JP6953110B2 - Insulated laminated board structure of rotary electric machine and its manufacturing method - Google Patents

Insulated laminated board structure of rotary electric machine and its manufacturing method Download PDF

Info

Publication number
JP6953110B2
JP6953110B2 JP2016053916A JP2016053916A JP6953110B2 JP 6953110 B2 JP6953110 B2 JP 6953110B2 JP 2016053916 A JP2016053916 A JP 2016053916A JP 2016053916 A JP2016053916 A JP 2016053916A JP 6953110 B2 JP6953110 B2 JP 6953110B2
Authority
JP
Japan
Prior art keywords
iron core
laminated iron
resin
laminated
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053916A
Other languages
Japanese (ja)
Other versions
JP2017169397A (en
Inventor
一利 山添
一利 山添
和彦 朴
和彦 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016053916A priority Critical patent/JP6953110B2/en
Publication of JP2017169397A publication Critical patent/JP2017169397A/en
Application granted granted Critical
Publication of JP6953110B2 publication Critical patent/JP6953110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、回転電機の絶縁積層板構造体およびその製造方法に関する。 The present invention relates to an insulated laminated plate structure of a rotary electric machine and a method for manufacturing the same.

従来、プレス金型を用いて電磁鋼板を打ち抜くことによって形成される鋼板を複数枚積層することによって構成される積層鉄心に、コイルと積層鉄心との電気的導通を防止するための樹脂材料から構成される樹脂絶縁部を一体成形することで形成された回転電機の絶縁積層板構造体が知られている(例えば、特許文献1参照)。 Conventionally, a laminated iron core formed by laminating a plurality of steel plates formed by punching an electromagnetic steel plate using a press die is composed of a resin material for preventing electrical conduction between the coil and the laminated iron core. There is known an insulating laminated plate structure of a rotary electric machine formed by integrally molding a resin insulating portion to be formed (see, for example, Patent Document 1).

特開平8−98473号公報Japanese Unexamined Patent Publication No. 8-98473

しかしながら、積層鉄心に樹脂絶縁部を一体成形した後に、樹脂が硬化する過程において、樹脂の収縮および変形によって樹脂絶縁部が積層鉄心の表面から離れてしまい、その結果、回転電機の絶縁積層板構造体の寸法精度が低下してしまうという問題点があった。 However, after the resin insulating portion is integrally molded with the laminated iron core, the resin insulating portion is separated from the surface of the laminated iron core due to shrinkage and deformation of the resin in the process of curing the resin, and as a result, the insulating laminated plate structure of the rotary electric machine is used. There is a problem that the dimensional accuracy of the body is lowered.

この発明は、上述のような課題を解決するためになされたもので、樹脂絶縁部が積層鉄心の表面から離れることを防ぐことができる回転電機の絶縁積層板構造体およびその製造方法を提供するものである。 The present invention has been made to solve the above-mentioned problems, and provides an insulating laminated plate structure of a rotary electric machine capable of preventing the resin insulating portion from separating from the surface of the laminated iron core, and a method for manufacturing the same. It is a thing.

この発明に係る回転電機の絶縁積層板構造体は、鋼板が積層された積層鉄心と、積層鉄心の表面を覆う樹脂絶縁部とを備えた回転電機の絶縁積層板構造体であって、積層鉄心は、ティース部と、ティース部の径方向端部に設けられ、周方向に突出するティース先端部とを有し、ティース先端部における径方向を向く面であって周方向の中心には、抜け止め溝が形成されており、樹脂絶縁部は、抜け止め溝に設けられた樹脂抜け止め部と、樹脂抜け止部の周方向両側においてティース先端部における径方向を向く面に設けられた樹脂内周部または樹脂外周部と、を有しており、抜け止め溝は、ティース先端部における、固定子と回転子との間のエアギャップを向く面に形成されている。 The insulating laminated plate structure of a rotary electric machine according to the present invention is an insulating laminated plate structure of a rotating electric machine provided with a laminated iron core in which steel plates are laminated and a resin insulating portion covering the surface of the laminated iron core. Has a teeth portion and a teeth tip portion that is provided at the radial end portion of the teeth portion and projects in the circumferential direction. A stop groove is formed, and the resin insulating portion is provided in the resin retaining portion provided in the retaining groove and in the resin provided on both sides of the resin retaining portion in the circumferential direction facing the radial direction at the tip of the tooth. It has a peripheral portion or a resin outer peripheral portion, and a retaining groove is formed on a surface of the tip of the tooth that faces the air gap between the stator and the rotor.

この発明に係る回転電機の絶縁積層板構造体によれば、鋼板が積層された積層鉄心と、積層鉄心の表面を覆う樹脂絶縁部とを備えた回転電機の絶縁積層板構造体であって、積層鉄心は、溝が側面に形成された切欠き鋼板を有し、切欠き鋼板における溝が形成されている側面は、樹脂絶縁部に覆われているので、積層鉄心に樹脂絶縁部を一体成形した後に、樹脂が硬化する過程において、溝に流れ込んだ樹脂が樹脂抜け止め部となり、被覆絶縁部が積層鉄心の表面から離れることを防止することができる。 According to the insulating laminated plate structure of the rotating electric machine according to the present invention, it is an insulating laminated plate structure of the rotating electric machine provided with a laminated iron core in which steel plates are laminated and a resin insulating portion covering the surface of the laminated iron core. The laminated iron core has a notched steel plate having grooves formed on the side surfaces, and the side surface of the notched steel plate on which the grooves are formed is covered with a resin insulating portion, so that the resin insulating portion is integrally formed with the laminated iron core. After that, in the process of curing the resin, the resin that has flowed into the groove serves as a resin retaining portion, and it is possible to prevent the coated insulating portion from separating from the surface of the laminated iron core.

この発明の実施の形態1に係る絶縁積層回転子を示す斜視図である。It is a perspective view which shows the insulation laminated rotor which concerns on Embodiment 1 of this invention. 図1の絶縁積層回転子を示す分解斜視図である。It is an exploded perspective view which shows the insulation laminated rotor of FIG. 図1の積層鉄心を示す斜視図である。It is a perspective view which shows the laminated iron core of FIG. 図3の鋼板を示す平面図である。It is a top view which shows the steel plate of FIG. 図3の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 図1の絶縁積層回転子を示す平面図である。It is a top view which shows the insulation laminated rotor of FIG. 図6のVII−VII線に沿った断面を示す斜視図である。It is a perspective view which shows the cross section along the line VII-VII of FIG. 図1の絶縁積層回転子を示す側面図である。It is a side view which shows the insulation laminated rotor of FIG. 図8のIX−IX線に沿った矢視断面図である。FIG. 8 is a cross-sectional view taken along the line IX-IX of FIG. 図5の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図10の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図11の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図5の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図13の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図14の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図5の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図16の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図17の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図5の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図19の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図19の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図20の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図19の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. 図20の蟻溝の変形例を示す平面図である。It is a top view which shows the modification of the dovetail groove of FIG. インシュレータ一体成形工程における樹脂注入位置および樹脂抜け止め部の断面を示す斜視図である。It is a perspective view which shows the resin injection position and the cross section of the resin retaining part in the insulator integral molding process. 図3の積層鉄心の変形例を示す斜視図である。It is a perspective view which shows the deformation example of the laminated iron core of FIG. 図26の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 図1の絶縁積層回転子の変形例を示す平面図である。It is a top view which shows the modification of the insulation laminated rotor of FIG. 図28のXXIX−XXIX線に沿った断面を示す斜視図である。FIG. 8 is a perspective view showing a cross section taken along the line XXIX-XXIX of FIG. 28. 図28の絶縁積層回転子を示す側面図である。It is a side view which shows the insulation laminated rotor of FIG. 28. 図30のXXXI−XXXI線に沿った矢視断面図である。It is a cross-sectional view taken along the arrow XXXI-XXXI line of FIG. 30. 図3の積層鉄心の変形例を示す斜視図である。It is a perspective view which shows the deformation example of the laminated iron core of FIG. 図32の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 32. 図1の絶縁積層回転子の変形例を示す平面図である。It is a top view which shows the modification of the insulation laminated rotor of FIG. 図34のXXXV−XXXV線に沿った断面を示す斜視図である。FIG. 3 is a perspective view showing a cross section taken along the line XXXV-XXXV of FIG. 34. 図34の絶縁積層回転子を示す側面図である。It is a side view which shows the insulation laminated rotor of FIG. 34. 図36のXXXVII−XXXVII線に沿った矢視断面図である。It is a cross-sectional view taken along the line XXXVII-XXXVII of FIG. 36. この発明の実施の形態2に係る絶縁積層固定子の要部を示す斜視図である。It is a perspective view which shows the main part of the insulation laminated stator which concerns on Embodiment 2 of this invention. 図38の絶縁分割積層鉄心を示す拡大図である。It is an enlarged view which shows the insulation division laminated laminated iron core of FIG. 38. 図38の絶縁分割積層鉄心を示す斜視図である。It is a perspective view which shows the insulation division laminated iron core of FIG. 38. 図38の分割積層鉄心を示す斜視図である。It is a perspective view which shows the divided laminated iron core of FIG. 38. 図41の鋼板を示す平面図である。It is a top view which shows the steel plate of FIG. 41. 図41の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 41. 図40の絶縁分割積層鉄心を示す平面図である。It is a top view which shows the insulation division laminated iron core of FIG. 40. 図44のXLV−XLV線に沿った断面を示す斜視図である。It is a perspective view which shows the cross section along the XLV-XLV line of FIG. 44. 図44の絶縁分割積層鉄心を示す側面図である。It is a side view which shows the insulation division laminated iron core of FIG. 44. 図46のXLVII−XLVII線に沿った矢視断面図である。FIG. 6 is a cross-sectional view taken along the line XLVII-XLVII of FIG. インシュレータ一体成形工程における樹脂注入位置および樹脂抜け止め部の断面を示す斜視図である。It is a perspective view which shows the resin injection position and the cross section of the resin retaining part in the insulator integral molding process. 図40の絶縁分割積層鉄心の変形例を示す斜視図である。It is a perspective view which shows the modification of the insulation division laminated iron core of FIG. 40. 図49の分割積層鉄心を示す斜視図である。It is a perspective view which shows the divided laminated iron core of FIG. 図50の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 図49の絶縁分割積層鉄心を示す平面図である。It is a top view which shows the insulation division laminated iron core of FIG. 49. 図52のLIII−LIII線に沿った矢視断面図である。It is a cross-sectional view taken along the line LIII-LIII of FIG. 52. 図49の絶縁分割積層鉄心を示す側面図である。It is a side view which shows the insulation division laminated laminated iron core of FIG. 図54のLV−LV線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along the line LV-LV of FIG. 54. 図40の絶縁分割積層鉄心の変形例を示す斜視図である。It is a perspective view which shows the modification of the insulation division laminated iron core of FIG. 40. 図56の分割積層鉄心を示す斜視図である。It is a perspective view which shows the divided laminated iron core of FIG. 56. 図57の切欠き鋼板を示す平面図である。It is a top view which shows the notched steel plate of FIG. 57. 図57の絶縁分割積層鉄心を示す平面図である。It is a top view which shows the insulation division laminated iron core of FIG. 57. 図59のLX−LX線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along the line LX-LX of FIG. 59. 図56の絶縁分割積層鉄心を示す側面図である。It is a side view which shows the insulation division laminated iron core of FIG. 56. 図61のLXII−LXII線に沿った矢視断面図である。FIG. 6 is a cross-sectional view taken along the line LXII-LXII of FIG. 61.

