JP6950235B2 - Transport equipment, developing equipment, and image forming equipment - Google Patents

Transport equipment, developing equipment, and image forming equipment Download PDF

Info

Publication number
JP6950235B2
JP6950235B2 JP2017064253A JP2017064253A JP6950235B2 JP 6950235 B2 JP6950235 B2 JP 6950235B2 JP 2017064253 A JP2017064253 A JP 2017064253A JP 2017064253 A JP2017064253 A JP 2017064253A JP 6950235 B2 JP6950235 B2 JP 6950235B2
Authority
JP
Japan
Prior art keywords
blade
large diameter
shaft portion
developer
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064253A
Other languages
Japanese (ja)
Other versions
JP2018169418A (en
Inventor
孝文 若井
孝文 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2017064253A priority Critical patent/JP6950235B2/en
Publication of JP2018169418A publication Critical patent/JP2018169418A/en
Application granted granted Critical
Publication of JP6950235B2 publication Critical patent/JP6950235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、搬送装置、現像装置、及び画像形成装置に関する。 The present invention relates to a transport device, a developing device, and an image forming device.

特許文献1には、スパイラル状羽根部材を有し且つ現像剤を搬送する撹拌搬送部において、取り込み部のスパイラルピッチを撹拌部のスパイラルピッチより短くした構成が開示されている。 Patent Document 1 discloses a configuration in which the spiral pitch of the intake section is shorter than the spiral pitch of the stirring section in the stirring and transporting section having the spiral blade member and transporting the developer.

特開2007−304202号公報JP-A-2007-304202

ここで、回転する軸部と、該軸部の外周面に螺旋状に形成された羽根と、を有する搬送部材で現像剤等の粉体を搬送する構成において、軸部の軸方向一部に大径部を形成して、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量を定量化したものがある。 Here, in a configuration in which a powder such as a developer is transported by a transport member having a rotating shaft portion and a blade formed spirally on the outer peripheral surface of the shaft portion, the shaft portion is partially in the axial direction. Some have formed a large-diameter portion and quantified the amount of powder transported to the downstream side in the transport direction of the large-diameter portion per unit rotation speed.

この構成では、軸部の回転数が上がると、大径部の上流側に粉体が滞留せず、大径部によって下流側への移動が制限される粉体の量が安定しないため、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量が変動する場合がある。 In this configuration, when the rotation speed of the shaft portion increases, the powder does not stay on the upstream side of the large diameter portion, and the amount of powder whose movement to the downstream side is restricted by the large diameter portion is not stable. The amount of powder transported to the downstream side in the transport direction of the diameter portion may fluctuate per unit rotation speed.

本発明は、大径部に対する直上流部分に形成された羽根の外径が、大径部に形成された羽根の外径と同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制することを目的とする。 In the present invention, as compared with the configuration in which the outer diameter of the blade formed in the upstream portion with respect to the large diameter portion is the same as the outer diameter of the blade formed in the large diameter portion, even if the rotation speed of the shaft portion changes. The purpose is to suppress fluctuations in the amount of powder transported to the downstream side of the large-diameter portion in the transport direction per unit rotation speed.

請求項1の発明は、粉体が収容された筐体と、前記筐体の内部に配置され、軸方向の一部で大径とされた大径部を有する軸部と、前記大径部の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記軸方向の一方へ搬送する第一羽根と、前記軸部における前記大径部に対する直上流部分の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記一方へ搬送し、外径が前記第一羽根の外径よりも小さくされた第二羽根と、を備える。 The invention of claim 1 is a housing containing powder, a shaft portion arranged inside the housing and having a large diameter portion having a large diameter in a part in the axial direction, and the large diameter portion. The first blade, which is formed in a spiral shape on the outer peripheral surface of the shaft portion and conveys the powder in one direction in the axial direction by the rotation of the shaft portion, and the outer peripheral surface of the portion immediately upstream of the large diameter portion of the shaft portion. It is provided with a second blade which is formed in a shape and which conveys the powder to the one side by rotation of the shaft portion and whose outer diameter is smaller than the outer diameter of the first blade.

請求項3の発明では、前記第二羽根は、螺旋ピッチが前記第一羽根の螺旋ピッチよりも小さくされている。 In the invention of claim 3 , the spiral pitch of the second blade is smaller than the spiral pitch of the first blade.

請求項1の発明では、前記第二羽根は、条数が前記第一羽根の条数よりも少なくされている。 In the invention of claim 1 , the number of the second blade is smaller than the number of the first blade.

請求項2の発明では、前記筐体は、内壁が前記大径部において内側に張り出す張出部を有している。 In the invention of claim 2, the housing has an overhanging portion whose inner wall projects inward in the large-diameter portion.

請求項2の発明では、前記張出部の上流端面は、前記大径部の上流端面の上流側に配置されている。 In the invention of claim 2 , the upstream end face of the overhanging portion is arranged on the upstream side of the upstream end face of the large diameter portion.

請求項4の発明では、前記軸部における前記直上流部分に対する上流部分の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記一方へ搬送し、外径が前記第二羽根の外径よりも大きくされた第三羽根、を備える。 In the invention of claim 4, the powder is spirally formed on the outer peripheral surface of the upstream portion of the shaft portion with respect to the immediate upstream portion, and the powder is conveyed to the one by rotation of the shaft portion, and the outer diameter is the second. A third blade, which is larger than the outer diameter of the blade, is provided.

請求項5の発明では、前記第三羽根は、螺旋ピッチが前記第二羽根の螺旋ピッチよりも大きくされている。 In the invention of claim 5 , the spiral pitch of the third blade is made larger than the spiral pitch of the second blade.

請求項6の発明では、前記第三羽根は、条数が前記第二羽根の条数よりも多くされている。 In the invention of claim 6, the number of rows of the third blade is larger than the number of rows of the second blade.

請求項7の発明は、粉体としての現像剤を搬送し、該現像剤で現像する。 In the invention of claim 7 , a developer as a powder is conveyed and developed with the developer.

請求項8の発明は、潜像を保持する保持体と、前記潜像を現像する請求項9に記載の現像装置と、前記現像装置によって現像された画像を記録媒体に転写する転写部と、を備える。 The invention of claim 8 comprises a retainer for holding a latent image, a developing device according to claim 9 for developing the latent image, and a transfer unit for transferring an image developed by the developing device to a recording medium. To be equipped.

本発明の請求項1の構成によれば、大径部に対する直上流部分に形成された第二羽根の外径が、大径部に形成された第一羽根の外径と同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 1 of the present invention, the outer diameter of the second blade formed in the portion immediately upstream of the large diameter portion is the same as the outer diameter of the first blade formed in the large diameter portion. In comparison, even if the rotation speed of the shaft portion changes, it is possible to suppress fluctuations in the transport amount per unit rotation speed of the powder transported to the downstream side in the transport direction of the large diameter portion.

本発明の請求項3の構成によれば、第二羽根の螺旋ピッチが第一羽根の螺旋ピッチと同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 3 of the present invention, as compared with the configuration in which the spiral pitch of the second blade is the same as the spiral pitch of the first blade, even if the rotation speed of the shaft portion changes, the transport direction of the large diameter portion Fluctuations in the amount of powder transported to the downstream side per unit rotation speed can be suppressed.

本発明の請求項1の構成によれば、第二羽根の条数が第一羽根の条数と同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 1 of the present invention, as compared with the configuration in which the number of rows of the second blade is the same as the number of rows of the first blade, even if the rotation speed of the shaft portion changes, the transport direction of the large diameter portion It is possible to suppress fluctuations in the amount of powder transported to the downstream side per unit rotation speed.

本発明の請求項2の構成によれば、筐体の内壁が断面視にて直線状である構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 2 of the present invention, as compared with the configuration in which the inner wall of the housing is linear in cross-sectional view, even if the rotation speed of the shaft portion changes, the large-diameter portion is transported to the downstream side in the transport direction. It is possible to suppress fluctuations in the amount of conveyed powder per unit rotation speed.

本発明の請求項2の構成によれば、張出部の上流端面と軸部の大径部の上流端面とが同じ位置に配置される構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 2 of the present invention, even if the rotation speed of the shaft portion changes, as compared with the configuration in which the upstream end surface of the overhanging portion and the upstream end surface of the large diameter portion of the shaft portion are arranged at the same position. , It is possible to suppress fluctuations in the amount of powder transported to the downstream side in the transport direction of the large-diameter portion per unit rotation speed.

本発明の請求項4の構成によれば、第三羽根の外径が第二羽根の外径と同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 4 of the present invention, as compared with the configuration in which the outer diameter of the third blade is the same as the outer diameter of the second blade, even if the rotation speed of the shaft portion changes, the transport direction of the large diameter portion Fluctuations in the amount of powder transported to the downstream side per unit rotation speed can be suppressed.

