JP6946009B2 - Antibacterial active substance and fertilizer using it - Google Patents

Antibacterial active substance and fertilizer using it Download PDF

Info

Publication number
JP6946009B2
JP6946009B2 JP2017014139A JP2017014139A JP6946009B2 JP 6946009 B2 JP6946009 B2 JP 6946009B2 JP 2017014139 A JP2017014139 A JP 2017014139A JP 2017014139 A JP2017014139 A JP 2017014139A JP 6946009 B2 JP6946009 B2 JP 6946009B2
Authority
JP
Japan
Prior art keywords
powder
shell
fossil
calcined
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014139A
Other languages
Japanese (ja)
Other versions
JP2018123069A (en
Inventor
葭田 隆治
隆治 葭田
古米 保
保 古米
五十嵐 康弘
康弘 五十嵐
吉隆 岸川
吉隆 岸川
岡本 清右衛門
清右衛門 岡本
俊昭 大木
俊昭 大木
英人 河村
英人 河村
Original Assignee
葭田 隆治
隆治 葭田
古米 保
保 古米
五十嵐 康弘
康弘 五十嵐
岡本 清右衛門
清右衛門 岡本
俊昭 大木
俊昭 大木
英人 河村
英人 河村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 葭田 隆治, 隆治 葭田, 古米 保, 保 古米, 五十嵐 康弘, 康弘 五十嵐, 岡本 清右衛門, 清右衛門 岡本, 俊昭 大木, 俊昭 大木, 英人 河村, 英人 河村 filed Critical 葭田 隆治
Priority to JP2017014139A priority Critical patent/JP6946009B2/en
Publication of JP2018123069A publication Critical patent/JP2018123069A/en
Application granted granted Critical
Publication of JP6946009B2 publication Critical patent/JP6946009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Description

本発明は、貝化石を原料とする抗菌活性物質及び肥料に関する。 The present invention relates to antibacterial active substances and fertilizers made from shell fossils.

これまでに、カキ,ホタテ,ホッキ貝等の貝殻を1100℃以上にて高温焼成すると、酸化カルシウム含有量が90重量%以上となり、その水懸濁液に広い抗菌活性と、抗ウイルス活性を示すことが報告されている(非特許文献1,特許文献1)。
そして、上記抗菌活性等は、水懸濁液が強アルカリ性を有するのに起因するものである。
また、特許文献2には、カルシウム含有原料を加熱して得られた生物活性物質が記載され、特許文献3には、真珠を加熱して得られた微生物阻害物質が記載され、特許文献4には、かき貝殻を焼成して得られた殺菌剤及び食品の鮮度保持方法を開示する。
これらの公報に記載されたいずれの技術も酸化カルシウムによるものである。
これに対して、本発明者らは後述する貝化石を原料とすることで本発明に至った。
So far, when shells such as oysters, scallops, and scallops are fired at a high temperature of 1100 ° C. or higher, the calcium oxide content becomes 90% by weight or more, and the aqueous suspension exhibits a wide range of antibacterial activity and antiviral activity. It has been reported (Non-Patent Document 1, Patent Document 1).
The antibacterial activity and the like are due to the fact that the aqueous suspension has strong alkalinity.
Further, Patent Document 2 describes a bioactive substance obtained by heating a calcium-containing raw material, and Patent Document 3 describes a microbial inhibitor obtained by heating a pearl, and Patent Document 4 describes it. Discloses a bactericide obtained by firing oyster shells and a method for maintaining the freshness of food.
All of the techniques described in these publications are based on calcium oxide.
On the other hand, the present inventors have reached the present invention by using fossil shellfish, which will be described later, as a raw material.

大島長甫、「抗菌性カルシウムの応用について」月刊フードケミカル、14:61〜64(1998)Nagatoshi Oshima, "Application of Antibacterial Calcium" Monthly Food Chemicals, 14: 61-64 (1998)

特開2008−179555号公報Japanese Unexamined Patent Publication No. 2008-179555 特開平1−117833号公報Japanese Unexamined Patent Publication No. 1-117833 特開平3−77802号公報Japanese Unexamined Patent Publication No. 3-77802 特許第3206602号公報Japanese Patent No. 3206602

本発明は、優れた抗菌活性を示すとともに、肥料としても有用な抗菌活性物質の提供を目的とする。 An object of the present invention is to provide an antibacterial active substance which exhibits excellent antibacterial activity and is also useful as a fertilizer.

