JP6945852B2 - Culture container for photosynthetic microorganisms - Google Patents

Culture container for photosynthetic microorganisms Download PDF

Info

Publication number
JP6945852B2
JP6945852B2 JP2017207419A JP2017207419A JP6945852B2 JP 6945852 B2 JP6945852 B2 JP 6945852B2 JP 2017207419 A JP2017207419 A JP 2017207419A JP 2017207419 A JP2017207419 A JP 2017207419A JP 6945852 B2 JP6945852 B2 JP 6945852B2
Authority
JP
Japan
Prior art keywords
container
culture
light
photosynthetic microorganisms
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017207419A
Other languages
Japanese (ja)
Other versions
JP2019076060A (en
Inventor
正敏 岸
正敏 岸
戸田 龍樹
龍樹 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soka University
Original Assignee
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soka University filed Critical Soka University
Priority to JP2017207419A priority Critical patent/JP6945852B2/en
Publication of JP2019076060A publication Critical patent/JP2019076060A/en
Application granted granted Critical
Publication of JP6945852B2 publication Critical patent/JP6945852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、培養容器に関し、より詳細には、光合成微生物の培養に適した培養容器に関する。 The present invention relates to a culture vessel, and more particularly to a culture vessel suitable for culturing photosynthetic microorganisms.

近年、微細藻類やシアノバクテリアなどの光合成微生物を用いたバイオマス生産に期待が集まっており、光バイオリアクタ―を用いた光合成微生物培養の工業化が強く求められている。 In recent years, expectations have been gathered for biomass production using photosynthetic microorganisms such as microalgae and cyanobacteria, and there is a strong demand for industrialization of photosynthetic microorganism culture using a photobioreactor.

ここで、期待されているのが汚染に強い閉鎖型の光バイオリアクタ―であるが(例えば、特許文献1)、光合成微生物は、光合成によって酸素を産生するため、閉鎖型の光バイオリアクタ―では、微生物の増殖に伴って培養液の溶存酸素濃度が上昇し、これを放置すると、光合成が阻害され、微生物が死滅してしまう。 Here, what is expected is a closed-type photobioreactor that is resistant to pollution (for example, Patent Document 1), but since photosynthetic microorganisms produce oxygen by photosynthesis, the closed-type photobioreactor is expected. As the microorganisms grow, the dissolved oxygen concentration in the culture solution rises, and if left untreated, photosynthesis is inhibited and the microorganisms die.

そのため、従来の閉鎖型の光バイオリアクタ―では、溶存酸素を除去するために培養液を頻繁に曝気しなければならなかったが、この曝気に係るコストが事業の収益性を低下させる原因の一つとなっていた。 Therefore, in the conventional closed optical bioreactor, the culture solution had to be aerated frequently in order to remove the dissolved oxygen, and the cost of this aeration is one of the causes that reduce the profitability of the business. It was one.

特開2016−220697号公報Japanese Unexamined Patent Publication No. 2016-220697

本発明は、上記従来技術における課題に鑑みてなされたものであり、曝気コストを低減しつつ溶存酸素の濃度上昇を抑制可能な光合成微生物用培養容器を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems in the prior art, and an object of the present invention is to provide a culture vessel for photosynthetic microorganisms capable of suppressing an increase in the concentration of dissolved oxygen while reducing aeration costs.

本発明者は、曝気コストを低減しつつ溶存酸素の濃度上昇を抑制可能な光合成微生物用培養容器につき鋭意検討した結果、以下の構成に想到し、本発明に至ったのである。 As a result of diligent studies on a culture vessel for photosynthetic microorganisms capable of suppressing an increase in the concentration of dissolved oxygen while reducing the aeration cost, the present inventor came up with the following configuration and arrived at the present invention.

すなわち、本発明によれば、対向する第1の面と第2の面を備える薄い袋状の容器であって、前記第1の面が一様に光透過性を有し、前記第2の面が一様に光反射性を有すると共に一様に気体透過性を有する多孔質シートであることを特徴とする、光合成微生物用培養容器が提供される。 That is, according to the present invention, it is a thin bag-shaped container having a first surface and a second surface facing each other, the first surface uniformly having light transmission, and the second surface. Provided is a culture vessel for photosynthetic microorganisms, characterized in that the surface is a porous sheet having uniformly light reflectivity and uniformly gas permeability.

上述したように、本発明によれば、曝気コストを低減しつつ溶存酸素の濃度上昇を抑制可能な光合成微生物用培養容器が提供される。 As described above, according to the present invention, there is provided a culture vessel for photosynthetic microorganisms capable of suppressing an increase in the concentration of dissolved oxygen while reducing aeration costs.

