JP6952401B2 - Resistance temperature detector - Google Patents

Resistance temperature detector Download PDF

Info

Publication number
JP6952401B2
JP6952401B2 JP2016127763A JP2016127763A JP6952401B2 JP 6952401 B2 JP6952401 B2 JP 6952401B2 JP 2016127763 A JP2016127763 A JP 2016127763A JP 2016127763 A JP2016127763 A JP 2016127763A JP 6952401 B2 JP6952401 B2 JP 6952401B2
Authority
JP
Japan
Prior art keywords
resistance
electrode
temperature
lead
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127763A
Other languages
Japanese (ja)
Other versions
JP2018004309A (en
Inventor
広繁 伊藤
広繁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016127763A priority Critical patent/JP6952401B2/en
Publication of JP2018004309A publication Critical patent/JP2018004309A/en
Priority to JP2021155183A priority patent/JP7245883B2/en
Application granted granted Critical
Publication of JP6952401B2 publication Critical patent/JP6952401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、セラミック焼結体からなる絶縁基体に、抵抗配線およびリードが設けられた測温体に関する。 The present invention relates to a resistance temperature detector in which resistance wiring and leads are provided on an insulating substrate made of a ceramic sintered body.

排気ガス用センサ等に用いられる温度検知用の測温体として、金属材料の電気抵抗の温度による変化を利用したものが知られている。例えば酸化アルミニウム質焼結体等のセラミック焼結体からなる絶縁基体と、絶縁基体に設けられた電極を含む抵抗配線と、リードとを有する測温体が用いられている。 As a temperature measuring body for temperature detection used in an exhaust gas sensor or the like, one using a change in the electrical resistance of a metal material depending on the temperature is known. For example, a resistance temperature detector having an insulating substrate made of a ceramic sintered body such as an aluminum oxide sintered body, a resistance wiring including an electrode provided on the insulating substrate, and a lead is used.

特開平11−121214号公報Japanese Unexamined Patent Publication No. 11-12214

しかしながら、上述の測温体の場合、次のような不具合を生じる可能性があった。すなわち、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体の取り扱い時における応力がリードに加わり、リードと電極との接続強度が低下し、リードと電極との接続部分が小さくなってしまい、リードと電極との接続部の抵抗が大きくなる可能性があった。 However, in the case of the above-mentioned resistance temperature detector, the following problems may occur. That is, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the thermometer is applied to the reed, and the reed and the electrode There is a possibility that the connection strength between the lead and the electrode is lowered, the connection portion between the lead and the electrode is reduced, and the resistance of the connection portion between the lead and the electrode is increased.

本発明の一つの態様による測温体は、絶縁基体と、該絶縁基体に設けられた抵抗配線と、前記絶縁基体の一方主面に設けられた第1電極および第2電極と、前記第1電極および前記第2電極のそれぞれに接続されたリードとを有しており、該リードの表面に、凹部と
平面視で凹部に連なり、前記凹部を取り囲む枠状の突出部とを有している。
The thermometer according to one aspect of the present invention includes an insulating substrate, resistance wiring provided on the insulating substrate, first and second electrodes provided on one main surface of the insulating substrate, and the first electrode. It has an electrode and a lead connected to each of the second electrode, and has a recess on the surface of the lead.
, Contiguous with the recess in plan view, and a frame-like projection surrounding the recess.

本発明の一つの態様による測温体によれば、上記構成により、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体の取り扱い時における応力がリードに加わったとしても、凹部および凹部の内壁に連なる突出部により、リードが被覆される被覆部材に応力が分散され、リードと電極との接続強度が低下され難く、リードと電極との接続部分が小さくなり難いものとなり、リードと電極との接合不良による測温体における抵抗が変化するのを抑制することができる。その結果、測温体は、温度変化の検知精度が高いものとすることができる。
According to one temperature sensing element according to an aspect of the present invention, the stress by the above configuration, eg if the internal combustion engine or gas turbine, due to vibration of the device in case of measuring the temperature of the exhaust gas from the device having a combustion section such as a boiler, Alternatively, even if stress is applied to the lead during handling of the resistance temperature detector, the stress is dispersed in the covering member covered with the lead by the recess and the protruding portion connected to the inner wall of the recess, and the connection strength between the lead and the electrode is reduced. It is difficult for the connection portion between the lead and the electrode to become small, and it is possible to suppress a change in resistance in the resistance thermometer due to poor bonding between the lead and the electrode. As a result, the resistance temperature detector can be made to have high detection accuracy of the temperature change.

(a)は本発明の測温体を示す斜視図であり、(b)は(a)の分解斜視図である。(A) is a perspective view showing a resistance temperature detector of the present invention, and (b) is an exploded perspective view of (a). 図1(a)に示す測温体の被覆部材を除いた平面図である。It is a top view excluding the covering member of the temperature measuring body shown in FIG. 1 (a). 図2に示す測温体のA部における要部拡大平面図である。It is an enlarged plan view of the main part in the part A of the resistance temperature detector shown in FIG. 図3に示す測温体の被覆部材を含むA−A線における縦断面図である。FIG. 3 is a vertical cross-sectional view taken along the line AA including the covering member of the resistance temperature detector shown in FIG. 図3に示す測温体の被覆部材を含むB−B線における縦断面図である。It is a vertical cross-sectional view in line BB including the covering member of the temperature measuring body shown in FIG.

本発明の実施形態の測温体を添付の図面を参照して説明する。以下の説明における上下の区別は便宜的なものであり、実際に測温体等が使用される際の上下を限定するものではない。 The resistance temperature detector according to the embodiment of the present invention will be described with reference to the accompanying drawings. The distinction between the top and bottom in the following description is for convenience, and does not limit the top and bottom when a resistance temperature detector or the like is actually used.

図1〜図5に示すように、複数の絶縁層1a(図1に示す例では6層を示す)が積層されてなる絶縁基体1と、絶縁基体1の主面に設けられた電極3と、絶縁基体1の内部において厚み方向に多層に設けられた抵抗配線2(単層で設けられてもよい)とを有している。抵抗配線2の電気抵抗が温度に応じて変化することを利用して温度測定が行なわれる。すなわち、抵抗配線2の電気抵抗の測定値から、測温体10等が位置している環境等の温度が算出され、検知される。なお、電極3は絶縁基体1の上面だけでなく、下面に形成されていてもよい。また、単層の絶縁層からなる絶縁基体1でもよい。 As shown in FIGS. 1 to 5, an insulating substrate 1 in which a plurality of insulating layers 1a (6 layers are shown in the example shown in FIG. 1) are laminated, and an electrode 3 provided on the main surface of the insulating substrate 1 The insulating substrate 1 has resistance wirings 2 (may be provided in a single layer) provided in multiple layers in the thickness direction. Temperature measurement is performed by utilizing the fact that the electrical resistance of the resistance wiring 2 changes according to the temperature. That is, the temperature of the environment or the like in which the resistance temperature detector 10 or the like is located is calculated and detected from the measured value of the electrical resistance of the resistance wiring 2. The electrode 3 may be formed not only on the upper surface of the insulating substrate 1 but also on the lower surface. Further, the insulating substrate 1 composed of a single-layer insulating layer may be used.