本発明に係る抗菌活性物質は、焼成された貝化石粉末からなることを特徴とする。
ここで貝化石とは、貝類等が化石化した鉱床から得られたものを言う。
The antibacterial active substance according to the present invention is characterized by being composed of calcined shell fossil powder.
Here, shell fossils are those obtained from fossilized ore deposits of shellfish and the like.

貝化石の例としては、石川県金沢市から富山県小矢部市にかけて分布する新生代第四紀前期の地層である大桑層(Omma Formation)から得られるものがあり、また、富山県内には、炭酸石灰を平均80〜85%、珪酸6〜9%を主要成分とし、リン酸・カリウム・マグネシウム・鉄・マンガン・ホウ素・モリブデン等の微量成分を含み、貝化石と呼称された肥料・飼料の原料となっている鉱床がある(富山県西部貝化石鉱床)。
鉱床を構成する貝類は二枚貝とホタテ貝層を主とし、これに有孔虫、腕足貝などの古代生物遺骸や細砂及び古生代岩の細粒礫が混入し、地殻変動による隆起した後、腐植・化石化している。
この貝化石鉱床は富山県西部、高岡市、西砺波郡福岡町(現高岡市)と小矢部市に亘り、鉱床の東端部は伏木港に4Kmと接近し、鉱床中央部は高岡市街より4Km〜6Kmの至近にある。
鉱床の走向線は、小矢部川の流路、国道8号線及びあいの風とやま鉄道(旧JR北陸線)に平行している。
鉱床は富山県西隅より石川県県境にある山稜地域の南東線を延長12Kmに亘り帯状に縦走している(富山県産の貝化石について、富山県貝化石肥料協会編集、昭和53年11月、より引用)。
このような鉱床から得られた貝化石を原料とすると、鉱床に珪酸が6〜9質量%含有し、これを焼成した貝化石は珪酸を10〜30質量含有することから肥料としても有用である。
このような肥料は多くの菌類に抗菌活性を示すが、特に植物病原菌に抗菌活性を示す点で農業上有用である。
Examples of shell fossils are those obtained from the Omma Formation, which is a stratum in the early quaternary era distributed from Kanazawa City in Ishikawa Prefecture to Oyabe City in Toyama Prefecture, and carbon dioxide in Toyama Prefecture. The main components are lime 80-85% and silicic acid 6-9%, and it contains trace components such as phosphate, potassium, magnesium, iron, manganese, boron, and molybdenum, and is a raw material for fertilizers and feeds called shell fossils. There is a deposit (Western Toyama Prefecture Shell Fossil Deposit).
The shellfish that make up the deposit are mainly bivalves and scallops, which are mixed with ancient organism remains such as foraminifera and brachiopods, fine sand and fine-grained gravel of Paleozoic rocks, and then uplifted due to crustal movements and then rotted.・ It is fossilized.
This shell fossil deposit extends to western Toyama Prefecture, Takaoka City, Fukuoka Town, Nishitonami District (currently Takaoka City) and Oyabe City. It is in the immediate vicinity of.
The strike line of the deposit is parallel to the Oyabe River channel, National Highway No. 8, and Ainokaze Toyama Railway (former JR Hokuriku Line).
The deposit runs vertically from the western corner of Toyama Prefecture to the southeastern line of the mountain ridge area on the border of Ishikawa Prefecture for a length of 12 km (for shell fossils produced in Toyama Prefecture, edited by the Toyama Prefectural Shell Fossil Fertilizer Association, November 1978, More quoted).
When shell fossils obtained from such deposits are used as raw materials, the deposits contain 6 to 9% by mass of silicic acid, and the calcined shell fossils contain 10 to 30% by mass of silicic acid, so that they are also useful as fertilizers. ..
Such fertilizers show antibacterial activity against many fungi, but are particularly useful in agriculture in that they show antibacterial activity against phytopathogenic fungi.