第1実施形態の光合成微生物用培養容器を示す模式図。The schematic diagram which shows the culture container for a photosynthetic microorganism of 1st Embodiment. 第1実施形態の光合成微生物用培養容器の変形例を示す模式図。The schematic diagram which shows the modification of the culture container for a photosynthetic microorganism of 1st Embodiment. 第2実施形態の光合成微生物用培養容器を示す模式図。The schematic diagram which shows the culture container for a photosynthetic microorganism of 2nd Embodiment. 実験装置を示す模式図。The schematic diagram which shows the experimental apparatus. 実験結果を示すグラフ。A graph showing the experimental results.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。 Hereinafter, the present invention will be described with reference to the embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In each of the figures referred to below, the same reference numerals are used for common elements, and the description thereof will be omitted as appropriate.

(第1実施形態)
図1は、本発明の第1実施形態である光合成微生物用培養容器10に培養液を封入した状態を示す模式図であり、図1(a)は前面を示し、図1(b)は後面を示し、図1(c)は側断面を示す。
(First Embodiment)
FIG. 1 is a schematic view showing a state in which a culture solution is sealed in a culture container 10 for a photosynthetic microorganism according to the first embodiment of the present invention, FIG. 1 (a) shows the front surface, and FIG. 1 (b) shows the rear surface. 1 (c) shows a side cross section.

図1に示すように、本実施形態の光合成微生物用培養容器10(以下、培養容器10という)は、矩形の薄い袋状の容器であり、封筒型の容器形状を備える。本実施形態の培養容器10は、対向する2つの可撓性の面12,14を有しており、面12は一様に光透過性を有し、面14は一様に気体透過性を有する。 As shown in FIG. 1, the culture container 10 for photosynthetic microorganisms (hereinafter referred to as culture container 10) of the present embodiment is a rectangular thin bag-shaped container, and has an envelope-shaped container shape. The culture vessel 10 of the present embodiment has two flexible surfaces 12 and 14 facing each other, the surface 12 has uniform light transmission, and the surface 14 has uniform gas permeability. Have.

本実施形態において、面12は、光透過性シート材料で形成されている。ここで、光透過性シート材料としては、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレートといった合成樹脂で形成された無色透明のシート材料を挙げることができる。 In this embodiment, the surface 12 is made of a light transmissive sheet material. Here, examples of the light-transmitting sheet material include a colorless and transparent sheet material formed of a synthetic resin such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate.

一方、面14は、防水性の気体透過性シート材料で形成されている。ここで、防水性の気体透過性シート材料としては、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレートといった合成樹脂で形成される多孔質シートや、シリコーンなどで形成される気体透過性の高い無孔性シートを挙げることができ、また、これらの気体透過性シートを通気性シートで補強した複合材を挙げることができる。なお、上述した多孔質シートの孔径は0.02μm〜0.3μmの範囲であることが好ましい。また、補強用の通気性シートとしては、合成樹脂製の不織布や織物を挙げることができる。
On the other hand, the surface 14 is made of a waterproof gas permeable sheet material. Here, waterproof as the gas permeable sheet material, polyethylene, polypropylene, polycarbonate, porous sheet and which is formed in such a synthetic resin as polyethylene terephthalate, a gas permeable high nonporous sheet formed of such silicon cone In addition, a composite material in which these gas permeable sheets are reinforced with a breathable sheet can be mentioned. The pore size of the above-mentioned porous sheet is preferably in the range of 0.02 μm to 0.3 μm. Further, examples of the breathable sheet for reinforcement include non-woven fabrics and woven fabrics made of synthetic resin.

加えて、本実施形態においては、対向する面12,14が、容器の左右いずれかの側端を端として容器の幅方向に伸びる容器の幅に満たない長さの線分16a,16b,16cにおいて接合しており、これにより、容器の幅方向に蛇行する流路が形成されている。 In addition, in the present embodiment, the facing surfaces 12, 14 are line segments 16a, 16b, 16c having a length less than the width of the container extending in the width direction of the container with either the left or right side end of the container as an end. In this way, a flow path meandering in the width direction of the container is formed.

本実施形態の培養容器10を使用する光バイオリタクターでは、光合成微生物(以下、微生物という場合がある)の培養液を封入した培養容器10を支柱18に吊り下げ、光透過性の面12から光が入射するように適切な位置に光源を配置する。なお、培養に際しては、容器に形成された蛇行流路の両端をポンプで接続して培養液を循環させることによって栄養と微生物の密度を均一化することが好ましい。 In the optical bioretractor using the culture vessel 10 of the present embodiment, the culture vessel 10 containing the culture solution of a photosynthetic microorganism (hereinafter, may be referred to as a microorganism) is suspended from the support column 18 from the light-transmitting surface 12. Place the light source in an appropriate position so that the light is incident. At the time of culturing, it is preferable to equalize the density of nutrients and microorganisms by connecting both ends of the meandering flow path formed in the container with a pump and circulating the culture solution.