絶縁基体1は、例えば四角板状等の平板状であり、抵抗配線2を電気的に絶縁して設けるための基体部分である。絶縁基体1は、例えば酸化アルミニウム質焼結体や窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミック焼結体、ジルコニア系セラミック(酸化ジルコニウム質焼結体)等のセラミック焼結体によって形成されている。絶縁基体1は、このようなセラミック焼結体からなる複数の絶縁層1aが積層されて形成されている。 The insulating substrate 1 has a flat plate shape such as a square plate shape, and is a substrate portion for electrically insulating and providing the resistance wiring 2. The insulating substrate 1 is made of a ceramic sintered body such as an aluminum oxide-based sintered body, an aluminum nitride-based sintered body, a mulite-based sintered body, a glass-ceramic sintered body, or a zirconia-based ceramic (zirconium oxide-based sintered body). It is formed. The insulating substrate 1 is formed by laminating a plurality of insulating layers 1a made of such a ceramic sintered body.

絶縁基体1は、例えば、各絶縁層1aが酸化アルミニウム質焼結体からなる場合であれば、以下の方法で製作することができる。まず、酸化アルミニウム(Al)の粉末に焼結助材として酸化珪素(SiO)、酸化マグネシウム(MgO)および酸化マンガン(Mn)等の原料粉末を添加し、さらに適当なバインダ、溶剤および可塑剤を添加し、次にこれらの混合物を混錬してスラリー状となす。その後、従来周知のドクターブレード法やカレンダーロール法等によってシート状に成形してセラミックグリーンシートを得て、セラミックグリーンシートに適当な打ち抜き加工を施すとともにこれを必要に応じて複数枚積層し(または単数枚準備し)、高温(約1300〜1600℃)で焼成することによって製作される。複数(または単数)のセラミックグリーンシートがそれぞれ絶縁層1aになる。なお、絶縁基体1は、カルシウム(Ca)、マグネシウム(Mg)等を有するガラスを含んでいる。 The insulating substrate 1 can be manufactured by the following method, for example, when each insulating layer 1a is made of an aluminum oxide sintered body. First, raw material powders such as silicon oxide (SiO 2 ), magnesium oxide (MgO) and manganese oxide (Mn 2 O 3 ) are added to the powder of aluminum oxide (Al 2 O 3) as a sintering aid, and further suitable. Binders, solvents and plasticizers are added and then the mixture is kneaded into a slurry. After that, a ceramic green sheet is obtained by molding into a sheet by a conventionally known doctor blade method, calendar roll method, etc., the ceramic green sheet is appropriately punched, and a plurality of the ceramic green sheets are laminated (or as needed). It is manufactured by firing at a high temperature (about 1300 to 1600 ° C). Each of the plurality (or singular) ceramic green sheets becomes the insulating layer 1a. The insulating substrate 1 contains glass having calcium (Ca), magnesium (Mg) and the like.

抵抗配線2は、その電気抵抗が温度に応じて変化する金属材料である白金または白金を主成分とする金属材料によって形成されている。温度変化に応じた金属材料の電気抵抗の温度に応じた変化を検知する上では、基準温度(例えば25℃程度のいわゆる常温)における抵抗配線の電気抵抗の絶対値が大きい程好ましい。 The resistance wiring 2 is formed of platinum, which is a metal material whose electrical resistance changes with temperature, or a metal material containing platinum as a main component. In detecting a change in the electrical resistance of a metal material in response to a temperature change in response to a temperature, it is preferable that the absolute value of the electrical resistance of the resistance wiring at a reference temperature (for example, a so-called normal temperature of about 25 ° C.) is large.

これは、次のような理由による。すなわち、抵抗配線2の温度変化に応じた電気抵抗の変化は、基準温度の電気抵抗の大きさ(絶対値)に関係なく一定の比率で生じる。つまり、基準温度の電気抵抗の値が大きい程、温度変化に伴う電気抵抗の変化の絶対値が大きくなる。この電気抵抗の変化の絶対値がより大きいほどノイズ(温度変化以外の要因による電気抵抗の変動)の影響を受けにくくなる。また測定もより容易になる。したがって、抵抗配線2は、その基準温度の電気抵抗が大きい方が好ましい。そのため、白金等の金属材料は線状(すなわち、電気抵抗を測定する区間の長さが長く、電気抵抗の絶対値を大きくする上で有効な形態)とされている。 This is due to the following reasons. That is, the change in the electric resistance according to the temperature change of the resistance wiring 2 occurs at a constant ratio regardless of the magnitude (absolute value) of the electric resistance at the reference temperature. That is, the larger the value of the electric resistance at the reference temperature, the larger the absolute value of the change in the electric resistance with the temperature change. The larger the absolute value of this change in electrical resistance, the less susceptible it is to noise (fluctuation in electrical resistance due to factors other than temperature changes). It also makes measurement easier. Therefore, it is preferable that the resistance wiring 2 has a large electrical resistance at its reference temperature. Therefore, the metal material such as platinum is linear (that is, the length of the section for measuring the electric resistance is long, which is an effective form for increasing the absolute value of the electric resistance).

白金を主成分とする金属材料における白金以外の成分については、抵抗配線2の温度抵抗係数(TCR)の調整や、耐熱性の向上等を目的に、適宜、その成分(種類)や添加量が
選択される。白金以外の成分としては、例えばパラジウム、ロジウム、イリジウム等の白
金族元素の金属材料および金等が挙げられる。なお、例えば抵抗配線2の温度変化に対する電気抵抗の変化の直線性が重視される場合には白金の含有量が大きい方が好ましい。
For components other than platinum in metal materials containing platinum as the main component, the components (types) and addition amounts are appropriately adjusted for the purpose of adjusting the temperature resistance coefficient (TCR) of the resistance wiring 2 and improving heat resistance. Be selected. Examples of components other than platinum include metal materials of platinum group elements such as palladium, rhodium, and iridium, gold, and the like. For example, when the linearity of the change in electrical resistance with respect to the temperature change of the resistance wiring 2 is important, the platinum content is preferably large.