実施の形態1.
図1はこの発明の実施の形態1に係る絶縁積層回転子を示す斜視図である。この実施の形態1では、回転電機の絶縁積層板構造体として、絶縁積層回転子1を例に説明する。絶縁積層回転子1は、回転軸となるシャフト2と、シャフト2に固定される絶縁積層鉄心3とを備えている。
Embodiment 1.
FIG. 1 is a perspective view showing an insulated laminated rotor according to a first embodiment of the present invention. In the first embodiment, the insulated laminated rotor 1 will be described as an example of the insulated laminated plate structure of the rotary electric machine. The insulated laminated rotor 1 includes a shaft 2 serving as a rotation shaft and an insulated laminated iron core 3 fixed to the shaft 2.

図2は図1の絶縁積層回転子1を示す分解斜視図である。絶縁積層鉄心3は、積層鉄心301aと、積層鉄心301aの表面に設けられた樹脂絶縁部302とを備えている。樹脂絶縁部302は、例えば、PPS、LCP、PBT、POM、PA、PETなどの熱可塑性樹脂、エポキシ樹脂、または、BMCなどの熱硬化性樹脂から構成される。絶縁積層鉄心3は、積層鉄心301aに樹脂絶縁部302が一体成形されることによって形成される。 FIG. 2 is an exploded perspective view showing the insulating laminated rotor 1 of FIG. The insulated laminated iron core 3 includes a laminated iron core 301a and a resin insulating portion 302 provided on the surface of the laminated iron core 301a. The resin insulating portion 302 is composed of, for example, a thermoplastic resin such as PPS, LCP, PBT, POM, PA, PET, an epoxy resin, or a thermosetting resin such as BMC. The insulating laminated iron core 3 is formed by integrally molding the resin insulating portion 302 with the laminated iron core 301a.

絶縁積層回転子1を製造する方法としては、樹脂絶縁部302を積層鉄心301aに一体成形した後にシャフト2を積層鉄心301aに組み立てる方法と、積層鉄心301aにシャフト2を組み立てた後に樹脂絶縁部302を積層鉄心301aに一体成形する方法とが挙げられ、いずれの方法であってもよい。 The method for manufacturing the insulated laminated rotor 1 includes a method of integrally molding the resin insulating portion 302 on the laminated iron core 301a and then assembling the shaft 2 on the laminated iron core 301a, and a method of assembling the shaft 2 on the laminated iron core 301a and then assembling the resin insulating portion 302. There is a method of integrally molding the laminated iron core 301a, and any method may be used.

樹脂絶縁部302には、図示しないコイルが取り付けられる。樹脂絶縁部302は、絶縁積層鉄心ティース先端部303と、絶縁積層鉄心ティース巻装部304と、絶縁積層鉄心ティース側面部305と、樹脂外周部306とを有している。図示しないコイルは、絶縁積層鉄心ティース巻装部304と、絶縁積層鉄心ティース側面部305とに巻き回される。絶縁積層鉄心3と図示しないコイルとは、樹脂絶縁部302を介して電気的に絶縁される。 A coil (not shown) is attached to the resin insulating portion 302. The resin insulating portion 302 has an insulating laminated iron core tooth tip portion 303, an insulating laminated iron core tooth winding portion 304, an insulating laminated iron core tooth side surface portion 305, and a resin outer peripheral portion 306. A coil (not shown) is wound around an insulated laminated iron core tooth winding portion 304 and an insulated laminated iron core tooth side surface portion 305. The insulating laminated iron core 3 and the coil (not shown) are electrically insulated via the resin insulating portion 302.

図3は図1の積層鉄心301aを示す斜視図である。積層鉄心301aは、シャフト2が挿入される貫通孔が形成された積層鉄心中央部307と、積層鉄心中央部307から径方向外側に突出する積層鉄心ティース部308と、積層鉄心ティース部308の径方向外側端部に設けられ、周方向に突出する積層鉄心ティース先端部309とを有している。この例では、径方向とは絶縁積層鉄心3の軸線を中心とした径方向である。また、この例では、周方向とは絶縁積層鉄心3の軸線を中心とした周方向である。積層鉄心ティース部308は、周方向を向く一対の積層鉄心ティース側面部310を有している。積層鉄心ティース先端部309は、径方向外側を向く積層鉄心外周部311を有している。積層鉄心外周部311は、積層鉄心301aの外周部を構成する。 FIG. 3 is a perspective view showing the laminated iron core 301a of FIG. The laminated iron core 301a has a central portion 307 of the laminated iron core in which a through hole into which the shaft 2 is inserted is formed, a laminated iron core tooth portion 308 projecting radially outward from the central portion 307 of the laminated iron core, and a diameter of the laminated iron core tooth portion 308. It has a laminated iron core tooth tip portion 309 which is provided at the outer end portion in the direction and projects in the circumferential direction. In this example, the radial direction is the radial direction centered on the axis of the insulated laminated iron core 3. Further, in this example, the circumferential direction is the circumferential direction centered on the axis of the insulated laminated iron core 3. The laminated iron core teeth portion 308 has a pair of laminated iron core teeth side surface portions 310 facing in the circumferential direction. The laminated iron core tooth tip portion 309 has a laminated iron core outer peripheral portion 311 facing outward in the radial direction. The outer peripheral portion 311 of the laminated iron core constitutes the outer peripheral portion of the laminated iron core 301a.

積層鉄心301aは、複数枚の鋼板312と、少なくとも一枚の切欠き鋼板313aとが積層されることによって構成されている。図3では、積層鉄心301aが一枚の切欠き鋼板313aを備えている例を示している。切欠き鋼板313aが鋼板312に挟まれて積層されることによって、積層鉄心ティース側面部310には、抜け止め溝314aが形成されている。 The laminated iron core 301a is formed by laminating a plurality of steel plates 312 and at least one notched steel plate 313a. FIG. 3 shows an example in which the laminated iron core 301a includes a single notched steel plate 313a. By sandwiching the notched steel plate 313a between the steel plates 312 and laminating them, a retaining groove 314a is formed in the side surface portion 310 of the laminated iron core teeth.

図4は図3の鋼板312を示す平面図である。所望の形状に切り出される鋼板312は、シャフト2が挿入される貫通孔が形成された鋼板中央部315と、鋼板中央部315から径方向外側に突出する鋼板ティース部316と、鋼板ティース部316の径方向外側端部に設けられ、周方向に突出する鋼板ティース先端部317とを有している。鋼板ティース部316は、周方向を向く鋼板ティース側面部318を有している。鋼板ティース先端部317は、径方向外側を向く鋼板外周部319を有している。 FIG. 4 is a plan view showing the steel plate 312 of FIG. The steel plate 312 cut out into a desired shape includes a steel plate central portion 315 having a through hole into which the shaft 2 is inserted, a steel plate tooth portion 316 protruding radially outward from the steel plate central portion 315, and a steel plate tooth portion 316. It has a steel plate tooth tip 317 that is provided at the outer end in the radial direction and projects in the circumferential direction. The steel plate tooth portion 316 has a steel plate tooth side surface portion 318 facing in the circumferential direction. The steel plate tooth tip portion 317 has a steel plate outer peripheral portion 319 facing outward in the radial direction.

図5は図3の切欠き鋼板313aを示す平面図である。切欠き鋼板313aは、一対の鋼板ティース側面部318のそれぞれに溝である蟻溝320aが形成されている。鋼板ティース側面部318は、切欠き鋼板313aにおけるティース側面部となる。切欠き鋼板313aにおけるその他の構成は、鋼板312と同様である。蟻溝320aは、例えば、凹み寸法が1.0mm〜2.0mm、幅寸法が2.0mmとなっている。図3に示すように、複数枚の鋼板312および切欠き鋼板313aを積層することによって、積層鉄心ティース側面部310に抜け止め溝314aが形成された積層鉄心301aが得られる。 FIG. 5 is a plan view showing the notched steel plate 313a of FIG. In the notched steel plate 313a, dovetail grooves 320a, which are grooves, are formed in each of the pair of steel plate tooth side surface portions 318. The steel plate tooth side surface portion 318 serves as a tooth side surface portion in the notched steel plate 313a. Other configurations of the notched steel sheet 313a are the same as those of the steel sheet 312. The dovetail groove 320a has, for example, a recessed dimension of 1.0 mm to 2.0 mm and a width dimension of 2.0 mm. As shown in FIG. 3, by laminating a plurality of steel plates 312 and notched steel plates 313a, a laminated iron core 301a in which a retaining groove 314a is formed in the side surface portion 310 of the laminated iron core teeth can be obtained.

図6は図1の絶縁積層回転子1を示す平面図、図7は図6のVII−VII線に沿った断面を示す斜視図である。樹脂絶縁部302は、複数枚の鋼板312と切欠き鋼板313aとが積層されて形成される抜け止め溝314aに設けられ、射出成形された樹脂が硬化して一体化した樹脂抜け止め部321aを有している。 6 is a plan view showing the insulated laminated rotor 1 of FIG. 1, and FIG. 7 is a perspective view showing a cross section taken along the line VII-VII of FIG. The resin insulating portion 302 is provided in a retaining groove 314a formed by laminating a plurality of steel plates 312 and a notched steel plate 313a, and forms a resin retaining portion 321a in which the injection-molded resin is cured and integrated. Have.

図8は図1の絶縁積層回転子1を示す側面図、図9は図8のIX−IX線に沿った矢視断面図である。積層鉄心ティース側面部310の抜け止め溝314aに射出成形された樹脂が硬化することにより、樹脂抜け止め部321aが形成される。抜け止め溝314aは、蟻溝320aの形状で切り出されているので、絶縁積層鉄心ティース側面部305の樹脂製薄膜と積層鉄心301aの表面とが積層鉄心ティース側面部310の表面に対して垂直な方向に離れることがなく、これにより、絶縁積層鉄心ティース側面部305と積層鉄心301aとの間に隙間322aが生じることを防止することができる。この効果により、巻線領域323aが抑制されることを防止することができ、高い性能を有する回転電機を得ることができる。なお、蟻溝320aの形状は、図示する形状に限らない。 8 is a side view showing the insulated laminated rotor 1 of FIG. 1, and FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. The resin retaining portion 321a is formed by curing the injection-molded resin in the retaining groove 314a of the side surface portion 310 of the laminated iron core tooth. Since the retaining groove 314a is cut out in the shape of the dovetail groove 320a, the resin thin film of the insulating laminated iron core tooth side surface portion 305 and the surface of the laminated iron core 301a are perpendicular to the surface of the laminated iron core tooth side surface portion 310. It does not separate in the direction, so that it is possible to prevent a gap 322a from being generated between the insulating laminated iron core tooth side surface portion 305 and the laminated iron core 301a. Due to this effect, it is possible to prevent the winding region 323a from being suppressed, and it is possible to obtain a rotary electric machine having high performance. The shape of the dovetail groove 320a is not limited to the shape shown in the figure.