培養液中の微生物は、光透過性の面12を透過して到達する光源からの光と、培養液に溶存する二酸化炭素(CO)を利用して光合成を行い、酸素(O)を産生しながら増殖する。ここで、微生物の増殖に伴って培養液の溶存酸素濃度が閾値を超えると光合成が阻害されるが、本実施形態では、気体透過性の面14を境にして酸素の濃度勾配が生じた時点で、培養液中の溶存酸素(O)が面14を透過して大気中に放出されるので、溶存酸素の濃度上昇が自動的に抑制される。 Microorganisms in the culture solution photosynthesize using light from a light source that reaches through the light-transmitting surface 12 and carbon dioxide (CO 2 ) dissolved in the culture solution to generate oxygen (O 2 ). Proliferate while producing. Here, when the dissolved oxygen concentration of the culture solution exceeds the threshold value with the growth of microorganisms, photosynthesis is inhibited, but in the present embodiment, when an oxygen concentration gradient occurs with the gas permeable surface 14 as a boundary. Then, since the dissolved oxygen (O 2 ) in the culture solution permeates the surface 14 and is released into the atmosphere, the increase in the concentration of the dissolved oxygen is automatically suppressed.

なお、微生物の増殖に伴って培養液に溶存する二酸化炭素が消費されるが、本実施形態では、気体透過性の面14を境にして二酸化炭素の濃度勾配が生じた時点で、大気中の二酸化炭素(CO)が面14を透過して培養液に溶解し、光合成に供される。また、必要に応じて、培養液に直接的に二酸化炭素を供給するための追加的手段を設けてもよい。 Carbon dioxide dissolved in the culture solution is consumed as the microorganisms grow, but in the present embodiment, when a carbon dioxide concentration gradient is generated with the gas permeable surface 14 as a boundary, the carbon dioxide is in the atmosphere. Carbon dioxide (CO 2 ) permeates the surface 14 and dissolves in the culture solution, and is used for photosynthesis. In addition, if necessary, additional means for supplying carbon dioxide directly to the culture solution may be provided.

加えて、培養容器を通過する光の光路の長さが短いほど面積収率が増加することが既往研究により報告されているところ、本実施形態の培養容器10は、厚みの薄い袋容器として構成されることから、容器を通過する光の光路の長さOPが必然的に短くなるので、高い面積収率が期待できる。この点に関し、本実施形態においては、培養液を充填した状態における培養容器10の厚みを、容器を通過する光の光路の長さOPの平均値が、好ましくは20mm以下となり、より好ましくは13mm以下となるように設計する。 In addition, it has been reported in previous studies that the shorter the length of the optical path of light passing through the culture container, the higher the area yield. The culture container 10 of the present embodiment is configured as a thin bag container. Therefore, the length OP of the optical path of the light passing through the container is inevitably shortened, so that a high area yield can be expected. In this regard, in the present embodiment, the thickness of the culture vessel 10 in the state of being filled with the culture solution, the average value of the length OP of the optical path of the light passing through the vessel is preferably 20 mm or less, more preferably 13 mm. Design as follows.

加えて、本実施形態では、好ましくは、面14が一様に光反射性を有するように構成される。面14が光反射性を有する場合、面12を透過した光が面14に反射するため、培養液内の微生物は、光源からの直接光と反射光の両方を利用して光合成を行うことになり、結果として、光エネルギーの利用効率が向上する。ここで、面14を上述した多孔質シートとした場合、多孔質シートは、一般に、高い光反射率を有するので、溶存酸素濃度の自動抑制と光エネルギー利用効率の向上が同時に実現されることになる。 In addition, in the present embodiment, the surface 14 is preferably configured to have uniform light reflectivity. When the surface 14 has light reflectivity, the light transmitted through the surface 12 is reflected on the surface 14, so that the microorganisms in the culture solution perform photosynthesis using both the direct light from the light source and the reflected light. As a result, the utilization efficiency of light energy is improved. Here, when the surface 14 is the above-mentioned porous sheet, the porous sheet generally has a high light reflectance, so that the automatic suppression of the dissolved oxygen concentration and the improvement of the light energy utilization efficiency can be realized at the same time. Become.