本発明に係る抗菌活性物質は、後述するように植物病原菌を含む細菌類,放線菌類,酵母,糸状菌等に抗菌活性を示す。 The antibacterial active substance according to the present invention exhibits antibacterial activity against bacteria including phytopathogenic fungi, actinomycetes, yeast, filamentous fungi and the like, as will be described later.

貝化石原末の焼成温度と抗菌活性の試験結果を示す。The test results of the calcination temperature and antibacterial activity of the raw powder of shellfish are shown. 貝化石原末の焼成時間と焼成温度の抗菌活性に及ぼす影響を示す。The effects of calcination time and calcination temperature on the antibacterial activity of scallop fossil powder are shown. CaCO,CaOと焼成ホタテ貝殻パウダーのFTIRスペクトラを示す。FTIR Spectra of CaCO 3 , CaO and calcined scallop shell powder is shown. 焼成貝化石のFTIRスペクトラを示す。FTIR Spectra of calcined shell fossil is shown. ジャガイモの栽培結果を示す。The results of potato cultivation are shown.

<貝化石原末と焼成物の調製方法>
富山県西部貝化石鉱床から採掘された貝化石を朝日化工株式会社(富山県小矢部市)に搬入し、粉砕機(ハードディスクブラウン横型粉砕機No.1025−HB、吉田製作所製)で粗く粉砕後、超遠心粉砕機(ZM200、レッチェ製ドイツ国)にステンレス製スクリーン(梯形孔0.5mm)を装着して、粉状化と篩処理を行った。
続いて、スクリーンを通過した0.5mm以下の粉状(以下、この貝化石粉状を貝化石原末と呼称する)を電気炉(FO810、ヤマト化学株式会社製、温度調節制度±2℃(1150℃焼成時)で焼成処理をした。
<貝化石原末及び焼成物の粒度分布測定>
貝化石原末及び焼成後の粒度分布を調査すべく、72メッシュ(篩目開き0.212mm)の篩を使用し、篩を通過した貝化石原末を(粒度0.212mm以下)約300g調製した。
焼成物は、得られた貝化石原末を、電気炉(FO810ヤマト化学製)にて1100℃・1時間焼成し、調製した。
<測定方法>
各篩(目開き0.212mm及び0.106mm)を使用して篩上に残ったサンプル及び通過したサンプルの重量を電子天秤(BA6100 ザルトリウス・ジャパン製)測定し、それぞれの割合を算出した。
<分析結果>
分析結果を表1に示した。
この結果、粉状の貝化石を用いることで、粉状の焼成物が得られることが確認できた。

Figure 0006946009
<Preparation method for shell fossil powder and baked products>
Shell fossils mined from the western shell fossil deposit in Toyama Prefecture are brought into Asahi Kako Co., Ltd. (Oyabe City, Toyama Prefecture), roughly crushed with a crusher (Hardware Brown Horizontal Crusher No. 1025-HB, manufactured by Yoshida Seisakusho), and then coarsely crushed. A stainless steel screen (ladder hole 0.5 mm) was attached to an ultracentrifugal crusher (ZM200, Lecce, Germany), and pulverization and sieving were performed.
Subsequently, a powder of 0.5 mm or less (hereinafter, this fossil shell powder is referred to as shell fossil powder) that has passed through the screen is fired in an electric furnace (FO810, manufactured by Yamato Chemical Co., Ltd., temperature control system ± 2 ° C. ( It was fired at 1150 ° C.).
<Measurement of particle size distribution of raw shell powder and calcined product>
In order to investigate the particle size distribution of the raw shell fossil powder and after firing, a 72-mesh (sieve opening 0.212 mm) sieve was used, and about 300 g of the raw shell fossil powder (particle size 0.212 mm or less) passed through the sieve was prepared. bottom.
The calcined product was prepared by calcining the obtained raw shell powder in an electric furnace (manufactured by FO810 Yamato Chemical Co., Ltd.) at 1100 ° C. for 1 hour.
<Measurement method>
Using each sieve (opening 0.212 mm and 0.106 mm), the weights of the sample remaining on the sieve and the sample passed through were measured by an electronic balance (manufactured by BA6100 Sartorius Japan), and the respective ratios were calculated.
<Analysis result>
The analysis results are shown in Table 1.
As a result, it was confirmed that a powdered calcined product could be obtained by using the powdered shell fossil.
Figure 0006946009

