JP6944832B2 - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP6944832B2
JP6944832B2 JP2017150147A JP2017150147A JP6944832B2 JP 6944832 B2 JP6944832 B2 JP 6944832B2 JP 2017150147 A JP2017150147 A JP 2017150147A JP 2017150147 A JP2017150147 A JP 2017150147A JP 6944832 B2 JP6944832 B2 JP 6944832B2
Authority
JP
Japan
Prior art keywords
hot water
amount
unit
boiling
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150147A
Other languages
Japanese (ja)
Other versions
JP2019027740A (en
Inventor
幸雄 松坂
幸雄 松坂
晋司 吉川
晋司 吉川
照男 西田
照男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Rinnai Corp
Original Assignee
Daikin Industries Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Rinnai Corp filed Critical Daikin Industries Ltd
Priority to JP2017150147A priority Critical patent/JP6944832B2/en
Priority to CN201880038655.4A priority patent/CN110730889B/en
Priority to PCT/JP2018/028302 priority patent/WO2019026801A1/en
Priority to EP18841308.2A priority patent/EP3663670A4/en
Publication of JP2019027740A publication Critical patent/JP2019027740A/en
Application granted granted Critical
Publication of JP6944832B2 publication Critical patent/JP6944832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/104Inspection; Diagnosis; Trial operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/172Scheduling based on user demand, e.g. determining starting point of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply

Description

本発明は、貯湯タンクに対して温水を供給可能なヒートポンプ式加熱部を備えた給湯システムに関する。 The present invention relates to a hot water supply system provided with a heat pump type heating unit capable of supplying hot water to a hot water storage tank.

従来、ヒートポンプ式加熱部により生成された温水を貯湯タンクに貯留し、貯湯タンクから給湯端末に供給される温水をガス加熱器によってさらに加熱することが可能な給湯システムが知られている。例えば、特許文献1(特開2013−113495号公報)に開示されている給湯システムでは、貯湯タンクが湯切れした場合、ヒートポンプ式加熱部による貯湯タンクの温水の沸き上げに加え、前記ガス加熱器による加熱運転が行われる。これにより、貯湯タンクが湯切れした場合にも、給湯端末への温水の供給が確保される。 Conventionally, there is known a hot water supply system capable of storing hot water generated by a heat pump type heating unit in a hot water storage tank and further heating hot water supplied from the hot water storage tank to a hot water supply terminal by a gas heater. For example, in the hot water supply system disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-11495), when the hot water storage tank runs out of hot water, in addition to boiling the hot water in the hot water storage tank by the heat pump type heating unit, the gas heater The heating operation is performed by. As a result, even if the hot water storage tank runs out of hot water, the supply of hot water to the hot water supply terminal is ensured.

ところで、ヒートポンプ式加熱部は、必要熱量にかかわらず、外気温度に応じて、ヒートポンプ効率(COP)が最大となる加熱能力(周波数)で運転されるのが一般的である。つまり、ヒートポンプ式加熱部による沸き上げ運転だけで十分な熱量を確保できる場合であっても、大量出湯等により熱量不足となりガス加熱器による加熱が必要となる場合であっても、ヒートポンプ式加熱部は一律にCOPが最大となる加熱能力(周波数)で運転される。 By the way, the heat pump type heating unit is generally operated at a heating capacity (frequency) that maximizes the heat pump efficiency (COP) according to the outside air temperature regardless of the required amount of heat. That is, even if a sufficient amount of heat can be secured only by the boiling operation by the heat pump type heating unit, or even if the amount of heat is insufficient due to a large amount of hot water or the like and heating by the gas heater is required, the heat pump type heating unit Is uniformly operated at the heating capacity (frequency) at which the COP is maximized.

一方、ヒートポンプ式加熱部のCOPを1次エネルギー効率に換算し、ガス加熱器のような補助加熱部の1次エネルギー効率と比較した場合には、ヒートポンプ式加熱部の効率の方が高くなる場合が多い。そのため、上記のような加熱能力でヒートポンプ式加熱部による沸き上げを行って、熱量不足となった場合、例えば、貯湯タンクが湯切れした場合に、補助加熱部による加熱を併せて行う運転では、ヒートポンプ式加熱部および補助加熱部を含めたシステムの総合的なエネルギー効率としては最適と言えない場合がある。 On the other hand, when the COP of the heat pump type heating unit is converted into the primary energy efficiency and compared with the primary energy efficiency of the auxiliary heating unit such as a gas heater, the efficiency of the heat pump type heating unit is higher. There are many. Therefore, in the operation in which the heat pump type heating unit is used to boil with the above heating capacity and the amount of heat is insufficient, for example, when the hot water storage tank runs out of hot water, the auxiliary heating unit is also used for heating. It may not be optimal as the overall energy efficiency of the system including the heat pump type heating unit and the auxiliary heating unit.

本発明の目的は、ヒートポンプ式加熱部および補助加熱部を含めたシステムの総合的なエネルギー効率を最適にできる給湯システムを提供することである。 An object of the present invention is to provide a hot water supply system capable of optimizing the overall energy efficiency of a system including a heat pump type heating unit and an auxiliary heating unit.

本発明の給湯システムは、温水を貯留する貯湯タンクと、貯湯タンクの温水を利用側へ供給する出湯部と、貯湯タンクの温水の沸き上げを行うヒートポンプ式加熱部と、貯湯タンクから出湯部に供給される温水を加熱可能な補助加熱部と、貯湯タンクから出湯部へ供給される出湯量を検出する出湯量検出部と、貯湯タンクからの出湯量を予測する制御部とを備える。ヒートポンプ式加熱部によって貯湯タンクの温水の沸き上げが行われるヒートポンプ単独運転と、ヒートポンプ式加熱部による貯湯タンクの温水の沸き上げだけでは熱量不足となる場合に、貯湯タンクの温水の沸き上げおよび補助加熱部による温水の加熱が同時に行われる補助加熱併用運転とが可能に構成されている。ヒートポンプ単独運転は、互いに加熱能力が異なる、第1のモードでの沸き上げ、および、第2のモードでの沸き上げを含む。第1モードでの沸き上げの加熱能力は、第2のモードでの沸き上げの加熱能力よりも高く、かつ、第1のモードでの沸き上げのヒートポンプ効率は第2のモードでの沸き上げのヒートポンプ効率よりも低い。また、制御部は、第2のモードでの沸き上げでは貯湯タンクの貯湯量が所定量よりも少なくなる大量出湯を予測した場合、あるいは、大量出湯が生じていると判断した場合、第1のモードでの沸き上げを行い、その後、ヒートポンプ単独運転だけでは熱量不足となる場合に、補助加熱併用運転を行う。 The hot water supply system of the present invention has a hot water storage tank for storing hot water, a hot water outlet for supplying hot water from the hot water storage tank to the user side, a heat pump type heating unit for boiling hot water in the hot water storage tank, and a hot water outlet from the hot water storage tank. It is provided with an auxiliary heating unit capable of heating the supplied hot water, a hot water discharge amount detection unit that detects the amount of hot water supplied from the hot water storage tank to the hot water discharge unit, and a control unit that predicts the amount of hot water discharged from the hot water storage tank. When the amount of heat is insufficient only by the heat pump independent operation in which the hot water in the hot water storage tank is boiled by the heat pump type heating unit and the hot water in the hot water storage tank by the heat pump type heating unit, the hot water in the hot water storage tank is boiled and assisted. It is configured so that it can be operated in combination with auxiliary heating in which hot water is heated by the heating unit at the same time. The heat pump independent operation includes boiling in the first mode and boiling in the second mode, which have different heating capacities from each other. The heating capacity of the boiling in the first mode is higher than the heating capacity of the boiling in the second mode, and the heat pump efficiency of the boiling in the first mode is that of the boiling in the second mode. Lower than heat pump efficiency. Further, when the control unit predicts a large amount of hot water to be stored in the hot water storage tank in the boiling in the second mode, or determines that a large amount of hot water is generated, the first Boiling is performed in the mode, and then, when the amount of heat is insufficient only by operating the heat pump alone, the auxiliary heating combined operation is performed.

この構成によれば、システム全体の加熱量に占める補助加熱部による加熱量の比率を減少させることができるため、給湯システム全体の総合的なエネルギー効率を最適にできる。 According to this configuration, the ratio of the heating amount by the auxiliary heating unit to the heating amount of the entire system can be reduced, so that the overall energy efficiency of the entire hot water supply system can be optimized.

上記給湯システムにおいて、第1のモードでの沸き上げの加熱能力が、そのときの外気温度においてCOPが最大となる加熱能力よりも大きく、かつ、第1のモードでの沸き上げの1次エネルギー効率が補助加熱部を単独で運転させたときの1次エネルギー効率以上としてもよい。 In the above hot water supply system, the heating capacity of boiling in the first mode is larger than the heating capacity at which the COP is maximized at the outside air temperature at that time, and the primary energy efficiency of boiling in the first mode is large. May be greater than or equal to the primary energy efficiency when the auxiliary heating unit is operated independently.

この構成によれば、ヒートポンプ式加熱部の1次エネルギー効率が補助加熱部の1次エネルギー効率より低くなるのを抑制でき、給湯システム全体のエネルギー効率が低下することを抑制できる。 According to this configuration, it is possible to prevent the primary energy efficiency of the heat pump type heating unit from becoming lower than the primary energy efficiency of the auxiliary heating unit, and it is possible to suppress a decrease in the energy efficiency of the entire hot water supply system.

上記給湯システムにおいて、貯湯タンクの貯湯量を検出する貯湯量検出部をさらに備え、貯湯量検出部によって検出された貯湯量が第1貯湯量よりも小さくなった場合に第2のモードでの沸き上げが開始され、第1貯湯量よりもさらに小さい第2貯湯量となった場合に、第2のモードでの沸き上げから第1のモードでの沸き上げを行うよう構成してもよい。 In the above hot water supply system, a hot water storage amount detecting unit for detecting the hot water storage amount of the hot water storage tank is further provided, and when the hot water storage amount detected by the hot water storage amount detection unit becomes smaller than the first hot water storage amount, boiling in the second mode is performed. When the raising is started and the second hot water storage amount becomes smaller than the first hot water storage amount, the boiling in the second mode may be changed to the boiling in the first mode.

この構成によれば、貯湯タンクの湯量が少なくなって補助加熱部が動作することを抑制できるため、給湯システムの総合的なエネルギー効率を最適にできる。 According to this configuration, the amount of hot water in the hot water storage tank is reduced and the operation of the auxiliary heating unit can be suppressed, so that the overall energy efficiency of the hot water supply system can be optimized.

上記給湯システムにおいて、出湯部から温水が供給される浴槽10aをさらに備え、浴槽10aに目標温度の湯を供給する湯張り指示があった場合に、第1のモードでの沸き上げを行うよう構成してもよい。 In the above hot water supply system, a bathtub 10a to which hot water is supplied from a hot water outlet is further provided, and when a hot water filling instruction for supplying hot water of a target temperature is given to the bathtub 10a, boiling is performed in the first mode. You may.

この構成によれば、湯張りによる大量出湯により貯湯タンクの湯量が少なくなって補助加熱部が動作することを抑制できるため、給湯システムの総合的なエネルギー効率を最適にできる。 According to this configuration, the amount of hot water in the hot water storage tank is reduced due to the large amount of hot water discharged by the hot water filling, and the operation of the auxiliary heating unit can be suppressed, so that the overall energy efficiency of the hot water supply system can be optimized.

上記給湯システムにおいて、制御部は、出湯量検出部により検出された出湯量と出湯時刻の履歴情報を記憶する履歴情報記憶部と、履歴情報記憶部の履歴情報に基づき出湯予定量と出湯予定時刻を予測する出湯予測部とをさらに有してもよい。この場合、出湯予測部により予測された出湯予定量が出湯予定時刻までに貯湯タンクに貯湯されるようにヒートポンプ式加熱部の動作させるときに、出湯予測部により予測されていない出湯があった場合に、前記第1のモードでの沸き上げを行うよう構成される。 In the above hot water supply system, the control unit has a history information storage unit that stores the history information of the hot water discharge amount and the hot water discharge time detected by the hot water discharge amount detection unit, and the scheduled hot water discharge amount and the hot water discharge scheduled time based on the history information of the history information storage unit. It may further have a hot water supply prediction unit for predicting. In this case, when the heat pump type heating unit is operated so that the planned amount of hot water that is predicted by the hot water forecasting unit is stored in the hot water storage tank by the scheduled hot water discharge time, there is a hot water that is not predicted by the hot water forecasting unit. In addition, it is configured to perform boiling in the first mode.