白金を主成分とする金属材料は、白金を約80質量%以上の割合で含有している。白金と他の成分とは合金を形成していてもよく、互いに独立した結晶粒子として存在していてもよい。なお、抵抗配線2は、白金または白金を主成分とする金属材料といった金属成分以外の添加材を含有していてもよい。添加材としては、例えば酸化アルミニウム等の、絶縁基体1に含まれているのと同様の無機物の粒子等が挙げられる。添加材は、例えば抵抗配線2と絶縁層1aとの焼成収縮率の整合等のために添加される。 The metal material containing platinum as a main component contains platinum in a proportion of about 80% by mass or more. Platinum and other components may form an alloy or may exist as crystal particles independent of each other. The resistance wiring 2 may contain an additive other than the metal component, such as platinum or a metal material containing platinum as a main component. Examples of the additive include particles of an inorganic substance similar to that contained in the insulating substrate 1, such as aluminum oxide. The additive material is added, for example, for matching the firing shrinkage ratio between the resistance wiring 2 and the insulating layer 1a.

抵抗配線2は、例えば白金の粉末を有機溶剤およびバインダとともに混練して作製した金属ペーストを、絶縁層1aとなるセラミックグリーンシートの主面等に所定パターンに塗布し、同時焼成することによって形成することができる。 The resistance wiring 2 is formed by, for example, applying a metal paste prepared by kneading platinum powder together with an organic solvent and a binder to a predetermined pattern on the main surface of a ceramic green sheet to be an insulating layer 1a and simultaneously firing. be able to.

この抵抗配線2の一方の端(第1端部)と、各層の第1端部、第2端部および各抵抗配線2を接続する、後述する接続導体5(貫通導体)を介して、反対側の端(第2端部)との間の電気抵抗が、例えば外部電気回路で測定される。この電気抵抗は抵抗配線2の温度に応じて変化し、抵抗配線2の温度は測温体10等が位置している環境の温度(外部の温度)に応じて変化する。すなわち、抵抗配線2の第1および第2端部間の電気抵抗を検知することによって、外部の温度が検知される。 Opposite via a connecting conductor 5 (through conductor) described later, which connects one end (first end) of the resistance wiring 2 to the first end, the second end, and each resistance wiring 2 of each layer. The electrical resistance to and from the side end (second end) is measured, for example, in an external electrical circuit. This electrical resistance changes according to the temperature of the resistance wiring 2, and the temperature of the resistance wiring 2 changes according to the temperature of the environment (external temperature) in which the resistance temperature detector 10 or the like is located. That is, the external temperature is detected by detecting the electrical resistance between the first and second ends of the resistance wiring 2.

外部の温度は、例えば各種の燃焼排ガスの温度であり、数百〜千℃程度の高温を検知することが必要な場合もある。このような高温における安定性、および温度に応じた電気抵抗変化の直線性が良好であるため、抵抗配線2は白金または白金を主成分とする金属材料によって形成されている。例えば、電極3を有する測温体10は、上記のような抵抗検知用の電気回路(外部電気回路)を含む外部基板(図示せず)に実装(接続)されてセンサ装置となり、このようなセンサ装置が被測温物が存在する部分(ガスの流路等)に実装される。 The external temperature is, for example, the temperature of various types of combustion exhaust gas, and it may be necessary to detect a high temperature of about several hundred to 1,000 ° C. The resistance wiring 2 is formed of platinum or a metal material containing platinum as a main component because the stability at such a high temperature and the linearity of the change in electrical resistance according to the temperature are good. For example, the resistance temperature detector 10 having the electrode 3 is mounted (connected) to an external substrate (not shown) including an electric circuit (external electric circuit) for resistance detection as described above to form a sensor device. The sensor device is mounted in the part where the object to be measured exists (gas flow path, etc.).

また、抵抗配線2は、仮に外気に露出した状態であると、異物の付着、または外部基板もしくは外部基板に実装される他の部品等と誤ってぶつかることによる破壊等のために不要に電気抵抗が変化してしまう可能性がある。これを防ぐために、抵抗配線2は複数の絶縁層1aの層間に設けられている。言い換えれば、抵抗配線2は絶縁基体1の内部に設けられ、外部には露出していない。なお、抵抗配線2が単層の絶縁層からなる絶縁基体1の場合には、抵抗配線2を覆う絶縁膜または絶縁層が設けられていてもよい。抵抗配線2を覆う絶縁膜または絶縁層は、絶縁層1aと同様のセラミック焼結体によって形成される。 Further, if the resistance wiring 2 is exposed to the outside air, it is unnecessary to have an electric resistance due to adhesion of foreign matter or destruction due to accidental collision with the external board or other parts mounted on the external board. May change. In order to prevent this, the resistance wiring 2 is provided between the layers of the plurality of insulating layers 1a. In other words, the resistance wiring 2 is provided inside the insulating substrate 1 and is not exposed to the outside. When the resistance wiring 2 is an insulating substrate 1 made of a single-layer insulating layer, an insulating film or an insulating layer may be provided to cover the resistance wiring 2. The insulating film or insulating layer covering the resistance wiring 2 is formed of the same ceramic sintered body as the insulating layer 1a.

また、測温体10に設けられた電極3(第1電極3a、第2電極3b)は、抵抗配線2を外部電気回路を含む外部基板に接続するための部分である。電極3は、例えば抵抗配線2と同様の金属材料(白金等)を用い、同様の方法で形成することができる。実施形態の測温体10における電極3は、白金からなる方形状のパターンである。電極3は、他の形状であってもよい。 Further, the electrodes 3 (first electrode 3a, second electrode 3b) provided on the resistance temperature detector 10 are portions for connecting the resistance wiring 2 to an external substrate including an external electric circuit. The electrode 3 can be formed by the same method using, for example, a metal material (platinum or the like) similar to that of the resistance wiring 2. The electrode 3 in the resistance temperature detector 10 of the embodiment is a rectangular pattern made of platinum. The electrode 3 may have another shape.

電極3は、後述するように測温体10とともに高温の環境下におかれる場合があるため、白金を含む白金族の金属または金等の、高温における耐酸化性の高い金属材料からなるものであることが好ましい。 Since the electrode 3 may be placed in a high temperature environment together with the resistance temperature detector 10 as described later, the electrode 3 is made of a metal material having high oxidation resistance at high temperatures, such as a platinum group metal containing platinum or gold. It is preferable to have.