以上、説明したように、本実施形態の培養容器10を使用する光バイオリタクターにおいては、培養液中の過剰な溶存酸素が気体透過性の面14を介して自動的に系外に放出されるので、溶存酸素を除去するために連続的に曝気を行うといったことが不要となり、その分のコストが低減される。ただし、本実施形態は、微生物の沈降・固着を防止する目的で、間欠的な曝気を行うことを排除するものではない。加えて、本実施形態の培養容器10は、安価な合成樹脂シートで形成することができるので、低価格化により、ディスポーザブルな製品として供給することが可能である。 As described above, in the optical bioretractor using the culture vessel 10 of the present embodiment, excess dissolved oxygen in the culture solution is automatically released to the outside of the system through the gas permeable surface 14. Therefore, it is not necessary to continuously aerate in order to remove the dissolved oxygen, and the cost is reduced accordingly. However, this embodiment does not exclude the intermittent aeration for the purpose of preventing the sedimentation and adhesion of microorganisms. In addition, since the culture vessel 10 of the present embodiment can be formed of an inexpensive synthetic resin sheet, it can be supplied as a disposable product due to a low price.

なお、本実施形態においては、以下のような変形が可能である。 In this embodiment, the following modifications are possible.

図2(a)は、上述した培養容器10の変形例を示す模式図である。図2(a)に示す変形例では、培養容器10の気体透過性の面14の外側に気体不透過性の面15(気体不透過性の合成樹脂で形成されたシート材料)を被せ、面14と面15の間に空隙が生じる形で両者を接合することにより、面14に接触する気体流路Vを形成する。この変形例を使用する光バイオリアクタ―において、任意の燃焼システムから排出される燃焼ガスを気体流路Vに導入するように構成すれば、溶存酸素の除去と二酸化炭素排出量の低減が同時に実現される。 FIG. 2A is a schematic view showing a modified example of the culture vessel 10 described above. In the modified example shown in FIG. 2A, the gas permeable surface 14 of the culture vessel 10 is covered with the gas permeable surface 15 (sheet material formed of the gas permeable synthetic resin), and the surface is covered. A gas flow path V in contact with the surface 14 is formed by joining the two so as to form a gap between the surface 14 and the surface 15. In an optical bioreactor using this modification, if the combustion gas discharged from an arbitrary combustion system is configured to be introduced into the gas flow path V, dissolved oxygen can be removed and carbon dioxide emissions can be reduced at the same time. Will be done.

なお、この変形例では、図2(a)に示すように、培養容器10を支柱18に吊り下げる態様に加えて、図2(b)に示すように、培養容器10を面15を下にして水上に静置することもできる。この場合、培養容器10内の培養液を水で冷却することが可能となり、水温を適切に調整することで培養液を適温に保持することが可能となる。 In this modified example, in addition to the mode in which the culture container 10 is suspended from the support column 18 as shown in FIG. 2 (a), the culture container 10 is placed with the surface 15 facing down as shown in FIG. 2 (b). It can also be left on the water. In this case, the culture solution in the culture vessel 10 can be cooled with water, and the culture solution can be kept at an appropriate temperature by appropriately adjusting the water temperature.

(第2実施形態)
図3は、本発明の第2実施形態である光合成微生物用培養容器20(以下、培養容器20という)に培養液を封入した状態を示す模式図であり、図3(a)は側断面を示し、図3(b)は上面を示し、図3(c)は側断面の拡大図を示す。
(Second Embodiment)
FIG. 3 is a schematic view showing a state in which a culture solution is sealed in a culture container 20 for photosynthetic microorganisms (hereinafter referred to as a culture container 20) according to a second embodiment of the present invention, and FIG. 3 (a) shows a side cross section. 3 (b) shows the upper surface, and FIG. 3 (c) shows an enlarged view of the side cross section.

図3(a)、(b)に示すように、本実施形態の培養容器20は、エアーマット状の形状を有する容器であり、所定の間隔をおいて並列する複数の可撓性のチューブ状容器22と、隣接する2つのチューブ状容器22を、その長手方向において接続する形で、2つのチューブ状容器22の間に配置される複数の可撓性のチューブ状気体流路26とからなる。 As shown in FIGS. 3 (a) and 3 (b), the culture container 20 of the present embodiment is a container having an air mat-like shape, and has a plurality of flexible tube-like shapes arranged in parallel at predetermined intervals. The container 22 and two adjacent tubular containers 22 are connected in the longitudinal direction thereof, and are composed of a plurality of flexible tubular gas flow paths 26 arranged between the two tubular containers 22. ..