この構成によれば、貯湯タンクの湯量が少なくなって補助加熱部が動作することを抑制できるため、給湯システムの総合的なエネルギー効率を最適にできる。 According to this configuration, the amount of hot water in the hot water storage tank is reduced and the operation of the auxiliary heating unit can be suppressed, so that the overall energy efficiency of the hot water supply system can be optimized.

上記給湯システムにおいて、貯湯タンクの貯湯量を検出する貯湯量検出部をさらに備えてもよい。制御部は、出湯量検出部により検出された出湯量と出湯時刻の履歴情報を記憶する履歴情報記憶部と、履歴情報記憶部の履歴情報に基づき出湯予定量と出湯予定時刻を予測する出湯予測部とをさらに有してもよい。この場合、出湯予定量が、貯湯量検出部によって検出された貯湯量と、第2のモードでの沸き上げで運転した場合の出湯予定時刻における貯湯予定量との合計値よりも大きい場合に、第1のモードでの沸き上げを行うよう構成される。 The hot water supply system may further include a hot water storage amount detection unit that detects the amount of hot water stored in the hot water storage tank. The control unit has a history information storage unit that stores the history information of the hot water discharge amount and the hot water discharge time detected by the hot water discharge amount detection unit, and a hot water discharge prediction that predicts the hot water discharge scheduled amount and the hot water discharge scheduled time based on the history information of the history information storage unit. It may further have a unit. In this case, when the planned hot water storage amount is larger than the total value of the hot water storage amount detected by the hot water storage amount detection unit and the hot water storage planned amount at the scheduled hot water discharge time when the operation is performed by boiling in the second mode. It is configured to boil in the first mode.

この構成によれば、貯湯タンクの湯量が少なくなって補助加熱部が動作することを抑制できるため、給湯システムの総合的なエネルギー効率を最適にできる。 According to this configuration, the amount of hot water in the hot water storage tank is reduced and the operation of the auxiliary heating unit can be suppressed, so that the overall energy efficiency of the hot water supply system can be optimized.

上記給湯システムにおいて、ヒートポンプ式加熱部は、圧縮機、放熱器、膨張機構、および、蒸発器が接続され、冷媒が循環する冷媒回路を有し、第1のモードでの沸き上げは、外気温度が同一である場合において、第2のモードでの沸き上げよりも圧縮機の周波数が大きくなるよう構成してもよい。 In the above hot water supply system, the heat pump type heating unit has a refrigerant circuit to which a compressor, a radiator, an expansion mechanism, and an evaporator are connected and a refrigerant circulates, and boiling in the first mode is the outside air temperature. When they are the same, the frequency of the compressor may be higher than that of the boiling in the second mode.

この構成によれば、圧縮機の周波数を大きくすることによって、第1のモードでの沸き上げに必要な加熱能力をまかなうことができる。 According to this configuration, by increasing the frequency of the compressor, it is possible to cover the heating capacity required for boiling in the first mode.

上記給湯システムにおいて、ヒートポンプ式加熱部は、圧縮機、熱源側熱交換器、膨張機構、および、利用側熱交換器が接続され、冷媒が循環する冷媒回路と、熱源側熱交換器に送風して熱交換させるファンを有していてもよい。この場合、第1のモードでの沸き上げにおけるファン回転数は、外気温度が同一である場合において、第2のモードでの沸き上げにおけるファンの回転数よりも大きくなるよう構成してもよい。 In the above hot water supply system, the heat pump type heating unit is connected to the compressor, the heat source side heat exchanger, the expansion mechanism, and the user side heat exchanger, and blows air to the refrigerant circuit in which the refrigerant circulates and the heat source side heat exchanger. It may have a fan for heat exchange. In this case, the fan rotation speed in the boiling in the first mode may be configured to be higher than the fan rotation speed in the boiling in the second mode when the outside air temperature is the same.

この構成によれば、ファンの回転数を大きくすることによって、第1のモードでの沸き上げに必要な加熱能力をまかなうことができる。 According to this configuration, by increasing the rotation speed of the fan, it is possible to cover the heating capacity required for boiling in the first mode.

本発明の一実施形態に係る給湯システムの構成図。The block diagram of the hot water supply system which concerns on one Embodiment of this invention. 図1の給湯システムの制御部の構成図。The block diagram of the control part of the hot water supply system of FIG. ヒートポンプ部の加熱能力が変化したときのCOPの変化を示す図。The figure which shows the change of COP when the heating capacity of a heat pump part changes. ヒートポンプ部の加熱能力が変化したときの1次エネルギー効率の変化を示す図。The figure which shows the change of the primary energy efficiency when the heating capacity of a heat pump part changes. 図1の給湯システムの動作を説明するフローチャート。The flowchart explaining the operation of the hot water supply system of FIG. 図1の給湯システムの動作を説明するタイムチャート。The time chart explaining the operation of the hot water supply system of FIG. 変形例Aに係る給湯システムの動作を説明するフローチャート。The flowchart explaining the operation of the hot water supply system which concerns on modification A. 変形例Bに係る給湯システムの動作を説明するフローチャート。The flowchart explaining the operation of the hot water supply system which concerns on modification B. ヒートポンプ部の加熱能力が変化したときの単位能力あたりの使用料金の変化を示す図。The figure which shows the change of the usage charge per unit capacity when the heating capacity of a heat pump part changes. ヒートポンプ部の加熱能力が変化したときの単位能力あたりの炭素排出量の変化を示す図。The figure which shows the change of the carbon emission amount per unit capacity when the heating capacity of a heat pump part changes.

(1)給湯システム1の構成
図1は、本発明の実施形態の給湯システム1の構成図を示している。給湯システム1は、ヒートポンプ部2(ヒートポンプ式加熱部)、貯湯タンク5を有する温水回路部3、および、ガス加熱器6(補助加熱部の一例)を有する。ヒートポンプ部2は貯湯タンク5に貯留する温水を生成する。給湯端末10(出湯部の一例)は貯湯タンク5の温水を出湯する。貯湯タンク5の温水は、必要に応じて、出湯される前にガス加熱器6によりさらに加熱される。
(1) Configuration of Hot Water Supply System 1 FIG. 1 shows a configuration diagram of the hot water supply system 1 according to the embodiment of the present invention. The hot water supply system 1 includes a heat pump unit 2 (heat pump type heating unit), a hot water circuit unit 3 having a hot water storage tank 5, and a gas heater 6 (an example of an auxiliary heating unit). The heat pump unit 2 generates hot water to be stored in the hot water storage tank 5. The hot water supply terminal 10 (an example of a hot water outlet) discharges hot water from the hot water storage tank 5. If necessary, the hot water in the hot water storage tank 5 is further heated by the gas heater 6 before being discharged.

(1−1)ヒートポンプ部2の構成
ヒートポンプ部2は、冷媒が循環する冷媒回路41を有する。冷媒回路41は、圧縮機11と室外熱交換器(熱源側熱交換器)12と膨張弁(膨張機構の一例)13と給湯用熱交換器(利用側熱交換器)16とが冷媒配管40によって接続されることで構成されている。ファン15は、室外熱交換器12に対向するように配置されている。外気温度センサ21は、外気温度を検知する。
(1-1) Configuration of Heat Pump Unit 2 The heat pump unit 2 has a refrigerant circuit 41 in which a refrigerant circulates. In the refrigerant circuit 41, the compressor 11, the outdoor heat exchanger (heat source side heat exchanger) 12, the expansion valve (an example of the expansion mechanism) 13, and the hot water supply heat exchanger (utility side heat exchanger) 16 are connected to the refrigerant pipe 40. It consists of being connected by. The fan 15 is arranged so as to face the outdoor heat exchanger 12. The outside air temperature sensor 21 detects the outside air temperature.

貯湯タンク5に温水を貯留する沸き上げ運転では、図1中矢印R1で示すように、圧縮機11から吐出される冷媒が給湯用熱交換器16、膨張弁13、室外熱交換器12へと順に流れ、室外熱交換器12を経た冷媒が圧縮機11に戻る加熱サイクルが形成される。この場合、給湯用熱交換器16が凝縮器、室外熱交換器12が蒸発器として機能する。この沸き上げ運転では、給湯用熱交換器16において圧縮機11の吐出側から流入した高温の冷媒と給湯用温水との間で熱交換されることによって、給湯用温水が加熱される。 In the boiling operation in which hot water is stored in the hot water storage tank 5, as shown by the arrow R1 in FIG. 1, the refrigerant discharged from the compressor 11 goes to the hot water supply heat exchanger 16, the expansion valve 13, and the outdoor heat exchanger 12. A heating cycle is formed in which the refrigerant flows in order and returns to the compressor 11 after passing through the outdoor heat exchanger 12. In this case, the hot water supply heat exchanger 16 functions as a condenser, and the outdoor heat exchanger 12 functions as an evaporator. In this boiling operation, the hot water for hot water supply is heated by exchanging heat between the hot refrigerant for hot water supply and the hot water for hot water supply that has flowed in from the discharge side of the compressor 11 in the heat exchanger 16 for hot water supply.

(1−2)温水回路部3の構成
温水回路部3は、前記給湯用熱交換器16に接続されている。温水回路部3は、貯湯タンク5とポンプ17と給湯用熱交換器16とが水配管45により接続されて、温水が循環するように構成されている。この温水回路部3において、ポンプ17の吐出側が給湯用熱交換器16の温水流入口に接続され、ポンプ17の吸入側が貯湯タンク5の一端に接続されている。給湯用熱交換器16の温水流出口は貯湯タンク5の他端に接続されている。
(1-2) Configuration of Hot Water Circuit Unit 3 The hot water circuit unit 3 is connected to the hot water supply heat exchanger 16. The hot water circuit unit 3 is configured such that the hot water storage tank 5, the pump 17, and the hot water supply heat exchanger 16 are connected by a water pipe 45 so that hot water circulates. In the hot water circuit unit 3, the discharge side of the pump 17 is connected to the hot water inlet of the hot water supply heat exchanger 16, and the suction side of the pump 17 is connected to one end of the hot water storage tank 5. The hot water outlet of the hot water supply heat exchanger 16 is connected to the other end of the hot water storage tank 5.

温水回路部3では、給湯用熱交換器16を流れる冷媒と熱交換する温水が循環する。具体的には、沸き上げ運転が実行されるときに、ポンプ17によって貯湯タンク5から流出した温水が給湯用熱交換器16に供給され、給湯用熱交換器16で加熱された温水が貯湯タンク5に戻される。 In the hot water circuit unit 3, hot water that exchanges heat with the refrigerant flowing through the hot water supply heat exchanger 16 circulates. Specifically, when the boiling operation is executed, the hot water flowing out of the hot water storage tank 5 is supplied to the hot water supply heat exchanger 16 by the pump 17, and the hot water heated by the hot water supply heat exchanger 16 is supplied to the hot water storage tank. It is returned to 5.

給湯用熱交換器16の温水流出口の近傍には、出湯温度センサ22が配置されており、給湯用熱交換器16から流出した温水の温度を検知する。貯湯タンク5には複数の貯湯温度センサ5a〜5d(貯湯量検出部)が設けられており、それぞれの貯湯温度センサ5a〜5dが検出する水温によって貯湯量を検出する。なお、前述の外気温度センサ21、出湯温度センサ22および貯湯温度センサ5a〜5dは、検知した温度を制御部30に出力することが可能であれば、どのようなものであってもよい。 A hot water outlet temperature sensor 22 is arranged near the hot water outlet of the hot water supply heat exchanger 16 to detect the temperature of the hot water flowing out from the hot water supply heat exchanger 16. The hot water storage tank 5 is provided with a plurality of hot water storage temperature sensors 5a to 5d (hot water storage amount detection unit), and detects the hot water storage amount according to the water temperature detected by each of the hot water storage temperature sensors 5a to 5d. The outside air temperature sensor 21, the hot water outlet temperature sensor 22, and the hot water storage temperature sensors 5a to 5d may be any as long as they can output the detected temperature to the control unit 30.

(1−3)給湯端末10およびガス加熱器6の構成
貯湯タンク5の温水は給湯端末10を介して出湯できるように構成されている。ガス加熱器6は貯湯タンク5と給湯端末10との間に配置され、加熱部6aを有している。貯湯タンク5、ガス加熱器6および給湯端末10は水配管47により接続されている。ガス加熱器6は、貯湯タンク5から供給された温水が給湯端末10に供給される前に加熱できる。給湯端末10は、貯湯タンク5内の温水をユーザーに使用可能とし、浴槽10aへも出湯可能となっている。
(1-3) Configuration of Hot Water Supply Terminal 10 and Gas Heater 6 Hot water in the hot water storage tank 5 is configured so that hot water can be discharged via the hot water supply terminal 10. The gas heater 6 is arranged between the hot water storage tank 5 and the hot water supply terminal 10, and has a heating unit 6a. The hot water storage tank 5, the gas heater 6, and the hot water supply terminal 10 are connected by a water pipe 47. The gas heater 6 can heat the hot water supplied from the hot water storage tank 5 before it is supplied to the hot water supply terminal 10. The hot water supply terminal 10 makes it possible for the user to use the hot water in the hot water storage tank 5, and the hot water can be discharged to the bathtub 10a.