リード4は、例えば円筒状で、電極3すなわち第1電極3a、第2電極3bに接続されており、抵抗配線2等と同様に、白金を含む金属材料からなり、純白金からなる場合もある。リード4の電極3に対する接続は、例えば平面視で千鳥状に配置された四角錐状の凸
部を含むホーンによる超音波接合の接合手段によって行われる。なお、図3〜図5では、リード4が第2電極3bに接続された接続部(A部)を示しているが、リード4が第1電極3aに接続された接続部も同様の構成となっている。
The reed 4 has, for example, a cylindrical shape and is connected to the electrode 3, that is, the first electrode 3a and the second electrode 3b. Like the resistance wiring 2, it is made of a metal material containing platinum, and may be made of pure platinum. .. The reed 4 is connected to the electrode 3 by, for example, ultrasonic bonding means using a horn including quadrangular pyramid-shaped protrusions arranged in a staggered manner in a plan view. Although FIGS. 3 to 5 show a connection portion (A portion) in which the lead 4 is connected to the second electrode 3b, the connection portion in which the lead 4 is connected to the first electrode 3a has the same configuration. It has become.

本実施形態では、電極3、抵抗配線2および各抵抗配線2の間の電気的な接続は、絶縁層1aを厚み方向に貫通している接続導体(いわゆるビア導体)5によって行なわれている。 In the present embodiment, the electrical connection between the electrode 3, the resistance wiring 2 and each resistance wiring 2 is made by a connecting conductor (so-called via conductor) 5 penetrating the insulating layer 1a in the thickness direction.

接続導体5は、例えば抵抗配線2と同様の金属材料(白金等)を主成分とする導体材料(金属材料)によって形成されている。このような金属材料としては、白金、または白金を主成分とし、アルミナ等の無機物フィラーが添加されたものが挙げられる。無機物フィラーは、例えば接続導体5と絶縁基体1とが同時焼成で形成されるときに、両者の収縮率および収縮挙動等を整合させるためのものである。 The connecting conductor 5 is formed of, for example, a conductor material (metal material) containing a metal material (platinum or the like) as a main component, similar to the resistance wiring 2. Examples of such a metal material include platinum or a material containing platinum as a main component and an inorganic filler such as alumina added. The inorganic filler is for matching the shrinkage rate and shrinkage behavior of the connecting conductor 5 and the insulating substrate 1 when they are formed by simultaneous firing, for example.

接続導体5は、例えば抵抗配線2を形成するのと同様の白金の金属ペーストを、絶縁層1aとなるセラミックグリーンシートにあらかじめ設けておいた貫通孔内に充填し、同時焼成することによって形成することができる。貫通孔は、例えば金属ピンを用いた機械的な孔あけ加工、またはレーザ光による孔あけ加工等の加工方法でセラミックグリーンシートに設けることができる。この場合、上記のような無機物フィラーの粒子が金属ペーストに添加されていてもよい。 The connecting conductor 5 is formed by filling, for example, a platinum metal paste similar to that forming the resistance wiring 2 into the through holes provided in advance in the ceramic green sheet to be the insulating layer 1a, and firing them at the same time. be able to. The through hole can be provided in the ceramic green sheet by, for example, a mechanical drilling process using a metal pin or a drilling process using a laser beam. In this case, the particles of the inorganic filler as described above may be added to the metal paste.

測温体10は、図1〜図5に示すように、矩形板状の絶縁基体1と、絶縁基体1に設けられた抵抗配線2と、絶縁基体1の一方主面に設けられた第1電極3aおよび第2電極3bと、第1電極3aおよび第2電極3bのそれぞれに接続されたリード4とを有しており、リード4の表面に、凹部4aと、平面視で凹部4aに連なり、凹部4aを取り囲む枠状の突出部4bとを有している。このような構成を有することによって、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力がリード4に加わったとしても、凹部4aおよび平面視で凹部4aに連なり、凹部4aを取り囲む枠状の突出部4bにより、突出部4bが被覆部材6に、また被覆部材6が凹部4aに入り込む構成となり、リード4が被覆される、後述する被覆部材6に応力が分散され、リード4と電極3との接続強度が低下され難く、リード4と電極3との接続部分が小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのを抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 As shown in FIGS. 1 to 5, the temperature measuring body 10 includes a rectangular plate-shaped insulating base 1, a resistance wiring 2 provided on the insulating base 1, and a first main surface provided on one main surface of the insulating base 1. It has an electrode 3a and a second electrode 3b, and a lead 4 connected to each of the first electrode 3a and the second electrode 3b, and is connected to a recess 4a and a recess 4a in a plan view on the surface of the lead 4. It has a frame-shaped projecting portion 4b that surrounds the recess 4a. By having such a configuration, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the temperature measuring body 10. Is connected to the recess 4a and the recess 4a in a plan view, and the protruding portion 4b enters the covering member 6 and the covering member 6 enters the recess 4a due to the frame-shaped protruding portion 4b surrounding the recess 4a. The stress is dispersed in the covering member 6 which is covered with the lead 4, and the connection strength between the lead 4 and the electrode 3 is hard to be lowered, and the connection portion between the lead 4 and the electrode 3 is hard to be small. , It is possible to suppress the change in the resistance of the temperature measuring body 10 due to the poor bonding between the lead 4 and the electrode 3. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

リード4の表面における、凹部4aと凹部4aの内壁に連なる突出部4bとは、例えばリード4の電極3に対する接続時に、平面視で千鳥状に配置された四角錐状の凸部を含むホーンによる超音波接合の接合手段によって設けられる。 The recess 4a and the protrusion 4b connected to the inner wall of the recess 4a on the surface of the reed 4 are formed by a horn including a quadrangular pyramid-shaped convex portion arranged in a staggered manner in a plan view, for example, when the lead 4 is connected to the electrode 3. It is provided by a bonding means of ultrasonic bonding.

また、突出部4bは、図3〜図5に示すように、凹部4aの外側に向かって突出していてもよい。このような構成を有することによって、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力がリード4に加わったとしても、凹部4aおよび凹部4aの内壁に連なり、凹部4aの外側に向かって突出した突出部4bにより、突出部4bが被覆部材6に、また被覆部材6が凹部4aに入り込む構成となり、リード4が被覆される、後述する被覆部材6に応力がより分散され、リード4と電極3との接続強度がより低下され難く、リード4と電極3との接続部分がより小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのをより抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 Further, as shown in FIGS. 3 to 5, the protruding portion 4b may protrude toward the outside of the recess 4a. By having such a configuration, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the temperature measuring body 10. Even if The stress is more dispersed in the covering member 6 which is covered with the lead 4 and the lead 4 is covered, the connection strength between the lead 4 and the electrode 3 is less likely to be lowered, and the connection portion between the lead 4 and the electrode 3 is smaller. It becomes difficult to do so, and it is possible to further suppress changes in the resistance of the temperature measuring body 10 due to poor bonding between the lead 4 and the electrode 3. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