貝化石原末と焼成粉末との成分分析結果を表2に示す。
表中貝化石原末(1),(2)は粉状にした原末を乾燥させた後の成分分析結果を示し、貝化石焼成は1100℃にて1時間焼成した粉末の分析結果を示す。
分析は肥料分析法(農林水産省農業環境技術研究所法)により、単位は質量%である。
鉱床そのものには、水分等も含み珪酸が6〜9重量%含有しているが、鉱床から得られた原料を粉砕し篩処理を行ったものは、乾燥状態で分析した結果、けい酸全量にて10〜30%含有し、他の肥料成分も含有していた。
貝化石には、りん酸0.05〜0.3%,加里0.1〜2.0%,けい酸(珪酸)10〜30%含まれ、石灰も焼成後で50〜70%含まれている。

Figure 0006946009
Table 2 shows the results of component analysis of the raw shell powder and the calcined powder.
In the table, shell fossil bulk powder (1) and (2) show the component analysis results after the powdered bulk powder is dried, and shell fossil firing shows the analysis results of the powder fired at 1100 ° C. for 1 hour. ..
The analysis is based on the fertilizer analysis method (National Institute for Agro-Environmental Sciences, Ministry of Agriculture, Forestry and Fisheries), and the unit is mass%.
The deposit itself contains 6 to 9% by weight of silicic acid, including water, but the raw material obtained from the deposit was crushed and sieved, and as a result of analysis in a dry state, the total amount of silicic acid was obtained. It contained 10 to 30% and also contained other fertilizer components.
Shell fossils contain 0.05-0.3% phosphoric acid, 0.1-2.0% kari, 10-30% silicic acid (silicic acid), and 50-70% lime after firing. There is.
Figure 0006946009

<貝化石からのCaO生成に及ぼす焼成温度の影響>
貝化石原末を、焼成温度700℃、800℃、900℃、1000℃と1100℃の5段階で各1時間焼成した。
得られた各焼成物の酸化カルシウム(CaO)含量を測定した。
表3の如く、800℃以上の焼成処理でCaO含量が増加することが明らかになった。
また、各粉末の5%水懸濁液上清のpHでは、原末と700℃・1時間処理では変化はないが、800℃以上では焼成温度の上昇と共にpH値も上昇することを確認した。
このことから、焼成温度は800℃以上が好ましい。