本発明の請求項5の構成によれば、第三羽根の螺旋ピッチが第二羽根の螺旋ピッチと同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 5 of the present invention, as compared with the configuration in which the spiral pitch of the third blade is the same as the spiral pitch of the second blade, even if the rotation speed of the shaft portion changes, the transport direction of the large diameter portion Fluctuations in the amount of powder transported to the downstream side per unit rotation speed can be suppressed.

本発明の請求項6の構成によれば、第三羽根の条数が第二羽根の条数と同じである構成に比べ、軸部の回転数が変化しても、大径部の搬送方向下流側へ搬送される粉体の単位回転数当りの搬送量の変動を抑制できる。 According to the configuration of claim 6 of the present invention, as compared with the configuration in which the number of rows of the third blade is the same as the number of rows of the second blade, even if the rotation speed of the shaft portion changes, the transport direction of the large diameter portion It is possible to suppress fluctuations in the amount of powder transported to the downstream side per unit rotation speed.

本発明の請求項7の構成によれば、第二羽根の外径が第一羽根の外径と同じである構成に比べ、単位回転数当りの搬送量の変動に起因する現像不良を抑制できる。 According to the configuration of claim 7 of the present invention, development defects due to fluctuations in the transport amount per unit rotation speed can be suppressed as compared with the configuration in which the outer diameter of the second blade is the same as the outer diameter of the first blade. ..

本発明の請求項8の構成によれば、第二羽根の外径が第一羽根の外径と同じである構成に比べ、現像不良に起因する画像不良を抑制できる。 According to the configuration of claim 8 of the present invention, image defects due to development defects can be suppressed as compared with the configuration in which the outer diameter of the second blade is the same as the outer diameter of the first blade.

本実施形態に係る画像形成装置の構成を示す概略図である。It is the schematic which shows the structure of the image forming apparatus which concerns on this embodiment. 本実施形態に係る現像装置の構成を示す側断面図である。It is a side sectional view which shows the structure of the developing apparatus which concerns on this embodiment. 本実施形態に係る現像装置の構成を示す平断面図である。It is a plan sectional view which shows the structure of the developing apparatus which concerns on this embodiment. 本実施形態に係る搬送部材の一部を拡大して示す平面図である。It is a top view which shows the part of the transport member which concerns on this embodiment in an enlarged manner. 第一変形例に係る現像装置の構成を示す平断面図である。It is a plan sectional view which shows the structure of the developing apparatus which concerns on the 1st modification.

以下に、本発明に係る実施形態の一例を図面に基づき説明する。なお、図中に示す矢印Hは、装置上方(鉛直上方)を示している。 Hereinafter, an example of the embodiment according to the present invention will be described with reference to the drawings. The arrow H shown in the figure indicates the upper side (vertically upper side) of the device.

(画像形成装置10の構成)
まず、画像形成装置10の構成を説明する。図1は、画像形成装置10の構成を示す概略図である。
(Structure of image forming apparatus 10)
First, the configuration of the image forming apparatus 10 will be described. FIG. 1 is a schematic view showing the configuration of the image forming apparatus 10.

画像形成装置10は、図1に示されるように、各構成部品が内部に収容された装置本体11(筐体)を備えている。装置本体11の内部には、用紙等の記録媒体Pが収容される収容部12と、記録媒体Pに画像を形成する画像形成部14と、画像形成部14によって記録媒体Pに形成された画像を当該記録媒体Pに定着する定着装置56と、収容部12から画像形成部14へ記録媒体Pを搬送する搬送部16と、画像形成装置10の各部の動作を制御する制御部20と、が設けられている。また、装置本体11の上部には、定着装置56によって画像が定着された記録媒体Pが排出される排出部18が設けられている。 As shown in FIG. 1, the image forming apparatus 10 includes an apparatus main body 11 (housing) in which each component is housed. Inside the apparatus main body 11, there is an accommodating portion 12 in which a recording medium P such as paper is housed, an image forming unit 14 that forms an image on the recording medium P, and an image formed on the recording medium P by the image forming unit 14. The fixing device 56 for fixing the image to the recording medium P, the transport unit 16 for transporting the recording medium P from the accommodating unit 12 to the image forming unit 14, and the control unit 20 for controlling the operation of each unit of the image forming device 10. It is provided. Further, an discharge unit 18 is provided on the upper part of the device main body 11 to discharge the recording medium P on which the image is fixed by the fixing device 56.

画像形成部14は、画像(潜像)を保持する感光体ドラム32(保持体の一例)を有している。感光体ドラム32は、一方向(例えば、図1における反時計回り方向)へ回転するようになっている。感光体ドラム32の周囲には、感光体ドラム32の回転方向上流側から順に、感光体ドラム32を帯電させる帯電装置としての帯電ロール23と、帯電ロール23によって帯電した感光体ドラム32を露光して感光体ドラム32に静電潜像を形成する露光装置36と、露光装置36によって感光体ドラム32に形成された静電潜像を現像して黒色のトナー画像を形成する現像装置60(搬送装置の一例)と、現像装置60によって感光体ドラム32に形成された黒色のトナー画像を記録媒体Pに転写する転写部の一例としての転写ロール26と、が設けられている。なお、現像装置60の具体的な構成は後述する。 The image forming unit 14 has a photoconductor drum 32 (an example of a holding body) that holds an image (latent image). The photoconductor drum 32 rotates in one direction (for example, in the counterclockwise direction in FIG. 1). Around the photoconductor drum 32, a charging roll 23 as a charging device for charging the photoconductor drum 32 and a photoconductor drum 32 charged by the charging roll 23 are exposed in this order from the upstream side in the rotation direction of the photoconductor drum 32. An exposure device 36 that forms an electrostatic latent image on the photoconductor drum 32, and a developing device 60 that develops the electrostatic latent image formed on the photoconductor drum 32 by the exposure device 36 to form a black toner image (conveyed). An example of the apparatus) and a transfer roll 26 as an example of a transfer unit that transfers a black toner image formed on the photoconductor drum 32 by the developing apparatus 60 to the recording medium P are provided. The specific configuration of the developing device 60 will be described later.

露光装置36は、制御部20から送られた画像信号に基づき静電潜像を形成するようになっている。制御部20から送られる画像信号としては、例えば、制御部20が外部装置から取得した画像信号がある。 The exposure apparatus 36 forms an electrostatic latent image based on the image signal sent from the control unit 20. As the image signal sent from the control unit 20, for example, there is an image signal acquired by the control unit 20 from an external device.

装置本体11の内部には、現像装置60へ供給されるトナーを収容するトナーカートリッジ29が設けられている。 Inside the apparatus main body 11, a toner cartridge 29 for accommodating toner to be supplied to the developing apparatus 60 is provided.

転写ロール26は、感光体ドラム32に対して接触している。転写ロール26と感光体ドラム32との間には、記録媒体Pを挟むニップ領域Tが形成されている。転写ロール26は、ニップ領域Tにおいて記録媒体Pを感光体ドラム32とで挟んで上側へ搬送し、ニップ領域Tにおいて記録媒体Pに対して、感光体ドラム32に形成されたトナー画像を転写するようになっている。すなわち、ニップ領域Tが、感光体ドラム32に形成されたトナー画像が記録媒体Pに転写される転写位置とされている。 The transfer roll 26 is in contact with the photoconductor drum 32. A nip region T that sandwiches the recording medium P is formed between the transfer roll 26 and the photoconductor drum 32. The transfer roll 26 sandwiches the recording medium P with the photoconductor drum 32 in the nip region T and conveys it upward, and transfers the toner image formed on the photoconductor drum 32 to the recording medium P in the nip region T. It has become like. That is, the nip region T is a transfer position where the toner image formed on the photoconductor drum 32 is transferred to the recording medium P.

搬送部16は、収容部12に収容された記録媒体Pを送り出す送出ロール46と、送出ロール46によって送り出された記録媒体Pが搬送される搬送路48と、搬送路48に沿って設けられ送出ロール46によって送り出された記録媒体Pをニップ領域Tへ搬送する複数の搬送ロール対50と、を備えている。 The transport unit 16 is provided along the delivery roll 46 that sends out the recording medium P housed in the storage unit 12, the transport path 48 through which the recording medium P sent out by the delivery roll 46 is transported, and the transport path 48, and sends out. It includes a plurality of transport roll pairs 50 that transport the recording medium P delivered by the roll 46 to the nip region T.

定着装置56では、記録媒体Pを加熱及び加圧することで、転写ロール26によって記録媒体Pに転写されたトナー画像を、当該記録媒体Pへ定着するようになっている。この定着装置56の上方側(搬送方向下流側)には、トナー画像が定着された記録媒体Pを排出部18へ排出する排出ロール52が設けられている。 In the fixing device 56, the toner image transferred to the recording medium P by the transfer roll 26 is fixed to the recording medium P by heating and pressurizing the recording medium P. An discharge roll 52 for discharging the recording medium P on which the toner image is fixed to the discharge unit 18 is provided on the upper side (downstream side in the transport direction) of the fixing device 56.

