnet when considering the reliability of the rotor.
本実施例では、永久磁石を磁石埋設孔内に挿入する前に、予め未着磁状態の永久磁石の回転子鉄心の半径方向外側に配する壁面に接着剤を適量塗布し、その後、磁石埋設孔内に挿入する。
In this embodiment, before inserting the permanent magnet into the magnet embedding hole, an appropriate amount of adhesive is applied to the wall surface arranged on the radially outer side of the rotor core of the unmagnetized permanent magnet in advance, and then the magnet embedding is performed. Insert into the hole.
図4は、本発明の本実施例における回転子製造時の断面図である。回転子と同じ局数の永久磁石7を埋設した治具6の中に回転子鉄心を挿入し、磁石埋設孔内の永久磁石を回転子鉄心の半径方向外側に配した状態を示している。回転子鉄心の磁石埋設孔内に挿入された永久磁石が、治具6に埋設された永久磁石7により磁気的に吸引され、磁石埋設孔の半径方向外側に配列される。この状態を保ちながら回転子鉄心に熱を加えることで、永久磁石に塗布された熱硬化性接着剤により回転子鉄心と永久磁石が固着し、永久磁石が磁石埋設孔内に固定される。
FIG. 4 is a cross-sectional view when the rotor is manufactured in the present embodiment of the present invention. A state is shown in which a rotor core is inserted into a
以上の方法を用いることにより、永久磁石を磁石埋設孔内で回転子鉄心の半径方向外側に配した状態で固定することが可能となり、永久磁石の磁束を有効に活用した設計をすることができ、誘起電圧の高いモータを提供することができる。さらに、上記のような治具6を用いることにより、磁石埋設孔内での永久磁石の円周方向の位置を規定することができる。これにより磁石埋設孔内での永久磁石の半径方向及び円周方向の位置を均一に定めることで、回転子のアンバランスやトルクリプルの増加を抑制し、モータ特性の向上とばらつき低減が可能になる。
By using the above method, it becomes possible to fix the permanent magnet in a state where the permanent magnet is disposed radially outside the rotor core in the magnet embedding hole, and it is possible to design the magnetic flux of the permanent magnet effectively. A motor with high induced voltage can be provided. Furthermore, by using the
また、本実施例の工程では、永久磁石の回転子鉄心の半径方向外側に配する壁面に熱硬化性接着剤を塗布し、熱を加えることで接着剤の粘度が低下し、回転子鉄心の半径方向外側に接着剤が流動した後、硬化する。これにより、回転子鉄心のブリッジ部の強度を向上する効果や、接着剤の投錨効果も期待することができ、信頼性の高い回転子を提供することができる。 Moreover, in the process of the present embodiment, a thermosetting adhesive is applied to the wall surface arranged radially outward of the rotor core of the permanent magnet, and the viscosity of the adhesive is reduced by applying heat, and the rotor core After the adhesive flows radially outward, it hardens. Thereby, the effect which improves the intensity | strength of the bridge | bridging part of a rotor core, and the throwing-in effect of an adhesive agent can also be anticipated, and a reliable rotor can be provided.
近年、モータの小型化、高出力化に対する要望から、永久磁石の磁束を有効に活用するために回転子鉄心ブリッジ部の薄肉化が進められ、回転子鉄心の強度低下が懸念されている。本発明は回転子鉄心のブリッジ部の強度を向上することが可能であり、モータの小型化、高出力化に特に有用な発明である。さらに、永久磁石を磁石埋設孔の半径方向外側の壁面に接着固定することで、回転子が回転した時も接着面を引き剥がす方向の応力がかかることがないため、信頼性の高い回転子を提供することができる。 In recent years, due to demands for miniaturization and high output of motors, the rotor core bridge portion has been made thinner in order to effectively use the magnetic flux of the permanent magnet, and there is a concern that the strength of the rotor core may be reduced. The present invention can improve the strength of the bridge portion of the rotor core, and is a particularly useful invention for miniaturization and high output of the motor. Furthermore, by fixing the permanent magnet to the wall surface on the radially outer side of the magnet embedding hole, there is no stress in the direction to peel off the adhesive surface even when the rotor rotates. Can be provided.
本実施例のように、永久磁石を磁石埋設孔内で回転子鉄心の半径方向外側に配した状態で固定することで、磁石埋設孔の回転子の半径方向内側に空間層を設けることができる。これにより、シャフトを回転子のシャフト挿通穴に圧入・固定する際に発生する、永久磁石へ応力を緩和することが可能となる。 As in the present embodiment, by fixing the permanent magnet in a state where the permanent magnet is disposed radially outside the rotor core in the magnet embedding hole, a space layer can be provided on the radially inner side of the rotor of the magnet embedding hole. . This makes it possible to relieve stress on the permanent magnet that occurs when the shaft is press-fitted and fixed in the shaft insertion hole of the rotor.
従来技術のように、磁石埋設孔の回転子の半径方向内側に追加部材を設けて永久磁石を押圧する設計であれば、シャフトが圧入された際に生じる回転子鉄心への応力が、永久磁石へかかる可能性があり、永久磁石の割れや脱落といった不具合を発生させる原因となりうる。回転子が小型の場合は上記の不具合が発生する可能性が高いため、本発明は小型の回転子に特に有用な技術であることがわかる。 If the design is such that, as in the prior art, an additional member is provided on the radially inner side of the rotor in the magnet embedding hole to press the permanent magnet, the stress on the rotor core that occurs when the shaft is pressed into the permanent magnet May cause problems such as cracking or dropping off of the permanent magnet. When the rotor is small, the above problem is likely to occur. Therefore, it can be seen that the present invention is a particularly useful technique for a small rotor.