Figure 0006946009
実験方法:肥料分析法(農林水産省農業環境技術研究法)1992年版記載の原子吸光測定法(4.5.12)に従い、原子吸光機Z−2300、日立製作所製を使い、実施した。
<FTIR(フーリエ変換赤外線吸収スペクトル)分析>
フーリエ変換赤外分光光度計(FTIR)は、試料に赤外光を照射し、透過または反射した光量を測定して、分子の構造や官能基の情報をスペクトルから得て、物質定性・同定に関する情報を得るために用いられる。
貝化石を800℃以上で焼成すると、主要成分のCaCOはCaOとCOに分解される。
従って、CaOに基づく赤外吸収スペクトルが、800℃以上の焼成物には検出されるはずと考えられる。
先ずは、試薬のCaCO(純度98%、和光純薬工業株式会社製)、CaO(純度98%、和光純薬工業株式会社製)と焼成ホタテ貝殻パウダー(株式会社エイワンィー製)を使いFTIR吸収スペクトル(FTIR:Spectrm100,パーキンエルマージャパン製)を測定し、図3の結果を得た。
図3のように、焼成ホタテの3640cm−1とCaOの3642cm−1付近の鋭い吸収はCaOに基づく特徴的は吸収帯と考えられた。
続いて、貝化石原末を、焼成温度600℃、700℃、800℃、900℃、1000℃と1100℃の6段階で各1時間焼成した。
得られた各焼成物のFTIR吸収スペクトルを図4に示した。
900℃・1時間処理で、3600cm−1付近を鋭いピークはCaO生成に基づくシグナルが認められるが、1000℃と1100℃では、3600cm−1付近の吸収は弱くなった。
これらの知見より、800℃・1時間以上の焼成処理により、CaOが生成され、特に900℃・1時間処理が有効と見られた。
<貝化石粉状原末の焼成温度と抗菌活性>
貝化石の原末を、700℃、800℃、900℃と1000℃で、各1時間焼成した後、得られた焼成粉末を、被検菌を重層した寒天平板上に置床して培養し、抗菌活性に基づく阻止帯形成を観察した。
表4と図1に示す如く、700℃・1時間の焼成物は抗菌活性を全く示さないが、800℃以上で1時間焼成した生成物は全ての被検定菌に抗菌活性を示した。
Figure 0006946009
上記実験に使用した培地組成は以下の通り。
YM培地:粉末酵母エキス(極東製薬)0.3%,Malt extract(Difco laboratories)0.3%,極東ペプトン(極東製薬)0.5%,Glucose(和光純薬、特級)1.0%,硫酸マグネシウム七水和物(和光純薬、特級)0.1%、粉末寒天(和光純薬)1.5%。
GB培地:粉末酵母エキス(極東製薬)0.1%,beef extract(Difco laboratories),N−Z−amine(和光純薬)0.2%,マルトース水和物(和光純薬)1%, 粉末寒天(和光純薬)、pH7.3
LBG培地:0.5%,Tryptone(Difco laboratories)1.0%,塩化ナトリウム(和光純薬、特級)1.0%,glucose(和光純薬、特級)0.2%,粉末寒天(和光純薬)1.5% <Effect of firing temperature on CaO formation from shell fossils>
The raw mussel powder was calcined at five stages of firing temperatures of 700 ° C., 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. for 1 hour each.
The calcium oxide (CaO) content of each of the obtained calcined products was measured.
As shown in Table 3, it was clarified that the CaO content was increased by the firing treatment at 800 ° C. or higher.
It was also confirmed that the pH of the 5% aqueous suspension supernatant of each powder did not change between the raw powder and the treatment at 700 ° C. for 1 hour, but at 800 ° C. or higher, the pH value increased as the calcination temperature increased. ..
For this reason, the firing temperature is preferably 800 ° C. or higher.
Figure 0006946009
Experimental method: According to the atomic absorption measurement method (4.5.12) described in the 1992 edition of the fertilizer analysis method (Ministry of Agriculture, Forestry and Fisheries, National Institute for Agro-Environmental Sciences), the atomic absorption spectroscope Z-2300 and Hitachi, Ltd. were used.
<FTIR (Fourier Transform Infrared Absorption Spectrum) Analysis>
The Fourier transform infrared spectrophotometer (FTIR) irradiates a sample with infrared light, measures the amount of transmitted or reflected light, obtains information on the structure and functional groups of the molecule from the spectrum, and relates to material qualitative analysis and identification. Used to obtain information.
When the shell fossil is calcined at 800 ° C. or higher, the main component CaCO 3 is decomposed into CaO and CO 2.
Therefore, it is considered that the infrared absorption spectrum based on CaO should be detected in the fired product at 800 ° C. or higher.
First, FTIR absorption using the reagents CaCO 3 (purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.), CaO (purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.) and fired scallop shell powder (manufactured by Wako Pure Chemical Industries, Ltd.) The spectrum (FTIR: Spectorm100, manufactured by PerkinElmer Japan) was measured, and the result shown in FIG. 3 was obtained.
As shown in FIG. 3, sharp absorption 3642cm the vicinity -1 3640Cm -1 CaO in baked scallops were considered characteristic absorption band based on CaO.
Subsequently, the raw shell powder was calcined at 6 steps of firing temperatures of 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C. and 1100 ° C. for 1 hour each.
The FTIR absorption spectrum of each of the obtained fired products is shown in FIG.
In the treatment at 900 ° C. for 1 hour, a signal based on CaO formation was observed in the sharp peak around 3600 cm -1 , but the absorption around 3600 cm -1 was weakened at 1000 ° C. and 1100 ° C.
From these findings, it was considered that CaO was produced by the baking treatment at 800 ° C. for 1 hour or more, and that the treatment at 900 ° C. for 1 hour was particularly effective.
<Baking temperature and antibacterial activity of fossil shell powder powder>
The raw powder of the fossil shell was fired at 700 ° C., 800 ° C., 900 ° C. and 1000 ° C. for 1 hour each, and then the obtained calcined powder was placed on an agar plate on which the test bacteria were layered and cultured. Inhibition zone formation based on antibacterial activity was observed.
As shown in Table 4 and FIG. 1, the product calcined at 700 ° C. for 1 hour showed no antibacterial activity, but the product calcined at 800 ° C. or higher for 1 hour showed antibacterial activity against all the test bacteria.
Figure 0006946009
The medium composition used in the above experiment is as follows.
YM medium: powdered yeast extract (Far East Pharmaceutical) 0.3%, Malt extract (Difco laboratories) 0.3%, Far East Peptone (Far East Pharmaceutical) 0.5%, Glucose (Wako Pure Chemical Industries, Ltd.) 1.0%, Magnesium sulfate heptahydrate (Wako Pure Chemical Industries, Ltd., special grade) 0.1%, powdered agar (Wako Pure Chemical Industries, Ltd.) 1.5%.
GB medium: powdered yeast extract (Far East Pharmaceutical) 0.1%, beef extract (Difco laboratories), NZ-amine (Wako Pure Chemical Industries) 0.2%, maltose hydrate (Wako Pure Chemical Industries) 1%, powder Agar (Wako Pure Chemical Industries, Ltd.), pH 7.3
LBG medium: 0.5%, Tryptone (Difco laboratories) 1.0%, Sodium chloride (Wako Pure Chemical Industries, Ltd., special grade) 1.0%, glucose (Wako Pure Chemical Industries, Ltd., special grade) 0.2%, Powdered agar (Wako Pure Chemical Industries, Ltd.) Medicine) 1.5%