また、平面視において、突出部4bは、図3に示すように、凹部を取り囲むように設けられていてもよい。このような構成を有することによって、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力が、特にあらゆる平面方向に対し、リード4に加わったとしても、凹部4aおよび凹部4aの内壁に連なり、凹部4aを取り囲むように設けられた突出部4bにより、突出部4bが被覆部材6に、また被覆部材6が凹部4aに入り込む構成となり、リード4が被覆される、後述する被覆部材6に効果的に応力が分散され、リード4と電極3との接続強度が低下され難く、リード4と電極3との接続部分が小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのを効果的に抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 Further, in a plan view, the protrusion 4b may be provided so as to surround the recess as shown in FIG. By having such a configuration, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the temperature measuring body 10. However, even if the lead 4 is joined in all plane directions, the protrusion 4b is connected to the inner wall of the recess 4a and the recess 4a and is provided so as to surround the recess 4a, so that the protrusion 4b is attached to the covering member 6. Further, the covering member 6 is configured to enter the recess 4a, the stress is effectively dispersed in the covering member 6 described later in which the lead 4 is covered, and the connection strength between the lead 4 and the electrode 3 is unlikely to be lowered. The connection portion with the electrode 3 is unlikely to be small, and it is possible to effectively suppress the change in the resistance of the temperature measuring body 10 due to the poor connection between the lead 4 and the electrode 3. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

また、平面視において、凹部4aは矩形状であり、リード4の長手方向に対して傾斜して配置されていてもよい。このような構成を有することによって、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力が、特にリード4の長手方向に対し、リード4に加わったとしても、凹部4aおよび凹部4aの内壁に連なり、リード4の長手方向に対して傾斜して配置された突出部4bにより、突出部4bが被覆部材6に、また被覆部材6が凹部4aに入り込む構成となり、リード4が被覆される、後述する被覆部材6により効果的に応力が分散され、リード4と電極3との接続強度が低下され難く、リード4と電極3との接続部分が小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのをより効果的に抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 Further, in a plan view, the recess 4a has a rectangular shape and may be arranged so as to be inclined with respect to the longitudinal direction of the lead 4. By having such a configuration, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the temperature measuring body 10. However, even if the lead 4 is joined in the longitudinal direction of the lead 4, the protruding portion 4b is connected to the inner wall of the recess 4a and the recess 4a and is arranged so as to be inclined with respect to the longitudinal direction of the lead 4. The 4b is inserted into the covering member 6 and the covering member 6 is inserted into the recess 4a, and the lead 4 is covered. The stress is effectively dispersed by the covering member 6 described later, and the connection strength between the lead 4 and the electrode 3 is increased. The connection portion between the lead 4 and the electrode 3 is difficult to be reduced, and the resistance in the temperature measuring body 10 due to poor bonding between the lead 4 and the electrode 3 can be more effectively suppressed. .. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

また、平面視において、凹部4aは、図2、図3に示すように、千鳥状に配置されていいてもよい。このような構成を有することによって、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力が、特にあらゆる平面方向に対し、リード4に加わったとしても、千鳥状に配置された凹部4aおよび凹部4aの内壁に連なった突出部4bにより、突出部4bが被覆部材6に、また被覆部材6が凹部4aに入り込む構成となり、リード4が被覆される、後述する被覆部材6により効果的に応力が分散され、リード4と電極3との接続強度が低下され難く、リード4と電極3との接続部分が小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのをより効果的に抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 Further, in a plan view, the recesses 4a may be arranged in a staggered pattern as shown in FIGS. 2 and 3. By having such a configuration, for example, the stress due to the vibration of the equipment when measuring the temperature of the exhaust gas from the equipment having a combustion part such as an internal combustion engine, a gas turbine, or a boiler, or the stress when handling the temperature measuring body 10. However, even if the lead 4 is joined in all plane directions, the protrusions 4b connected to the inner wall of the recesses 4a and the recesses 4a arranged in a staggered manner cause the protrusions 4b to become the covering member 6 and the covering members. 6 is configured to enter the recess 4a, and the lead 4 is covered. The stress is effectively dispersed by the covering member 6 described later, and the connection strength between the lead 4 and the electrode 3 is unlikely to be lowered. It becomes difficult for the connecting portion to become small, and it is possible to more effectively suppress the change in the resistance of the temperature measuring body 10 due to the poor connection between the lead 4 and the electrode 3. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

また、本発明の実施形態の測温体10は、ガラス材料からなり、凹部4aおよび突出部4bを含み、リード4の第1電極3aおよび第2電極3bとの接続部を被覆する被覆部材6を有している。このような構成を有することによって、被覆部材6が絶縁基体1等に強固に接合されたものとなり、例えば内燃機関やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する場合における機器の振動による応力、または測温体10の取り扱い時における応力が、リード4に加わったとしても、被覆部材6に効果的に応力が分散され、リード4と電極3との接続強度が低下され難く、リード4と電極3との接続部分が小さくなり難いものとなり、リード4と電極3との接合不良による測温体10における抵抗が変化するのを効果的に抑制することができる。その結果、測温体10は、温度変化の検知精度が高いものとすることができる。 Further, the temperature measuring body 10 of the embodiment of the present invention is made of a glass material, includes a recess 4a and a protruding portion 4b, and covers a connecting portion of the lead 4 with the first electrode 3a and the second electrode 3b. have. By having such a configuration, the covering member 6 is firmly bonded to the insulating substrate 1 and the like, and for example, when measuring the temperature of exhaust gas from a device having a combustion part such as an internal combustion engine, a gas turbine, and a boiler. Even if the stress due to the vibration of the equipment in the above or the stress during handling of the temperature measuring body 10 is applied to the lead 4, the stress is effectively dispersed in the covering member 6 and the connection strength between the lead 4 and the electrode 3 is lowered. It is difficult for the connection portion between the lead 4 and the electrode 3 to become small, and it is possible to effectively suppress a change in the resistance of the temperature measuring body 10 due to a poor connection between the lead 4 and the electrode 3. As a result, the resistance temperature detector 10 can be made to have high detection accuracy of the temperature change.

この被覆部材6は、例えばバリウム珪酸系ガラスやホウ珪酸ガラス等のガラス材料で形成されており、以下の方法で製作することができる。 The covering member 6 is made of a glass material such as barium silicic acid-based glass or borosilicate glass, and can be manufactured by the following method.