以下、切欠き鋼板313aにおける蟻溝320aの形状について説明する。図10は図5の蟻溝320aの変形例を示す平面図である。蟻溝320aは、蟻溝320aの開口部324の幅方向の寸法が切欠き鋼板313aの板厚寸法と同等以上で、蟻溝320aの開口部324の幅方向の寸法より大きい直径寸法の円形状部325を有することで、蟻溝320aの開口部324に抜け止めの鍔部326を形成することができる。例えば、板厚寸法が0.5mmの切欠き鋼板313aの場合、蟻溝320aの開口部324の幅方向の寸法が0.5mm〜0.8mm、円形状部325の直径寸法が1.0mm〜1.5mm、鍔部326の幅寸法が0.25mm〜0.5mmとなる。 Hereinafter, the shape of the dovetail groove 320a in the notched steel plate 313a will be described. FIG. 10 is a plan view showing a modified example of the dovetail groove 320a of FIG. The dovetail groove 320a has a circular shape having a diameter dimension in which the widthwise dimension of the opening 324 of the dovetail groove 320a is equal to or greater than the plate thickness dimension of the notched steel plate 313a and larger than the widthwise dimension of the opening portion 324 of the dovetail groove 320a. By having the portion 325, a retaining collar portion 326 can be formed in the opening 324 of the dovetail groove 320a. For example, in the case of a notched steel plate 313a having a plate thickness dimension of 0.5 mm, the dimension in the width direction of the opening 324 of the dovetail groove 320a is 0.5 mm to 0.8 mm, and the diameter dimension of the circular portion 325 is 1.0 mm to. The width dimension of the flange portion 326 is 1.5 mm, and the width dimension is 0.25 mm to 0.5 mm.

開口部324の中心線と円形状部325の中心線とは必ずしも一致する必要はない。図11は図10の蟻溝320aの変形例を示す平面図である。例えば、開口部324の中心線327から円形状部325の中心線328を0.2mmだけオフセットして配置してもよい。図12は図11の蟻溝320aの変形例を示す平面図である。例えば、円形状部325が開口部324の中心線327を中心として片側にのみ配置されるように、非対称な形状で円形状部325が配置されてもよい。 The center line of the opening 324 and the center line of the circular portion 325 do not necessarily have to coincide with each other. FIG. 11 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the center line 328 of the circular portion 325 may be offset by 0.2 mm from the center line 327 of the opening 324. FIG. 12 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the circular portion 325 may be arranged in an asymmetrical shape so that the circular portion 325 is arranged on only one side with the center line 327 of the opening 324 as the center.

図13は図5の蟻溝320aの変形例を示す平面図である。蟻溝320aは、矩形であっても同様の効果を得ることができる。蟻溝320aの開口部329の幅方向の寸法が切欠き鋼板313aの板厚寸法と同等以上で、蟻溝320aの開口部329の幅方向の寸法より大きい矩形幅寸法の矩形状部330を有することで、蟻溝320aの開口部329に抜け止めの鍔部331を形成することができる。例えば、板厚寸法が0.5mmの切欠き鋼板313aの場合、蟻溝320aの開口部329の幅方向の寸法が0.5mm〜0.8mm、矩形状部330の幅方向の寸法が1.0mm〜1.5mm、鍔部331の幅寸法が0.25mm〜0.5mmとなる。 FIG. 13 is a plan view showing a modified example of the dovetail groove 320a of FIG. The same effect can be obtained even if the dovetail groove 320a is rectangular. It has a rectangular portion 330 having a rectangular width dimension that is equal to or greater than the thickness dimension of the notched steel plate 313a and larger than the width dimension of the opening 329 of the dovetail groove 320a. As a result, a retaining collar portion 331 can be formed in the opening 329 of the dovetail groove 320a. For example, in the case of a notched steel plate 313a having a plate thickness dimension of 0.5 mm, the dimension in the width direction of the opening 329 of the dovetail groove 320a is 0.5 mm to 0.8 mm, and the dimension in the width direction of the rectangular portion 330 is 1. The width dimension of the flange portion 331 is 0 mm to 1.5 mm, and the width dimension is 0.25 mm to 0.5 mm.

開口部329の中心線と矩形状部330の中心線とは必ずしも一致する必要はない。図14は図13の蟻溝320aの変形例を示す平面図である。例えば、開口部329の中心線332から矩形状部330の中心線333を0.2mmだけオフセットして配置してもよい。図15は図14の蟻溝320aの変形例を示す平面図である。例えば、矩形状部330が開口部329の中心線332を中心として片側にのみ配置されるように、非対称な形状で矩形状部330が配置されてもよい。 The center line of the opening 329 and the center line of the rectangular portion 330 do not necessarily have to coincide with each other. FIG. 14 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the center line 332 of the rectangular portion 330 may be offset from the center line 332 of the opening 329 by 0.2 mm. FIG. 15 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the rectangular portion 330 may be arranged in an asymmetrical shape so that the rectangular portion 330 is arranged on only one side with the center line 332 of the opening 329 as the center.

図16は図5の蟻溝320aの変形例を示す平面図である。蟻溝320aは、三角形であっても同様の効果を得ることができる。蟻溝320aの開口部334の幅方向の寸法が切欠き鋼板313aの板厚寸法と同等以上で、蟻溝320aの開口部334の幅方向の寸法より大きい幅寸法の三角形状部335を有することで、蟻溝320aの開口部334に抜け止めの鍔部336を形成することができる。例えば、板厚寸法が0.5mmの切欠き鋼板313aの場合、蟻溝320aの開口部334の幅方向の寸法が0.5mm〜0.8mm、三角形状部335の幅方向の寸法が1.0mm〜1.5mm、鍔部336の幅寸法が0.25mm〜0.5mmである。 FIG. 16 is a plan view showing a modified example of the dovetail groove 320a of FIG. The same effect can be obtained even if the dovetail groove 320a is a triangle. The width dimension of the opening 334 of the dovetail groove 320a is equal to or greater than the thickness dimension of the notched steel plate 313a, and the dovetail groove 320a has a triangular portion 335 having a width dimension larger than the width dimension of the opening 334 of the dovetail groove 320a. Therefore, a retaining flange 336 can be formed in the opening 334 of the dovetail groove 320a. For example, in the case of a notched steel plate 313a having a plate thickness dimension of 0.5 mm, the dimension in the width direction of the opening 334 of the dovetail groove 320a is 0.5 mm to 0.8 mm, and the dimension in the width direction of the triangular portion 335 is 1. The width dimension of the flange portion 336 is 0 mm to 1.5 mm, and the width dimension is 0.25 mm to 0.5 mm.

開口部334の中心線と三角形状部335の中心線とは必ずしも一致する必要はない。図17は図16の蟻溝320aの変形例を示す平面図である。例えば、開口部334の中心線337から三角形状部335の中心線338を0.2mmだけオフセットして配置してもよい。図18は図17の蟻溝320aの変形例を示す平面図である。例えば、三角形状部335が開口部334の中心線337を中心として片側にのみ配置されるように、非対称な形状で三角形状部335が配置されてもよい。 The center line of the opening 334 and the center line of the triangular portion 335 do not necessarily have to coincide with each other. FIG. 17 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the center line 338 of the triangular portion 335 may be offset by 0.2 mm from the center line 337 of the opening 334. FIG. 18 is a plan view showing a modified example of the dovetail groove 320a of FIG. For example, the triangular portion 335 may be arranged in an asymmetrical shape so that the triangular portion 335 is arranged on only one side with the center line 337 of the opening 334 as the center.

蟻溝320aは、切欠き鋼板313aの輪郭を荒く切り出し、微細な突起または凹みを設けることによっても同様の効果を得ることができる。図19は図5の蟻溝320aの変形例を示す平面図である。積層鉄心ティース側面部310の表面に対して垂直な開口溝側面339の片方の面または両面に、半円形状の突起340aを配置することで、抜け止め形状を形成することができる。例えば、板厚寸法が0.5mm〜0.8mmの切欠き鋼板313aの場合、半円形状の突起340aの直径寸法が0.5mm〜0.8mmとなる。図20は図19の蟻溝320aの変形例を示す平面図である。積層鉄心ティース側面部310の表面に対して垂直な開口溝側面339の片方の面または両面に、半円形状の凹み341aを配置することで抜け止め形状を形成することができる。例えば、板厚寸法が0.5mmの切欠き鋼板313aの場合、半円形状の凹み341aの直径寸法が0.5mm〜0.8mmとなる。 The same effect can be obtained by roughly cutting out the contour of the notched steel plate 313a and providing fine protrusions or dents in the dovetail groove 320a. FIG. 19 is a plan view showing a modified example of the dovetail groove 320a of FIG. By arranging the semicircular protrusions 340a on one surface or both sides of the opening groove side surface 339 perpendicular to the surface of the laminated iron core tooth side surface portion 310, a retaining shape can be formed. For example, in the case of a notched steel plate 313a having a plate thickness dimension of 0.5 mm to 0.8 mm, the diameter dimension of the semicircular protrusion 340a is 0.5 mm to 0.8 mm. FIG. 20 is a plan view showing a modified example of the dovetail groove 320a of FIG. A semi-circular recess 341a can be arranged on one or both sides of the opening groove side surface 339 perpendicular to the surface of the laminated iron core tooth side surface 310 to form a retaining shape. For example, in the case of a notched steel plate 313a having a plate thickness dimension of 0.5 mm, the diameter dimension of the semicircular recess 341a is 0.5 mm to 0.8 mm.

図21は図19の蟻溝320aの変形例を示す平面図である。突起340bは、半円形状に限らず、矩形であっても同様の効果を得ることができる。図22は図20の蟻溝320aの変形例を示す平面図である。凹み341bは、半円形状に限らず、矩形であっても同様の効果を得ることができる。図23は図19の蟻溝320aの変形例を示す平面図である。突起340cは、半円形状に限らず、三角形状であっても同様の効果を得ることができる。図24は図20の蟻溝320aの変形例を示す平面図である。凹み341cは、半円形状に限らず、三角形状であっても同様の効果を得ることができる。また、突起340a、突起340b、突起340c、凹み341a、凹み341b、凹み341cは、同一の開口溝側面339に複数設けられてもよい。 FIG. 21 is a plan view showing a modified example of the dovetail groove 320a of FIG. The protrusion 340b is not limited to a semicircular shape, and the same effect can be obtained even if it is rectangular. FIG. 22 is a plan view showing a modified example of the dovetail groove 320a of FIG. The recess 341b is not limited to a semicircular shape, and the same effect can be obtained even if it is a rectangle. FIG. 23 is a plan view showing a modified example of the dovetail groove 320a of FIG. The protrusion 340c is not limited to a semicircular shape, and the same effect can be obtained even if it has a triangular shape. FIG. 24 is a plan view showing a modified example of the dovetail groove 320a of FIG. The dent 341c is not limited to a semicircular shape, and the same effect can be obtained even if it has a triangular shape. Further, a plurality of protrusions 340a, 340b, protrusions 340c, recesses 341a, recesses 341b, and recesses 341c may be provided on the same opening groove side surface 339.

次に、製造工程について説明する。まず、鉄心積層工程について説明する。本発明の積層鉄心301aは、鋼板312と切欠き鋼板313aとから構成される。珪素鋼板または電磁鋼板を、プレス金型を用いて打ち抜くことによって、所望の形状を有する鋼板312および切欠き鋼板313aが得られる。また、ワイヤーカット放電加工機で切り出すことによっても所望の形状を有する鋼板312および切欠き鋼板313aが得られる。 Next, the manufacturing process will be described. First, the iron core laminating process will be described. The laminated iron core 301a of the present invention is composed of a steel plate 312 and a notched steel plate 313a. By punching a silicon steel sheet or an electromagnetic steel sheet using a press die, a steel sheet 312 and a notched steel sheet 313a having a desired shape can be obtained. Further, a steel plate 312 and a notched steel plate 313a having a desired shape can also be obtained by cutting out with a wire-cut electric discharge machine.