水配管46には流量センサ23(流量検出部)が設けられており、貯湯タンク5から給湯端末10へ供給される温水の流量を検知する。なお、流量センサ23は貯湯タンク5から供給される湯量を検出することが可能であれば、水配管46以外の他の水配管に設けてもよい。 The water pipe 46 is provided with a flow rate sensor 23 (flow rate detection unit), and detects the flow rate of hot water supplied from the hot water storage tank 5 to the hot water supply terminal 10. The flow rate sensor 23 may be provided in a water pipe other than the water pipe 46 as long as it can detect the amount of hot water supplied from the hot water storage tank 5.

以上説明したように、給湯システム1は、貯湯タンク5に対して温水を供給可能なヒートポンプ部2(ヒートポンプ式加熱部)と、貯湯タンク5から給湯端末10へ供給される温水を加熱可能なガス加熱器6(補助加熱部)とを有している。給湯システム1は、ヒートポンプ部2によって貯湯タンク5内に温水を貯留する沸き上げ運転と、貯湯タンク5の温水を給湯端末10に供給する際に、必要に応じて貯湯タンク5から供給された温水を、ガス加熱器6によって加熱する追加加熱運転とが可能であり、給湯システム1の運転としては、沸き上げ運転のみを行うヒートポンプ単独運転、追加加熱運転のみを行う補助加熱単独運転、および沸き上げ運転と追加加熱運転を同時に行う補助加熱併用運転に分けられる。 As described above, the hot water supply system 1 includes a heat pump unit 2 (heat pump type heating unit) capable of supplying hot water to the hot water storage tank 5, and a gas capable of heating hot water supplied from the hot water storage tank 5 to the hot water supply terminal 10. It has a heater 6 (auxiliary heating unit). The hot water supply system 1 has a boiling operation in which hot water is stored in the hot water storage tank 5 by the heat pump unit 2, and hot water supplied from the hot water storage tank 5 as needed when the hot water in the hot water storage tank 5 is supplied to the hot water supply terminal 10. Is possible to perform an additional heating operation in which the gas heater 6 is used, and the operation of the hot water supply system 1 includes a heat pump independent operation in which only the boiling operation is performed, an auxiliary heating independent operation in which only the additional heating operation is performed, and boiling. It can be divided into auxiliary heating combined operation in which operation and additional heating operation are performed at the same time.

(1−4)給湯システム1の制御部30の構成
給湯システム1の制御部30は、CPU、ROMおよびRAM(いずれも図示省略)等から構成されている。図2に示すように、給湯システム1の制御部30は、湯切れ判断部31と、COPカーブ記憶部32と、COPカーブ算出部33と、効率算出部34aと、能力導出部35と、沸き上げ制御部36と、出湯制御部37と、履歴情報記憶部38と、出湯予測部39とを有している。制御部30の入力側は、貯湯タンク5の側面に取り付けられた貯湯温度センサ5a〜5dと、リモートコントローラ20と、外気温度センサ21と、出湯温度センサ22と、流量センサ23とに接続されている。制御部30の出力側は、圧縮機11と、ファン15と、加熱部6aと、ポンプ17等のアクチュエーターとに接続されている。なお、リモートコントローラ20からの入力は、ヒートポンプ部2と温水回路部3のそれぞれに送信される。
(1-4) Configuration of Control Unit 30 of Hot Water Supply System 1 The control unit 30 of the hot water supply system 1 is composed of a CPU, a ROM, a RAM (all not shown), and the like. As shown in FIG. 2, the control unit 30 of the hot water supply system 1 includes a hot water shortage determination unit 31, a COP curve storage unit 32, a COP curve calculation unit 33, an efficiency calculation unit 34a, a capacity derivation unit 35, and boiling. It has a raising control unit 36, a hot water supply control unit 37, a history information storage unit 38, and a hot water supply prediction unit 39. The input side of the control unit 30 is connected to the hot water storage temperature sensors 5a to 5d attached to the side surface of the hot water storage tank 5, the remote controller 20, the outside air temperature sensor 21, the hot water discharge temperature sensor 22, and the flow rate sensor 23. There is. The output side of the control unit 30 is connected to the compressor 11, the fan 15, the heating unit 6a, and an actuator such as a pump 17. The input from the remote controller 20 is transmitted to each of the heat pump unit 2 and the hot water circuit unit 3.

湯切れ判断部31は、貯湯タンク5内の貯湯量が減少し(貯湯タンク5内の湯の比率が減少し)、湯切れしたか否か(沸き上げ運転を行う必要があるか否か)を判断する。本実施形態では、湯切れ判断部31は、貯湯タンク5の側面に取り付けられた貯湯温度センサ5bで検出された温度が、貯湯目標温度より所定温度以上低い場合に、貯湯タンク5内の湯の比率が減少し、湯切れした(貯湯量が所定値以下となった)として、沸き上げ運転を行う必要があると判断する。出湯目標温度は、ユーザーによってリモートコントローラ20が操作されることにより入力される。 The hot water shortage determination unit 31 determines whether or not the amount of hot water stored in the hot water storage tank 5 has decreased (the ratio of hot water in the hot water storage tank 5 has decreased) and the hot water has run out (whether or not it is necessary to perform boiling operation). To judge. In the present embodiment, when the temperature detected by the hot water storage temperature sensor 5b attached to the side surface of the hot water storage tank 5 is lower than the hot water storage target temperature by a predetermined temperature or more, the hot water shortage determination unit 31 of the hot water in the hot water storage tank 5 Assuming that the ratio has decreased and the hot water has run out (the amount of hot water stored has fallen below the specified value), it is judged that the boiling operation is necessary. The hot water discharge target temperature is input by operating the remote controller 20 by the user.

COPカーブ記憶部32は、複数のCOPカーブを記憶し、その複数のCOPカーブは、それぞれ、種々の外気温度や出湯目標温度に対応する。COPカーブは、図3に示すように、横軸を加熱能力(圧縮機周波数)、縦軸をCOPとし、ヒートポンプ部2の加熱能力と、その加熱能力でのCOPとを示している。ヒートポンプ部2のCOPは、図3に示すように、加熱能力a1において最大値bとなる。 The COP curve storage unit 32 stores a plurality of COP curves, and the plurality of COP curves correspond to various outside air temperatures and hot water target temperatures, respectively. As shown in FIG. 3, the COP curve has a heating capacity (compressor frequency) on the horizontal axis and a COP on the vertical axis, and shows the heating capacity of the heat pump unit 2 and the COP at that heating capacity. As shown in FIG. 3, the COP of the heat pump unit 2 has a maximum value b in the heating capacity a1.

COPカーブ算出部33は、沸き上げ運転を行う必要があると判断された場合に、そのときの外気温度や出湯目標温度に基づいたCOPカーブを算出する。本実施形態では、COPカーブ記憶部32が複数のCOPカーブを記憶していることから、COPカーブ算出部33は、COPカーブ記憶部32に記憶されたCOPカーブのなかから、そのときの外気温度や出湯目標温度に基づいたCOPカーブを取得する。外気温度は、外気温度センサ21で検出された温度であって、出湯目標温度は、リモートコントローラ20により入力された温度である。 When it is determined that the boiling operation needs to be performed, the COP curve calculation unit 33 calculates the COP curve based on the outside air temperature and the hot water target temperature at that time. In the present embodiment, since the COP curve storage unit 32 stores a plurality of COP curves, the COP curve calculation unit 33 can select the outside air temperature at that time from the COP curves stored in the COP curve storage unit 32. Acquire the COP curve based on the target temperature of hot water. The outside air temperature is the temperature detected by the outside air temperature sensor 21, and the hot water target temperature is the temperature input by the remote controller 20.

効率算出部34aは、COPカーブ算出部33で取得されたCOPカーブに基づいて、ヒートポンプ部2の1次エネルギー効率を算出する。本実施形態では、効率算出部34aは、それぞれのCOPカーブに対し、1次エネルギー換算係数0.369を使用し、1次エネルギー効率を算出する。したがって、COPカーブに基づいて算出した1次エネルギー効率のカーブは、図4に示すように、横軸を加熱能力、縦軸を1次エネルギー効率とし、ヒートポンプ部2の加熱能力と、その加熱能力での1次エネルギー効率とを示している。図4に示すように、COPカーブに基づいて算出した1次エネルギー効率のカーブは、加熱能力a1において最大値cとなる。図4において、ガス加熱器6の1次エネルギー効率をdとして図示している。 The efficiency calculation unit 34a calculates the primary energy efficiency of the heat pump unit 2 based on the COP curve acquired by the COP curve calculation unit 33. In the present embodiment, the efficiency calculation unit 34a calculates the primary energy efficiency by using the primary energy conversion coefficient 0.369 for each COP curve. Therefore, as shown in FIG. 4, the curve of the primary energy efficiency calculated based on the COP curve has the heating capacity on the horizontal axis and the primary energy efficiency on the vertical axis, and the heating capacity of the heat pump unit 2 and its heating capacity. It shows the primary energy efficiency in. As shown in FIG. 4, the curve of the primary energy efficiency calculated based on the COP curve has the maximum value c in the heating capacity a1. In FIG. 4, the primary energy efficiency of the gas heater 6 is shown as d.

能力導出部35は、図3のCOPカーブに基づいて、ヒートポンプ部2の加熱能力を導出する。能力導出部35は、後述する所定時刻までに沸き上げ可能な湯量と予測出湯量、あるいは、その他の運転状況に応じて沸き上げ運転の加熱能力を設定する。補助加熱併用運転が行われる場合のガス加熱器6の加熱能力は、貯湯タンク5から供給される温水の温度と、給湯端末10から出湯される際に求められる温水の温度との差分から導出した後、ヒートポンプ部2の加熱能力で足りない分の加熱能力に基づいて導出される。 The capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 based on the COP curve of FIG. The capacity deriving unit 35 sets the heating capacity of the boiling operation according to the amount of hot water that can be boiled and the predicted amount of hot water discharged by a predetermined time, which will be described later, or other operating conditions. The heating capacity of the gas heater 6 when the auxiliary heating combined operation is performed is derived from the difference between the temperature of the hot water supplied from the hot water storage tank 5 and the temperature of the hot water required when the hot water is discharged from the hot water supply terminal 10. After that, it is derived based on the heating capacity of the heat pump unit 2 that is insufficient.

沸き上げ制御部36は、圧縮機11の周波数、ポンプ17の回転数および、ファン15の回転数を制御する。具体的には沸き上げ制御部36は、能力導出部35で導出されたヒートポンプ部2の加熱能力に基づいて、沸き上げ運転時の圧縮機11の周波数やファン15の回転数を制御する。沸き上げ制御部36は、圧縮機11の周波数を一定に維持し、出湯目標温度になるようにポンプ17の回転数を制御する。 The boiling control unit 36 controls the frequency of the compressor 11, the rotation speed of the pump 17, and the rotation speed of the fan 15. Specifically, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the fan 15 during the boiling operation based on the heating capacity of the heat pump unit 2 derived by the capacity extraction unit 35. The boiling control unit 36 keeps the frequency of the compressor 11 constant and controls the rotation speed of the pump 17 so as to reach the hot water target temperature.

出湯制御部37は、能力導出部35で導出されたガス加熱器6の加熱能力に基づいて、出湯の際に追加加熱運転が行われる場合のガス加熱器6の加熱部6aを制御する。 The hot water discharge control unit 37 controls the heating unit 6a of the gas heater 6 when an additional heating operation is performed at the time of hot water discharge, based on the heating capacity of the gas heater 6 derived by the capacity extraction unit 35.

履歴情報記憶部38は、流量センサ23により検出される単位時間あたりの出湯量を、計測時刻に関連付けて履歴情報として記憶する。履歴情報記憶部38は、例えば1日(または1週間の各曜日)のうちの出湯量の時間帯毎の変動傾向および総出湯量を、履歴情報として記憶している。 The history information storage unit 38 stores the amount of hot water discharged per unit time detected by the flow rate sensor 23 as history information in association with the measurement time. The history information storage unit 38 stores, for example, the fluctuation tendency of the amount of hot water discharged for each time zone and the total amount of hot water discharged in one day (or each day of the week) as history information.