本実施形態において、チューブ状容器22は、培養液を充填する容器として機能し、その外表面は、第1実施形態と同様の光透過性シート材料で形成されており、一様に光透過性を有している。一方、チューブ状気体流路26の外表面は、気体不透過性のシート材料で形成されている。 In the present embodiment, the tubular container 22 functions as a container for filling the culture solution, and the outer surface thereof is formed of the same light-transmitting sheet material as in the first embodiment, and is uniformly light-transmitting. have. On the other hand, the outer surface of the tubular gas flow path 26 is made of a gas-impermeable sheet material.

一方、チューブ状容器22とチューブ状気体流路26を接続する縦長の境界面24は、第1実施形態と同様の防水性の気体透過性シート材料で形成されており、一様に気体透過性を有している。これにより、図3(c)に示すように、チューブ状容器22内の培養液中の溶存酸素(O)が気体透過性の境界面24を透過してチューブ状気体流路26の方に移動して自動的に除去されるとともに、チューブ状気体流路26を流れるガスに含まれる二酸化炭素(CO)が境界面24を透過してチューブ状容器22内の培養液に溶解し、光合成に供される。 On the other hand, the vertically long boundary surface 24 connecting the tubular container 22 and the tubular gas flow path 26 is formed of the same waterproof gas permeable sheet material as in the first embodiment, and is uniformly gas permeable. have. As a result, as shown in FIG. 3C, the dissolved oxygen (O 2 ) in the culture solution in the tubular container 22 permeates the gas-permeable interface 24 and moves toward the tubular gas flow path 26. It moves and is automatically removed, and carbon dioxide (CO 2 ) contained in the gas flowing through the tubular gas flow path 26 permeates the boundary surface 24 and dissolves in the culture solution in the tubular container 22, and is photosynthesized. It is offered to.

加えて、本実施形態では、好ましくは、境界面24が一様に光反射性を有するように構成される。この場合、チューブ状容器22に入射した光の一部が境界面24に反射するため、光エネルギーの利用効率が向上する。ここで、境界面24を上述した多孔質シートとした場合、多孔質シートは、一般に、高い光反射率を有するので、溶存酸素濃度の自動抑制と光エネルギー利用効率の向上が同時に実現されることになる。 In addition, in this embodiment, the interface 24 is preferably configured to have uniform light reflectivity. In this case, since a part of the light incident on the tubular container 22 is reflected on the boundary surface 24, the utilization efficiency of light energy is improved. Here, when the boundary surface 24 is the above-mentioned porous sheet, the porous sheet generally has a high light reflectance, so that the automatic suppression of the dissolved oxygen concentration and the improvement of the light energy utilization efficiency can be realized at the same time. become.

加えて、本実施形態の培養容器20は、図3(a)に示すように、水上に静置することができ、この場合、水温の調整により培養液を適温に保持することができる。 In addition, as shown in FIG. 3A, the culture vessel 20 of the present embodiment can be allowed to stand on water, and in this case, the culture solution can be kept at an appropriate temperature by adjusting the water temperature.

加えて、培養容器20を使用する光バイオリアクタ―において、任意の燃焼システムから排出される燃焼ガスをチューブ状気体流路26に導入するように構成すれば、溶存酸素の除去と二酸化炭素排出量の低減が同時に実現される。 In addition, in an optical bioreactor using the culture vessel 20, if the combustion gas discharged from an arbitrary combustion system is configured to be introduced into the tubular gas flow path 26, dissolved oxygen can be removed and carbon dioxide emissions can be achieved. Is realized at the same time.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。例えば、本発明は、上述した実施形態における光透過性の面(面12、チューブ状容器22の外表面)が、同時に、気体透過性を有することを排除するものではないし、上述した実施形態における気体透過性の面(面14、境界面34)が、同時に、光透過性を有することを排除するものではない。 Although the present invention has been described above with embodiments, the present invention is not limited to the above-described embodiments, and the actions and effects of the present invention can be exhibited within the scope of other embodiments that can be conceived by those skilled in the art. As long as it works, it is included in the scope of the present invention. For example, the present invention does not preclude that the light-transmitting surfaces (surface 12, outer surface of the tubular container 22) in the above-described embodiment have gas permeability at the same time, and in the above-described embodiment. It does not exclude that the gas-transparent surfaces (surface 14, boundary surface 34) have light transmission at the same time.

以下、本発明の光合成微生物用培養容器について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。 Hereinafter, the culture vessel for photosynthetic microorganisms of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples described later.