その後、複数枚の鋼板312に、切欠き鋼板313aを少なくとも1枚挟んで積層することで、抜け止め溝314aが形成された積層鉄心301aが得られる。絶縁積層回転子1の機能に問題の無い範囲で、積層鉄心ティース側面部310に抜け止め溝314aを複数設けてもよい。また、鋼板312および切欠き鋼板313aは、蟻溝320aを除く形状が同一であることから、鋼板ティース側面部318を打ち抜く部品を入れ替えることができるプレス金型を用意することで、鋼板312および切欠き鋼板313aを連続的に打ち抜き、積層することができる。 After that, at least one notched steel plate 313a is sandwiched and laminated on the plurality of steel plates 312 to obtain a laminated iron core 301a in which the retaining groove 314a is formed. A plurality of retaining grooves 314a may be provided in the side surface portion 310 of the laminated iron core teeth as long as there is no problem in the function of the insulating laminated rotor 1. Further, since the steel plate 312 and the notched steel plate 313a have the same shape except for the dovetail groove 320a, the steel plate 312 and the cut plate can be cut by preparing a press die capable of replacing the parts for punching the side surface portion 318 of the steel plate tooth. The notched steel plate 313a can be continuously punched and laminated.

次に、インシュレータ一体成形工程について説明する。図25はインシュレータ一体成形工程における樹脂注入位置および樹脂抜け止め部321aの断面を示す斜視図である。積層鉄心301aおよびシャフト2を図示していない成形金型の内部に入れる。成形金型は、積層鉄心301aの上面、下面、外周面、積層鉄心ティース部308の両側面を密閉する、図示しない金型内壁と樹脂注入孔342とから構成される。例えば、樹脂注入孔342は、絶縁積層鉄心ティース巻装部304を形成する位置などに任意に設けられ、樹脂注入孔342から成形樹脂が注入される。図中の矢印は、樹脂注入孔342から樹脂が流れる方向を示す。注入された成形樹脂は、図示していない金型内壁と積層鉄心301aとの間の空間であるキャビティ部を流れ、積層鉄心301aを覆い、硬化し一体化した樹脂絶縁部302を形成する。成形樹脂が絶縁積層鉄心ティース巻装部304を形成するキャビティ部を流れる過程で、積層鉄心ティース側面部310に設けられた抜け止め溝314aに成形樹脂が充填され、硬化することで樹脂抜け止め部321aが形成される。この樹脂抜け止め部321aは、絶縁積層鉄心ティース巻装部304において、積層鉄心ティース側面部310の表面から積層鉄心ティース側面部310の表面に対して垂直な方向に樹脂絶縁部302が離れて隙間322aが生じることを防止する。 Next, the insulator integral molding process will be described. FIG. 25 is a perspective view showing a resin injection position and a cross section of the resin retaining portion 321a in the insulator integral molding step. The laminated iron core 301a and the shaft 2 are placed inside a molding die (not shown). The molding die is composed of a mold inner wall (not shown) and a resin injection hole 342 that seal the upper surface, the lower surface, the outer peripheral surface, and both side surfaces of the laminated iron core tooth portion 308 of the laminated iron core 301a. For example, the resin injection hole 342 is arbitrarily provided at a position where the insulating laminated iron core tooth winding portion 304 is formed, and the molding resin is injected from the resin injection hole 342. The arrows in the figure indicate the direction in which the resin flows from the resin injection hole 342. The injected molding resin flows through a cavity portion which is a space between the inner wall of the mold and the laminated iron core 301a (not shown), covers the laminated iron core 301a, and is cured to form an integrated resin insulating portion 302. In the process of the molding resin flowing through the cavity portion forming the insulating laminated iron core tooth winding portion 304, the molding resin is filled in the retaining groove 314a provided on the side surface portion 310 of the laminated iron core tooth and cured to prevent the resin retaining portion. 321a is formed. In the insulating laminated iron core tooth winding portion 304, the resin insulating portion 302a is separated from the surface of the laminated iron core tooth side surface portion 310 in the direction perpendicular to the surface of the laminated iron core tooth side surface portion 310 to form a gap. Prevents 322a from occurring.

次に、樹脂抜け止め部321aの設置位置の変形例について説明する。図26は図3の積層鉄心301aの変形例を示す斜視図である。積層鉄心301bは、複数枚の鋼板312と、切欠き鋼板313bとを備え、それぞれを積層することによって構成されている。積層鉄心ティース先端部309における径方向内側面に抜け止め溝314bが形成されている。 Next, a modified example of the installation position of the resin retaining portion 321a will be described. FIG. 26 is a perspective view showing a modified example of the laminated iron core 301a of FIG. The laminated iron core 301b includes a plurality of steel plates 312 and a notched steel plate 313b, and is configured by laminating each of them. A retaining groove 314b is formed on the inner side surface in the radial direction of the tip portion 309 of the laminated iron core tooth.

図27は図26の切欠き鋼板313bを示す平面図である。切欠き鋼板313bは、鋼板ティース先端部317に蟻溝320bが形成されている。例えば、蟻溝320bは、凹み寸法が1.0mm〜2.0mm、幅寸法が2.0mmである。鋼板312と切欠き鋼板313bとを積層することによって、積層鉄心ティース先端部309に抜け止め溝314bが形成された積層鉄心301bを得ることができる。 27 is a plan view showing the notched steel plate 313b of FIG. 26. In the notched steel plate 313b, a dovetail groove 320b is formed in the tip portion 317 of the steel plate tooth. For example, the dovetail groove 320b has a recessed dimension of 1.0 mm to 2.0 mm and a width dimension of 2.0 mm. By laminating the steel plate 312 and the notched steel plate 313b, it is possible to obtain a laminated iron core 301b in which a retaining groove 314b is formed in the tip portion 309 of the laminated iron core tooth.

図28は図1の絶縁積層回転子1の変形例を示す平面図、図29は図28のXXIX−XXIX線に沿った断面を示す斜視図である。樹脂絶縁部302は、複数枚の鋼板312と切欠き鋼板313bとが積層されて形成される抜け止め溝314bに、射出成形された樹脂が硬化して一体化した樹脂抜け止め部321bを有している。 FIG. 28 is a plan view showing a modified example of the insulating laminated rotor 1 of FIG. 1, and FIG. 29 is a perspective view showing a cross section taken along the line XXIX-XXIX of FIG. 28. The resin insulating portion 302 has a resin retaining portion 321b in which injection-molded resin is cured and integrated in a retaining groove 314b formed by laminating a plurality of steel plates 312 and notched steel plates 313b. ing.

図30は図28の絶縁積層回転子1を示す側面図、図31は図30のXXXI−XXXI線に沿った矢視断面図である。積層鉄心ティース先端部309の抜け止め溝314bには、一体化し硬化した樹脂抜け止め部321bが存在する。抜け止め溝314bは、蟻溝320bの形状で切り出されているので、絶縁積層鉄心ティース先端部303の樹脂製薄膜と積層鉄心301bの表面とが積層鉄心ティース先端部309の表面に対して垂直な方向に離れることなく、これにより、隙間322bが生じることを防止することができる。この効果によって、巻線領域323bが抑制されることを防止することができ、効率の良い回転電機を得ることができる。なお、抜け止め溝314bの形状は、蟻溝形状に限らず、例えば、表面を荒く切り出すことで同様の効果が得られる。 FIG. 30 is a side view showing the insulated laminated rotor 1 of FIG. 28, and FIG. 31 is a cross-sectional view taken along the line XXXI-XXXI of FIG. In the retaining groove 314b of the tip portion 309 of the laminated iron core tooth, there is an integrated and cured resin retaining portion 321b. Since the retaining groove 314b is cut out in the shape of the dovetail groove 320b, the resin thin film of the insulating laminated iron core tooth tip 303 and the surface of the laminated iron core 301b are perpendicular to the surface of the laminated iron core tooth tip 309. This prevents the gap 322b from being created without leaving in the direction. Due to this effect, it is possible to prevent the winding region 323b from being suppressed, and an efficient rotary electric machine can be obtained. The shape of the retaining groove 314b is not limited to the dovetail groove shape, and the same effect can be obtained by, for example, roughly cutting out the surface.

図32は図3の積層鉄心301aの変形例を示す斜視図である。積層鉄心301cは、複数枚の鋼板312と、切欠き鋼板313cとを備え、それぞれを積層することによって構成されている。積層鉄心ティース先端部309における積層鉄心外周部311に抜け止め溝314cが形成されている。 FIG. 32 is a perspective view showing a modified example of the laminated iron core 301a of FIG. The laminated iron core 301c includes a plurality of steel plates 312 and a notched steel plate 313c, and is configured by laminating each of them. A retaining groove 314c is formed in the outer peripheral portion 311 of the laminated iron core at the tip portion 309 of the laminated iron core tooth.

図33は図32の切欠き鋼板313cを示す平面図である。切欠き鋼板313cは、鋼板ティース先端部317における径方向外側面である鋼板外周部319に蟻溝320cが形成されている。鋼板外周部319は、切欠き鋼板313cにおける外周部となる。例えば、蟻溝320cは、凹み寸法が1.0mm〜2.0mm、幅寸法が2.0mmである。鋼板312と切欠き鋼板313cとを積層することによって、積層鉄心ティース先端部309における積層鉄心外周部311に抜け止め溝314cが形成された積層鉄心301cを得ることができる。 FIG. 33 is a plan view showing the notched steel plate 313c of FIG. 32. In the notched steel plate 313c, a dovetail groove 320c is formed in the outer peripheral portion 319 of the steel plate, which is the radial outer surface of the steel plate tooth tip portion 317. The outer peripheral portion 319 of the steel plate is the outer peripheral portion of the notched steel plate 313c. For example, the dovetail groove 320c has a recessed dimension of 1.0 mm to 2.0 mm and a width dimension of 2.0 mm. By laminating the steel plate 312 and the notched steel plate 313c, it is possible to obtain a laminated iron core 301c in which a retaining groove 314c is formed in the outer peripheral portion 311 of the laminated iron core at the tip portion 309 of the laminated iron core tooth.

図34は図1の絶縁積層回転子1の変形例を示す平面図、図35は図34のXXXV−XXXV線に沿った断面を示す斜視図である。樹脂絶縁部302は、複数枚の鋼板312と切欠き鋼板313cとが積層されて形成される抜け止め溝314cに、射出成形された樹脂が硬化して一体化した樹脂抜け止め部321cを有している。 34 is a plan view showing a modified example of the insulating laminated rotor 1 of FIG. 1, and FIG. 35 is a perspective view showing a cross section taken along the line XXXV-XXXV of FIG. 34. The resin insulating portion 302 has a resin retaining portion 321c in which injection-molded resin is cured and integrated in a retaining groove 314c formed by laminating a plurality of steel plates 312 and a notched steel plate 313c. ing.