(現像装置60の構成)
次に、現像装置60(搬送装置の一例)の構成を説明する。図2及び図3は、現像装置60の構成を示す側断面図及び平断面図である。
(Structure of developing device 60)
Next, the configuration of the developing device 60 (an example of the transport device) will be described. 2 and 3 are a side sectional view and a plan sectional view showing the configuration of the developing apparatus 60.

現像装置60は、図2に示されるように、トナー及び磁性キャリアからなる現像剤G(粉体の一例)が収容された筐体62を有している。筐体62には、感光体ドラム32側に向かって開口する開口部66が形成されている。この開口部66から一部が露出するように、感光体ドラム32へ現像剤Gを供給する現像剤供給体としての現像ロール65が筐体62内に設けられている。 As shown in FIG. 2, the developing apparatus 60 has a housing 62 in which a developing agent G (an example of powder) composed of toner and a magnetic carrier is housed. The housing 62 is formed with an opening 66 that opens toward the photoconductor drum 32 side. A developing roll 65 as a developing agent supplier for supplying the developing agent G to the photoconductor drum 32 is provided in the housing 62 so that a part of the opening 66 is exposed.

現像ロール65は、現像剤G中に含まれた磁性キャリアを磁力で保持し、表面に現像剤Gの磁気ブラシを形成し、当該現像剤Gを感光体ドラム32と対向する対向位置へ搬送するようになっている。当該対向位置へ向かって搬送される現像剤Gは、層規制部材63によって、現像剤Gの層の厚さ(現像剤量)が規制される。そして、感光体ドラム32上に形成された静電潜像が、現像ロール65上の現像剤G(トナー)によってトナー画像として可視化される。 The developing roll 65 magnetically holds the magnetic carriers contained in the developing agent G, forms a magnetic brush of the developing agent G on the surface, and conveys the developing agent G to a position facing the photoconductor drum 32. It has become like. The layer thickness (amount of developer) of the developer G is regulated by the layer regulating member 63 of the developer G transported toward the facing position. Then, the electrostatic latent image formed on the photoconductor drum 32 is visualized as a toner image by the developer G (toner) on the developing roll 65.

図3に示されるように、筐体62の内部における現像ロール65側(+Y方向側)には、現像剤Gを搬送しながら現像ロール65へ現像剤Gを供給するための供給路68が、現像ロール65の軸方向(X方向)に沿って形成されている。 As shown in FIG. 3, on the developing roll 65 side (+ Y direction side) inside the housing 62, a supply path 68 for supplying the developing agent G to the developing roll 65 while conveying the developing agent G is provided. It is formed along the axial direction (X direction) of the developing roll 65.

供給路68には、供給路68の一端側(+X方向端側)から他端側(−X方向端側)へ向けて現像剤Gを搬送する搬送部材80が配置されている。搬送部材80は、軸部82と、軸部82の外周面に軸部82の軸周りに螺旋状に形成された二条の羽根83、84と、を有している。 In the supply path 68, a transport member 80 for transporting the developer G from one end side (+ X direction end side) to the other end side (−X direction end side) of the supply path 68 is arranged. The transport member 80 has a shaft portion 82 and two blades 83, 84 spirally formed around the axis of the shaft portion 82 on the outer peripheral surface of the shaft portion 82.

軸部82の軸方向両端部は、筐体62の側壁62A、62Bに回転可能に支持されている。軸部82の一端部(+X方向端部)には、駆動源61からの回転力が伝達されるギヤ(図示省略)が固定されている。これにより、軸部82は、図2の矢印B方向(時計回り方向)に回転するようになっている。 Both ends of the shaft portion 82 in the axial direction are rotatably supported by the side walls 62A and 62B of the housing 62. A gear (not shown) to which the rotational force from the drive source 61 is transmitted is fixed to one end (+ X direction end) of the shaft portion 82. As a result, the shaft portion 82 rotates in the arrow B direction (clockwise direction) in FIG.

二条の羽根83、84は、軸部82の回転により、軸部82の軸方向の一方側(−X方向側)を向く搬送面で現像剤Gを押しながら、当該現像剤Gを軸方向の一方(−X方向)へ搬送するようになっている。これにより、現像剤G中のトナーと磁性キャリアとが攪拌されながら軸方向の一方(−X方向)へ搬送される。 The two blades 83, 84 push the developer G on the transport surface facing one side (−X direction side) of the shaft portion 82 in the axial direction due to the rotation of the shaft portion 82, and push the developer G in the axial direction. It is designed to be transported in one direction (-X direction). As a result, the toner in the developer G and the magnetic carrier are conveyed in one axial direction (−X direction) while being agitated.

供給路68に対する現像ロール65側とは反対側(−Y方向側)には、供給路68で搬送された現像剤Gを供給路68の搬送方向(−X方向)とは反対方向(+X方向)へ向かって搬送する搬送路69が設けられている。搬送路69は、軸方向両端部(搬送方向上流端部及び下流端部)において、供給路68と通じており、搬送路69と供給路68とで現像剤Gの循環経路を構成している。搬送路69と供給路68とは、その搬送方向(X方向)の中間部において仕切壁67によって仕切られている。搬送路69及び供給路68は、+Y方向に沿った路幅がX方向に一定とされている。 On the side opposite to the developing roll 65 side (−Y direction side) with respect to the supply path 68, the developer G conveyed in the supply path 68 is placed in the direction opposite to the transfer direction (−X direction) of the supply path 68 (+ X direction). ) Is provided. The transport path 69 communicates with the supply path 68 at both ends in the axial direction (upstream end and downstream end in the transport direction), and the transport path 69 and the supply path 68 form a circulation path for the developer G. .. The transport path 69 and the supply path 68 are partitioned by a partition wall 67 at an intermediate portion in the transport direction (X direction). The width of the transport path 69 and the supply path 68 along the + Y direction is constant in the X direction.

搬送路69には、搬送路69の一端側(−X方向端側)から他端側(+X方向端側)へ向けてトナーを搬送する搬送部材90が配置されている。搬送部材90は、軸方向の一部で大径とされた大径部92Aを有する軸部92を備えている。 In the transport path 69, a transport member 90 that transports toner from one end side (end side in the −X direction) to the other end side (end side in the + X direction) of the transport path 69 is arranged. The transport member 90 includes a shaft portion 92 having a large diameter portion 92A having a large diameter in a part in the axial direction.

図4に示されるように、軸部92が大径部92Aで径方向外側に張り出すことで、大径部92Aにおける搬送方向の上流端及び下流端のそれぞれには、−X方向側を向く上流端面92Eと、+X方向側を向く下流端面92Fが形成されている。 As shown in FIG. 4, the shaft portion 92 projects outward in the radial direction at the large diameter portion 92A, so that each of the upstream end and the downstream end in the transport direction of the large diameter portion 92A faces the −X direction side. An upstream end face 92E and a downstream end face 92F facing the + X direction side are formed.

軸部92における大径部92Aよりも搬送方向下流側(+X方向側)の外周面には、図3に示されるように、軸部92の軸周りに螺旋状とされた二条の羽根93、94と、軸部92の径方向外側へ突出する突出部924と、が形成されている。 As shown in FIG. 3, on the outer peripheral surface of the shaft portion 92 on the downstream side (+ X direction side) of the large diameter portion 92A, the two blades 93 spirally formed around the axis of the shaft portion 92, A 94 and a protruding portion 924 protruding outward in the radial direction of the shaft portion 92 are formed.

羽根93、94は、それぞれ、軸部92の軸方向に複数(例えば、6個)配置されている。各羽根93、94は、例えば、軸部92の周方向に360度の範囲(1ピッチの範囲)で形成されている。 A plurality (for example, 6) of the blades 93 and 94 are arranged in the axial direction of the shaft portion 92, respectively. Each of the blades 93 and 94 is formed, for example, in a range of 360 degrees (a range of one pitch) in the circumferential direction of the shaft portion 92.

突出部924は、軸部92の径方向外側(図3の+Y方向側)とその反対側(図3の−Y方向側)とに突出する一対で構成されている。この一対の突出部924は、軸部92の軸方向に接近して配置された2組が、軸部92の軸方向に間隔をおいて複数(例えば、3つ)配置されている。 The protruding portion 924 is composed of a pair of protruding portions 924 on the radial side (+ Y direction side in FIG. 3) and the opposite side (−Y direction side in FIG. 3) of the shaft portion 92. In the pair of protruding portions 924, two sets arranged close to the axial direction of the shaft portion 92 are arranged in a plurality (for example, three) at intervals in the axial direction of the shaft portion 92.