まず、バリウム珪酸系ガラスやホウ珪酸ガラス等の原料粉末に、適当な有機バインダーおよび溶剤等を添加混合して作製したスラリーを、ディスペンサ等を用いて、電極3とリード4との接続部の上に、これらを完全に覆う山状に過剰に供給する。ついで、このスラリー含む絶縁基体1を、高温(約800〜1200℃)で焼成し、常温まで冷却(放冷)することによって、上記接続部を完全に覆う被覆部材6が作製される。 First, a slurry prepared by adding and mixing an appropriate organic binder, solvent, etc. to raw material powder such as barium-silicic acid-based glass or borosilicate glass is prepared by using a dispenser or the like on the connection portion between the electrode 3 and the lead 4. In addition, it is excessively supplied in a mountain shape that completely covers these. Then, the insulating substrate 1 containing the slurry is fired at a high temperature (about 800 to 1200 ° C.) and cooled (cooled) to room temperature to produce a covering member 6 that completely covers the connection portion.

このような測温体10によれば、温度変化の検知精度が高いものとすることができる。 According to such a temperature measuring body 10, it is possible to assume that the detection accuracy of the temperature change is high.

このような測温体10を用いた温度検知は、例えば内燃機関(ガソリンエンジンおよびディーゼルエンジン等)やガスタービン、ボイラー等の燃焼部を有する機器からの排ガスの温度を測定する測定器の場合であれば、次のようにして行なわれる。すなわち、まず上記のような電気抵抗測定用の回路を含む外部基板に測温体10を実装し、リード4を外部基板の回路の所定部位に電気的に接続してセンサ装置とする。電気的な接続の手段としては、両者をはんだ接合する等の接続手段が挙げられる。次に、センサ装置に実装した測温体10を排ガスの流路中に実装する。この場合、少なくとも測温体10が排ガス中に位置できるようにすればよく、外部基板の他の部位は必ずしも排ガス中に位置させる必要はない。その後、排ガスの温度に応じて測温体10および測温体10に含まれている抵抗配線2の第1および第2端部間の電気抵抗が変化し、この電気抵抗値が電気回路測定用の回路で測定される。測定された電気抵抗を基に、例えばあらかじめ測定しておいた電気抵抗−温度の関係から抵抗配線2の温度、つまり抵抗配線2を含む測温体10が位置している部分の温度を検知することができる。 Temperature detection using such a thermometer 10 is, for example, in the case of a measuring instrument that measures the temperature of exhaust gas from an internal combustion engine (gas turbine engine, diesel engine, etc.), a gas turbine, a boiler, or other device having a combustion part. If so, it is done as follows. That is, first, the resistance temperature detector 10 is mounted on an external board including the circuit for measuring electrical resistance as described above, and the lead 4 is electrically connected to a predetermined portion of the circuit on the external board to form a sensor device. Examples of the means of electrical connection include connection means such as solder-bonding the two. Next, the resistance temperature detector 10 mounted on the sensor device is mounted in the flow path of the exhaust gas. In this case, at least the resistance temperature detector 10 may be positioned in the exhaust gas, and other parts of the external substrate do not necessarily have to be positioned in the exhaust gas. After that, the electrical resistance between the first and second ends of the resistance thermometer 10 and the resistance wiring 2 included in the resistance temperature detector 10 changes according to the temperature of the exhaust gas, and this electrical resistance value is used for measuring the electric circuit. Measured in the circuit of. Based on the measured electrical resistance, for example, the temperature of the resistance wiring 2 is detected from the relationship of electrical resistance-temperature measured in advance, that is, the temperature of the portion where the resistance temperature detector 10 including the resistance wiring 2 is located. be able to.

抵抗配線2の線幅は、検知しようとする温度の測温の精度、温度域、抵抗配線2の厚みおよび長さ、絶縁層1aの外周から抵抗配線2までの距離等の条件および生産性、ならびに経済性等の条件に応じて、適宜設定される。 The line width of the resistance wiring 2 includes conditions and productivity such as the accuracy of temperature measurement of the temperature to be detected, the temperature range, the thickness and length of the resistance wiring 2, the distance from the outer periphery of the insulating layer 1a to the resistance wiring 2, and the like. In addition, it is set as appropriate according to conditions such as economic efficiency.

例えば、検知しようとする温度域が約500〜1000℃の高温域であり、抵抗配線2が白金
(白金の含有量が99.99質量%以上のいわゆる純白金等)からなり、その厚みが約5〜15
μm程度の場合であれば、抵抗配線2の線幅は、例えば、約20〜200μm程度に設定され
る。
For example, the temperature range to be detected is a high temperature range of about 500 to 1000 ° C., the resistance wiring 2 is made of platinum (so-called pure platinum having a platinum content of 99.99% by mass or more), and its thickness is about 5 to 5. 15
In the case of about μm, the line width of the resistance wiring 2 is set to, for example, about 20 to 200 μm.

なお、このような抵抗配線2の厚み設定等を考慮すれば、絶縁層1aがセラミック焼結体からなり、抵抗配線2が厚膜導体であることが好ましい。この場合の抵抗配線2は、例えば絶縁基体1(複数の絶縁層1a)との同時焼成で形成されたものである。抵抗配線2が厚膜導体であれば、その厚みを上記のように10μm以上程度等と、比較的厚くすることが容易である。また、このような比較的厚い抵抗配線2が絶縁基体1との同時焼成で形成され得るため、抵抗配線2と絶縁基体1との接合の強度、および測温体10としての生産性の点で有利である。また、抵抗配線2となる金属ペーストの印刷パターンの調整だけで抵抗配線2のパターンを容易に設定することができる。そのため、設計の自由度、および生産性等の点でも有利である。 Considering the thickness setting of the resistance wiring 2 and the like, it is preferable that the insulating layer 1a is made of a ceramic sintered body and the resistance wiring 2 is a thick film conductor. The resistance wiring 2 in this case is formed by, for example, simultaneous firing with an insulating substrate 1 (a plurality of insulating layers 1a). If the resistance wiring 2 is a thick film conductor, it is easy to make the thickness relatively thick, such as about 10 μm or more as described above. Further, since such a relatively thick resistance wiring 2 can be formed by co-fired with the insulating substrate 1, the strength of the bond between the resistance wiring 2 and the insulating substrate 1 and the productivity of the resistance temperature measuring body 10 are improved. It is advantageous. Further, the pattern of the resistance wiring 2 can be easily set only by adjusting the printing pattern of the metal paste that becomes the resistance wiring 2. Therefore, it is advantageous in terms of design freedom and productivity.