図36は図34の絶縁積層回転子1を示す側面図、図37は図36のXXXVII−XXXVII線に沿った矢視断面図である。積層鉄心ティース先端部309における積層鉄心外周部311の抜け止め溝314cには、一体化し硬化した樹脂抜け止め部321cが存在する。抜け止め溝314cは、蟻溝320cの形状で切り出されているので、樹脂外周部306の樹脂製薄膜と積層鉄心301cの表面とが積層鉄心外周部311の表面に対して垂直な方向に離れることなく、これにより、隙間322cが生じることを防止することができる。この効果によって、外径寸法が膨らむことを防止することができ、相対する固定子との間のエアギャップを小さくすることができ、回転電機の小型化および回転電機の性能向上の少なくとも何れか一方を得ることができる。なお、抜け止め溝314cの形状は、蟻溝形状に限らず、例えば、表面を荒く切り出すことで同様の効果を得られる。 36 is a side view showing the insulated laminated rotor 1 of FIG. 34, and FIG. 37 is a cross-sectional view taken along the line XXXVII-XXXVII of FIG. In the retaining groove 314c of the outer peripheral portion 311 of the laminated iron core in the tip portion 309 of the laminated iron core tooth, there is an integrated and cured resin retaining portion 321c. Since the retaining groove 314c is cut out in the shape of the dovetail groove 320c, the resin thin film of the resin outer peripheral portion 306 and the surface of the laminated iron core 301c are separated from each other in the direction perpendicular to the surface of the laminated iron core outer peripheral portion 311. This makes it possible to prevent the gap 322c from being generated. Due to this effect, it is possible to prevent the outer diameter dimension from swelling, the air gap between the rotor and the stator can be reduced, and at least one of the miniaturization of the rotary electric machine and the improvement of the performance of the rotary electric machine. Can be obtained. The shape of the retaining groove 314c is not limited to the dovetail groove shape, and the same effect can be obtained by, for example, roughly cutting out the surface.

なお、この実施の形態1に係る絶縁積層板構造体は、サーボモータ用、燃料噴射バルブ開閉タイミング制御ユニット用、空調機ファンモータ用、車載用燃料ポンプユニット用の回転電機の回転子に適用できる絶縁積層板構造体である。 The insulated laminated plate structure according to the first embodiment can be applied to a rotor of a rotary electric machine for a servomotor, a fuel injection valve opening / closing timing control unit, an air conditioner fan motor, and an in-vehicle fuel pump unit. It is an insulated laminated board structure.

実施の形態2.
図38はこの発明の実施の形態2に係る絶縁積層固定子の要部を示す斜視図である。この実施の形態2では、回転電機の絶縁積層板構造体として、絶縁積層固定子4を例に説明する。絶縁積層固定子4は、互いに連結され円環状に配置された複数の絶縁分割積層鉄心401aを備えている。図38では、半周分である6個の絶縁分割積層鉄心401aを示している。
Embodiment 2.
FIG. 38 is a perspective view showing a main part of the insulating laminated stator according to the second embodiment of the present invention. In the second embodiment, the insulating laminated stator 4 will be described as an example of the insulating laminated plate structure of the rotary electric machine. The insulating laminated stator 4 includes a plurality of insulating divided laminated laminated iron cores 401a connected to each other and arranged in an annular shape. In FIG. 38, six insulation-divided laminated iron cores 401a, which are half circumferences, are shown.

図39は図38の絶縁分割積層鉄心401aを示す拡大図である。絶縁分割積層鉄心401aは、分割積層鉄心402aと、分割積層鉄心402aの表面に設けられた樹脂絶縁部403とを備えている。樹脂絶縁部403は、例えば、PPS、LCP、PBT、POM、PRTなどの熱可塑性樹脂、エポキシ樹脂、BMC、SMCなどの熱硬化性樹脂から構成される。樹脂絶縁部403は、射出成形によって分割積層鉄心402aに一体成形される。絶縁分割積層鉄心401aには、図示しないコイルが巻き回される。分割積層鉄心402aとコイルとの間は、樹脂絶縁部403を介して絶縁される。 FIG. 39 is an enlarged view showing the insulating divided laminated laminated iron core 401a of FIG. 38. The insulating divided laminated iron core 401a includes a divided laminated iron core 402a and a resin insulating portion 403 provided on the surface of the divided laminated iron core 402a. The resin insulating portion 403 is composed of, for example, a thermoplastic resin such as PPS, LCP, PBT, POM, PRT, an epoxy resin, and a thermosetting resin such as BMC and SMC. The resin insulating portion 403 is integrally molded with the divided laminated iron core 402a by injection molding. A coil (not shown) is wound around the insulated split laminated iron core 401a. The split laminated iron core 402a and the coil are insulated via the resin insulating portion 403.

図40は図38の絶縁分割積層鉄心401aを示す斜視図である。樹脂絶縁部403は、ティース先端突出部404と、ティース先端部405と、バックヨーク鍔部406と、ティース曲面巻装部407と、ティース側面巻装部408とを有している。図示しないコイルは、ティース曲面巻装部407と、ティース側面巻装部408とに巻き回される。 FIG. 40 is a perspective view showing the insulating divided laminated laminated iron core 401a of FIG. 38. The resin insulating portion 403 includes a tooth tip protruding portion 404, a tooth tip portion 405, a back yoke flange portion 406, a tooth curved surface winding portion 407, and a tooth side winding portion 408. A coil (not shown) is wound around a tooth curved surface winding portion 407 and a tooth side winding portion 408.

図41は図38の分割積層鉄心402aを示す斜視図である。分割積層鉄心402aは、分割積層鉄心バックヨーク部409と、分割積層鉄心バックヨーク部409から径方向内側に突出する分割積層鉄心ティース部410と、分割積層鉄心ティース部410の径方向内側端部に設けられ、周方向に突出する分割積層鉄心ティース突出部411とを有している。分割積層鉄心ティース部410は、周方向を向く分割積層鉄心ティース側面部412を有している。分割積層鉄心バックヨーク部409は、径方向外側を向く分割積層鉄心外周部413を有している。分割積層鉄心ティース突出部411は、径方向内側を向く分割積層鉄心ティース内周部414を有している。分割積層鉄心ティース内周部414は、切欠き鋼板416aにおける内周部となる。 FIG. 41 is a perspective view showing the divided laminated iron core 402a of FIG. 38. The split laminated iron core 402a is provided at the radial inner end of the split laminated iron core back yoke portion 409, the split laminated iron core tooth portion 410 projecting radially inward from the split laminated iron core back yoke portion 409, and the split laminated iron core tooth portion 410. It is provided and has a split laminated iron core tooth protruding portion 411 that protrudes in the circumferential direction. The divided laminated iron core tooth portion 410 has a divided laminated iron core tooth side surface portion 412 facing in the circumferential direction. The split laminated iron core back yoke portion 409 has a divided laminated iron core outer peripheral portion 413 facing outward in the radial direction. The divided laminated iron core tooth protruding portion 411 has an inner peripheral portion 414 of the divided laminated iron core tooth facing inward in the radial direction. The inner peripheral portion 414 of the divided laminated iron core teeth serves as the inner peripheral portion of the notched steel plate 416a.

分割積層鉄心402aは、複数枚の鋼板415と、少なくとも1枚の切欠き鋼板416aとが積層されることによって構成されている。図41では、分割積層鉄心402aが一枚の切欠き鋼板416aを備えている例を示している。切欠き鋼板416aが鋼板312に挟まれて積層されることによって、分割積層鉄心ティース側面部412には、抜け止め溝417aが形成されている。 The divided laminated iron core 402a is formed by laminating a plurality of steel plates 415 and at least one notched steel plate 416a. FIG. 41 shows an example in which the divided laminated iron core 402a includes a single notched steel plate 416a. By sandwiching the notched steel plate 416a between the steel plates 312 and laminating them, a retaining groove 417a is formed in the side surface portion 412 of the divided laminated iron core teeth.

図42は図41の鋼板415を示す平面図である。所望の形状に切り出される鋼板415は、鋼板バックヨーク部418と、鋼板バックヨーク部418の中央部から径方向内側に突出する鋼板ティース部419と、鋼板ティース部419の径方向内側端部に設けられ、周方向に突出する鋼板ティース先端部420とを有している。鋼板ティース部419は、周方向を向く鋼板ティース側面部421を有している。鋼板ティース先端部420は、径方向内側を向く鋼板内周部422を有している。 42 is a plan view showing the steel plate 415 of FIG. 41. The steel plate 415 cut into a desired shape is provided at the steel plate back yoke portion 418, the steel plate teeth portion 419 protruding radially inward from the center portion of the steel plate back yoke portion 418, and the radial inner end portion of the steel plate teeth portion 419. It has a steel plate tooth tip portion 420 that protrudes in the circumferential direction. The steel plate tooth portion 419 has a steel plate tooth side surface portion 421 facing in the circumferential direction. The steel plate tooth tip portion 420 has a steel plate inner peripheral portion 422 facing inward in the radial direction.

図43は図41の切欠き鋼板416aを示す平面図である。切欠き鋼板416aは、鋼板ティース側面部421に溝である蟻溝423aが形成されている。切欠き鋼板416aにおけるその他の構成は、鋼板415と同様である。蟻溝423aは、例えば、凹み寸法が0.5mm〜3.0mm、幅寸法が1.0mm〜5.0mmとなっている。複数枚の鋼板415および切欠き鋼板416aを積層することによって、分割積層鉄心ティース側面部412に抜け止め溝417aが形成された分割積層鉄心402aが得られる。 FIG. 43 is a plan view showing the notched steel plate 416a of FIG. 41. In the notched steel plate 416a, a dovetail groove 423a, which is a groove, is formed on the side surface portion 421 of the steel plate tooth. Other configurations of the notched steel sheet 416a are the same as those of the steel sheet 415. The dovetail groove 423a has, for example, a recessed dimension of 0.5 mm to 3.0 mm and a width dimension of 1.0 mm to 5.0 mm. By laminating a plurality of steel plates 415 and notched steel plates 416a, a divided laminated iron core 402a in which a retaining groove 417a is formed in the side surface portion 412 of the divided laminated iron core teeth 412 can be obtained.

図44は図40の絶縁分割積層鉄心401aを示す平面図、図45は図44のXLV−XLV線に沿った断面を示す斜視図である。樹脂絶縁部403は、複数枚の鋼板415と切欠き鋼板416aとが積層されて形成された抜け止め溝417aに設けられ、射出成形された樹脂が硬化して一体化した樹脂抜け止め部424aを有している。 44 is a plan view showing the insulated division laminated iron core 401a of FIG. 40, and FIG. 45 is a perspective view showing a cross section taken along the line XLV-XLV of FIG. 44. The resin insulating portion 403 is provided in a retaining groove 417a formed by laminating a plurality of steel plates 415 and a notched steel plate 416a, and forms a resin retaining portion 424a in which the injection-molded resin is cured and integrated. Have.

図46は図44の絶縁分割積層鉄心401aを示す側面図、図47は図46のXLVII−XLVII線に沿った矢視断面図である。分割積層鉄心402aの分割積層鉄心ティース側面部412に形成された抜け止め溝417aに射出成形された樹脂が硬化することにより、ティース側面巻装部408に一体化した樹脂抜け止め部424aが形成される。これにより、分割積層鉄心ティース側面部412を覆う樹脂製絶縁被覆が分割積層鉄心ティース側面部412から分割積層鉄心ティース側面部412の表面に対して垂直な方向に離れることがなく、これにより、ティース側面巻装部408と分割積層鉄心402aとの間に隙間425aが生じることを防止することができる。この効果により、巻線領域426が抑制されることを防止することができ、効率の良い回転電機を得ることができる。なお、切欠き鋼板416aの蟻溝423aは、図示する形状に限らず、例えば、実施の形態1と同様に、切欠き鋼板416aに微細な突起を設けることで同様の効果が得られる。 FIG. 46 is a side view showing the insulated division laminated iron core 401a of FIG. 44, and FIG. 47 is a cross-sectional view taken along the line XLVII-XLVII of FIG. By curing the resin injection-molded in the retaining groove 417a formed in the retaining groove 417a formed in the side surface portion 412 of the divided laminated iron core 402a, the resin retaining portion 424a integrated with the tooth side winding portion 408 is formed. NS. As a result, the resin insulating coating that covers the side surface portion 412 of the split laminated iron core tooth does not separate from the side surface portion 412 of the split laminated iron core tooth 412 in the direction perpendicular to the surface of the side surface portion 412 of the split laminated iron core tooth. It is possible to prevent a gap 425a from being formed between the side winding portion 408 and the divided laminated iron core 402a. Due to this effect, it is possible to prevent the winding region 426 from being suppressed, and an efficient rotary electric machine can be obtained. The dovetail groove 423a of the notched steel plate 416a is not limited to the shape shown in the drawing, and for example, the same effect can be obtained by providing the notched steel plate 416a with fine protrusions as in the first embodiment.