軸部92の搬送方向下流端部(+X方向端部)の外周面には、羽根93、94とは逆巻きの螺旋状とされた一条の羽根95が形成されている。 On the outer peripheral surface of the downstream end portion (+ X direction end portion) of the shaft portion 92 in the transport direction, a single blade 95 having a spiral shape opposite to that of the blades 93 and 94 is formed.

軸部92の大径部92Aの外周面には、軸部92の軸周りに螺旋状とされた二条の羽根96、97(第一羽根の一例)が形成されている。羽根96、97は、羽根93、94と同じ巻方向とされた螺旋状とされている。各羽根96、97は、例えば、軸部92の周方向に360度の範囲(1ピッチの範囲)で形成されている。なお、本実施形態では、羽根96、97の1ピッチの軸方向の長さと、大径部92Aの軸方向長さとが同じとされている。 Two blades 96 and 97 (an example of the first blade) spirally formed around the shaft of the shaft portion 92 are formed on the outer peripheral surface of the large diameter portion 92A of the shaft portion 92. The blades 96 and 97 have a spiral shape having the same winding direction as the blades 93 and 94. Each of the blades 96 and 97 is formed, for example, in a range of 360 degrees (a range of one pitch) in the circumferential direction of the shaft portion 92. In the present embodiment, the axial length of one pitch of the blades 96 and 97 and the axial length of the large diameter portion 92A are the same.

図4に示されるように、軸部92における大径部92Aに対する直上流部分92Bの外周面には、軸部92の軸周りに螺旋状とされた一条の羽根91(第二羽根の一例)が形成されている。羽根91は、羽根96、97と同じ巻方向とされた螺旋状とされている。羽根91は、例えば、軸部92の周方向に720度の範囲(2ピッチの範囲)で形成されている。また、羽根91は、羽根96、97の上流側の最も近い位置に配置された羽根であり、羽根96、97に対して軸方向に連続して形成されている。なお、羽根91は、羽根96、97に対して、軸方向に隙間を有して(離れて)いてもよい。この隙間は、現像剤Gの搬送が阻害されず、現像剤Gの溜まりができない程度の隙間とされる。具体的には、当該隙間は、例えば、羽根91の1ピッチ以内に収まる隙間であればよい。 As shown in FIG. 4, on the outer peripheral surface of the upstream portion 92B of the shaft portion 92 with respect to the large diameter portion 92A, a single blade 91 spirally formed around the axis of the shaft portion 92 (an example of the second blade). Is formed. The blade 91 has a spiral shape having the same winding direction as the blades 96 and 97. The blade 91 is formed, for example, in a range of 720 degrees (a range of 2 pitches) in the circumferential direction of the shaft portion 92. Further, the blade 91 is a blade arranged at the closest position on the upstream side of the blades 96 and 97, and is formed continuously in the axial direction with respect to the blades 96 and 97. The blade 91 may have (separately) a gap in the axial direction with respect to the blades 96 and 97. This gap is set so that the transport of the developer G is not hindered and the developer G cannot be accumulated. Specifically, the gap may be, for example, a gap that fits within one pitch of the blade 91.

ここで、直上流部分92Bは、大径部92Aに対する現像剤Gの搬送方向の上流側に大径部92Aに連続して設けられた軸部92の一部分である。また、直上流部分92Bは、大径部92Aに対する搬送方向の上流側の部分の一部の範囲に設定される。 Here, the immediately upstream portion 92B is a part of the shaft portion 92 continuously provided on the large diameter portion 92A on the upstream side in the transport direction of the developer G with respect to the large diameter portion 92A. Further, the immediate upstream portion 92B is set to a part range of the portion on the upstream side in the transport direction with respect to the large diameter portion 92A.

軸部92における直上流部分92Bに対する上流部分92Cの外周面には、軸部92の軸周りに螺旋状とされた二条の羽根98、99(第三羽根の一例)が形成されている。羽根98、99は、羽根91と同じ巻方向とされた螺旋状とされている。羽根98、99は、例えば、軸部92の周方向に720度の範囲(2ピッチの範囲)で形成されている。なお、上流部分92Cは、本実施形態において、直上流部分92Bの上流側に直上流部分92Bに連続して設けられた軸部92の一部分である。 Two blades 98 and 99 (an example of a third blade) spirally formed around the axis of the shaft portion 92 are formed on the outer peripheral surface of the upstream portion 92C with respect to the immediately upstream portion 92B of the shaft portion 92. The blades 98 and 99 have a spiral shape having the same winding direction as the blade 91. The blades 98 and 99 are formed, for example, in a range of 720 degrees (a range of 2 pitches) in the circumferential direction of the shaft portion 92. The upstream portion 92C is a part of the shaft portion 92 provided continuously to the direct upstream portion 92B on the upstream side of the direct upstream portion 92B in the present embodiment.

軸部92の軸方向両端部は、図3に示されるように、筐体62の側壁62A、62Bに回転可能に支持されている。軸部92の一端部(+X方向端部)には、駆動源61からの回転力が伝達されるギヤ(図示省略)が固定されている。これにより、軸部92は、図2の矢印F方向(反時計回り方向)に回転するようになっている。 As shown in FIG. 3, both ends of the shaft portion 92 in the axial direction are rotatably supported by the side walls 62A and 62B of the housing 62. A gear (not shown) to which the rotational force from the drive source 61 is transmitted is fixed to one end (+ X direction end) of the shaft portion 92. As a result, the shaft portion 92 rotates in the arrow F direction (counterclockwise direction) in FIG.

羽根91、93、94、96、97、98、99は、軸部92の回転により、軸部92の軸方向の一方側(+X方向側)を向く搬送面で現像剤Gを押しながら、当該現像剤Gを軸方向の一方(+X方向)へ搬送するようになっている。これにより、現像剤G中のトナーと磁性キャリアとが攪拌されながら軸方向の一方(+X方向)へ搬送される。また、軸部92の回転により、軸部92の径方向外側へ突出する各突出部924によっても現像剤Gが撹拌される。 The blades 91, 93, 94, 96, 97, 98, 99 are said to be the same while pushing the developer G on the transport surface facing one side (+ X direction side) of the shaft portion 92 in the axial direction due to the rotation of the shaft portion 92. The developer G is conveyed in one axial direction (+ X direction). As a result, the toner in the developer G and the magnetic carrier are conveyed in one axial direction (+ X direction) while being agitated. Further, due to the rotation of the shaft portion 92, the developer G is also agitated by each of the protruding portions 924 protruding outward in the radial direction of the shaft portion 92.

一方、羽根95は、軸部92の回転により、軸部92の軸方向の他方側(−X方向側)を向く搬送面で現像剤Gを押しながら、現像剤Gを軸方向の他方(−X方向)へ搬送するようになっている。これにより、搬送路69内の搬送方向下流端部(+X方向端部)に現像剤Gが詰まるのを抑制し、かつ、搬送路69から供給路68への現像剤Gの流入が促進される。なお、搬送部材80の軸部82の搬送方向下流端部(−X方向端部)の外周面にも、羽根83、84とは逆巻きの螺旋状とされた羽根を形成してもよい。 On the other hand, the blade 95 pushes the developer G on the transport surface facing the other side (−X direction side) of the shaft portion 92 in the axial direction due to the rotation of the shaft portion 92, while pushing the developer G on the other side (−X direction) in the axial direction. It is designed to be transported in the X direction). As a result, the developer G is suppressed from being clogged at the downstream end (+ X direction end) in the transport direction in the transport path 69, and the inflow of the developer G from the transport path 69 to the supply path 68 is promoted. .. It should be noted that the outer peripheral surface of the downstream end portion (−X direction end portion) of the shaft portion 82 of the transport member 80 in the transport direction may also be formed with a spiral blade that is wound in the opposite direction to the blades 83 and 84.

ここで、大径部92Aに形成された各羽根96、97の外径D1は、図4に示されるように、羽根93、94の外径D2と同じとされている。また、各羽根96、97の螺旋ピッチP1は、各羽根93、94の螺旋ピッチP2と同じとされている。 Here, the outer diameters D1 of the blades 96 and 97 formed on the large diameter portion 92A are the same as the outer diameters D2 of the blades 93 and 94, as shown in FIG. Further, the spiral pitch P1 of the blades 96 and 97 is the same as the spiral pitch P2 of the blades 93 and 94.

直上流部分92Bに形成された羽根91の外径D3は、各羽根96、97の外径D1よりも小さくされている。なお、外径D3は、羽根96、97を含まない大径部92A自体の外径よりも大きくされている。羽根91の螺旋ピッチP3は、各羽根96、97の螺旋ピッチP1よりも小さくされている。螺旋ピッチP3は、一例として、螺旋ピッチP1の略半分程度とされている。 The outer diameter D3 of the blade 91 formed in the immediately upstream portion 92B is smaller than the outer diameter D1 of each of the blades 96 and 97. The outer diameter D3 is larger than the outer diameter of the large diameter portion 92A itself, which does not include the blades 96 and 97. The spiral pitch P3 of the blades 91 is smaller than the spiral pitch P1 of the blades 96 and 97, respectively. As an example, the spiral pitch P3 is about half of the spiral pitch P1.