出湯予測部39は、上述の履歴情報記憶部38の履歴情報により、使用者が多量に出湯する時間帯と出湯量をパターンとして解析する。この出湯パターンに基づいて、出湯量および出湯時刻を予測する。制御部30は、所定時間間隔(例えば10分毎)で、貯湯タンク5の貯湯温度センサ5a〜5dによって検出される貯湯量と、出湯予測部39によって予測される現在時刻から所定時間(例えば、2時間)以内の出湯量とを比較する。ここで、予測出湯量が貯湯量よりも多い場合には、制御部30は沸き上げ運転の開始を指示する。 The hot water discharge prediction unit 39 analyzes the time zone in which a large amount of hot water is discharged by the user and the amount of hot water discharged as a pattern based on the history information of the history information storage unit 38 described above. Based on this hot water discharge pattern, the hot water discharge amount and the hot water discharge time are predicted. Control unit 30, at predetermined time intervals (e.g., every 10 minutes), a hot water storage amount detected by the stored hot water temperature sensor 5a~5d of the hot water storage tank 5, a current time Therefore predicted tapping prediction unit 39 a predetermined time (e.g. Compare with the amount of hot water discharged within (2 hours). Here, when the predicted hot water output amount is larger than the hot water storage amount, the control unit 30 instructs the start of the boiling operation.

(2)給湯システム1による加熱運転の説明
給湯システム1は、上述した通り、ヒートポンプ部2単独で貯湯タンク5の沸き上げ運転を行うヒートポンプ単独運転、ガス加熱器6単独で貯湯タンク5から給湯端末10へ供給される温水を加熱する補助加熱単独運転、およびヒートポンプ部2による沸き上げ運転とガス加熱器6による追加加熱運転を同時に実行する補助加熱併用運転が可能に構成されている。
(2) Explanation of heating operation by the hot water supply system 1 As described above, the hot water supply system 1 operates the heat pump independently to boil the hot water storage tank 5 by the heat pump unit 2 alone, and the gas heater 6 alone from the hot water storage tank 5 to the hot water supply terminal. Auxiliary heating independent operation for heating the hot water supplied to No. 10 and auxiliary heating combined operation for simultaneously executing the boiling operation by the heat pump unit 2 and the additional heating operation by the gas heater 6 are possible.

貯湯タンク5の貯湯量が少なくなった場合や、出湯予測部39により大量出湯が予測される場合には、沸き上げ運転が行われる。沸き上げ運転のうち、ヒートポンプ単独運転には、後述する通常沸き上げモードでの運転(第2のモードでの沸き上げの一例)と急速沸き上げモードでの運転(第1のモードでの沸き上げの一例)とがある。貯湯タンク5の貯湯量を上回るような大量出湯があった場合等、沸き上げ運転を行ってもユーザーへ所望の温度の温水を供給するためには熱量不足が生じる場合に、補助加熱併用運転が行われる。この場合、沸き上げ運転と並行して、貯湯タンク5から供給される温水が加熱部6aによってさらに加熱される追加加熱運転が行われる。これにより、貯湯タンク5の貯湯量が少ない場合でも、所望の温度の温水がユーザーへ供給される。 When the amount of hot water stored in the hot water storage tank 5 is low, or when a large amount of hot water is predicted by the hot water discharge prediction unit 39, the boiling operation is performed. Of the boiling operations, the heat pump independent operation includes operation in the normal boiling mode (an example of boiling in the second mode) and operation in the rapid boiling mode (boiling in the first mode), which will be described later. One example). When there is a large amount of hot water that exceeds the amount of hot water stored in the hot water storage tank 5, or when the amount of heat is insufficient to supply hot water at the desired temperature to the user even if the boiling operation is performed, the auxiliary heating combined operation is performed. Will be done. In this case, in parallel with the boiling operation, an additional heating operation is performed in which the hot water supplied from the hot water storage tank 5 is further heated by the heating unit 6a. As a result, hot water at a desired temperature is supplied to the user even when the amount of hot water stored in the hot water storage tank 5 is small.

(2−1)通常沸き上げモード(第2のモードでの沸き上げの一例)の説明
本実施形態において、貯湯タンク5の貯湯量が所定値(例えば、貯湯タンク5のタンク容量100Lに対して、40L)以下となったとき、あるいは長時間出湯が見込まれず電気料金が安価な夜間時間帯には、通常沸き上げモードでの運転が行われる。また、現在の貯湯量が、出湯予測部39によって予測される現在時刻から2時間以内の出湯量を下回る場合にも、通常沸き上げモードでの運転が実行される。
(2-1) Description of Normal Boiling Mode (Example of Boiling in Second Mode) In the present embodiment, the amount of hot water stored in the hot water storage tank 5 is a predetermined value (for example, with respect to a tank capacity of 100 L of the hot water storage tank 5). , 40L) or less, or during the night time when hot water is not expected to come out for a long time and the electricity rate is low, the operation in the boiling mode is usually performed. Further, the current amount of hot water storage, even if less than the volume of the melt teemed within two hours from the current time to be thus predicted tapping prediction unit 39, operating in the normal boiling mode is executed.

通常沸き上げモードでの運転が行われる場合、能力導出部35は、図3のCOPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出する。そして、沸き上げ制御部36は、加熱能力a1に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数およびポンプ17の回転数を制御する。通常沸き上げモードでの運転では、ヒートポンプ効率が最大となる能力でヒートポンプ部が動作する。 When the operation is performed in the normal boiling mode, the capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 as a1 so that the heating capacity maximizes the COP in the COP curve of FIG. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 based on the heating capacity a1 until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature. In normal boiling mode operation, the heat pump unit operates with the capacity to maximize the heat pump efficiency.

(2−2)急速沸き上げモード(第1のモードでの沸き上げの一例)の説明
一方で、貯湯量を急速に増加させる必要がある場合には、急速沸き上げモードでの運転が行われる。本実施形態においては、通常沸き上げモードでの運転では十分な貯湯量を確保できない場合、急速沸き上げモードでの運転が実行される。例えば、現在の貯湯量が、現在時刻から2時間以内の出湯予定量を下回って通常沸き上げモードでの運転が開始された後、出湯予測部39により予測されていない出湯があって、通常沸き上げモードでの運転では所定の時刻までに沸き上げが完了しないときに、急速沸き上げモードでの運転が実行される。
(2-2) Explanation of rapid boiling mode (an example of boiling in the first mode) On the other hand, when it is necessary to rapidly increase the amount of hot water stored, the operation in the rapid boiling mode is performed. .. In the present embodiment, when a sufficient amount of hot water cannot be secured by the operation in the normal boiling mode, the operation in the rapid boiling mode is executed. For example, after the current amount of hot water stored falls below the planned amount of hot water to be discharged within 2 hours from the current time and the operation in the normal boiling mode is started, there is a hot water that is not predicted by the hot water prediction unit 39, and the normal boiling is performed. In the operation in the raising mode, when the boiling is not completed by a predetermined time, the operation in the rapid boiling mode is executed.

急速沸き上げモードでの運転が行われる場合には、能力導出部35は、ヒートポンプ部2の1次エネルギー効率がガス加熱器6の1次エネルギー効率と同一となるように、ヒートポンプ部2の加熱能力を導出する。したがって、能力導出部35は、図4に示すように、COPカーブに基づいて算出した1次エネルギー効率のカーブに基づいて、ヒートポンプ部2の1次エネルギー効率がガス加熱器6の1次エネルギー効率dと同一となるように、ヒートポンプ部2の加熱能力をa2と導出する。そして、沸き上げ制御部36は加熱能力a2に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるように、圧縮機11の周波数およびポンプ17の回転数を制御する。 When the operation is performed in the rapid boiling mode, the capacity deriving unit 35 heats the heat pump unit 2 so that the primary energy efficiency of the heat pump unit 2 is the same as the primary energy efficiency of the gas heater 6. Derive the ability. Therefore, as shown in FIG. 4, the capacity deriving unit 35 determines that the primary energy efficiency of the heat pump unit 2 is the primary energy efficiency of the gas heater 6 based on the primary energy efficiency curve calculated based on the COP curve. The heating capacity of the heat pump unit 2 is derived as a2 so as to be the same as d. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 so that the hot water temperature detected by the hot water temperature sensor 22 becomes the target hot water temperature based on the heating capacity a2.

出湯温度センサ22で検知される出湯温度が目標出湯温度に到達した後において、通常沸き上げモードでの運転時の周波数(加熱能力a1に基づく周波数)より大きい周波数(加熱能力a2に基づく周波数)で圧縮機11が制御され、また通常沸き上げモードでの運転時のポンプ17の回転数より大きい回転数でポンプ17が制御される。このように、急速沸き上げモードでの運転時にはポンプ17が大きい回転数で駆動されるため、温水回路部3を循環する温水の流量が多くなり、出湯温度を一定に維持しつつ、通常沸き上げモードでの運転時と比べて単位時間あたりに貯湯タンク5に貯留される温水の量を多くすることができる。 After the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature, the frequency (frequency based on the heating capacity a2) higher than the frequency during operation in the normal boiling mode (frequency based on the heating capacity a1) The compressor 11 is controlled, and the pump 17 is controlled at a frequency higher than the rotation speed of the pump 17 during operation in the normal boiling mode. In this way, since the pump 17 is driven at a large rotation speed during operation in the rapid boiling mode, the flow rate of hot water circulating in the hot water circuit unit 3 increases, and normal boiling is performed while maintaining the hot water temperature constant. The amount of hot water stored in the hot water storage tank 5 can be increased per unit time as compared with the operation in the mode.

(2−3)補助加熱併用運転の説明
本実施形態においては、貯湯タンク5の貯湯量が不足し、貯湯タンク5から給湯端末10へ供給される湯の温度が、ユーザーの要求する温度よりも低くなった場合に、補助加熱併用運転が行われる。
(2-3) Explanation of operation with auxiliary heating In the present embodiment, the amount of hot water stored in the hot water storage tank 5 is insufficient, and the temperature of the hot water supplied from the hot water storage tank 5 to the hot water supply terminal 10 is higher than the temperature required by the user. When it becomes low, the auxiliary heating combined operation is performed.

補助加熱併用運転が行われる場合、まず、能力導出部35は、図3のCOPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出する。そして、沸き上げ制御部36は、加熱能力a1に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるように、圧縮機11の周波数およびポンプ17の回転数を制御する。ガス加熱器6の加熱能力は、ヒートポンプ部2の加熱能力が導出された後、ヒートポンプ部2の加熱能力で足りない分の加熱能力に基づいて導出され、出湯制御部37によりガス加熱器6が運転される。補助加熱併用運転においても、ヒートポンプ部2は、通常沸き上げモードでの運転と同様に、ヒートポンプ効率が最大となる能力で運転される。 When the auxiliary heating combined operation is performed, first, the capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 as a1 so that the heating capacity maximizes the COP in the COP curve of FIG. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 so that the hot water discharge temperature detected by the hot water discharge temperature sensor 22 becomes the target hot water discharge temperature based on the heating capacity a1. The heating capacity of the gas heater 6 is derived based on the heating capacity of the heat pump unit 2 that is insufficient after the heating capacity of the heat pump unit 2 is derived. Be driven. Even in the auxiliary heating combined operation, the heat pump unit 2 is operated with the ability to maximize the heat pump efficiency, as in the operation in the normal boiling mode.

(3)フローチャートを用いたヒートポンプ単独運転の説明
本実施形態の給湯システム1の動作を図5に基づいて説明する。図5のフローチャートは、制御部30によるヒートポンプ単独運転の処理の流れを説明するものであり、Sはステップを表し、これに続く数字はステップの番号を表している。
(3) Explanation of Heat Pump Independent Operation Using Flow Chart The operation of the hot water supply system 1 of the present embodiment will be described with reference to FIG. The flowchart of FIG. 5 describes the flow of processing for the heat pump independent operation by the control unit 30, where S represents a step and the number following it represents a step number.

ステップS1では、貯湯タンク5の側面底部に設置された貯湯温度センサ5dの検出温度により、貯湯タンク5の貯湯量が追加沸き上げ運転可能かを判断する。貯湯温度センサ5dの温度がx度(例えば、60度)よりも低い場合には追加沸き上げが可能であると判断する。 In step S1, it is determined whether the amount of hot water stored in the hot water storage tank 5 can be additionally boiled based on the detection temperature of the hot water storage temperature sensor 5d installed at the bottom of the side surface of the hot water storage tank 5. When the temperature of the hot water storage temperature sensor 5d is lower than x degrees (for example, 60 degrees), it is determined that additional boiling is possible.