<1100℃・1時間焼成した貝化成と貝化石原末の最少阻止濃度>
YM寒天培地を使い、寒天平板希釈法の常法に準じて、貝化石原末水懸濁液と1100℃・1時間焼成した貝化石水懸濁液の最少阻止濃度(%)を調べた。
表5のごとく、貝化石原末では、最高濃度の0.5%添加でも全被検菌に抗菌活性を認めないが、焼成貝化石では全ての被検菌の生育を阻止していた。
特に、農業上重要なソウカ病原菌とニンジン根腐れ病原菌に抗菌活性を示すことは、焼成貝化石の農業上の有用性を示唆していると言える。

Figure 0006946009
<Minimum blocking concentration of shellfish chemicals and shellfish fossil powder baked at 1100 ° C for 1 hour>
Using YM agar medium, the minimum blocking concentration (%) of the shell fossil raw powder water suspension and the shell fossil water suspension baked at 1100 ° C. for 1 hour was examined according to the conventional method of the agar plate dilution method.
As shown in Table 5, in the raw mussel fossil powder, no antibacterial activity was observed in all the test bacteria even when the maximum concentration of 0.5% was added, but in the calcined shell fossil, the growth of all the test bacteria was blocked.
In particular, the fact that it exhibits antibacterial activity against the pathogens of Lanxangia tsa and carrot root rot, which are important in agriculture, suggests the usefulness of fired shellfish fossils in agriculture.
Figure 0006946009

<貝化石の焼成温度と焼成時間が抗菌活性に及ぼす影響について>
貝化石の焼成温度と焼成時間の関係を調べる目的で、800℃と1100℃で30分、45分及び1時間の焼成物を調製し、Escherichia coli NIHJ JC-2を被検定菌とする寒天平板法で抗菌活性を調べた。
表6と図2の如く、貝化石原末では焼成温度800℃・30分の焼成物と1100℃・60分の焼成物の抗菌活性は他の焼成条件生成物と比較すると、抗菌活性が弱いように見える。
このことから、焼成温度は800℃・30分以上の条件で、1100℃・60分以下の条件が好ましいと言える。