なお、螺旋ピッチとは、羽根における軸部92の周方向の360度(一周)当たりの軸方向長さをいう。 The spiral pitch refers to the axial length per 360 degrees (one circumference) of the shaft portion 92 in the blade in the circumferential direction.

また、大径部92Aには、二条の羽根96、97が形成されているのに対して、直上流部分92Bには、一条の羽根91が形成されている。すなわち、羽根91は、条数が羽根96、97の条数よりも少なくされている。 Further, the large diameter portion 92A is formed with two blades 96 and 97, whereas the immediately upstream portion 92B is formed with a single blade 91. That is, the number of the blades 91 is smaller than the number of the blades 96 and 97.

上流部分92Cに形成された羽根98、99の外径D4は、羽根91の外径D3よりも大きくされている。具体的には、羽根98、99の外径D4は、羽根96、97の外径D1と同じとされている。なお、羽根98、99の外径D4は、羽根91の外径D3よりも大きければ、羽根96、97の外径D1と異なっていてもよい。 The outer diameters D4 of the blades 98 and 99 formed on the upstream portion 92C are larger than the outer diameter D3 of the blades 91. Specifically, the outer diameter D4 of the blades 98 and 99 is the same as the outer diameter D1 of the blades 96 and 97. The outer diameter D4 of the blades 98 and 99 may be different from the outer diameter D1 of the blades 96 and 97 as long as it is larger than the outer diameter D3 of the blade 91.

上流部分92Cに形成された羽根98、99の螺旋ピッチP4は、羽根91の螺旋ピッチP3よりも大きくされている。具体的には、羽根98、99の螺旋ピッチP4は、羽根96、97の螺旋ピッチP1と同じとされている。なお、羽根98、99の螺旋ピッチP4は、羽根91の螺旋ピッチP3よりも大きければ、羽根96、97の螺旋ピッチP1と異なっていてもよい。 The spiral pitch P4 of the blades 98 and 99 formed on the upstream portion 92C is made larger than the spiral pitch P3 of the blade 91. Specifically, the spiral pitch P4 of the blades 98 and 99 is the same as the spiral pitch P1 of the blades 96 and 97. The spiral pitch P4 of the blades 98 and 99 may be different from the spiral pitch P1 of the blades 96 and 97 as long as it is larger than the spiral pitch P3 of the blade 91.

また、直上流部分92Bには、一条の羽根91が形成されているのに対して、上流部分92Cには、二条の羽根98、99が形成されている。すなわち、羽根98、99は、条数が、羽根91の条数よりも多くされている。 Further, the straight upstream portion 92B is formed with a single blade 91, whereas the upstream portion 92C is formed with two blades 98 and 99. That is, the number of rows of the blades 98 and 99 is larger than the number of rows of the blades 91.

なお、本実施形態では、制御部20(図1参照)が駆動源61の駆動を制御することで、軸部82及び軸部92の回転数(単位時間当たりに回転する数)が制御される。本実施形態では、制御部20は、少なくとも、予め定められた回転数で軸部82及び軸部92を回転させる第一モードと、第一モードの場合よりも多い回転数で軸部82及び軸部92を回転させる第二モードと、を有している。 In the present embodiment, the control unit 20 (see FIG. 1) controls the drive of the drive source 61 to control the rotation speed (the number of rotations per unit time) of the shaft unit 82 and the shaft unit 92. .. In the present embodiment, the control unit 20 has at least the first mode in which the shaft portion 82 and the shaft portion 92 are rotated at a predetermined rotation speed, and the shaft portion 82 and the shaft at a higher rotation speed than in the case of the first mode. It has a second mode for rotating the unit 92.

第一モードは、例えば、予め定められた基準となる動作速度(プロセススピード)で、画像形成動作を実行する場合に用いられる。 The first mode is used, for example, when the image forming operation is executed at a predetermined reference operating speed (process speed).

一方、第二モードは、例えば、予め定められた基準となる動作速度(プロセススピード)よりも速い動作速度で画像形成動作を実行する場合に用いられる。当該速い動作速度で画像形成動作を実行する場合とは、例えば、画像を定着する際に付与される加熱量が相対的に少ない薄紙に画像形成動作を実行する場合が挙げられる。 On the other hand, the second mode is used, for example, when the image forming operation is executed at an operation speed faster than a predetermined reference operation speed (process speed). The case where the image forming operation is executed at the high operating speed includes, for example, the case where the image forming operation is executed on a thin paper in which the amount of heat applied when fixing the image is relatively small.

なお、第一モードは、予め定められた基準となる動作速度(プロセススピード)よりも遅い動作速度で画像形成動作を実行する場合に用いてもよい。当該遅い動作速度で画像形成動作を実行する場合とは、例えば、画像を定着する際に付与される加熱量が相対的に多い厚紙に画像形成動作を実行する場合が挙げられる。この場合では、第二モードは、予め定められた基準となる動作速度(プロセススピード)で、画像形成動作を実行する場合に用いてもよい。 The first mode may be used when the image forming operation is executed at an operation speed slower than a predetermined reference operation speed (process speed). The case where the image forming operation is executed at the slow operation speed includes, for example, the case where the image forming operation is executed on a thick paper in which the amount of heat applied when fixing the image is relatively large. In this case, the second mode may be used when the image forming operation is executed at a predetermined reference operating speed (process speed).

(本実施形態に係る作用)
次に、本実施形態に係る作用を説明する。
(Action according to this embodiment)
Next, the operation according to this embodiment will be described.

例えば、第一モードにて軸部92を回転させると、軸部92の上流部分92Cでは、羽根98、99が、現像剤Gを直上流部分92Bへ搬送する。軸部92の直上流部分92Bでは、羽根91が、大径部92Aへ向かって搬送する。大径部92Aの搬送方向上流端に搬送された現像剤Gは、一部が大径部92Aの上流端面92Eによって移動が制限される。大径部92Aの上流端面92Eで制限されずに、大径部92Aへ移動した現像剤Gは、羽根96、97、93、94によって、軸方向の一方(+X方向)へ搬送される。 For example, when the shaft portion 92 is rotated in the first mode, the blades 98 and 99 convey the developer G to the immediately upstream portion 92B in the upstream portion 92C of the shaft portion 92. In the portion 92B immediately upstream of the shaft portion 92, the blade 91 conveys toward the large diameter portion 92A. The movement of the developer G transported to the upstream end of the large diameter portion 92A in the transport direction is partially restricted by the upstream end surface 92E of the large diameter portion 92A. The developer G that has moved to the large diameter portion 92A without being restricted by the upstream end surface 92E of the large diameter portion 92A is conveyed in one of the axial directions (+ X direction) by the blades 96, 97, 93, 94.

このように、現像剤Gの一部の移動が、大径部92Aの上流端面92Eによって制限されることで、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 In this way, the movement of a part of the developer G is restricted by the upstream end surface 92E of the large diameter portion 92A, so that the movement of a part of the developer G is restricted per unit rotation speed of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A. Fluctuations in the amount of transport are suppressed.

ここで、直上流部分92Bに形成された羽根91の外径D3が、各羽根96、97の外径D1と同じである第一比較例では、第一モードよりも回転数が多い第二モードにて軸部92を回転させると、大径部92Aへ搬送される現像剤Gの量が多くなるため、直上流部分92Bで現像剤Gが滞留しにくい。すなわち、直上流部分92Bでの現像剤Gの嵩が低下する。これにより、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しやすくなる。すなわち、直上流部分92Bで滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって移動が制限される現像剤Gの量の割合が変動しやすくなる。これにより、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量が変動しやすくなる。特に、キャリアに対するトナーの濃度が高く、現像剤Gの量が多い場合では、大径部92Aの搬送方向下流側へ搬送される単位回転数当りの搬送量が変動しやすい。 Here, in the first comparative example in which the outer diameter D3 of the blade 91 formed in the immediately upstream portion 92B is the same as the outer diameter D1 of each of the blades 96 and 97, the second mode has a higher rotation speed than the first mode. When the shaft portion 92 is rotated, the amount of the developer G transported to the large diameter portion 92A increases, so that the developer G is unlikely to stay in the immediately upstream portion 92B. That is, the bulk of the developer G in the immediately upstream portion 92B is reduced. As a result, the amount of the developer G in which the developer G in the immediately upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A tends to fluctuate. That is, the ratio of the amount of the developer G whose movement is restricted by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B tends to fluctuate. As a result, the amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A is likely to fluctuate per unit rotation speed. In particular, when the toner concentration with respect to the carrier is high and the amount of the developer G is large, the amount of the large diameter portion 92A transported to the downstream side in the transport direction tends to fluctuate per unit rotation speed.