次に、ステップS2では、貯湯タンク5の貯湯温度センサ5a〜5dによって検出される現在の貯湯量と、出湯予測部39によって予測される現在時刻から2時間後までの出湯予定量とを比較する。出湯予定量は、現在時刻における、給水温度、およびリモートコントローラ20からユーザーが設定した給湯設定温度あるいは湯張り設定温度から算出する。ここで、現在の貯湯量が2時間以内の出湯予定量よりも小さい場合には、現在時刻から2時間後の時刻Tおよび出湯予定量を制御部30に記憶し(ステップS3)、ヒートポンプ部2による通常沸き上げモードでの運転を開始する(ステップS4)。能力導出部35は、COPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出する。そして、沸き上げ制御部36は、加熱能力a1となるように圧縮機11の周波数およびポンプ17の回転数を制御し、沸き上げ運転を行う。一方で、ステップS2において、現在の貯湯量が2時間以内の出湯予定量よりも大きい場合には、現在時刻から2時間以内の出湯予定量は、現在の貯湯量で十分にまかなうことができると考えられるため、ステップS1へ戻り、追加沸き上げ運転が可能かの判断を継続して行う。 Next, in step S2, the current amount of hot water stored detected by the hot water storage temperature sensors 5a to 5d of the hot water storage tank 5 is compared with the amount of hot water scheduled to be discharged from the current time predicted by the hot water forecasting unit 39 to 2 hours later. .. The planned amount of hot water is calculated from the water supply temperature at the current time and the hot water supply set temperature or hot water filling set temperature set by the user from the remote controller 20. Here, when the current amount of hot water stored is smaller than the amount of hot water scheduled to be discharged within 2 hours, the time T and the planned amount of hot water discharged 2 hours after the current time are stored in the control unit 30 (step S3), and the heat pump unit 2 The operation in the normal boiling mode is started (step S4). The capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 as a1 so that the heating capacity maximizes the COP in the COP curve. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 so as to have the heating capacity a1, and performs the boiling operation. On the other hand, in step S2, when the current hot water storage amount is larger than the hot water storage amount within 2 hours, the hot water storage amount within 2 hours from the current time can be sufficiently covered by the current hot water storage amount. Therefore, the process returns to step S1 and continues to determine whether the additional boiling operation is possible.

ステップS4で、通常沸き上げモードでの運転が開始された場合、ステップS5では、流量センサ23によって給湯端末10からの出湯の有無を確認する。出湯がなければ、通常沸き上げモードでの運転を継続し(ステップS6)、貯湯タンク5の貯湯量が追加沸き上げ運転可能か否かを判断する(ステップS7)。貯湯温度センサ5dの検出温度が60度以上であり、追加沸き上げが不可能な場合には、沸き上げ運転を終了する。貯湯温度センサ5dの検出温度が60度未満であり、追加沸き上げが可能な場合には、ステップS8へ進み、2時間以内の出湯予想量と現在の貯湯量の比較を行う。ステップS8で、現在の貯湯量が2時間以内の出湯予定量よりも大きい場合には、沸き上げ運転を終了する。現在の貯湯量が2時間以内の出湯予定量よりも小さい場合には、ステップS5まで戻って、出湯の有無を確認する。 When the operation in the normal boiling mode is started in step S4, in step S5, the flow rate sensor 23 confirms whether or not hot water is discharged from the hot water supply terminal 10. If there is no hot water, the operation in the normal boiling mode is continued (step S6), and it is determined whether or not the amount of hot water stored in the hot water storage tank 5 can be additionally heated (step S7). If the detection temperature of the hot water storage temperature sensor 5d is 60 degrees or higher and additional boiling is not possible, the boiling operation is terminated. If the detection temperature of the hot water storage temperature sensor 5d is less than 60 degrees and additional boiling is possible, the process proceeds to step S8, and the expected amount of hot water discharged within 2 hours is compared with the current amount of hot water stored. In step S8, when the current amount of hot water stored is larger than the amount of hot water scheduled to be discharged within 2 hours, the boiling operation is terminated. If the current amount of hot water stored is smaller than the planned amount of hot water to be discharged within 2 hours, the process returns to step S5 and the presence or absence of hot water is confirmed.

一方で、ステップS5で出湯があった場合には、ステップS9に進む。ステップS9では、ステップS3で記憶した時刻Tまでの予測出湯量を、通常沸き上げで沸き上げ可能かを確認する。つまり、現在の不足湯量を算出し、通常沸き上げモードでの運転で沸き上げ可能な湯量との比較を行う。不足湯量(時刻Tまでの予測出湯量)は、給水温度、およびリモートコントローラ20からユーザーが設定した給湯設定温度あるいは湯張り設定温度に基づいて算出する。現在の不足湯量が、通常沸き上げモードでの運転で沸き上げ可能な湯量より小さい場合には、ステップS6へ進み、通常沸き上げモードでの運転による沸き上げ運転を継続し、前述のステップS7〜ステップS8の判断を行う。一方で、現在の不足湯量が、通常沸き上げモードでの運転で沸き上げ可能な湯量より大きい場合には、時刻Tにおいて貯湯量が不足することが予測されるため、急速沸き上げモードでの運転による沸き上げ運転に変更する(ステップS10)。この場合、能力導出部35は、ヒートポンプ部2の加熱能力をa2に決定し、沸き上げ制御部36は、加熱能力a2となるように圧縮機11の周波数およびポンプ17の回転数を制御し、沸き上げ運転を行う。 On the other hand, if there is hot water in step S5, the process proceeds to step S9. In step S9, it is confirmed whether the predicted amount of hot water discharged up to the time T stored in step S3 can be boiled by normal boiling. That is, the current amount of insufficient hot water is calculated and compared with the amount of hot water that can be boiled by operating in the normal boiling mode. The amount of insufficient hot water (estimated amount of hot water discharged until time T) is calculated based on the water supply temperature and the hot water supply set temperature or hot water filling set temperature set by the user from the remote controller 20. If the current amount of insufficient hot water is smaller than the amount of hot water that can be boiled by the operation in the normal boiling mode, the process proceeds to step S6, the boiling operation by the operation in the normal boiling mode is continued, and the above-mentioned steps S7 to S7 to The determination in step S8 is performed. On the other hand, if the current amount of insufficient hot water is larger than the amount of hot water that can be boiled in the normal boiling mode, it is predicted that the amount of hot water stored will be insufficient at time T, so the operation in the rapid boiling mode will be performed. The operation is changed to the boiling operation according to (step S10). In this case, the capacity deriving unit 35 determines the heating capacity of the heat pump unit 2 to be a2, and the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 so as to have the heating capacity a2. Perform boiling operation.

急速沸き上げモードでの運転開始後は、貯湯温度センサ5dの検出温度から追加沸き上げ運転が可能かの確認を行う(ステップS11)。貯湯温度センサ5dの検出温度が60度以上であれば、沸き上げ運転を終了する。貯湯温度センサ5dの検出温度が60度未満であれば、ステップS12へ進み、2時間以内の出湯予定量と現在の貯湯量の比較を行う。2時間以内の出湯予定量が現在の貯湯量より小さければ、十分な貯湯量が確保できているため、沸き上げ運転を終了する。2時間以内の出湯予定量が現在の貯湯量より大きければ、ステップS9へ戻り、再び現在の不足湯量と、通常沸き上げモードでの運転で沸き上げ可能な湯量の比較を行う。 After the operation in the rapid boiling mode is started, it is confirmed from the detection temperature of the hot water storage temperature sensor 5d whether the additional boiling operation is possible (step S11). If the detection temperature of the hot water storage temperature sensor 5d is 60 degrees or higher, the boiling operation is terminated. If the detection temperature of the hot water storage temperature sensor 5d is less than 60 degrees, the process proceeds to step S12, and the planned amount of hot water to be discharged within 2 hours is compared with the current amount of hot water stored. If the planned amount of hot water to be discharged within 2 hours is smaller than the current amount of hot water stored, a sufficient amount of hot water is stored and the boiling operation is terminated. If the planned amount of hot water to be discharged within 2 hours is larger than the current amount of hot water stored, the process returns to step S9, and the current amount of insufficient hot water is compared with the amount of hot water that can be boiled by operating in the normal boiling mode.

(4)タイムチャートを用いたヒートポンプ単独運転の説明
次に、図5のフローチャートを用いて説明した給湯システム1の動作を、図6の出湯状況に当てはめて説明する。図6は、一般的に1日のうちで出湯が多く沸き上げ運転が発生しやすい夕方から夜の時間帯における出湯状況および沸き上げ状況の一例を示した図であり、縦軸は貯湯タンク5内の貯湯量(左軸)と出湯量(右軸)を示し、横軸は時刻を示している。実線は実際の貯湯量の変化を、破線は時刻t0で予測されていた貯湯量の変化を示す。
(4) Explanation of Heat Pump Independent Operation Using Time Chart Next, the operation of the hot water supply system 1 described using the flowchart of FIG. 5 will be described by applying it to the hot water discharge state of FIG. FIG. 6 is a diagram showing an example of the hot water discharge status and the boiling status in the evening to night time zone in which hot water is generally generated frequently and boiling operation is likely to occur in a day, and the vertical axis is the hot water storage tank 5. The amount of hot water stored (left axis) and the amount of hot water discharged (right axis) are shown, and the horizontal axis shows the time. The solid line shows the actual change in the amount of hot water stored, and the broken line shows the change in the amount of hot water stored predicted at time t0.

貯湯タンク5は全量で100Lの温水を貯湯可能であり、ヒートポンプ部2は、通常沸き上げモードでの運転で30L/H、急速沸き上げモードでの運転で45L/Hの温水を沸き上げ可能とする。出湯および貯湯量の確認は10分毎に行われる。時刻t0(18時00分)では、貯湯タンク5内の貯湯量は50Lである。時刻t4〜t5(19時10分〜19時30分)の間に10Lの出湯、および時刻t7(20時00分)から97.5Lの出湯(図示省略)が、出湯予測部39により予測されている。それ以降の時刻においては出湯が予測されていないものとする。 The hot water storage tank 5 can store 100 L of hot water in total, and the heat pump unit 2 can boil 30 L / H in normal boiling mode and 45 L / H in rapid boiling mode. do. The amount of hot water discharged and the amount of hot water stored is checked every 10 minutes. At time t0 (18:00), the amount of hot water stored in the hot water storage tank 5 is 50 L. A hot water discharge of 10 L from time t4 to t5 (19:10 to 19:30) and a hot water discharge of 97.5 L from time t7 (20:00) (not shown) are predicted by the hot water forecasting unit 39. ing. It is assumed that the hot water is not predicted at the time after that.

時刻t0では、図5のフローチャートにおいて、ステップS1のとおり、貯湯タンク5が追加沸き上げ運転可能か判断される。時刻t0においては、貯湯温度センサ5dの温度は60度よりも低く、追加沸き上げが可能であると判断されるため、ステップS2へ進み、現在の貯湯量(50L)と、出湯予測部39によって予測される現在時刻から2時間以内の出湯予定量とを比較する(ステップS2)。ここで、2時間以内、つまり20時(時刻t7)までに、上述したとおり10Lの出湯と、97.5Lの出湯の2度の出湯があり、合計107.5Lの出湯が予測されている。したがって、現在の貯湯量が時刻t7までの出湯予定量よりも小さいため、時刻t7と出湯予定量107.5Lを記憶して(ステップS3)、通常沸き上げモードでの運転が開始される(ステップS4)。 At time t0, in the flowchart of FIG. 5, as shown in step S1, it is determined whether the hot water storage tank 5 can be additionally boiled. At time t0, the temperature of the hot water storage temperature sensor 5d is lower than 60 degrees, and it is determined that additional boiling is possible. Compare with the planned amount of hot water to be discharged within 2 hours from the predicted current time (step S2). Here, within 2 hours, that is, by 20:00 (time t7), as described above, there are two hot water discharges, 10 L hot water and 97.5 L hot water, and a total of 107.5 L hot water is predicted. Therefore, since the current amount of hot water stored is smaller than the amount of hot water scheduled to be discharged until time t7, the time t7 and the planned amount of hot water discharged 107.5 L are stored (step S3), and the operation in the normal boiling mode is started (step). S4).