次に、製造工程について説明する。まず、鉄心積層工程について説明する。本発明の分割積層鉄心402aは、鋼板415と切欠き鋼板416aとから構成される。珪素鋼板または電磁鋼板を、プレス金型を用いて打ち抜くことによって、所望の形状を有する鋼板415および切欠き鋼板416aが得られる。また、ワイヤーカット放電加工機で切り出すことによっても所望の形状を有する鋼板415および切欠き鋼板416aが得られる。 Next, the manufacturing process will be described. First, the iron core laminating process will be described. The divided laminated iron core 402a of the present invention is composed of a steel plate 415 and a notched steel plate 416a. By punching a silicon steel sheet or an electromagnetic steel sheet using a press die, a steel sheet 415 and a notched steel sheet 416a having a desired shape can be obtained. Further, a steel plate 415 and a notched steel plate 416a having a desired shape can also be obtained by cutting out with a wire-cut electric discharge machine.

その後、複数枚の鋼板415に、切欠き鋼板416aを少なくとも1枚挟んで積層することで、抜け止め溝417aを有する分割積層鉄心402aが得られる。絶縁積層固定子4の機能に問題の無い範囲で、分割積層鉄心ティース側面部412に抜け止め溝417aを複数設けてもよい。また、鋼板415および切欠き鋼板416aは、蟻溝423aを除く形状が同一であることから、鋼板ティース側面部421を打ち抜く部品を入れ替えることができるプレス金型を用意することで、鋼板415および切欠き鋼板416aを連続的に打ち抜き、積層することができる。 After that, at least one notched steel plate 416a is sandwiched and laminated on the plurality of steel plates 415 to obtain a divided laminated iron core 402a having a retaining groove 417a. A plurality of retaining grooves 417a may be provided in the side surface portion 412 of the divided laminated iron core teeth as long as there is no problem in the function of the insulating laminated stator 4. Further, since the steel plate 415 and the notched steel plate 416a have the same shape except for the dovetail groove 423a, the steel plate 415 and the cut plate can be cut by preparing a press die capable of replacing the parts for punching the side surface portion 421 of the steel plate teeth. The notched steel plate 416a can be continuously punched and laminated.

次に、インシュレータ一体成形工程について説明する。図48はインシュレータ一体成形工程における樹脂注入位置および樹脂抜け止め部424aの断面を示す斜視図である。分割積層鉄心402aを図示していない成形金型の内部に入れる。成形金型は、分割積層鉄心402aの上面、下面、外周面、ティース部の両側面を密閉する、図示しない金型内壁と樹脂注入孔427とから構成される。例えば、樹脂注入孔427は、ティース曲面巻装部407を形成する位置などに任意に設けられ、樹脂注入孔427から成形樹脂が注入される。図中の矢印は、樹脂注入孔427から樹脂が流れる方向を示す。注入された成形樹脂は、図示していない金型内壁と分割積層鉄心402aとの間の空間であるキャビティ部を流れ、充填後に硬化することで、分割積層鉄心402aを覆い、一体化した樹脂絶縁部403を形成する。成形樹脂がティース側面巻装部408を形成するキャビティ部を流れる過程で、分割積層鉄心ティース側面部412に設けられた抜け止め溝417aに成形樹脂が充填され、硬化することで樹脂抜け止め部424aが形成される。この樹脂抜け止め部424aは、ティース側面巻装部408において、分割積層鉄心ティース側面部412の表面から分割積層鉄心ティース側面部412の表面に対して垂直な方向に樹脂絶縁部403が離れて隙間425aが生じることを防止する。また、ティース毎に分割されているので、金型と設備を小形化することができる。 Next, the insulator integral molding process will be described. FIG. 48 is a perspective view showing a resin injection position and a cross section of the resin retaining portion 424a in the insulator integral molding step. The divided laminated iron core 402a is placed inside a molding die (not shown). The molding die is composed of a mold inner wall (not shown) and a resin injection hole 427 that seal the upper surface, the lower surface, the outer peripheral surface, and both side surfaces of the teeth portion of the divided laminated iron core 402a. For example, the resin injection hole 427 is arbitrarily provided at a position where the tooth curved surface winding portion 407 is formed, and the molding resin is injected from the resin injection hole 427. The arrows in the figure indicate the direction in which the resin flows from the resin injection hole 427. The injected molding resin flows through a cavity, which is a space between the inner wall of the mold and the divided laminated iron core 402a (not shown), and is cured after filling to cover the divided laminated iron core 402a and integrate resin insulation. Part 403 is formed. In the process of the molding resin flowing through the cavity portion forming the tooth side winding portion 408, the molding resin is filled in the retaining groove 417a provided in the split laminated iron core tooth side surface portion 412 and cured to prevent the resin retaining portion 424a. Is formed. In the resin retaining portion 424a, the resin insulating portion 403 is separated from the surface of the divided laminated iron core tooth side surface portion 412 in the direction perpendicular to the surface of the divided laminated iron core tooth side surface portion 412 in the tooth side winding portion 408 to form a gap. Prevents 425a from occurring. Moreover, since it is divided for each tooth, the mold and equipment can be miniaturized.

以下、樹脂抜け止め部424aの設置位置の変形例について説明する。図49は図40の絶縁分割積層鉄心401aの変形例を示す斜視図である。絶縁分割積層鉄心401bは、分割積層鉄心402bと、樹脂絶縁部403とを備え、それぞれを積層することによって構成されている。樹脂絶縁部403が、分割積層鉄心402bの径方向外側における外周面である分割積層鉄心外周部413に設けられた樹脂外周部428を有している点で、絶縁分割積層鉄心401aと異なる。コイルをティース曲面巻装部407、ティース側面巻装部408に巻き回すことで、絶縁分割積層鉄心401bとコイルとの間は、樹脂絶縁部403を介して電気的に絶縁される。 Hereinafter, a modified example of the installation position of the resin retaining portion 424a will be described. FIG. 49 is a perspective view showing a modified example of the insulated split laminated iron core 401a of FIG. 40. The insulating split laminated laminated iron core 401b includes a split laminated laminated iron core 402b and a resin insulating portion 403, and is configured by laminating each of them. The resin insulating portion 403 is different from the insulated split laminated iron core 401a in that the resin insulating portion 403 has a resin outer peripheral portion 428 provided on the outer peripheral surface of the divided laminated iron core 413 which is the outer peripheral surface of the divided laminated iron core 402b in the radial direction. By winding the coil around the teeth curved surface winding portion 407 and the teeth side winding portion 408, the insulation split laminated iron core 401b and the coil are electrically insulated via the resin insulating portion 403.

図50は図49の分割積層鉄心402bを示す斜視図である。分割積層鉄心402bは、分割積層鉄心バックヨーク部409と、分割積層鉄心バックヨーク部409から径方向内側に突出する分割積層鉄心ティース部410と、分割積層鉄心ティース部410の径方向内側端部に設けられ、周方向に突出する分割積層鉄心ティース突出部411とを有している。分割積層鉄心ティース部410は、周方向を向く分割積層鉄心ティース側面部412を有している。分割積層鉄心バックヨーク部409は、径方向外側を向く分割積層鉄心外周部413を有している。分割積層鉄心ティース突出部411は、径方向内側を向く分割積層鉄心ティース内周部414を有している。 FIG. 50 is a perspective view showing the divided laminated iron core 402b of FIG. 49. The split laminated iron core 402b is provided at the radial inner end of the split laminated iron core back yoke portion 409, the split laminated iron core tooth portion 410 projecting radially inward from the split laminated iron core back yoke portion 409, and the split laminated iron core tooth portion 410. It is provided and has a split laminated iron core tooth protruding portion 411 that protrudes in the circumferential direction. The divided laminated iron core tooth portion 410 has a divided laminated iron core tooth side surface portion 412 facing in the circumferential direction. The split laminated iron core back yoke portion 409 has a divided laminated iron core outer peripheral portion 413 facing outward in the radial direction. The divided laminated iron core tooth protruding portion 411 has an inner peripheral portion 414 of the divided laminated iron core tooth facing inward in the radial direction.

分割積層鉄心402bは、複数枚の鋼板415と、少なくとも1枚の切欠き鋼板416bとが積層されることによって構成されている。切欠き鋼板416bが鋼板415に挟まれて積層されることによって、分割積層鉄心外周部413には、抜け止め溝417bが形成されている。 The divided laminated iron core 402b is formed by laminating a plurality of steel plates 415 and at least one notched steel plate 416b. By sandwiching the notched steel plate 416b between the steel plates 415 and laminating them, a retaining groove 417b is formed in the outer peripheral portion 413 of the divided laminated iron core.

図51は図50の切欠き鋼板416bを示す平面図である。切欠き鋼板416bは、鋼板バックヨーク部418の径方向外側面に蟻溝423bが形成されている。鋼板バックヨーク部418は、切欠き鋼板416bにおける外周部となる。切欠き鋼板416bにおけるその他の構成は、鋼板415と同様である。蟻溝423bは、例えば、凹み寸法が0.5mm〜3.0mm、幅寸法が1.0mm〜5.0mmとなっている。複数枚の鋼板415および切欠き鋼板416bを積層することによって、分割積層鉄心外周部413に抜け止め溝417bが形成された分割積層鉄心402bが得られる。 FIG. 51 is a plan view showing the notched steel plate 416b of FIG. 50. The notched steel plate 416b has a dovetail groove 423b formed on the radial outer surface of the steel plate back yoke portion 418. The steel plate back yoke portion 418 is an outer peripheral portion of the notched steel plate 416b. Other configurations of the notched steel plate 416b are the same as those of the steel plate 415. The dovetail groove 423b has, for example, a recessed dimension of 0.5 mm to 3.0 mm and a width dimension of 1.0 mm to 5.0 mm. By laminating a plurality of steel plates 415 and notched steel plates 416b, a divided laminated iron core 402b in which a retaining groove 417b is formed in the outer peripheral portion 413 of the divided laminated iron core can be obtained.

図52は図49の絶縁分割積層鉄心401bを示す平面図、図53は図52のLIII−LIII線に沿った矢視断面図である。樹脂絶縁部403は、複数枚の鋼板415と切欠き鋼板416bとが積層されて形成された抜け止め溝417bに設けられ、射出成形された樹脂が流し込まれ硬化することでバックヨーク鍔部406における外周部に一体化した樹脂抜け止め部424bを有している。 52 is a plan view showing the insulated division laminated iron core 401b of FIG. 49, and FIG. 53 is a cross-sectional view taken along the line LIII-LIII of FIG. 52. The resin insulating portion 403 is provided in the retaining groove 417b formed by laminating a plurality of steel plates 415 and the notched steel plates 416b, and the injection-molded resin is poured and cured to form the back yoke flange portion 406. It has a resin retaining portion 424b integrated with the outer peripheral portion.