また、上述のように抵抗配線2は、互いに平行に並んだ複数の直線部と、これらの複数の直線部のうち隣り合う直線部の端同士をつないでいる複数の折り返し部とを有するミアンダ状である。折り返し部は、隣り合う複数の直線部の端同士を、一つおきに互いに接続している。言い換えれば、複数の直線部と複数の折り返し部とが順次直列に接続されて一つのミアンダ状のパターン(蛇行パターン)を形成している。 Further, as described above, the resistance wiring 2 has a meander shape having a plurality of straight portions arranged in parallel with each other and a plurality of folded portions connecting the ends of adjacent straight portions among the plurality of straight portions. Is. The folded portion connects the ends of a plurality of adjacent straight portions to each other at every other end. In other words, a plurality of straight portions and a plurality of folded portions are sequentially connected in series to form one meander-like pattern (meandering pattern).

抵抗配線2がミアンダ状のパターンである場合には、比較的長い抵抗配線2が順次折りたたまれて配置されているため、一つの層間に極力長い抵抗配線2を設ける上で有利であ
る。抵抗配線2の長さがより長いことにより、抵抗配線2の第1および第2端部間の電気抵抗をより大きくすることできる。すなわち、例えば基準温度(常温等)における抵抗配線2の電気抵抗が比較的大きいため、温度変化に応じた電気抵抗の変化の絶対値がより大きい。そのため、常温から上記千℃程度等の高温域にかけて、精度の良い測温が容易になる。
When the resistance wiring 2 has a meander-like pattern, the relatively long resistance wiring 2 is sequentially folded and arranged, which is advantageous in providing the resistance wiring 2 as long as possible between one layer. Since the length of the resistance wiring 2 is longer, the electric resistance between the first and second ends of the resistance wiring 2 can be made larger. That is, for example, since the electrical resistance of the resistance wiring 2 at the reference temperature (normal temperature, etc.) is relatively large, the absolute value of the change in electrical resistance in response to the temperature change is large. Therefore, accurate temperature measurement becomes easy from normal temperature to a high temperature range such as about 1000 ° C.

また、例えば図1〜図5の例のように、絶縁層1aが四角形状である場合に、抵抗配線2がミアンダ状であるときには、そのミアンダ状の抵抗配線2のうち上記の直線部および折り返し部が絶縁層1aの外周に対して平行に配置されていれば、次のような効果が得られる。すなわち、この場合には、絶縁層1aの外周から、その外周に最も近い抵抗配線2までの距離が、直線部および折り返し部のそれぞれにおいてほぼ同じ距離に揃えられる。そのため、直線部および折り返し部のそれぞれにおいて、絶縁層1aの外周から抵抗配線2までの距離が部分的に極端に近くなって抵抗配線2の白金が外部に昇華しやすくなる、というような可能性が低減される。 Further, for example, as in the example of FIGS. 1 to 5, when the insulating layer 1a has a rectangular shape and the resistance wiring 2 has a meander shape, the straight portion and the folded-back portion of the meander-shaped resistance wiring 2 are formed. If the portions are arranged parallel to the outer periphery of the insulating layer 1a, the following effects can be obtained. That is, in this case, the distance from the outer circumference of the insulating layer 1a to the resistance wiring 2 closest to the outer circumference is made substantially the same in each of the straight portion and the folded portion. Therefore, there is a possibility that the distance from the outer periphery of the insulating layer 1a to the resistance wiring 2 becomes extremely short in each of the straight portion and the folded portion, so that the platinum of the resistance wiring 2 is easily sublimated to the outside. Is reduced.

また、この場合、直線部と折り返し部との間で、それぞれの線幅が比較的広い部分の幅が同じ程度であり、さらに、絶縁層1aの外周と直線部および折り返し部それぞれとの間の距離が同じ程度であってもよい。この場合には、絶縁層1aの外周のほぼ全周において、その外周から抵抗配線2までの距離がほぼ同じ程度に揃えられる。そのため、抵抗配線2の長さ方向の一部において白金の外部への昇華が促進されるような可能性がさらに低減され得る。 Further, in this case, the width of the portion having a relatively wide line width is about the same between the straight portion and the folded portion, and further, between the outer periphery of the insulating layer 1a and each of the straight portion and the folded portion. The distances may be about the same. In this case, the distance from the outer circumference to the resistance wiring 2 is almost the same on almost the entire circumference of the outer circumference of the insulating layer 1a. Therefore, the possibility that the sublimation of platinum to the outside is promoted in a part of the resistance wiring 2 in the length direction can be further reduced.

したがって、測温体10は、その抵抗配線2について、測温の精度、および長期信頼性等を重視するときには、ミアンダ状であり、その直線部および折り返し部が絶縁層1aの外周に対して平行に配置されていることが好ましい。また、絶縁層1a(絶縁基体1)が四角形状である場合には、例えばこのような絶縁基体となる複数の領域が一つの母基板に配列形成された多数個取り基板の形態で測温体10を製作する場合に、その配列が容易である。つまり、測温体10としての生産性および経済性等においてより有利である。 Therefore, the resistance temperature detector 10 has a meander shape with respect to the resistance wiring 2 when the accuracy of temperature measurement, long-term reliability, etc. are emphasized, and its straight portion and folded portion are parallel to the outer circumference of the insulating layer 1a. It is preferably arranged in. When the insulating layer 1a (insulating substrate 1) has a quadrangular shape, for example, the resistance temperature detector is in the form of a multi-layered substrate in which a plurality of regions serving as such insulating substrates are arranged in a single mother substrate. When making 10, the arrangement is easy. That is, it is more advantageous in terms of productivity and economy as the resistance temperature detector 10.

なお、図1〜図5の例では、絶縁基体1の形状は四角形(長方形)板状すなわち矩形板状であり、ミアンダ状のパターンの抵抗配線2が、その直線部が長方形状の絶縁層1a(層間)の長辺方向に沿うように配置されている。また、折り返し部が短辺方向に沿って配置されている。この場合には、例えばスクリーン印刷等の方法で抵抗配線2となる金属ペーストが塗布されるときに、次のような有利な効果が得られる。すなわち、印刷工法では折り返しの部分(折り返し部と直線部との境界部分)では金属ペーストにニジミが出やすい。そのため、折り返しを少なくするほうが、ニジミを減らし、抵抗配線2の全体の抵抗値を上げられる。この形態では、この折り返しが直線部の長さが短く、折り返し部の数が多い場合に比べて少ないため、全体の抵抗値を大きくすることがより容易である。 In the examples of FIGS. 1 to 5, the shape of the insulating substrate 1 is a quadrangular (rectangular) plate, that is, a rectangular plate, and the resistance wiring 2 having a meander-like pattern has an insulating layer 1a whose straight line portion is rectangular. It is arranged along the long side direction of (interlayer). Further, the folded portion is arranged along the short side direction. In this case, when the metal paste to be the resistance wiring 2 is applied by a method such as screen printing, the following advantageous effects can be obtained. That is, in the printing method, bleeding is likely to occur in the metal paste at the folded portion (the boundary portion between the folded portion and the straight portion). Therefore, reducing the number of folds reduces bleeding and raises the overall resistance value of the resistance wiring 2. In this form, since the length of the straight portion is short and the number of folded portions is smaller than that in the case where the number of folded portions is large, it is easier to increase the overall resistance value.