図4に示す実験装置を使用して培養実験を行った。図4に示すように、本実験装置は、本発明の光合成微生物用培養容器50(以下、培養容器50という)と、培養容器50に充填された培養液を循環させるための遠心ポンプ60と、培養容器50に対して新規培地を供給するとともに、培養容器50からオーバーフローした培養液を回収するための定量送液ポンプ70(ペリスタルティックポンプ)と、微細藻類の沈降・固着を防止することを目的とした曝気を行うためのエアコンプレッサー80とを含んで構成されている。 A culture experiment was carried out using the experimental apparatus shown in FIG. As shown in FIG. 4, the present experimental apparatus includes a culture vessel 50 for photosynthetic microorganisms of the present invention (hereinafter referred to as a culture vessel 50), a centrifugal pump 60 for circulating the culture solution filled in the culture vessel 50, and a centrifuge pump 60. The purpose is to supply a new medium to the culture vessel 50, and to prevent the settling and sticking of microalgae with a fixed quantity liquid feed pump 70 (peristaltic pump) for collecting the culture solution overflowing from the culture vessel 50. It is configured to include an air pump 80 for performing the air exposure.

本実験では、20分に1回の割合(1分間駆動、19分間停止)でエアコンプレッサー80を駆動して曝気を行うとともに、20分に1回の割合(曝気直後に12秒間駆動、19分48秒停止)で遠心ポンプ60を駆動して槽内循環を生じさせた。併せて、本実験では、培養液回収速度が約0.950 L d-1、水理学的滞留時間が約2日となるように定量送液ポンプ70を駆動制御した。 In this experiment, the air compressor 80 is driven to perform aeration once every 20 minutes (drive for 1 minute, stop for 19 minutes), and once every 20 minutes (drive for 12 seconds immediately after aeration, 19 minutes). The centrifugal pump 60 was driven at (stopped for 48 seconds) to generate circulation in the tank. At the same time, in this experiment, the quantitative liquid feed pump 70 was driven and controlled so that the culture solution recovery rate was about 0.950 L d -1 and the hydraulic residence time was about 2 days.

本発明の培養容器50は、防水性と気体透過性に優れた多孔質フィルム(3M製、マイクロポーラスフィルム、厚み:38μm、透気度:210sec/100cc)と、光透過性のOPPフィルム(東洋紡製、P8128、片面ヒートシール性、厚み:50μm)の四辺を熱溶着により接着した後、多孔質フィルム側にテトロンゴース(ポリエステル製の織物)を当てて補強することにより作製した。 The culture vessel 50 of the present invention includes a porous film (3M, microporous film, thickness: 38 μm, air permeability: 210 sec / 100 cc) having excellent waterproofness and gas permeability, and a light-transmitting OPP film (Toyobo). Manufactured by P8128, single-sided heat-sealing property, thickness: 50 μm), the four sides were adhered by heat welding, and then Tetron ghost (polyester woven fabric) was applied to the porous film side to reinforce the film.

本実験では、本発明の培養容器50の四辺を金属製のフラットバーに固定するとともに、OPPフィルムの上に金属製の邪魔板52を当てて固定することで培養液の流路を形成した。また、本実験では、培養容器50の前方(OPPフィルム側)に光源としてLED照明(図示せず)を配置した。この状態において、培養容器50の有効面積(光が照射される部分の面積)は0.165m2であり、容積は約1.9 Lであり、平均厚みは約12mmであり、比表面積は約87 m-1であった。 In this experiment, the four sides of the culture vessel 50 of the present invention were fixed to a metal flat bar, and a metal baffle plate 52 was placed on the OPP film to fix the culture medium to form a flow path for the culture solution. In this experiment, LED lighting (not shown) was placed in front of the culture vessel 50 (on the OPP film side) as a light source. In this state, the effective area of the culture container 50 (the area of the portion where the light is irradiated) is 0.165 m 2, the volume is about 1.9 L, the average thickness is about 12 mm, a specific surface area of about 87 m - It was 1.

本実験では、実施例として、図4に示す実験装置を使用して微細藻類(A.platensis)を15日間培養し、1日ごとに、回収された培養液1リットルあたりに含まれるバイオマス(A.platensis)の乾燥重量を測定した。なお、15日間の培養期間において、初日から6日目までは、培養容器50に入射する光の平均光量子束密度が150μmol m-2 s-1となるように光源を制御し、7日目から15日目までは、培養容器50に入射する光の平均光量子束密度が315 μmol m-2 s-1(太陽光の5分の1程度)となるように光源を制御した。 In this experiment, as an example, microalgae (A. platensis) were cultured for 15 days using the experimental apparatus shown in FIG. 4, and the biomass (A) contained in 1 liter of the collected culture solution was collected every day. The dry weight of .platensis) was measured. In the 15-day culture period, the light source was controlled so that the average photon flux density of the light incident on the culture vessel 50 was 150 μmol m -2 s -1 from the first day to the sixth day, and from the seventh day. Until the 15th day, the light source was controlled so that the average photon flux density of the light incident on the culture vessel 50 was 315 μmol m -2 s -1 (about one-fifth of sunlight).