図54は図49の絶縁分割積層鉄心401bを示す側面図、図55は図54のLV−LV線に沿った矢視断面図である。分割積層鉄心402bにおける分割積層鉄心バックヨーク部409の分割積層鉄心外周部413に形成された抜け止め溝417bに射出成形された樹脂が硬化することにより、バックヨーク鍔部406における外周部である樹脂外周部428に一体化した樹脂抜け止め部424bが形成される。これにより、分割積層鉄心外周部413を覆う樹脂製絶縁被覆が分割積層鉄心外周部413から分割積層鉄心外周部413の表面に対して垂直な方向に離れ、隙間425bが生じることを防止することができる。この効果により、絶縁積層固定子4の内径寸法が安定化し、絶縁積層固定子4と回転子との径方向についての設計上のクリアランスを小さくすることができ、小型で効率が良い回転電機を得ることができる。なお、切欠き鋼板416bの蟻溝423bは、図51に図示する形状に限らず、例えば、切欠き鋼板416bに微細な突起または凹みを設けることで同様の効果が得られる。 54 is a side view showing the insulated division laminated iron core 401b of FIG. 49, and FIG. 55 is a cross-sectional view taken along the line LV-LV of FIG. 54. The resin formed by injection molding into the retaining groove 417b formed in the outer peripheral portion 413 of the divided laminated iron core back yoke portion 409 of the divided laminated iron core 402b is cured, so that the resin is the outer peripheral portion of the back yoke flange portion 406. A resin retaining portion 424b integrated with the outer peripheral portion 428 is formed. As a result, it is possible to prevent the resin insulating coating covering the outer peripheral portion 413 of the divided laminated iron core from being separated from the outer peripheral portion 413 of the divided laminated iron core in the direction perpendicular to the surface of the outer peripheral portion 413 of the divided laminated iron core, and a gap 425b is generated. can. Due to this effect, the inner diameter dimension of the insulating laminated stator 4 can be stabilized, the design clearance between the insulating laminated stator 4 and the rotor in the radial direction can be reduced, and a compact and efficient rotary electric machine can be obtained. be able to. The dovetail groove 423b of the notched steel plate 416b is not limited to the shape shown in FIG. 51, and for example, the same effect can be obtained by providing the notched steel plate 416b with fine protrusions or dents.

図56は図40の絶縁分割積層鉄心401aの変形例を示す斜視図である。絶縁分割積層鉄心401cは、分割積層鉄心402cと、樹脂絶縁部403とを備え、それぞれを積層することによって構成されている。樹脂絶縁部403が、ティース先端部405における径方向内側面に設けられた樹脂内周部429を有している点で、絶縁分割積層鉄心401cと異なる。コイルをティース曲面巻装部407、ティース側面巻装部408に巻き回すことで、絶縁分割積層鉄心401cとコイルとの間は、樹脂絶縁部403を介して電気的に絶縁される。 FIG. 56 is a perspective view showing a modified example of the insulated split laminated iron core 401a of FIG. 40. The insulating split laminated laminated iron core 401c includes a split laminated laminated iron core 402c and a resin insulating portion 403, and is configured by laminating each of them. The resin insulating portion 403 is different from the insulated split laminated iron core 401c in that the resin insulating portion 403 has a resin inner peripheral portion 429 provided on the inner side surface in the radial direction of the tooth tip portion 405. By winding the coil around the teeth curved surface winding portion 407 and the teeth side winding portion 408, the insulation split laminated iron core 401c and the coil are electrically insulated via the resin insulating portion 403.

図57は図56の分割積層鉄心402cを示す斜視図である。分割積層鉄心402cは、分割積層鉄心バックヨーク部409と、分割積層鉄心バックヨーク部409から径方向内側に突出する分割積層鉄心ティース部410と、分割積層鉄心ティース部410の径方向内側端部に設けられ、周方向に突出する分割積層鉄心ティース突出部411とを有している。分割積層鉄心ティース部410は、周方向を向く分割積層鉄心ティース側面部412を有している。分割積層鉄心バックヨーク部409は、径方向外側を向く分割積層鉄心外周部413を有している。分割積層鉄心ティース突出部411は、径方向内側を向く分割積層鉄心ティース内周部414を有している。 FIG. 57 is a perspective view showing the divided laminated iron core 402c of FIG. 56. The split laminated iron core 402c is provided at the radial inner end of the split laminated iron core back yoke portion 409, the split laminated iron core tooth portion 410 projecting radially inward from the split laminated iron core back yoke portion 409, and the split laminated iron core tooth portion 410. It is provided and has a split laminated iron core tooth protruding portion 411 that protrudes in the circumferential direction. The divided laminated iron core tooth portion 410 has a divided laminated iron core tooth side surface portion 412 facing in the circumferential direction. The split laminated iron core back yoke portion 409 has a divided laminated iron core outer peripheral portion 413 facing outward in the radial direction. The divided laminated iron core tooth protruding portion 411 has an inner peripheral portion 414 of the divided laminated iron core tooth facing inward in the radial direction.

分割積層鉄心402cは、複数枚の鋼板415と、少なくとも1枚の切欠き鋼板416cとが積層されることによって構成されている。切欠き鋼板416cが鋼板312に挟まれて積層されることによって、分割積層鉄心ティース内周部414には、抜け止め溝417cが形成されている。 The divided laminated iron core 402c is formed by laminating a plurality of steel plates 415 and at least one notched steel plate 416c. By sandwiching the notched steel plate 416c between the steel plates 312 and laminating them, a retaining groove 417c is formed in the inner peripheral portion 414 of the divided laminated iron core teeth.

図58は図57の切欠き鋼板416cを示す平面図である。切欠き鋼板416cは、鋼板ティース先端部420の鋼板内周部422に蟻溝423cが形成されている。切欠き鋼板416cにおけるその他の構成は、鋼板415と同様である。蟻溝423cは、例えば、凹み寸法が0.5mm〜3.0mm、幅寸法が1.0mm〜5.0mmとなっている。なお、分割積層鉄心402cは、複数枚の鋼板で切欠き鋼板416cを挟まなくてもよい。例えば、分割積層鉄心402cは、複数枚の鋼板415と、切欠き鋼板416cとを隣り合わせて積層することで、分割積層鉄心402cの内周部に積層方向の一方向に開口する抜け止め溝417cを形成してもよいし、複数枚の鋼板415を含まずに切欠き鋼板416cだけ形成されてもよい。 FIG. 58 is a plan view showing the notched steel plate 416c of FIG. 57. In the notched steel plate 416c, a dovetail groove 423c is formed in the inner peripheral portion 422 of the steel plate of the steel plate tooth tip portion 420. Other configurations of the notched steel sheet 416c are the same as those of the steel sheet 415. The dovetail groove 423c has, for example, a recessed dimension of 0.5 mm to 3.0 mm and a width dimension of 1.0 mm to 5.0 mm. The divided laminated iron core 402c does not have to sandwich the notched steel plate 416c between a plurality of steel plates. For example, the divided laminated iron core 402c has a retaining groove 417c that opens in one direction in the laminating direction in the inner peripheral portion of the divided laminated iron core 402c by laminating a plurality of steel plates 415 and notched steel plates 416c side by side. It may be formed, or only the notched steel plate 416c may be formed without including the plurality of steel plates 415.

図59は図57の絶縁分割積層鉄心401cを示す平面図、図60は図59のLX−LX線に沿った矢視断面図である。樹脂絶縁部403は、分割積層鉄心402cの分割積層鉄心ティース内周部414に形成された抜け止め溝417cに設けられ、射出成形された樹脂が流し込まれて硬化することで、ティース先端部405における樹脂内周部429に一体化した樹脂抜け止め部424cを有している。 59 is a plan view showing the insulated division laminated iron core 401c of FIG. 57, and FIG. 60 is a cross-sectional view taken along the line LX-LX of FIG. 59. The resin insulating portion 403 is provided in the retaining groove 417c formed in the inner peripheral portion 414 of the divided laminated iron core tooth of the divided laminated iron core 402c, and the injection-molded resin is poured and cured to form the tooth tip portion 405. It has a resin retaining portion 424c integrated with the resin inner peripheral portion 429.

図61は図56の絶縁分割積層鉄心401cを示す側面図、図62は図61のLXII−LXII線に沿った矢視断面図である。分割積層鉄心402cにおける分割積層鉄心ティース内周部414に形成された抜け止め溝417cに射出成形された樹脂が硬化することにより、ティース先端部405における樹脂内周部429に一体化した樹脂抜け止め部424cが形成される。これにより、分割積層鉄心ティース内周部414を覆う樹脂製絶縁被覆が分割積層鉄心ティース内周部414から分割積層鉄心ティース内周部414の表面に対して垂直な方向に離れ、隙間425cが生じることを防止することができる。この効果により、絶縁積層固定子4の内径寸法が安定化し、絶縁積層固定子4と回転子との径方向についての設計上のクリアランスを小さくすることができ、小型で効率が良い回転電機を得ることができる。なお、切欠き鋼板416cの蟻溝423cは、図58に図示する形状に限らず、例えば、切欠き鋼板416cに微細な突起または凹みを設けることで同様の効果が得られる。 FIG. 61 is a side view showing the insulated split laminated iron core 401c of FIG. 56, and FIG. 62 is a cross-sectional view taken along the line LXII-LXII of FIG. The resin injection-molded in the retaining groove 417c formed in the inner peripheral portion 414 of the divided laminated iron core tooth in the divided laminated iron core 402c is cured, so that the resin is integrated with the resin inner peripheral portion 429 in the tip portion 405 of the tooth. Part 424c is formed. As a result, the resin insulating coating covering the inner peripheral portion 414 of the divided laminated iron core teeth is separated from the inner peripheral portion 414 of the divided laminated iron core teeth in the direction perpendicular to the surface of the inner peripheral portion 414 of the divided laminated iron core teeth, and a gap 425c is generated. Can be prevented. Due to this effect, the inner diameter dimension of the insulating laminated stator 4 can be stabilized, the design clearance between the insulating laminated stator 4 and the rotor in the radial direction can be reduced, and a compact and efficient rotary electric machine can be obtained. be able to. The dovetail groove 423c of the notched steel plate 416c is not limited to the shape shown in FIG. 58, and the same effect can be obtained by providing, for example, fine protrusions or dents on the notched steel plate 416c.

なお、この実施の形態2に係る絶縁積層固定子4は、サーボモータ用、燃料噴射バルブ開閉タイミング制御ユニット用、空調用ファンモータ、車載用燃料ポンプユニット、巻上機用の回転電機の固定子に適用できる絶縁積層板構造体である。 The insulating laminated stator 4 according to the second embodiment is a stator of a rotary electric machine for a servomotor, a fuel injection valve open / close timing control unit, an air conditioning fan motor, an in-vehicle fuel pump unit, and a hoisting machine. It is an insulating laminated plate structure that can be applied to.