Figure 0006946009
<Effects of shell fossil firing temperature and firing time on antibacterial activity>
For the purpose of investigating the relationship between the firing temperature and firing time of shell fossils, prepared calcined products at 800 ° C and 1100 ° C for 30 minutes, 45 minutes and 1 hour, and agar plates using Escherichia coli NIHJ JC-2 as the test bacterium. The antibacterial activity was examined by the method.
As shown in Table 6 and FIG. 2, the antibacterial activity of the calcined product at a firing temperature of 800 ° C. for 30 minutes and the calcined product at 1100 ° C. for 60 minutes is weaker than that of other firing condition products. looks like.
From this, it can be said that the firing temperature is preferably 800 ° C. for 30 minutes or more and 1100 ° C. for 60 minutes or less.
Figure 0006946009

<秋ジャガイモの栽培における焼成貝化石粉衣の効果>
焼成貝化石粉末が、ジャガイモソウカ病の病原菌や、グラム陽性菌、グラム陰性菌、酵母、糸状菌など、幅広い抗菌活性を示すことが明らかになった。
そこで、春ジャガイモソウカ病による連作障害畑(小矢部市赤倉地区、春ジャガイモ品種:男爵)を用いて、秋ジャガイモ(デジマ、ニシユタカ)の半切り種イモの切口に、1100℃・1時間焼成処理した貝化石の微粉末を粉衣した。
平成28年8月31日に各種イモの切口面を下にして、植付けした。
栽培は、慣行法により行った。
収穫は平成28年12月24日に実施した。
結果は表7に示す如く、デジマとニシユタカの2品種とも無処理区の萌芽率が50%であるのに対し、焼成貝化石粉末を粉衣した焼成貝化石処理区は83.3%と優位に高くなった。
加えて、株当りの塊茎数、塊茎重においても優位に焼成貝化石粉末処理区が高くなった。
図5に収穫した秋ジャガイモの写真を示す。
春ジャガイモで認められる重度なソウカ病の発生は認められなかった。

Figure 0006946009
<Effect of calcined shellfish fossil powder coating on autumn potato cultivation>
It has been clarified that the calcined shell fossil powder exhibits a wide range of antibacterial activities such as pathogens of potato scab disease, gram-positive bacteria, gram-negative bacteria, yeast, and filamentous fungi.
Therefore, using a field of continuous cropping disorder due to spring potato soybean disease (Akakura district, Oyabe city, spring potato variety: Baron), half-cut potatoes of autumn potatoes (Digima, Nishiyutaka) were fired at 1100 ° C for 1 hour. Fine powder of potato fossil was coated.
On August 31, 2016, various potatoes were planted with the cut side facing down.
Cultivation was carried out by customary law.
The harvest was carried out on December 24, 2016.
As shown in Table 7, the germination rate of the untreated plot was 50% for both varieties of Digima and Nishiyutaka, while the calcined shell fossil-treated plot coated with calcined shell fossil powder was superior at 83.3%. It became expensive.
In addition, the number of tubers per plant and the weight of tubers were also significantly higher in the calcined shell fossil powder treatment group.
FIG. 5 shows a photograph of the harvested autumn potatoes.
No outbreak of severe lanxangia tsa. was observed in spring potatoes.
Figure 0006946009

Claims (1)

富山県西部貝化石鉱床から採掘された貝化石を粉砕機にて粉状化して貝化石原末を得るステップと、前記貝化石原末を乾燥させるステップを有し、前記乾燥後の貝化石原末はけい酸10〜30%,りん酸0.05〜0.3%,加里0.1〜2.0%含有するものであり、
前記貝化石原末を800℃〜1100℃の温度範囲にて焼成するステップを有し、
前記焼成後には石灰50〜70%含まれ、抗菌活性を有することを特徴とする抗菌活性物質の製造方法。
It has a step of pulverizing the shell fossil mined from the western shell fossil deposit in Toyama prefecture with a crusher to obtain the shell fossil powder, and a step of drying the shell fossil powder. The powder contains 10 to 30% fossil acid, 0.05 to 0.3% phosphoric acid, and 0.1 to 2.0% Kari.
It has a step of firing the shell fossil powder in a temperature range of 800 ° C. to 1100 ° C.
A method for producing an antibacterial active substance, which contains 50 to 70% of lime after firing and has antibacterial activity.
JP2017014139A 2017-01-30 2017-01-30 Antibacterial active substance and fertilizer using it Active JP6946009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014139A JP6946009B2 (en) 2017-01-30 2017-01-30 Antibacterial active substance and fertilizer using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014139A JP6946009B2 (en) 2017-01-30 2017-01-30 Antibacterial active substance and fertilizer using it