通常沸き上げモードでの運転が開始されると、流量センサ23によって給湯端末10からの出湯の有無が確認される(ステップS5)。時刻t1までは出湯がないため、通常沸き上げモードでの運転による沸き上げ運転が継続され(ステップS6)、時刻t0〜t1の間は、通常沸き上げモードでの運転が継続されるとともに、ステップS5〜ステップS8の判断が繰り返される。 When the operation in the normal boiling mode is started, the flow rate sensor 23 confirms whether or not hot water is discharged from the hot water supply terminal 10 (step S5). Since there is no hot water until time t1, the boiling operation by the operation in the normal boiling mode is continued (step S6), and during the time t0 to t1, the operation in the normal boiling mode is continued and the step The determination in steps S5 to S8 is repeated.

次に、時刻t1(18時40分)において、出湯が確認される(ステップS5)。そして、ステップS9に進み、通常沸き上げモードでの運転による沸き上げ運転で時刻t7(20時)までに予測出湯量(107.5L)を沸き上げ可能かの確認が行われる。時刻t1における貯湯量は62.5Lであり、不足湯量は45Lとなる。時刻t7までの間に通常沸き上げモードでの運転で沸き上げ可能な湯量は、40L(30L/H×1時間20分)である。つまり、現在の不足湯量は、通常沸き上げモードでの運転で沸き上げ可能な湯量より大きくなるため、急速沸き上げモードでの運転に変更される(ステップS10)。 Next, at time t1 (18:40), the hot water is confirmed (step S5). Then, the process proceeds to step S9, and it is confirmed whether the predicted hot water discharge amount (107.5 L) can be boiled by the time t7 (20:00) in the boiling operation by the operation in the normal boiling mode. The amount of hot water stored at time t1 is 62.5 L, and the amount of insufficient hot water is 45 L. The amount of hot water that can be boiled by the operation in the normal boiling mode by the time t7 is 40 L (30 L / H × 1 hour 20 minutes). That is, since the current amount of insufficient hot water is larger than the amount of hot water that can be boiled in the normal boiling mode, the operation is changed to the rapid boiling mode (step S10).

急速沸き上げモードでの運転開始後は、図5のフローチャートのステップS11、S12の判断が行われるが、2時間以内の出湯予定量(107.5L)が現在の貯湯量(62.5L)より大きいため、急速沸き上げモードでの運転が継続される。時刻t2〜t5においても、ステップS9〜S12が繰り返され、急速沸き上げモードでの運転が継続される。 After the operation is started in the rapid boiling mode, the judgments of steps S11 and S12 in the flowchart of FIG. 5 are made, but the planned amount of hot water (107.5 L) within 2 hours is larger than the current amount of hot water (62.5 L). Due to its large size, operation in the rapid boiling mode is continued. At times t2 to t5, steps S9 to S12 are repeated, and the operation in the rapid boiling mode is continued.

時刻t6(19時50分)においては、ステップS9において、不足湯量が5Lとなり、時刻t7までに通常沸き上げモードでの運転で沸き上げ可能な湯量も5L(30L/H×10分)となる。つまり、現在の不足湯量は、通常沸き上げモードでの運転で沸き上げ可能な湯量以下となる。よって、通常沸き上げモードでの運転で十分な貯湯量を確保できると予測されるため、ステップS6へ進み、急速沸き上げモードでの運転から通常沸き上げモードでの運転へ変更される。続いてステップS7およびステップS8へ進むが、通常沸き上げモードでの運転は継続される。 At time t6 (19:50), the amount of insufficient hot water becomes 5 L in step S9, and the amount of hot water that can be boiled by the operation in the normal boiling mode by time t7 also becomes 5 L (30 L / H × 10 minutes). .. That is, the current amount of insufficient hot water is less than or equal to the amount of hot water that can be boiled by operating in the normal boiling mode. Therefore, since it is predicted that a sufficient amount of hot water can be secured by the operation in the normal boiling mode, the process proceeds to step S6, and the operation in the rapid boiling mode is changed to the operation in the normal boiling mode. Subsequently, the process proceeds to step S7 and step S8, but the operation in the normal boiling mode is continued.

そして、時刻t7(20時00分)においても、ステップS5において出湯が確認されず、通常沸き上げモードでの運転が継続する(ステップS6)。続いて、ステップS7では追加沸き上げ可能と判断されるが、ステップS8では、2時間以内(22時00分まで)の出湯予定量97.5L(出湯は20時00分の一度のみ)に対し、貯湯量が97.5Lであり、貯湯量が出湯予定量以上となり、沸き上げ運転(通常沸き上げモードでの運転)は終了する。 Then, even at time t7 (20:00), the hot water is not confirmed in step S5, and the operation in the normal boiling mode continues (step S6). Subsequently, in step S7, it is determined that additional boiling is possible, but in step S8, the planned amount of hot water to be discharged within 2 hours (until 22:00) is 97.5 L (the hot water is discharged only once at 20:00). , The amount of hot water stored is 97.5 L, the amount of hot water stored exceeds the planned amount of hot water to be discharged, and the boiling operation (operation in the normal boiling mode) is completed.

以上説明したように、本実施形態の給湯システム1によれば、大量出湯が見込まれる、あるいは大量出湯が生じていることにより、通常沸き上げモードでの運転では熱量不足が生じ易い定の条件の一例として、現在の貯湯量が、出湯予測部39によって予測される現在時刻から所定時間以内の出湯量を下回り、通常沸き上げ運転による沸き上げ運転では十分な貯湯量を確保できなくなったことを条件として、急速沸き上げ運転が行われる。これにより、急速沸き上げモードでの運転によって急速沸き上げを行うことによって、補助加熱併用運転による加熱比率を減少させることができるため、給湯システム1全体の総合的なエネルギー効率を向上できる。 As described above, according to the hot water supply system 1 of the present embodiment, a large amount of hot water is expected to be discharged, or a large amount of hot water is generated, so that a certain amount of heat is likely to be insufficient in the operation in the normal boiling mode. As an example, it is a condition that the current hot water storage amount is less than the hot water discharge amount within a predetermined time from the current time predicted by the hot water discharge prediction unit 39, and a sufficient hot water storage amount cannot be secured by the boiling operation by the normal boiling operation. As a result, a rapid boiling operation is performed. As a result, the heating ratio due to the auxiliary heating combined operation can be reduced by performing the rapid boiling by the operation in the rapid boiling mode, so that the overall energy efficiency of the entire hot water supply system 1 can be improved.

(5)変形例
以下、種々の変形例を説明する。なお、以下の変形例の構成については、特に説明したもの以外は上述の実施形態と同様であるため、説明を省略し、以下では上述の実施形態と異なる部分のみについて説明する。
(5) Modification Examples Various modifications will be described below. Since the configuration of the following modification is the same as that of the above-described embodiment except for those described in particular, the description thereof will be omitted, and only the parts different from the above-described embodiment will be described below.

(5−1)変形例A
変形例Aでは、大量出湯が見込まれる、あるいは、大量出湯が生じていることにより、前記通常沸き上げ運転での沸き上げでは熱量不足が生じ易い所定の条件の一例として、貯湯タンク5の貯湯量が所定値よりも少なくなって湯切れと判断され、通常沸き上げモードでの運転による沸き上げを開始したにもかかわらず、貯湯量がさらに減少した場合に、急速沸き上げモードでの運転が行われる。貯湯量の確認は、貯湯タンク5の側面に取り付けられた貯湯温度センサ5a〜5dで検出された温度によって行う。この例によれば、貯湯温度センサ5bで検出された温度が貯湯目標温度より所定温度以上低くなり、貯湯量が第1貯湯量(例えば、貯湯タンク5のタンク容量100Lに対して、40L)が以下となって、通常沸き上げモードでの運転が開始された後、貯湯温度センサ5bよりも貯湯タンク5の上部に設けられた貯湯温度センサ5aが貯湯目標温度より所定温度以上低くなり、第1貯湯量よりも小さい第2貯湯量(例えば、20L)となった場合に急速沸き上げモードでの運転が行われる。
(5-1) Modification A
In the modified example A, the amount of hot water stored in the hot water storage tank 5 is an example of a predetermined condition in which a large amount of hot water is expected to be discharged or a large amount of hot water is generated, so that the amount of heat is likely to be insufficient in the boiling in the normal boiling operation. Is less than the specified value and it is judged that the hot water has run out, and even though the boiling by the operation in the normal boiling mode is started, when the amount of hot water stored is further reduced, the operation in the rapid boiling mode is performed. Will be. The amount of hot water stored is confirmed by the temperature detected by the hot water storage temperature sensors 5a to 5d attached to the side surface of the hot water storage tank 5. According to this example, the temperature detected by the hot water storage temperature sensor 5b is lower than the hot water storage target temperature by a predetermined temperature or more, and the hot water storage amount is the first hot water storage amount (for example, 40 L with respect to the tank capacity 100 L of the hot water storage tank 5). After the operation in the normal boiling mode is started, the hot water storage temperature sensor 5a provided above the hot water storage tank 5 becomes lower than the hot water storage target temperature by a predetermined temperature or more, and the first When the second hot water storage amount (for example, 20 L) is smaller than the hot water storage amount, the operation in the rapid boiling mode is performed.

図7は、本変形例のフローチャートを示している。ステップS101では、貯湯温度センサ5bの検出温度がy度(例えば60度)より低いか判断する。貯湯温度センサ5bの検出温度がy度よりも低い場合は、貯湯量が所定値(第1所定値、例えば40L)以下であり、湯切れをしていると判断され、通常沸き上げモードでの運転を開始する(ステップS102)。通常沸き上げモードでの運転開始後は、給湯端末10からの出湯の有無を確認する(ステップS103)。出湯がなければ、貯湯温度センサ5bの検出温度がy度以上になるまで、ステップS103およびステップS105の判断を繰り返しながら通常沸き上げモードでの運転を行う。貯湯温度センサ5bの検出温度がy度以上になれば、貯湯タンク5の貯湯量が十分であると判断され、沸き上げ運転を終了する。 FIG. 7 shows a flowchart of this modification. In step S101, it is determined whether the detection temperature of the hot water storage temperature sensor 5b is lower than y degrees (for example, 60 degrees). When the detection temperature of the hot water storage temperature sensor 5b is lower than y degrees, the hot water storage amount is equal to or less than a predetermined value (first predetermined value, for example, 40 L), and it is determined that the hot water has run out. The operation is started (step S102). After starting the operation in the normal boiling mode, it is confirmed whether or not hot water is discharged from the hot water supply terminal 10 (step S103). If there is no hot water, the operation in the normal boiling mode is performed while repeating the determinations in steps S103 and S105 until the detected temperature of the hot water storage temperature sensor 5b becomes y degrees or higher. When the detection temperature of the hot water storage temperature sensor 5b becomes y degrees or higher, it is determined that the hot water storage amount of the hot water storage tank 5 is sufficient, and the boiling operation is terminated.

一方で、ステップS103で出湯が確認された場合は、ステップS104へ進み、貯湯タンク5において貯湯温度センサ5bよりも上部に配置される貯湯温度センサ5aの検出温度がz度(例えば60度)より低いかを判断する。ここでは、貯湯量が、湯切れ判断をされた第1所定値よりもさらに低い第2所定値(例えば20L)になっているかの判断をしている。検出温度がz度以上であれば、ステップS105へ進み、貯湯温度センサ5bの検出温度がy度以上になるまで、ステップS103およびステップS105の判断を繰り返しながら通常沸き上げモードでの運転を行う。 On the other hand, if hot water is confirmed in step S103, the process proceeds to step S104, and the detection temperature of the hot water storage temperature sensor 5a arranged above the hot water storage temperature sensor 5b in the hot water storage tank 5 is from z degrees (for example, 60 degrees). Judge if it is low. Here, it is determined whether or not the amount of hot water stored is a second predetermined value (for example, 20 L), which is even lower than the first predetermined value determined to run out of hot water. If the detected temperature is z degrees or higher, the process proceeds to step S105, and the operation in the normal boiling mode is performed while repeating the determinations in steps S103 and S105 until the detected temperature of the hot water storage temperature sensor 5b becomes y degrees or higher.