これに対して、本実施形態では、直上流部分92Bに形成された羽根91の外径D3は、各羽根96、97の外径D1よりも小さくされている。これにより、羽根91において、軸部92から径方向外側へ張り出した部分の面積が第一比較例に比べて小さくなるため、第一モードよりも回転数が多い第二モードにて軸部92を回転させても、大径部92Aへ搬送される単位回転数当りの搬送量が多くなりにくい。 On the other hand, in the present embodiment, the outer diameter D3 of the blade 91 formed in the immediately upstream portion 92B is smaller than the outer diameter D1 of each of the blades 96 and 97. As a result, in the blade 91, the area of the portion protruding outward in the radial direction from the shaft portion 92 becomes smaller than that in the first comparative example. Even if it is rotated, the amount of transportation per unit rotation speed transferred to the large diameter portion 92A is unlikely to increase.

このため、第一比較例に比べて、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Therefore, as compared with the first comparative example, the developer G tends to stay in the direct upstream portion 92B, and the bulk of the developer G in the direct upstream portion 92B is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

特に、羽根91の外径D3を各羽根96、97の外径D1よりも小さくすることで、羽根91における大径部92Aよりも径方向外側へ張り出した部分の面積が小さくなるため、大径部92Aと筐体62との間の空間へ現像剤Gを押し込む力が低下する。このため、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が効果的に維持される。 In particular, by making the outer diameter D3 of the blade 91 smaller than the outer diameter D1 of each of the blades 96 and 97, the area of the portion of the blade 91 that projects outward in the radial direction is smaller than that of the large diameter portion 92A. The force for pushing the developer G into the space between the portion 92A and the housing 62 is reduced. Therefore, the developer G tends to stay in the direct upstream portion 92B, and the bulky state of the developer G in the direct upstream portion 92B is effectively maintained.

これにより、第一比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第一比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第一比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the direct upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the first comparative example. That is, as compared with the first comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A per unit rotation speed changes as compared with the first comparative example. It is suppressed.

また、本実施形態では、羽根91の螺旋ピッチP3は、各羽根96、97の螺旋ピッチP1よりも小さくされている。これにより、羽根91の螺旋ピッチP3が各羽根97の螺旋ピッチP1と同じである第二比較例に比べ、軸部92の単位回転数当たりに現像剤Gを搬送する軸方向長さが短くなる。このため、第二比較例に比べ、第一モードよりも回転数が多い第二モードにて軸部92を回転させても、大径部92Aへ搬送される現像剤Gの量が多くなりにくい。 Further, in the present embodiment, the spiral pitch P3 of the blades 91 is made smaller than the spiral pitch P1 of the blades 96 and 97, respectively. As a result, the axial length for transporting the developer G per unit rotation speed of the shaft portion 92 becomes shorter than that in the second comparative example in which the spiral pitch P3 of the blades 91 is the same as the spiral pitch P1 of each blade 97. .. Therefore, as compared with the second comparative example, even if the shaft portion 92 is rotated in the second mode, which has a higher rotation speed than the first mode, the amount of the developer G conveyed to the large diameter portion 92A is unlikely to increase. ..

したがって、第二比較例に比べて、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Therefore, as compared with the second comparative example, the developer G is more likely to stay in the direct upstream portion 92B, and the bulkiness of the developer G in the direct upstream portion 92B is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

これにより、第二比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第二比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第二比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the direct upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the second comparative example. That is, as compared with the second comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A fluctuates per unit rotation speed as compared with the second comparative example. It is suppressed.

また、本実施形態では、羽根91の条数が羽根96、97の条数よりも少なくされている。これにより、羽根91の条数が羽根96、97の条数と同じである第三比較例に比べ、現像剤Gを搬送方向下流側へ押す羽根の全体の面積が小さくなる。このため、第三比較例に比べ、第一モードよりも回転数が多い第二モードにて軸部92を回転させても、大径部92Aへ搬送される現像剤Gの量が多くなりにくい。 Further, in the present embodiment, the number of blades 91 is smaller than the number of blades 96 and 97. As a result, the total area of the blades that pushes the developer G downstream in the transport direction becomes smaller than that of the third comparative example in which the number of blades 91 is the same as the number of blades 96 and 97. Therefore, as compared with the third comparative example, even if the shaft portion 92 is rotated in the second mode, which has a higher rotation speed than the first mode, the amount of the developer G conveyed to the large diameter portion 92A is unlikely to increase. ..

したがって、第三比較例に比べて、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Therefore, as compared with the third comparative example, the developer G tends to stay in the immediately upstream portion 92B, and the bulkiness of the developer G in the direct upstream portion 92B is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

これにより、第三比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第三比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第三比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the direct upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the third comparative example. That is, as compared with the third comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount per unit rotation speed of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A changes as compared with the third comparative example. It is suppressed.

また、本実施形態では、上流部分92Cに形成された羽根98、99の外径D4は、羽根91の外径D3よりも大きくされている。これにより、羽根98、99の外径D4が、羽根91の外径D3と同じである第四比較例に比べ、上流部分92Cから直上流部分92Bへ搬送される現像剤Gの量が多くなるため、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Further, in the present embodiment, the outer diameters D4 of the blades 98 and 99 formed on the upstream portion 92C are larger than the outer diameter D3 of the blades 91. As a result, the amount of the developer G transported from the upstream portion 92C to the immediately upstream portion 92B increases as compared with the fourth comparative example in which the outer diameters D4 of the blades 98 and 99 are the same as the outer diameter D3 of the blades 91. Therefore, the developer G tends to stay in the direct upstream portion 92B, and the bulkiness of the developer G in the direct upstream portion 92B is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

これにより、第四比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第四比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第四比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the immediately upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the fourth comparative example. That is, as compared with the fourth comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A fluctuates per unit rotation speed as compared with the fourth comparative example. It is suppressed.

また、本実施形態では、上流部分92Cに形成された羽根98、99の螺旋ピッチP4は、羽根91の螺旋ピッチP3よりも大きくされている。これにより、羽根98、99の螺旋ピッチP4が、羽根91の螺旋ピッチP3と同じである第五比較例に比べ、軸部92の単位回転数当たりに現像剤Gを搬送する軸方向長さが長くなる。 Further, in the present embodiment, the spiral pitch P4 of the blades 98 and 99 formed on the upstream portion 92C is made larger than the spiral pitch P3 of the blade 91. As a result, the axial length for transporting the developer G per unit rotation speed of the shaft portion 92 is increased as compared with the fifth comparative example in which the spiral pitch P4 of the blades 98 and 99 is the same as the spiral pitch P3 of the blade 91. become longer.

したがって、上流部分92Cから直上流部分92Bへ搬送される現像剤Gの量が多くなるため、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Therefore, since the amount of the developer G transported from the upstream portion 92C to the direct upstream portion 92B increases, the developer G tends to stay in the direct upstream portion 92B, and the bulk of the developer G in the direct upstream portion 92B is high. The state is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

これにより、第五比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第五比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第五比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the immediately upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the fifth comparative example. That is, as compared with the fifth comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A fluctuates per unit rotation speed as compared with the fifth comparative example. It is suppressed.

また、本実施形態では、羽根98、99の条数が、羽根91の条数よりも多くされている。これにより、羽根98、99の条数が、羽根91の条数とで同じである第六比較例に比べ、現像剤Gを搬送方向下流側へ押す羽根の全体の面積が大きくなる。このため、上流部分92Cから直上流部分92Bへ搬送される現像剤Gの量が多くなるため、直上流部分92Bで現像剤Gが滞留しやすく、直上流部分92Bでの現像剤Gの嵩が高い状態が維持される。すなわち、嵩の高さが、第一モードにおける嵩の高さと同等の高さになる。 Further, in the present embodiment, the number of blades 98 and 99 is larger than the number of blades 91. As a result, the total area of the blades that pushes the developer G downstream in the transport direction becomes larger than that of the sixth comparative example in which the number of blades 98 and 99 is the same as the number of blades 91. Therefore, since the amount of the developer G transported from the upstream portion 92C to the direct upstream portion 92B increases, the developer G tends to stay in the direct upstream portion 92B, and the bulk of the developer G in the direct upstream portion 92B increases. High condition is maintained. That is, the height of the bulk becomes the same as the height of the bulk in the first mode.