併せて、本実験では、比較例として、実施例の培養容器50と同形・同サイズのポリプロピレン製の培養容器を作製し、その片面に、上述した多孔質フィルム(3M製、マイクロポーラスフィルム)と同等の光反射特性を付与した。比較例では、実施例の培養容器50(気体透過性)に代えて、比較例の培養容器(気体不透過性)を図4に示す実験装置にセットして、実施例と同じ条件で微細藻類(A.platensis)を15日間培養し、1日ごとに、回収された培養液1リットルあたりに含まれるバイオマス(A.platensis)の乾燥重量を測定した。 At the same time, in this experiment, as a comparative example, a polypropylene culture container having the same shape and size as the culture container 50 of the example was prepared, and on one side thereof, the above-mentioned porous film (3M, microporous film) was used. The same light reflection characteristics were imparted. In the comparative example, instead of the culture vessel 50 (gas permeable) of the example, the culture vessel of the comparative example (gas permeable) was set in the experimental apparatus shown in FIG. 4, and microalgae were set under the same conditions as in the example. (A. platensis) was cultured for 15 days, and the dry weight of the biomass (A. platensis) contained in 1 liter of the collected culture solution was measured every day.

図5は、測定したバイオマス量の時系列変化を示すグラフである。図5に示すように、培養を開始してから6日目までは、実施例と比較例のバイオマス量は、ほぼ同じように徐々に増加した。その後、光量を増加させた影響で、7日目から9日目までは、実施例と比較例のバイオマス量は、ほぼ同じように急増した。その後、10日目から15日目までは、溶存酸素阻害により比較例のバイオマス量の増加が止まったのに対し、実施例のバイオマス量は増加を続け、その量は、最大で比較例の1.6倍となった。このように、実施例では、20分に1回(1分間)しか曝気を行っていないにもかかわらず、溶存酸素阻害が好適に回避される結果となり、連続的な曝気を必要とする従来方式と比較して、曝気コストを少なくとも1/20に低減できることが示された。 FIG. 5 is a graph showing the time-series changes in the measured amount of biomass. As shown in FIG. 5, from the start of the culture to the 6th day, the biomass amounts of the examples and the comparative examples gradually increased in almost the same manner. After that, due to the effect of increasing the amount of light, the amount of biomass in the examples and the comparative examples increased rapidly from the 7th day to the 9th day in almost the same manner. After that, from the 10th day to the 15th day, the increase in the biomass amount of the comparative example stopped due to the inhibition of dissolved oxygen, while the biomass amount of the example continued to increase, and the amount was 1 of the comparative example at the maximum. It increased by 0.6 times. As described above, in the examples, although the aeration is performed only once every 20 minutes (1 minute), the dissolved oxygen inhibition is preferably avoided, and the conventional method requiring continuous aeration. It was shown that the aeration cost can be reduced to at least 1/20.

10…光合成微生物用培養容器、12,14,15…面、16a,16b,16c…線分、18…支柱、20…光合成微生物用培養容器、22…チューブ状容器、24…境界面、26…チューブ状気体流路、50…光合成微生物用培養容器、52…邪魔板、60…遠心ポンプ、70…定量送液ポンプ、80…エアコンプレッサー 10 ... Culture container for photosynthetic microorganisms, 12, 14, 15 ... Surface, 16a, 16b, 16c ... Lines, 18 ... Struts, 20 ... Culture container for photosynthetic microorganisms, 22 ... Tube-shaped container, 24 ... Boundary surface, 26 ... Tubular gas flow path, 50 ... culture vessel for photosynthetic microorganisms, 52 ... baffle plate, 60 ... centrifugal pump, 70 ... fixed quantity liquid feed pump, 80 ... air compressor

Claims (4)