検出温度がz度よりも低い場合には、貯湯量は第2所定値以下であるため、通常沸き上げモードでの運転では貯湯量の増加が不十分であると判断され、急速沸き上げモードでの運転が開始される(ステップS106)。急速沸き上げモードでの運転開始後は、貯湯温度センサ5aの検出温度を測定し(ステップS107)、検出温度がz度以上になるまで急速沸き上げモードでの運転が継続される。検出温度がz度以上になれば、通常沸き上げモードでの運転に変更し(ステップS108)、沸き上げ運転を継続する。そして、貯湯温度センサ5bの検出温度によって、湯切れが継続しているかを確認し、検出温度がy度以上となって、湯切れ状態が解消されれば沸き上げ運転を終了する。 When the detected temperature is lower than z degrees, the amount of hot water stored is equal to or less than the second predetermined value. Therefore, it is judged that the increase in the amount of hot water is insufficient in the operation in the normal boiling mode, and the rapid boiling mode is used. Operation is started (step S106). After the operation in the rapid boiling mode is started, the detected temperature of the hot water storage temperature sensor 5a is measured (step S107), and the operation in the rapid boiling mode is continued until the detected temperature reaches z degrees or higher. When the detected temperature becomes z degrees or higher, the operation is changed to the normal boiling mode (step S108), and the boiling operation is continued. Then, it is confirmed by the detection temperature of the hot water storage temperature sensor 5b whether the hot water continues to run out, and when the detected temperature becomes y degrees or higher and the hot water running out state is resolved, the boiling operation is terminated.

このような構成にすることで、電源投入後すぐ等、履歴情報記憶部38に履歴情報が蓄積されておらず、出湯予測部39による出湯パターンの解析が不可能な場合であっても、補助加熱併用運転の動作頻度を減らすことができ、給湯システム1全体のエネルギー効率を向上させることができる。また、貯湯タンク5に備え付けられた貯湯温度センサ5a〜5dによる貯湯量から、補助加熱併用運転が予測するため、簡易な制御によって給湯システム1全体のエネルギー効率を向上させることができる。 With such a configuration, even if the history information is not accumulated in the history information storage unit 38 immediately after the power is turned on and the hot water discharge pattern cannot be analyzed by the hot water supply prediction unit 39, it is assisted. The operation frequency of the combined heating operation can be reduced, and the energy efficiency of the entire hot water supply system 1 can be improved. Further, since the auxiliary heating combined operation is predicted from the amount of hot water stored by the hot water storage temperature sensors 5a to 5d provided in the hot water storage tank 5, the energy efficiency of the entire hot water supply system 1 can be improved by simple control.

(5−2)変形例B
変形Bでは、大量出湯が見込まれる、あるいは、大量出湯が生じていることにより、前記通常沸き上げ運転での沸き上げでは熱量不足が生じ易い所定の条件の一例として、使用者からリモートコントローラ20によって、浴槽10aに目標温度の湯を供給する湯張り指示があった場合に、急速沸き上げモードでの運転が行われる。
(5-2) Modification B
In the modified B, a large amount of hot water is expected to be discharged, or a large amount of hot water is generated. When there is an instruction to fill the bathtub 10a with hot water having a target temperature, the operation in the rapid boiling mode is performed.

図8は、本変形例のフローチャートを示している。ステップS201では、湯張り指示の有無を確認する。湯張り指示があった場合には、ステップS202へ進み、制御部30のタイマT1の計測を開始し、ステップS203でタイマT1がα分(例えば5分)になるまでタイマT1の確認を継続する。タイマT1がα分になれば、タイマT1をリセットし(ステップS204)、湯張りが継続しているかの確認を行う(ステップS205)。この時点で湯張り指示が継続していなければ、ステップS201に戻り、次の湯張り指示があるまで待機する。湯張り指示が継続している場合には、急速沸き上げモードでの沸き上げ運転を開始する(ステップS206)。このタイマT1によって、湯張り指示受信から沸き上げ運転開始まで所定時間あけることにより、貯湯タンク5の下部に給水されたと推定される。 FIG. 8 shows a flowchart of this modification. In step S201, it is confirmed whether or not there is a hot water filling instruction. When the hot water filling instruction is given, the process proceeds to step S202, the measurement of the timer T1 of the control unit 30 is started, and the confirmation of the timer T1 is continued until the timer T1 reaches α minutes (for example, 5 minutes) in step S203. .. When the timer T1 reaches the α minute, the timer T1 is reset (step S204), and it is confirmed whether the hot water filling is continued (step S205). If the hot water filling instruction is not continued at this point, the process returns to step S201 and waits until the next hot water filling instruction is given. If the hot water filling instruction is continued, the boiling operation in the rapid boiling mode is started (step S206). It is presumed that the timer T1 supplied water to the lower part of the hot water storage tank 5 by leaving a predetermined time from the reception of the hot water filling instruction to the start of the boiling operation.

急速沸き上げモードでの運転が開始されると、湯張りが完了しているかの確認を行う(ステップS207)。なお、湯張りの完了は、浴槽10aへ供給される温水の量が湯張り設定湯量に到達したと判定されるか、あるいは、リモートコントローラ20からの終了指示により判定される。ステップS207で湯張りが完了したと判断されると、タイマT2の計測を開始する(ステップS208)。そして、貯湯タンク5の側面底部に設置された貯湯温度センサ5dの検出温度x度(例えば、60度)以上となる(ステップS209)、あるいは、タイマT2の測定時間がβ分(例えば20分)となる(ステップS210)まで、ステップS209およびS210の判定を繰り返しながら、急速沸き上げモードでの運転が継続する。貯湯温度センサ5dの検出温度x度以上となる、あるいは、β分が経過すれば、タイマT2をリセットして(ステップS211)沸き上げ運転を終了させる。 When the operation in the rapid boiling mode is started, it is confirmed whether the hot water filling is completed (step S207). The completion of hot water filling is determined by determining that the amount of hot water supplied to the bathtub 10a has reached the hot water filling set amount, or by a termination instruction from the remote controller 20. When it is determined in step S207 that the hot water filling is completed, the measurement of the timer T2 is started (step S208). Then, the detection temperature of the hot water storage temperature sensor 5d installed at the bottom of the side surface of the hot water storage tank 5 becomes x degrees (for example, 60 degrees) or more (step S209), or the measurement time of the timer T2 is β minutes (for example, 20 minutes). (Step S210), the operation in the rapid boiling mode is continued while repeating the determinations of steps S209 and S210. When the detection temperature of the hot water storage temperature sensor 5d becomes x degrees or higher, or when β minutes have elapsed, the timer T2 is reset (step S211) to end the boiling operation.

このような構成とすることで、電源投入後すぐ等、履歴情報記憶部38に履歴情報が蓄積されておらず、出湯予測部39による出湯パターンの解析が不可能な場合であっても、補助加熱併用運転の動作頻度を減らすことができ、給湯システム1全体のエネルギー効率を向上させることができる。また、特に、貯湯タンク5の容量が比較的小さい場合には、湯張りによって貯湯タンク5が湯切れしてガス加熱器(補助加熱部)6の運転が必要となる可能性が高い。そのため、湯張り指示があった段階で急速沸き上げモードでの運転を開始することによって、より早くから急速沸き上げを開始することができるため、補助加熱併用運転の動作頻度を減らし、給湯システム1全体のエネルギー効率を向上させることができる。湯張り完了後には、入浴が予想され、シャワーによる大量出湯が予測される。継続して急速沸き上げモードによる運転を行うことで、湯張り完了後に大量出湯が予測されるような場合であっても、補助加熱併用運転の動作頻度を減らすことができ、給湯システム1全体のエネルギー効率を向上させることができる。 With such a configuration, even if the history information is not accumulated in the history information storage unit 38 immediately after the power is turned on and the hot water discharge pattern cannot be analyzed by the hot water supply prediction unit 39, it is assisted. The operation frequency of the combined heating operation can be reduced, and the energy efficiency of the entire hot water supply system 1 can be improved. Further, particularly when the capacity of the hot water storage tank 5 is relatively small, there is a high possibility that the hot water storage tank 5 runs out of hot water due to hot water filling and the gas heater (auxiliary heating unit) 6 needs to be operated. Therefore, by starting the operation in the rapid boiling mode at the stage when the hot water filling instruction is given, the rapid boiling can be started earlier, so that the operation frequency of the auxiliary heating combined operation is reduced and the entire hot water supply system 1 is operated. Energy efficiency can be improved. After the completion of hot water filling, bathing is expected, and a large amount of hot water is expected to be taken out by the shower. By continuously operating in the rapid boiling mode, it is possible to reduce the operation frequency of the auxiliary heating combined operation even when a large amount of hot water is expected to be discharged after the completion of hot water filling, and the entire hot water supply system 1 can be operated. Energy efficiency can be improved.

なお、本変形例では、湯張り指示受信からα分後に急速沸き上げモードでの運転を開始したが、指示受信後ただちに急速沸き上げモードでの運転を開始してもよい。指示受信後ただちに急速沸き上げモードでの運転を開始すれば、より多くの湯を沸き上げることができ、結果として補助加熱併用運転の動作頻度を減らすことができる。 In this modified example, the operation in the rapid boiling mode was started α minutes after receiving the hot water filling instruction, but the operation in the rapid boiling mode may be started immediately after receiving the instruction. If the operation in the rapid boiling mode is started immediately after receiving the instruction, more hot water can be boiled, and as a result, the operation frequency of the auxiliary heating combined operation can be reduced.

(5−3)変形例C
本実施形態では、通常沸き上げモードでの運転中に出湯があった場合に、時刻Tまでの予測出湯量を、通常沸き上げモードでの運転で沸き上げ可能かの確認を行った。しかし、出湯の有無に代えて、外気温度センサ21により検出された外気温度が所定温度以下となった場合、あるいは所定温度以上低下した場合に、通常沸き上げモードでの運転で沸き上げ可能かの確認を行ってもよい。こうすることで、通常沸き上げモードでの運転中に外気温度が低下して、通常沸き上げモードでの運転によって沸き上げ可能な湯量が減少した場合であっても、補助加熱併用運転の動作頻度を減らすことができ、給湯システム1全体のエネルギー効率を向上させることができる。
(5-3) Modification C
In the present embodiment, when hot water is discharged during the operation in the normal boiling mode, it is confirmed whether the predicted hot water discharge amount up to time T can be boiled by the operation in the normal boiling mode. However, if the outside air temperature detected by the outside air temperature sensor 21 falls below a predetermined temperature or drops above a predetermined temperature instead of the presence or absence of hot water, is it possible to boil by operating in the normal boiling mode? Confirmation may be performed. By doing so, even if the outside air temperature drops during the operation in the normal boiling mode and the amount of hot water that can be boiled decreases due to the operation in the normal boiling mode, the operation frequency of the auxiliary heating combined operation is performed. Can be reduced, and the energy efficiency of the entire hot water supply system 1 can be improved.

また、出湯の有無に代えて、給湯端末10へ貯湯タンク5の湯が供給される際に混合される水の温度(給水温度)が所定温度以下となった場合、あるいは所定温度以上低下した場合に、通常沸き上げモードでの運転で沸き上げ可能かの確認を行ってもよい。ユーザーが設定した給湯設定温度あるいは湯張り設定温度が所定温度以上となった場合、あるいは所定温度以上上昇した場合に、通常沸き上げモードでの運転で沸き上げ可能かの確認を行ってもよい。こうすることで、通常沸き上げモードでの運転中に、所定時刻Tまでに必要な予測出湯量が増加した場合であっても、補助加熱併用運転の動作頻度を減らすことができ、給湯システム1全体のエネルギー効率を向上させることができる。 In addition, when the temperature of the water (water supply temperature) mixed when the hot water of the hot water storage tank 5 is supplied to the hot water supply terminal 10 is equal to or lower than the predetermined temperature, or when the temperature is lowered by the predetermined temperature or more, instead of the presence or absence of hot water supply. In addition, it may be confirmed whether boiling is possible by operating in the normal boiling mode. When the hot water supply set temperature or the hot water filling set temperature set by the user exceeds the predetermined temperature, or rises above the predetermined temperature, it may be confirmed whether the boiling is possible by the operation in the normal boiling mode. By doing so, even if the predicted amount of hot water required by the predetermined time T increases during the operation in the normal boiling mode, the operation frequency of the auxiliary heating combined operation can be reduced, and the hot water supply system 1 The overall energy efficiency can be improved.

(5−4)変形例D
上述の実施形態では、効率算出部34aは、COPカーブ算出部33で取得されたCOPカーブに基づいて、ヒートポンプ部2の1次エネルギー効率を導出し、ガス加熱器6の1次エネルギー効率との比較により急速沸き上げモードでの運転の加熱能力を算出した。しかし、COPカーブ算出部33で取得されたCOPカーブに基づいて、ヒートポンプ部2の使用料金を算出し、ガス加熱器6の使用料金との比較により、急速沸き上げモードでの運転の加熱能力を導出してもよい。
(5-4) Modification D
In the above-described embodiment, the efficiency calculation unit 34a derives the primary energy efficiency of the heat pump unit 2 based on the COP curve acquired by the COP curve calculation unit 33, and determines the primary energy efficiency of the gas heater 6. The heating capacity of the operation in the rapid boiling mode was calculated by comparison. However, the usage charge of the heat pump unit 2 is calculated based on the COP curve acquired by the COP curve calculation unit 33, and the heating capacity of the operation in the rapid boiling mode is calculated by comparing with the usage charge of the gas heater 6. It may be derived.