Publications (2)

Publication Number Publication Date
JP2018123069A JP2018123069A (en) 2018-08-09
JP6946009B2 true JP6946009B2 (en) 2021-10-06

Family

ID=63110058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014139A Active JP6946009B2 (en) 2017-01-30 2017-01-30 Antibacterial active substance and fertilizer using it

Country Status (1)

Country Link
JP (1) JP6946009B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178338A (en) * 1984-09-27 1986-04-21 村井 吉雄 Production of culture solution for hydroponics
JPH04285087A (en) * 1991-03-13 1992-10-09 Taiyo Koei Kk Fertilizer composition
DE69226076T2 (en) * 1991-12-16 1998-11-19 Kaiho Co Ltd BACTERICIDES AND METHOD FOR KEEPING FRESH FOODSTUFFS
JPH0838894A (en) * 1994-08-01 1996-02-13 Boogen Fuairu:Kk Treatment of adsorbent, filter agent and mineral ellution agent used in water purifier
JPH08132072A (en) * 1994-11-14 1996-05-28 Yoshio Harada Treatment of shellfish fossil and water quality improving material and filter material produced by using the treatment
JP2001161315A (en) * 1999-12-03 2001-06-19 Takatsugu Kakeida Calcium preparation
JP2015078133A (en) * 2013-10-15 2015-04-23 福岡 憲治 Antimicrobial composition

Also Published As

Publication number Publication date
JP2018123069A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
Wang et al. Effect of KOH-enhanced biochar on increasing soil plant-available silicon
Novara et al. Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment
Bennett et al. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales
Fiantis et al. Determination of the geochemical weathering indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia
Alessandri et al. Salt or fish (or salted fish)? The Bronze Age specialised sites along the Tyrrhenian coast of Central Italy: New insights from Caprolace settlement
US7208189B2 (en) Low sodium salt of botanic origin
CA2533371A1 (en) Electroconductive powder and method for production thereof
Büdel Diversity and ecology of biological crusts
CN106858521B (en) Process for preparing low sodium salt
Gunnarsen et al. Glacially abraded rock flour from Greenland: Potential for macronutrient supply to plants
JP6946009B2 (en) Antibacterial active substance and fertilizer using it
Novara et al. Soil carbon dynamics during secondary succession in a semi-arid Mediterranean environment
Chahal et al. Fate and Plant Uptake of Different Zinc Fertilizer Sources upon Their Application to an Alkaline Calcareous Soil
Kołodziej et al. Early Cretaceous record of microboring organisms in skeletons of growing corals
EP2928322B1 (en) Method for making mineral salt and mineral salt product
Li et al. Cryptogam diversity and formation of soil crusts in temperate desert
Panahi et al. Sulfur application effect on pH measurement of wheat rhizosphere in calcareous soils
Kumar et al. Effect Of Fly Ash On Morpho-Physiological Properties Of Soil And Vigna Mungo L.
JP2008068237A (en) Manufacturing method of mineral water and this mineral water
Basha et al. Effect of ultra graphite application on morphological and physico-chemical properties of red soil
Lăcătuşu et al. Growth of some pasture plants on a composite nutritive layer with red mud.
Borgulat et al. Mineral status of plants and soil in silver fir stands of the Silesian and Żywiec Beskidy (Western Carpathians)
Freitas et al. FOCUS: Calcite crystals inside archaeological plant tissues
EP3967153A1 (en) A solar salt composition with improved flavor and a method for manufacturing the same
Belykh et al. Investigation of the chemical composition of the above-ground organs of lingberry

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250