1 絶縁積層回転子、2 シャフト、3 絶縁積層鉄心、4 絶縁積層固定子、301a、301b、301c 積層鉄心、302 樹脂絶縁部、303 絶縁積層鉄心ティース先端部、304 絶縁積層鉄心ティース巻装部、305 絶縁積層鉄心ティース側面部、306 樹脂外周部、307 積層鉄心中央部、308 積層鉄心ティース部、309 積層鉄心ティース先端部、310 積層鉄心ティース側面部、311 積層鉄心外周部、312 鋼板、313a、313b、313c 切欠き鋼板、314a、314b、314c 抜け止め溝、315 鋼板中央部、316 鋼板ティース部、317 鋼板ティース先端部、318 鋼板ティース側面部、319 鋼板外周部、320a、320b、320c 蟻溝、321a、321b、321c 樹脂抜け止め部、322a、322b、322c 隙間、323a、323b 巻線領域、324 開口部、325 円形状部、326 鍔部、327 中心線、328 中心線、329 開口部、330 矩形状部、331 鍔部、332 中心線、333 中心線、334 開口部、335 三角形状部、336 鍔部、337 中心線、338 中心線、339 開口溝側面、340a、340b、340c 突起、341a、341b、341c 凹み、342 樹脂注入孔、401a、401b、401c 絶縁分割積層鉄心、402a、402b、402c 分割積層鉄心、403 樹脂絶縁部、404 ティース先端突出部、405 ティース先端部、406 バックヨーク鍔部、407 ティース曲面巻装部、408 ティース側面巻装部、409 分割積層鉄心バックヨーク部、410 分割積層鉄心ティース部、411 分割積層鉄心ティース突出部、412 分割積層鉄心ティース側面部、413 分割積層鉄心外周部、414 分割積層鉄心ティース内周部、415 鋼板、416a、416b、416c 切欠き鋼板、417a、417b、417c 抜け止め溝、418 鋼板バックヨーク部、419 鋼板ティース部、420 鋼板ティース先端部、421 鋼板ティース側面部、422 鋼板内周部、423a、423b、423c 蟻溝、424a 424b、424c 樹脂抜け止め部、425a、425b、425c 隙間、426 巻線領域、427 樹脂注入孔、428 樹脂外周部、429 樹脂内周部。 1 Insulated laminated rotor, 2 shaft, 3 Insulated laminated iron core, 4 Insulated laminated iron core, 301a, 301b, 301c Laminated iron core, 302 Resin insulation part, 303 Insulated laminated iron core Teeth tip, 304 Insulated laminated iron core Teeth winding part, 305 Insulated laminated iron core tooth side surface, 306 resin outer circumference, 307 laminated iron core center, 308 laminated iron core tooth, 309 laminated iron core tooth tip, 310 laminated iron core tooth side surface, 311 laminated iron core outer circumference, 312 steel plate, 313a, 313b, 313c Notched steel plate, 314a, 314b, 314c Retaining groove, 315 Steel plate center part, 316 Steel plate tooth part, 317 Steel plate tooth tip part, 318 Steel plate tooth side part, 319 Steel plate outer circumference, 320a, 320b, 320c Dovetail groove , 321a, 321b, 321c Resin retaining part, 322a, 322b, 322c gap, 323a, 323b winding area, 324 opening, 325 circular shape, 326 collar, 327 center line, 328 center line, 329 opening, 330 Rectangular part, 331 flange part, 332 center line, 333 center line, 334 opening, 335 triangle shape, 336 flange, 337 center line, 338 center line, 339 opening groove side surface, 340a, 340b, 340c protrusion, 341a, 341b, 341c dent, 342 resin injection hole, 401a, 401b, 401c insulation split laminated steel core, 402a, 402b, 402c split laminated steel core, 403 resin insulation part, 404 tooth tip protrusion, 405 tooth tip, 406 back yoke Flange, 407 Teeth curved surface winding part, 408 Teeth side winding part, 409 Divided laminated iron core back yoke part, 410 Divided laminated iron core Teeth part, 411 Divided laminated iron core Teeth protruding part, 412 Divided laminated iron core Teeth side part, 413 division Outer circumference of laminated iron core, inner circumference of 414 divided laminated iron core teeth, 415 steel plate, 416a, 416b, 416c notched steel plate, 417a, 417b, 417c retaining groove, 418 steel plate back yoke part, 419 steel plate tooth part, 420 steel plate tooth tip Part, 421 Steel plate tooth side part, 422 Steel plate inner peripheral part, 423a, 423b, 423c Dovetail groove, 424a 424b, 424c Resin retaining part, 425a, 425b, 425c gap, 426 winding area, 427 resin injection hole, 428 resin outer peripheral part, 429 resin inner peripheral part.

Claims (4)

鋼板が積層された積層鉄心と、前記積層鉄心の表面を覆う樹脂絶縁部とを備えた回転電機の絶縁積層板構造体であって、
前記積層鉄心は、
ティース部と、
前記ティース部の径方向端部に設けられ、周方向に突出するティース先端部と
を有し、
前記ティース先端部における径方向を向く面であって周方向の中心には、抜け止め溝が形成されており、
前記樹脂絶縁部は、前記抜け止め溝に設けられた樹脂抜け止め部と、前記樹脂抜け止部の周方向両側において前記ティース先端部における径方向を向く面に設けられた樹脂内周部または樹脂外周部と、を有しており、
前記抜け止め溝は、前記ティース先端部における、固定子と回転子との間のエアギャップを向く面に形成されている回転電機の絶縁積層板構造体。
An insulating laminated plate structure of a rotary electric machine provided with a laminated iron core in which steel plates are laminated and a resin insulating portion covering the surface of the laminated iron core.
The laminated iron core is
With the teeth department
It has a tooth tip that is provided at the radial end of the tooth and projects in the circumferential direction.
A retaining groove is formed at the center of the tip of the tooth, which is a surface facing the radial direction and is in the circumferential direction.
The resin insulating portion includes a resin retaining portion provided in the retaining groove and a resin inner peripheral portion or a resin provided on both sides of the resin retaining portion in the circumferential direction facing the radial direction of the tip of the teeth. It has an outer peripheral part and
The retaining groove is an insulating laminated plate structure of a rotating electric machine formed on a surface of the tip of the teeth facing the air gap between the stator and the rotor.
前記抜け止め溝の形状は、蟻溝形状である請求項1に記載の回転電機の絶縁積層板構造体。 The insulating laminated plate structure of a rotary electric machine according to claim 1, wherein the shape of the retaining groove is a dovetail groove shape. 前記抜け止め溝の内周面には、突起または凹みが形成されている請求項1に記載の回転電機の絶縁積層板構造体。 The insulating laminated plate structure of a rotary electric machine according to claim 1, wherein protrusions or dents are formed on the inner peripheral surface of the retaining groove. 鋼板が積層された積層鉄心の表面に樹脂を一体成形する絶縁積層板構造体の製造方法であって、
前記積層鉄心は、ティース部と、前記ティース部の径方向端部に設けられ周方向に突出するティース先端部とを有し、前記ティース先端部における径方向を向く面であって周方向の中心には、抜け止め溝が形成されており、
前記積層鉄心の表面に樹脂を一体成形する際に、前記抜け止め溝に流れ込んだ樹脂により樹脂抜け止め部と、前記樹脂抜け止め部の周方向両側において前記ティース先端部における径方向を向く面に設けられた樹脂内周部または樹脂外周部と、を形成し、前記抜け止め溝は、前記ティース先端部における、固定子と回転子との間のエアギャップを向く面に形成されている回転電機の絶縁積層板構造体の製造方法。
A method for manufacturing an insulating laminated plate structure in which a resin is integrally molded on the surface of a laminated iron core in which steel plates are laminated.
The laminated iron core has a teeth portion and a teeth tip portion provided at a radial end portion of the teeth portion and projecting in the circumferential direction, and is a surface facing the radial direction at the tooth tip portion and is a center in the circumferential direction. A retaining groove is formed in the
When the resin is integrally molded on the surface of the laminated iron core, the resin that has flowed into the retaining groove forms a resin retaining portion and a surface facing the radial direction at the tip of the teeth on both sides of the resin retaining portion in the circumferential direction. A rotary electric machine that forms an inner peripheral portion of the resin or an outer peripheral portion of the resin provided, and the retaining groove is formed on a surface of the tip of the teeth that faces the air gap between the stator and the rotor. Method of manufacturing an insulated laminated board structure.
JP2016053916A 2016-03-17 2016-03-17 Insulated laminated board structure of rotary electric machine and its manufacturing method Active JP6953110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053916A JP6953110B2 (en) 2016-03-17 2016-03-17 Insulated laminated board structure of rotary electric machine and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053916A JP6953110B2 (en) 2016-03-17 2016-03-17 Insulated laminated board structure of rotary electric machine and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017169397A JP2017169397A (en) 2017-09-21
JP6953110B2 true JP6953110B2 (en) 2021-10-27

Family

ID=59914071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053916A Active JP6953110B2 (en) 2016-03-17 2016-03-17 Insulated laminated board structure of rotary electric machine and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6953110B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085158A1 (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Insulating structure for rotary electric machine and method for producing insulating structure for rotary electric machine
JP7292430B2 (en) * 2020-01-10 2023-06-16 三菱電機株式会社 Stator manufacturing method
DE102020100963B4 (en) 2020-01-16 2024-03-28 Audi Aktiengesellschaft Electric machine and motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124202A (en) * 1978-03-20 1979-09-27 Hitachi Ltd Stator core for use in mold stator
JPH07231588A (en) * 1994-02-18 1995-08-29 Mitsubishi Electric Corp Stator for molded motor and manufacture thereof
JP3791492B2 (en) * 2002-12-25 2006-06-28 株式会社日立製作所 Rotating electric machine, electric vehicle, and resin insert molding method
JP2007159256A (en) * 2005-12-05 2007-06-21 Toshiba Corp Rotating electric machine
WO2014103757A1 (en) * 2012-12-28 2014-07-03 株式会社Top Rotary machine, and electric vehicle

Also Published As

Publication number Publication date
JP2017169397A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US6495936B2 (en) Rotating electrical machine
US5628951A (en) Method of producing a coreless armature
JP3017953B2 (en) Motor rotor and method of manufacturing the same
JP4715280B2 (en) Permanent magnet embedded motor, pump device, and method of manufacturing permanent magnet embedded motor
JP6044488B2 (en) Coil insulator fixing method and structure, stator, and rotating electric machine
JP6953110B2 (en) Insulated laminated board structure of rotary electric machine and its manufacturing method
JP3594003B2 (en) Rotating electric machine and method of manufacturing the same
JP2847393B2 (en) Permanent magnet type rotor
JP6294465B2 (en) Axial air gap type motor and bobbin for motor
TWI678054B (en) Axial gap type rotating electric machine and manufacturing method thereof
CN109565206B (en) Rotating electrical machine
CN111817468A (en) Motor, pump device, and method for manufacturing motor
JP6676622B2 (en) Brushless motor, electric pump, and brushless motor manufacturing method
JP3913713B2 (en) Insulator and manufacturing method thereof
CN109478809B (en) Axial gap type rotating electric machine
JP2007082276A (en) Resin module for composing stator core, stator core and motor using the same
KR102336621B1 (en) Device for driving a compressor and method for manufacturing the device
JP2021002996A (en) Stator, electric machine, vehicle, and method for producing stator
US8035264B2 (en) Motor
JP2008029157A (en) Stator core
JP5134935B2 (en) Electric motor
JP5626159B2 (en) Rotating electric machine for vehicles
JP6562702B2 (en) Pump and pump manufacturing method
CN110323878B (en) Electric motor
JP2007143239A (en) Capacitor motor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200615

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200722

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200728

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201215

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210420

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210824

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210928

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6953110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150