これにより、第六比較例に比べて、直上流部分92Bの現像剤Gが大径部92Aの上流端面92Eによって制限される現像剤Gの量が変動しにくい。すなわち、第六比較例に比べて、直上流部分92Bに滞留した現像剤Gの量のうち、大径部92Aの上流端面92Eによって制限される現像剤Gの量の割合が変動しにくい。これにより、軸部92の回転数が変化しても、第六比較例に比べて、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, the amount of the developer G in which the developer G in the immediately upstream portion 92B is limited by the upstream end surface 92E in the large diameter portion 92A is less likely to fluctuate as compared with the sixth comparative example. That is, as compared with the sixth comparative example, the ratio of the amount of the developer G limited by the upstream end surface 92E of the large diameter portion 92A to the amount of the developer G retained in the immediately upstream portion 92B is less likely to fluctuate. As a result, even if the rotation speed of the shaft portion 92 changes, the transfer amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A fluctuates per unit rotation speed as compared with the sixth comparative example. It is suppressed.

このように、本実施形態では、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制されるので、現像剤Gの単位回転数当りの搬送量の変動に起因する現像不良が抑制される。この現像不良に起因する画像不良が抑制される。 As described above, in the present embodiment, the fluctuation of the transport amount per unit rotation speed of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A is suppressed, so that the per unit rotation speed of the developer G is suppressed. Development defects caused by fluctuations in the transport amount are suppressed. Image defects caused by this development defect are suppressed.

(第一変形例)
上記の実施形態では、搬送路69は、+Y方向に沿った路幅がX方向に一定とされていたが、これに限られない。筐体62は、図5に示されるように、筐体62を構成する側壁62C及び仕切壁67の内壁において、大径部92Aにおいて内側に張り出す張出部110を備えていてもよい。これにより、大径部92Aにおける供給路68の路幅が、他の部位における路幅よりも狭くなる。張出部110は、大径部92Aの外周面に沿って、軸方向視にて円弧状に形成されている。具体的には、張出部110は、例えば、大径部92Aの下半分の外周面に沿って略半円状とされる。
(First modification)
In the above embodiment, the width of the transport path 69 along the + Y direction is constant in the X direction, but the present invention is not limited to this. As shown in FIG. 5, the housing 62 may include an overhanging portion 110 that projects inward in the large diameter portion 92A on the inner wall of the side wall 62C and the partition wall 67 that constitute the housing 62. As a result, the road width of the supply path 68 in the large diameter portion 92A becomes narrower than the road width in other portions. The overhanging portion 110 is formed in an arc shape in the axial direction along the outer peripheral surface of the large diameter portion 92A. Specifically, the overhanging portion 110 has a substantially semicircular shape along the outer peripheral surface of the lower half of the large diameter portion 92A, for example.

張出部110の搬送方向の上流端及び下流端のそれぞれに、−X方向側を向く上流端面112と、+X方向側を向く下流端面114が形成されている。この張出部110の上流端面112は、大径部92Aの上流端面92Eの上流側に配置されている。張出部110の下流端面114は、大径部92Aの下流端面92Fの下流側に配置されている。なお、張出部110は、大径部92Aにおいて、少なくとも大径部92Aの羽根96、97の1ピッチ分以上の軸方向長さ(X方向長さ)を有していることが好ましい。 An upstream end surface 112 facing the −X direction side and a downstream end surface 114 facing the + X direction side are formed at each of the upstream end and the downstream end of the overhanging portion 110 in the transport direction. The upstream end surface 112 of the overhanging portion 110 is arranged on the upstream side of the upstream end surface 92E of the large diameter portion 92A. The downstream end face 114 of the overhanging portion 110 is arranged on the downstream side of the downstream end face 92F of the large diameter portion 92A. The overhanging portion 110 preferably has an axial length (length in the X direction) of at least one pitch of the blades 96 and 97 of the large diameter portion 92A in the large diameter portion 92A.

第一変形例では、軸部92の直上流部分92Bでは、羽根91が、大径部92Aへ向かって搬送する。張出部110の搬送方向上流端に搬送された現像剤Gは、張出部110の上流端面112によって移動が制限される。このように、現像剤Gの移動が、大径部92Aの上流端面92Eに加えて、張出部110の上流端面112によっても制限されることで、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が効果的に抑制される。 In the first modification, in the portion 92B immediately upstream of the shaft portion 92, the blade 91 conveys toward the large diameter portion 92A. The movement of the developer G transported to the upstream end in the transport direction of the overhanging portion 110 is restricted by the upstream end surface 112 of the overhanging portion 110. In this way, the movement of the developer G is restricted not only by the upstream end surface 92E of the large diameter portion 92A but also by the upstream end surface 112 of the overhanging portion 110, so that the developer G is transported to the downstream side in the transport direction of the large diameter portion 92A. Fluctuations in the amount of the developer G transported per unit rotation speed are effectively suppressed.

これにより、筐体62の内壁が平断面視で直線状である構成(搬送路69の路幅がX方向に一定である構成)に比べ、軸部92の回転数が変化しても、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が抑制される。 As a result, even if the rotation speed of the shaft portion 92 changes, it is larger than the configuration in which the inner wall of the housing 62 is linear in a plan view (the configuration in which the width of the transport path 69 is constant in the X direction). Fluctuations in the amount of the developer G transported to the downstream side in the transport direction of the diameter portion 92A per unit rotation speed are suppressed.

さらに、第一変形例では、張出部110の上流端面112は、大径部92Aの上流端面92Eの上流側に配置されている。ここで、直上流部分92Bでは、羽根91の下流端(大径部92Aの上流端面92E)ではなく、羽根91の下流端から羽根91の半ピッチから1ピッチ程度上流側の位置で、現像剤Gが最も滞留した状態となりやすい。したがって、直上流部分92Bにおける現像剤Gの嵩のピークが、直上流部分92Bの下流端よりも上流側の位置で生じやすい。 Further, in the first modification, the upstream end surface 112 of the overhanging portion 110 is arranged on the upstream side of the upstream end surface 92E of the large diameter portion 92A. Here, in the direct upstream portion 92B, the developer is not at the downstream end of the blade 91 (upstream end surface 92E of the large diameter portion 92A), but at a position on the upstream side from the downstream end of the blade 91 by about one pitch from the half pitch of the blade 91. G is most likely to stay in the state. Therefore, the peak of the bulk of the developer G in the immediately upstream portion 92B is likely to occur at a position on the upstream side of the downstream end of the immediately upstream portion 92B.

張出部110の上流端面112は、大径部92Aの上流端面92Eの上流側に配置されているので、現像剤Gの嵩のピークにおいて、張出部110の上流端面112で現像剤Gの移動が制限される。これにより、大径部92Aの搬送方向下流側へ搬送される現像剤Gの単位回転数当りの搬送量の変動が効果的に抑制される。 Since the upstream end face 112 of the overhanging portion 110 is arranged on the upstream side of the upstream end face 92E of the large diameter portion 92A, at the peak of the bulk of the developing agent G, the upstream end face 112 of the overhanging portion 110 of the developing agent G Movement is restricted. As a result, fluctuations in the amount of the developer G transported to the downstream side in the transport direction of the large diameter portion 92A per unit rotation speed are effectively suppressed.

(他の変形例)
本実施形態では、羽根91の螺旋ピッチP3は、各羽根96、97の螺旋ピッチP1よりも小さくされていたが、これに限られない。例えば、羽根91の螺旋ピッチP3は、各羽根96、97の螺旋ピッチP1と同じであってもよい。
(Other variants)
In the present embodiment, the spiral pitch P3 of the blades 91 is smaller than the spiral pitch P1 of the blades 96 and 97, but the present invention is not limited to this. For example, the spiral pitch P3 of the blade 91 may be the same as the spiral pitch P1 of the blades 96 and 97, respectively.

また、本実施形態では、羽根91の条数は、羽根96、97の条数よりも少なくされていたが、これに限られない。例えば、羽根91の条数は、羽根96、97の条数と同じであってもよい。 Further, in the present embodiment, the number of the blades 91 is smaller than the number of the blades 96 and 97, but the number is not limited to this. For example, the number of blades 91 may be the same as the number of blades 96 and 97.

また、本実施形態では、羽根98、99の螺旋ピッチP4は、羽根91の螺旋ピッチP3よりも大きくされていたが、これに限られない。例えば、羽根98、99の螺旋ピッチP4は、羽根91の螺旋ピッチP3と同じであってもよい。 Further, in the present embodiment, the spiral pitch P4 of the blades 98 and 99 is made larger than the spiral pitch P3 of the blade 91, but the present invention is not limited to this. For example, the spiral pitch P4 of the blades 98 and 99 may be the same as the spiral pitch P3 of the blade 91.

また、本実施形態では、羽根98、99の条数は、羽根91の条数よりも多くされていたが、これに限られない。例えば、羽根98、99の条数は、羽根91の条数と同じであってもよい。 Further, in the present embodiment, the number of the blades 98 and 99 is larger than the number of the blades 91, but the number is not limited to this. For example, the number of blades 98 and 99 may be the same as the number of blades 91.

本実施形態では、粉体として、現像剤Gを用いたがこれに限られない。粉体としては、粉状のものであればよい。 In the present embodiment, the developer G is used as the powder, but the present invention is not limited to this. The powder may be powdery.