また、本実施例では、永久磁石と磁石埋設孔の間に回転子の半径方向内側と円周方向に空間層を有するため、回転子が回転した時に、永久磁石の発熱により温められた空間層の空気が周囲の空気と置換され、永久磁石の熱を効果的に放熱することができる。このため、モータ運転時に永久磁石が発熱し、熱減磁することを防ぐことも可能である。
上記の方法により、永久磁石を均一に固定することができ、信頼性の高い回転子を提供することができる。
Further, in this embodiment, since the space layer is provided between the permanent magnet and the magnet embedding hole on the inner side in the radial direction and the circumferential direction of the rotor, the space layer heated by the heat generated by the permanent magnet when the rotor rotates. The air is replaced with the surrounding air, and the heat of the permanent magnet can be effectively radiated. For this reason, it is possible to prevent the permanent magnet from generating heat and demagnetizing during motor operation.
By the above method, the permanent magnet can be fixed uniformly, and a highly reliable rotor can be provided.
本発明の利用分野は、永久磁石を回転子鉄心に固定した回転子の構造に用いられるもので、小型化、高出力化が望まれるモータ等の回転子を有する機器の信頼性向上に特に有用である。 The field of use of the present invention is used for the structure of a rotor in which a permanent magnet is fixed to a rotor core, and is particularly useful for improving the reliability of a device having a rotor such as a motor that is desired to be reduced in size and output. It is.
1 鋼板
2 回転子鉄心
3 磁石埋設孔
4 永久磁石
7 永久磁石
8 空気層
DESCRIPTION OF
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166324A JP2016042771A (en) | 2014-08-19 | 2014-08-19 | Rotor and electric motor including the rotor |
CN201520628984.8U CN204886469U (en) | 2014-08-19 | 2015-08-19 | Rotor and have motor of this rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166324A JP2016042771A (en) | 2014-08-19 | 2014-08-19 | Rotor and electric motor including the rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016042771A true JP2016042771A (en) | 2016-03-31 |
Family
ID=54830790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014166324A Pending JP2016042771A (en) | 2014-08-19 | 2014-08-19 | Rotor and electric motor including the rotor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016042771A (en) |
CN (1) | CN204886469U (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6095827B1 (en) * | 2016-04-14 | 2017-03-15 | 三菱電機株式会社 | Manufacturing method of rotor for rotating electrical machine |
JP6622776B2 (en) | 2017-10-20 | 2019-12-18 | ファナック株式会社 | Rotor and electric motor |
JP2020108276A (en) * | 2018-12-27 | 2020-07-09 | 本田技研工業株式会社 | Rotor of dynamo-electric machine |
JP7112340B2 (en) * | 2019-01-21 | 2022-08-03 | 本田技研工業株式会社 | Rotor of rotating electric machine and rotating electric machine |
-
2014
- 2014-08-19 JP JP2014166324A patent/JP2016042771A/en active Pending
-
2015
- 2015-08-19 CN CN201520628984.8U patent/CN204886469U/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN204886469U (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113196618B (en) | Laminated iron core and rotary electric machine | |
KR102643516B1 (en) | Laminated core and rotating electric machines | |
KR20240052877A (en) | Stator adhesive laminated core and rotating electrical machine | |
JP6095827B1 (en) | Manufacturing method of rotor for rotating electrical machine | |
CN107408852B (en) | The manufacturing method of rotor, rotating electric machine and rotor | |
JP6298237B2 (en) | Motor rotor for vacuum pump, motor including the same, and vacuum pump | |
JP5292271B2 (en) | Permanent magnet rotating electric machine | |
US10199891B2 (en) | Rotor having end plates and molding flash | |
JP5505281B2 (en) | Rotating electrical machine rotor | |
CN113196616A (en) | Laminated iron core and rotating electrical machine | |
JP2012125000A (en) | End plate and rotor for rotating electric machine using the same | |
JP2016042771A (en) | Rotor and electric motor including the rotor | |
JPWO2018179806A1 (en) | Manufacturing method of rotor of rotating electric machine | |
JPWO2014184842A1 (en) | Rotating electrical machine with embedded magnet rotor | |
JP2016072995A (en) | Embedded magnet type rotor and electric motor including the same | |
JP2017163734A (en) | Manufacturing method of rotor for rotary electric machine, and rotor of rotary electric machine | |
JP5829895B2 (en) | Permanent magnet fixing method of rotor | |
KR102456478B1 (en) | Rotor assembly and Motor using the same | |
KR102490607B1 (en) | magnet insert type motor rotor | |
US20170201166A1 (en) | Electric motor and electrical apparatus comprising same | |
JP2015116078A (en) | Rotary electric machine, and manufacturing method of the same | |
JP6876692B2 (en) | Rotating machine | |
CN109756044B (en) | Rotor of electric machine | |
JP2017093188A (en) | Method for manufacturing rotor for rotary electric machine | |
JP2015220974A (en) | Permanent magnet for rotor core for permanent magnet rotary electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160520 |