対向する第1の面と第2の面を備える薄い袋状の容器であって、
前記第1の面が一様に光透過性を有し、前記第2の面が一様に光反射性を有すると共に一様に気体透過性を有する多孔質シートであることを特徴とする、
光合成微生物用培養容器。
A thin bag-shaped container having a first surface and a second surface facing each other.
The first surface is uniformly light-transmitting, and the second surface is a porous sheet having uniformly light-reflecting property and uniformly gas-transmitting property.
Culture container for photosynthetic microorganisms.
前記第1の面と前記第2の面が容器の幅方向に伸びる複数の線分において接合されることにより蛇行流路が形成されていることを特徴とする、
請求項1に記載の光合成微生物用培養容器。
A meandering flow path is formed by joining the first surface and the second surface at a plurality of line segments extending in the width direction of the container.
The culture container for photosynthetic microorganisms according to claim 1.
前記第2の面に接触する気体流路が形成されていることを特徴とする、
請求項1または2に記載の光合成微生物用培養容器。
A gas flow path in contact with the second surface is formed.
The culture container for photosynthetic microorganisms according to claim 1 or 2.
並列する複数のチューブ状容器と、隣接する2つのチューブ状容器を接続する形でその間に配置される複数のチューブ状気体流路からなり、
前記チューブ状容器の外表面が一様に光透過性を有し、前記チューブ状容器と前記チューブ状気体流路を接続する境界面が一様に気体透過性を有することを特徴とする、
光合成微生物用培養容器。
It consists of a plurality of tubing containers in parallel and a plurality of tubing gas flow paths arranged between two adjacent tubing containers.
The outer surface of the tubular container is uniformly light-transmitting, and the boundary surface connecting the tubular container and the tubular gas flow path is uniformly gas-transmitting.
Culture container for photosynthetic microorganisms.
JP2017207419A 2017-10-26 2017-10-26 Culture container for photosynthetic microorganisms Active JP6945852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207419A JP6945852B2 (en) 2017-10-26 2017-10-26 Culture container for photosynthetic microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207419A JP6945852B2 (en) 2017-10-26 2017-10-26 Culture container for photosynthetic microorganisms

Publications (2)

Publication Number Publication Date
JP2019076060A JP2019076060A (en) 2019-05-23
JP6945852B2 true JP6945852B2 (en) 2021-10-06

Family

ID=66626085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207419A Active JP6945852B2 (en) 2017-10-26 2017-10-26 Culture container for photosynthetic microorganisms

Country Status (1)

Country Link
JP (1) JP6945852B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466757B2 (en) * 2021-03-11 2024-04-12 デンカ株式会社 Sample collection swabs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697986B2 (en) * 1989-11-30 1994-12-07 コージンバイオ株式会社 Preservation and tissue culture container
JP4665588B2 (en) * 2004-04-13 2011-04-06 東洋製罐株式会社 Culture double container and culture method
US8372632B2 (en) * 2006-06-14 2013-02-12 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
WO2016060892A1 (en) * 2014-10-16 2016-04-21 University Of South Florida Systems and methods for cultivating algae
GB201521136D0 (en) * 2015-12-01 2016-01-13 Arborea Ltd Device

Also Published As

Publication number Publication date
JP2019076060A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
KR101727632B1 (en) Photobioreactor for photosynthetic microbial mass cultures
US8658420B2 (en) Photobioreactor for algae growth
JP6152933B2 (en) Chlorella culture system and chlorella culture method
US10119110B2 (en) Bioreactor using oxygen-carrying molecules
EP2568038A1 (en) Laminar photobioreactor for the production of microalgae
JP6077174B2 (en) Reactor for mass production of photosynthetic microorganisms
JP2012519495A (en) Equipment for photochemical processes
US9200244B2 (en) Method for culturing photoautotrophic microorganisms for the production of biomass
US20130177966A1 (en) Method and plant for the cultivation of photosynthetic micro-organism
JP6945852B2 (en) Culture container for photosynthetic microorganisms
KR101654593B1 (en) Method for mass culturing photosynthetic microalgae by additional supply of environmental water
KR101517838B1 (en) Method for cultivating photosynthetic microalgae by co-cultivation
CN102296025B (en) Photobioreactor capable of realizing internal and external circulation of alga liquid
CN104711163A (en) Optical path variable plate-type microalgae culture reactor
JP2019033678A (en) Continuous culture method of microbes
JP3049183B2 (en) Culture device for photosynthetic organisms
EP2740787B1 (en) Photobioreactor for culturing photoautotrophic microorganisms
US20200140799A1 (en) Bioreactors with Filters
Oguchi et al. Closed and continuous algae cultivation system for food production and gas exchange in CELSS
CN102373149A (en) Photobioreactor, its preparation method, photo-biological culture system and method
KR20160000123A (en) Photobioreactor capable of controlling media temperature
CN204644342U (en) For cultivating the microporous culture plate of photosynthetic microorganism
JP6110766B2 (en) Cell culture device and cell culture method
JPH07184631A (en) Culture apparatus for photosynthetic microorganism and culture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6945852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150