本発明は、上記の実施形態に限るものではなく、その主旨を逸脱しない範囲内において種々の変形、変更、改良が可能である。 The present invention is not limited to the above-described embodiment, and various modifications, changes, and improvements can be made within a range that does not deviate from the gist thereof.

10 画像形成装置
26 転写ロール(転写部の一例)
32 感光体ドラム(保持体の一例)
60 現像装置(搬送装置の一例)
62 筐体
91 羽根(第二羽根の一例)
96、97 羽根(第一羽根の一例)
92 軸部
92A 大径部
92B 直上流部分
92C 上流部分
92E 上流端面
98、98 羽根(第三羽根の一例)
110 張出部
112 上流端面
G 現像剤(粉体の一例)
10 Image forming device 26 Transfer roll (example of transfer unit)
32 Photoreceptor drum (example of holder)
60 Developing equipment (an example of transport equipment)
62 Housing 91 blades (an example of the second blade)
96, 97 blades (an example of the first blade)
92 Shaft part 92A Large diameter part 92B Direct upstream part 92C Upstream part 92E Upstream end face 98, 98 blades (example of third blade)
110 Overhanging part 112 Upstream end face G developer (example of powder)

Claims (8)

粉体が収容された筐体と、
前記筐体の内部に配置され、軸方向の一部で大径とされた大径部を有する軸部と、
前記大径部の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記軸方向の一方へ搬送する第一羽根と、
前記軸部における前記大径部に対する直上流部分の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記一方へ搬送し、外径が前記第一羽根の外径よりも小さくされた第二羽根と、
を備え、
前記第二羽根は、条数が前記第一羽根の条数よりも少なくされている
搬送装置。
A housing containing powder and
A shaft portion arranged inside the housing and having a large diameter portion having a large diameter in a part in the axial direction, and a shaft portion having a large diameter portion.
A first blade formed spirally on the outer peripheral surface of the large-diameter portion and transporting the powder in one direction in the axial direction by rotation of the shaft portion.
The powder is spirally formed on the outer peripheral surface of the upstream portion of the shaft portion with respect to the large diameter portion, and the powder is conveyed to the one by the rotation of the shaft portion, and the outer diameter is larger than the outer diameter of the first blade. With the second blade made smaller,
With
The second blade is a transport device in which the number of rows is smaller than the number of rows of the first blade.
粉体が収容された筐体と、A housing containing powder and
前記筐体の内部に配置され、軸方向の一部で大径とされた大径部を有する軸部と、A shaft portion arranged inside the housing and having a large diameter portion having a large diameter in a part in the axial direction, and a shaft portion having a large diameter portion.
前記大径部の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記軸方向の一方へ搬送する第一羽根と、A first blade formed spirally on the outer peripheral surface of the large-diameter portion and transporting the powder in one direction in the axial direction by rotation of the shaft portion.
前記軸部における前記大径部に対する直上流部分の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記一方へ搬送し、外径が前記第一羽根の外径よりも小さくされた第二羽根と、The powder is spirally formed on the outer peripheral surface of the upstream portion of the shaft portion with respect to the large diameter portion, and the powder is conveyed to the one by the rotation of the shaft portion, and the outer diameter is larger than the outer diameter of the first blade. With the second blade made smaller,
を備え、With
前記筐体は、内壁が前記大径部において内側に張り出す張出部を有し、The housing has an overhanging portion whose inner wall projects inward in the large diameter portion.
前記張出部の上流端面は、前記大径部の上流端面の上流側に配置されているThe upstream end face of the overhanging portion is arranged on the upstream side of the upstream end face of the large diameter portion.
搬送装置。Transport device.
前記第二羽根は、螺旋ピッチが前記第一羽根の螺旋ピッチよりも小さくされているThe spiral pitch of the second blade is smaller than the spiral pitch of the first blade.
請求項1又は2に記載の搬送装置。The transport device according to claim 1 or 2.
前記軸部における前記直上流部分に対する上流部分の外周面に螺旋状に形成され、前記軸部の回転により前記粉体を前記一方へ搬送し、外径が前記第二羽根の外径よりも大きくされた第三羽根、The powder is spirally formed on the outer peripheral surface of the upstream portion of the shaft portion with respect to the immediate upstream portion, and the powder is conveyed to the one by the rotation of the shaft portion, and the outer diameter is larger than the outer diameter of the second blade. The third blade,
を備える請求項1〜3のいずれか1項に記載の搬送装置。The transport device according to any one of claims 1 to 3.
前記第三羽根は、螺旋ピッチが前記第二羽根の螺旋ピッチよりも大きくされているThe spiral pitch of the third blade is larger than the spiral pitch of the second blade.
請求項4に記載の搬送装置。The transport device according to claim 4.
前記第三羽根は、条数が前記第二羽根の条数よりも多くされているThe number of rows of the third blade is larger than the number of rows of the second blade.
請求項4又は5に記載の搬送装置。The transport device according to claim 4 or 5.
粉体としての現像剤を搬送し、該現像剤で現像する請求項1〜6のいずれか1項に記載の搬送装置としての現像装置。The developing apparatus as a conveying apparatus according to any one of claims 1 to 6, wherein a developing agent as a powder is conveyed and developed with the developing agent. 潜像を保持する保持体と、A holder that holds a latent image and
前記潜像を現像する請求項7に記載の現像装置と、The developing apparatus according to claim 7, which develops the latent image, and
前記現像装置によって現像された画像を記録媒体に転写する転写部と、A transfer unit that transfers the image developed by the developing device to a recording medium, and
を備える画像形成装置。An image forming apparatus comprising.
JP2017064253A 2017-03-29 2017-03-29 Transport equipment, developing equipment, and image forming equipment Active JP6950235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064253A JP6950235B2 (en) 2017-03-29 2017-03-29 Transport equipment, developing equipment, and image forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064253A JP6950235B2 (en) 2017-03-29 2017-03-29 Transport equipment, developing equipment, and image forming equipment

Publications (2)

Publication Number Publication Date
JP2018169418A JP2018169418A (en) 2018-11-01
JP6950235B2 true JP6950235B2 (en) 2021-10-13

Family

ID=64020144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064253A Active JP6950235B2 (en) 2017-03-29 2017-03-29 Transport equipment, developing equipment, and image forming equipment

Country Status (1)

Country Link
JP (1) JP6950235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034731B2 (en) * 2018-01-23 2022-03-14 キヤノン株式会社 Developer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699256B1 (en) * 2005-09-29 2007-03-28 삼성전자주식회사 Image forming apparatus and developer transporting apparatus
JP5540613B2 (en) * 2009-09-08 2014-07-02 富士ゼロックス株式会社 Image forming apparatus and toner container
JP5707851B2 (en) * 2010-10-25 2015-04-30 富士ゼロックス株式会社 Developing device and image forming apparatus
JP6248733B2 (en) * 2014-03-20 2017-12-20 富士ゼロックス株式会社 Developing device and image forming apparatus

Also Published As

Publication number Publication date
JP2018169418A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP4492667B2 (en) Developing device and image forming apparatus having the same
JP4795071B2 (en) Development device
US7769326B2 (en) Developing device, process cartridge, and image forming apparatus
JP5220874B2 (en) Developer storage container and image forming apparatus
JP2001092253A5 (en) Develop equipment, image forming equipment and process cartridge
JP6003713B2 (en) Conveying member, developing device, and image forming apparatus
JP2010210825A (en) Developing device, process cartridge and image forming apparatus
JP4898336B2 (en) Toner conveying device, developing device, and image forming apparatus having the same
JP2011191409A (en) Developer conveyance device and image forming apparatus using the same
JP6950235B2 (en) Transport equipment, developing equipment, and image forming equipment
JP2011099932A (en) Developing device
JP6724856B2 (en) Developing device and image forming apparatus including the same
JP4785554B2 (en) Development device, image forming device
JP2007271863A (en) Developing device, process unit using the same, and image forming apparatus
JP6662430B2 (en) Agitation / conveyance member, developing device, and image forming device
JP6414848B2 (en) Developer supply container, developing device, and image forming apparatus
JP6429576B2 (en) Developing device, process cartridge, and image forming apparatus
JP2015049490A (en) Powder conveyance apparatus and image forming apparatus
JP6019923B2 (en) Powder conveying device, developing device, process cartridge, and image forming apparatus
JP5701662B2 (en) Developer storage container and image forming apparatus
JP2007298824A (en) Developing device
JP6183528B2 (en) Powder conveying device, developing device, process cartridge, and image forming apparatus
JP2023109313A (en) Conveying member, powder conveying device, developing device, and image forming apparatus
JP6458765B2 (en) Developing device and image forming apparatus
JP5851576B2 (en) Developer container, developer storage container, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150