なお、本発明の測温体10は、上記実施の形態の例に限られるものではなく、本発明の要旨の範囲内であれば種々の変更は可能である。例えば、四つ以上の層間に抵抗配線2が配置されていてもよい。また、測温体10の抵抗配線2については、ミアンダ状導体に限られず、他パターンであっても構わない。 The resistance temperature detector 10 of the present invention is not limited to the example of the above embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, the resistance wiring 2 may be arranged between four or more layers. Further, the resistance wiring 2 of the resistance temperature detector 10 is not limited to the meander-shaped conductor, and may have another pattern.

1・・・絶縁基体
1a・・絶縁層
2・・・抵抗配線
3・・・電極
3a・・第1電極
3b・・第2電極
4・・・リード
4a・・凹部
4b・・突出部
5・・・接続導体
6・・・被覆部材
10・・・測温体
1 ... Insulation substrate 1a ... Insulation layer 2 ... Resistance wiring 3 ... Electrode 3a ... First electrode 3b ... Second electrode 4 ... Lead 4a ... Recess 4b ... Protruding part 5 ...・ ・ Connecting conductor 6 ・ ・ ・ Covering member
10 ・ ・ ・ Resistance temperature detector

Claims (6)

矩形板状の絶縁基体と、
該絶縁基体に設けられた抵抗配線と、
前記絶縁基体の一方主面に設けられた第1電極および第2電極と、
前記第1電極および前記第2電極のそれぞれに接続されたリードとを有しており、
該リードの表面に、凹部と、平面視で凹部に連なり、前記凹部を取り囲む枠状の突出部とを有していることを特徴とする測温体。
With a rectangular plate-shaped insulating substrate,
With the resistance wiring provided on the insulating substrate,
The first electrode and the second electrode provided on one main surface of the insulating substrate, and
It has a lead connected to each of the first electrode and the second electrode, and has a lead.
On the surface of the lead, the recess and, contiguous with the recess in plan view, temperature sensing element, characterized in that it has a frame-shaped protrusion surrounding the recess.
前記凹部は、平面視で矩形状であり、
前記突出部の幅は、前記凹部の角部に位置するものより前記凹部の辺部に位置するものが大きいことを特徴とする請求項1に記載の測温体。
The recess is rectangular in plan view and has a rectangular shape.
The temperature measuring body according to claim 1, wherein the width of the protruding portion is larger at the side portion of the recess than at the corner portion of the recess.
前記突出部は前記凹部の外側に向かって突出していることを特徴とする請求項1または請求項2に記載の測温体。 The temperature measuring body according to claim 1 or 2, wherein the protruding portion protrudes toward the outside of the recess. 平面視において、前記凹部は矩形状であり、前記リードの長手方向に対して傾斜して配置されていることを特徴とする請求項1乃至請求項3のいずれかに記載の測温体。 The temperature measuring body according to any one of claims 1 to 3, wherein the recess is rectangular in a plan view and is arranged so as to be inclined with respect to the longitudinal direction of the lead. 平面視において、前記凹部は千鳥状に配置されていることを特徴とする請求項1乃至請求項4のいずれかに記載の測温体。 The temperature measuring body according to any one of claims 1 to 4, wherein the recesses are arranged in a staggered manner in a plan view. ガラス材料からなり、前記凹部および前記突出部を含み、前記リードの前記第1電極および前記第2電極との接続部を被覆する被覆部材を有していることを特徴とする請求項1乃至請求項5のいずれかに記載の測温体。 Claims 1 to claim, wherein the coating member is made of a glass material, includes the recess and the protrusion, and covers the connection portion between the first electrode and the second electrode of the lead. Item 5. The temperature measuring body according to any one of Item 5.
JP2016127763A 2016-06-28 2016-06-28 Resistance temperature detector Active JP6952401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016127763A JP6952401B2 (en) 2016-06-28 2016-06-28 Resistance temperature detector
JP2021155183A JP7245883B2 (en) 2016-06-28 2021-09-24 Thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127763A JP6952401B2 (en) 2016-06-28 2016-06-28 Resistance temperature detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021155183A Division JP7245883B2 (en) 2016-06-28 2021-09-24 Thermometer

Publications (2)

Publication Number Publication Date
JP2018004309A JP2018004309A (en) 2018-01-11
JP6952401B2 true JP6952401B2 (en) 2021-10-20

Family

ID=60947851

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016127763A Active JP6952401B2 (en) 2016-06-28 2016-06-28 Resistance temperature detector
JP2021155183A Active JP7245883B2 (en) 2016-06-28 2021-09-24 Thermometer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021155183A Active JP7245883B2 (en) 2016-06-28 2021-09-24 Thermometer

Country Status (1)

Country Link
JP (2) JP6952401B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121449A (en) * 1998-10-13 2000-04-28 Technol Seven Co Ltd Temperature-sensitive element
JP2011061105A (en) * 2009-09-14 2011-03-24 Hitachi Automotive Systems Ltd Connection structure, power module, and method of manufacturing the same
JP5755601B2 (en) * 2012-06-07 2015-07-29 株式会社日立製作所 Power module and manufacturing method thereof
JP6389709B2 (en) * 2014-09-03 2018-09-12 ニチコン株式会社 Ultrasonic welding horn and electrolytic capacitor manufacturing method

Also Published As

Publication number Publication date
JP7245883B2 (en) 2023-03-24
JP2018004309A (en) 2018-01-11
JP2021192062A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US10247620B2 (en) Wiring board and temperature sensing element
JP6215783B2 (en) Wiring board, temperature sensor and temperature sensor
JP6744402B2 (en) Sensor board and sensor device
JP6503086B2 (en) Sensor board and detection module
JP6560116B2 (en) RTD
JP6952401B2 (en) Resistance temperature detector
US11226240B2 (en) Temperature sensor and temperature measuring device
JP6718792B2 (en) Temperature detector
JP6666139B2 (en) Thermometer
JP2016046429A (en) Wiring board, temperature sensing element, and temperature sensing device
JP2017116395A (en) Temperature measuring body and temperature measuring device
JP2018031708A (en) Temperature detecting element
JP2015206722A (en) Wiring circuit board and temperature sensing element
JP2007192617A (en) Thermosensitive element and temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6952401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150