図9は、ヒートポンプ部2およびガス加熱器6について、加熱能力(横軸)と単位加熱能力あたりの使用料金(縦軸)の関係を示している。変形例Dでは、制御部30は使用料金算出部34bを有しており、使用料金算出部34bは、COPカーブ算出部33で取得されたCOPカーブに基づいて、単位加熱能力あたりの使用料金を算出する。それぞれの使用料金は、単位時間当たりの消費量に使用料金単価を掛け合わせることで求められる。ヒートポンプ部2の電力消費量は、加熱能力をCOPで割って算出されるため、図9に示す通り、単位能力あたりの使用料金は加熱能力により変化し、加熱能力a1において最小値eとなる。一方で、ガス加熱器6では、単位能力あたりの使用料金は加熱能力にかかわらず一定の使用料金fとなる。 FIG. 9 shows the relationship between the heating capacity (horizontal axis) and the usage charge per unit heating capacity (vertical axis) for the heat pump unit 2 and the gas heater 6. In the modified example D, the control unit 30 has a usage charge calculation unit 34b, and the usage charge calculation unit 34b calculates the usage charge per unit heating capacity based on the COP curve acquired by the COP curve calculation unit 33. calculate. Each usage fee is calculated by multiplying the consumption per unit time by the usage fee unit price. Since the power consumption of the heat pump unit 2 is calculated by dividing the heating capacity by the COP, as shown in FIG. 9, the usage charge per unit capacity changes depending on the heating capacity and becomes the minimum value e in the heating capacity a1. On the other hand, in the gas heater 6, the usage charge per unit capacity is a constant usage charge f regardless of the heating capacity.

通常沸き上げモードでの運転が行われる場合、能力導出部35は、図3のCOPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出する。そして、沸き上げ制御部36は、加熱能力a1に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数およびポンプ17の回転数を制御する。つまり、通常沸き上げモードでの運転では、ヒートポンプ効率が最大となる能力でヒートポンプ部2が動作する。 When the operation is performed in the normal boiling mode, the capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 as a1 so that the heating capacity maximizes the COP in the COP curve of FIG. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 based on the heating capacity a1 until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature. That is, in the normal boiling mode operation, the heat pump unit 2 operates with the ability to maximize the heat pump efficiency.

一方で、急速沸き上げモードでの運転が行われる場合には、能力導出部35は、ヒートポンプ部2の使用料金がガス加熱器6の使用料金と同一となるように、ヒートポンプ部2の加熱能力を導出する。したがって、能力導出部35は、図9に示すように、COPカーブに基づいて算出した使用料金のカーブに基づいて、ヒートポンプ部2の使用料金がガス加熱器6の使用料金fと同一となるように、ヒートポンプ部2の加熱能力をa3と導出する。そして、沸き上げ制御部36は加熱能力a3に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数およびポンプ17の回転数を制御する。 On the other hand, when the operation is performed in the rapid boiling mode, the capacity deriving unit 35 has a heating capacity of the heat pump unit 2 so that the usage charge of the heat pump unit 2 is the same as the usage charge of the gas heater 6. Is derived. Therefore, as shown in FIG. 9, the capacity deriving unit 35 makes the usage charge of the heat pump unit 2 the same as the usage charge f of the gas heater 6 based on the usage charge curve calculated based on the COP curve. In addition, the heating capacity of the heat pump unit 2 is derived as a3. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 based on the heating capacity a3 until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature.

このような構成とすることで、ヒートポンプ部2の使用料金がガス加熱器6の使用料金より高くなるのを抑制でき、給湯システム1全体で使用料金が増加することを抑制できる。 With such a configuration, it is possible to prevent the usage charge of the heat pump unit 2 from becoming higher than the usage charge of the gas heater 6, and it is possible to suppress an increase in the usage charge of the entire hot water supply system 1.

(5−5)変形例E
また、COPカーブ算出部33で取得されたCOPカーブに基づいて、ヒートポンプ部2の炭素排出量を算出し、ガス加熱器6の炭素排出量との比較により、急速沸き上げモードでの運転の加熱能力を導出してもよい。
(5-5) Modification E
Further, the carbon emission amount of the heat pump unit 2 is calculated based on the COP curve acquired by the COP curve calculation unit 33, and the carbon emission amount of the gas heater 6 is compared with the heating of the operation in the rapid boiling mode. The ability may be derived.

図10は、ヒートポンプ部2およびガス加熱器6について、加熱能力(横軸)と単位加熱能力あたりの炭素排出量(縦軸)の関係を示している。変形例Eでは、制御部30は炭素排出量算出部34cを有しており、炭素排出量算出部34cは、COPカーブ算出部33で取得されたCOPカーブに基づいて、単位加熱能力あたりの炭素排出量を算出する。それぞれの炭素排出量は、単位能力当たりの二酸化炭素排出係数を機器効率で割ることで求められる。ヒートポンプ部2は電力によって駆動される。したがって、ヒートポンプ部2の単位能力あたりの炭素排出量は、発電における単位能力あたりの二酸化炭素排出量をCOPで割ることで算出され、図10に示す通り、単位能力あたりの炭素排出量は加熱能力により変化し、加熱能力a1において最小値gとなる。一方で、ガス加熱器6では、単位能力あたりの炭素排出量は加熱能力にかかわらず一定の炭素排出量hとなる。 FIG. 10 shows the relationship between the heating capacity (horizontal axis) and the carbon emission amount per unit heating capacity (vertical axis) for the heat pump unit 2 and the gas heater 6. In the modification E, the control unit 30 has a carbon emission calculation unit 34c, and the carbon emission calculation unit 34c has carbon per unit heating capacity based on the COP curve acquired by the COP curve calculation unit 33. Calculate emissions. Each carbon emission amount is calculated by dividing the carbon dioxide emission factor per unit capacity by the equipment efficiency. The heat pump unit 2 is driven by electric power. Therefore, the carbon emission amount per unit capacity of the heat pump unit 2 is calculated by dividing the carbon dioxide emission amount per unit capacity in power generation by the COP, and as shown in FIG. 10, the carbon emission amount per unit capacity is the heating capacity. It changes with the above and becomes the minimum value g in the heating capacity a1. On the other hand, in the gas heater 6, the carbon emission amount per unit capacity is a constant carbon emission amount h regardless of the heating capacity.

通常沸き上げモードでの運転が行われる場合、能力導出部35は、図3のCOPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出する。そして、沸き上げ制御部36は、加熱能力a1に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数およびポンプ17の回転数を制御する。つまり、通常沸き上げモードでの運転では、ヒートポンプ効率が最大となる能力でヒートポンプ部2が動作する。 When the operation is performed in the normal boiling mode, the capacity deriving unit 35 derives the heating capacity of the heat pump unit 2 as a1 so that the heating capacity maximizes the COP in the COP curve of FIG. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 based on the heating capacity a1 until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature. That is, in the normal boiling mode operation, the heat pump unit 2 operates with the ability to maximize the heat pump efficiency.

一方で、急速沸き上げモードでの運転が行われる場合には、能力導出部35は、ヒートポンプ部2の炭素排出量がガス加熱器6の炭素排出量と同一となるように、ヒートポンプ部2の加熱能力を導出する。したがって、能力導出部35は、図10に示すように、COPカーブに基づいて算出した炭素排出量のカーブに基づいて、ヒートポンプ部2の炭素排出量がガス加熱器6の炭素排出量hと同一となるように、ヒートポンプ部2の加熱能力をa4と導出する。そして、沸き上げ制御部36は加熱能力a4に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数およびポンプ17の回転数を制御する。 On the other hand, when the operation is performed in the rapid boiling mode, the capacity deriving unit 35 of the heat pump unit 2 so that the carbon emission amount of the heat pump unit 2 is the same as the carbon emission amount of the gas heater 6. Derived the heating capacity. Therefore, as shown in FIG. 10, the capacity deriving unit 35 has the same carbon emission amount h of the heat pump unit 2 as the carbon emission amount h of the gas heater 6 based on the carbon emission amount curve calculated based on the COP curve. The heating capacity of the heat pump unit 2 is derived as a4 so as to be. Then, the boiling control unit 36 controls the frequency of the compressor 11 and the rotation speed of the pump 17 based on the heating capacity a4 until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature.

このような構成とすることで、ヒートポンプ部2の炭素排出量がガス加熱器6の炭素排出量より高くなるのを抑制でき、給湯システム1全体の炭素排出量が増加することを抑制できる。 With such a configuration, it is possible to suppress the carbon emission amount of the heat pump unit 2 from becoming higher than the carbon emission amount of the gas heater 6, and it is possible to suppress an increase in the carbon emission amount of the entire hot water supply system 1.

(5−6)変形例F
上述の実施形態では、急速沸き上げモードでの運転時の加熱能力(a2)における1次エネルギー効率がガス加熱器6の1次エネルギー効率dと同一になるようにヒートポンプ部2の加熱能力を導出した。しかし、加熱能力の設定については、これに限定されず、外気温度が同一である場合において、急速沸き上げモードでの運転時のヒートポンプ部2の加熱能力が、通常沸き上げモードでの運転時の加熱能力(a1)より大きく、かつ、急速沸き上げモードでの運転時のヒートポンプ部2のヒートポンプ効率が、通常沸き上げモードでの運転時のヒートポンプ部2のヒートポンプ効率より低いようにする限り、種々の設定が可能である。
(5-6) Modification F
In the above-described embodiment, the heating capacity of the heat pump unit 2 is derived so that the primary energy efficiency in the heating capacity (a2) during operation in the rapid boiling mode is the same as the primary energy efficiency d of the gas heater 6. bottom. However, the setting of the heating capacity is not limited to this, and when the outside air temperature is the same, the heating capacity of the heat pump unit 2 during operation in the rapid boiling mode is the same as that during operation in the normal boiling mode. Various as long as it is larger than the heating capacity (a1) and the heat pump efficiency of the heat pump unit 2 during operation in the rapid boiling mode is lower than the heat pump efficiency of the heat pump unit 2 during operation in the normal boiling mode. Can be set.

同様に、上述の変形例Dおよび変形例Fでは、急速沸き上げモードでの運転時の加熱能力(a3あるいはa4)における単位能力あたりの使用料金あるいは、単位能力あたりの炭素排出量がガス加熱器6と同一となるようにヒートポンプ部2の加熱能力を導出した。しかし、加熱能力の設定については、これに限定されず、外気温度が同一である場合において、急速沸き上げモードでの運転時のヒートポンプ部2の加熱能力が、通常沸き上げモードでの運転時の加熱能力(a1)より大きく、かつ、急速沸き上げモードでの運転時のヒートポンプ部2のヒートポンプ効率が、通常沸き上げモードでの運転時のヒートポンプ部2のヒートポンプ効率より高くなるようにする限り、種々の設定が可能である。 Similarly, in the above-mentioned modified examples D and F, the usage fee per unit capacity or the carbon emission amount per unit capacity in the heating capacity (a3 or a4) during operation in the rapid boiling mode is the gas heater. The heating capacity of the heat pump unit 2 was derived so as to be the same as 6. However, the setting of the heating capacity is not limited to this, and when the outside air temperature is the same, the heating capacity of the heat pump unit 2 during operation in the rapid boiling mode is the same as that during operation in the normal boiling mode. As long as it is larger than the heating capacity (a1) and the heat pump efficiency of the heat pump unit 2 during operation in the rapid boiling mode is higher than the heat pump efficiency of the heat pump unit 2 during operation in the normal boiling mode. Various settings are possible.

変形例Dについては、急速沸き上げモードでの加熱能力は、そのときの外気温度においてCOPが最大となる加熱能力よりも大きく、かつ、急速沸き上げモードでの単位能力あたりの使用料金が、ガス加熱器6の単位能力あたりの使用料金以下であればよい。また、変形例Eについては、急速沸き上げモードでの加熱能力は、そのときの外気温度においてCOPが最大となる加熱能力よりも大きく、かつ、急速沸き上げモードでの単位能力あたりの炭素排出量が、ガス加熱器6の単位能力あたりの炭素排出量以下であればよい。 Regarding the modification D, the heating capacity in the rapid boiling mode is larger than the heating capacity at which the COP is maximized at the outside air temperature at that time, and the usage fee per unit capacity in the rapid boiling mode is gas. It may be less than or equal to the usage fee per unit capacity of the heater 6. Further, in the modified example E, the heating capacity in the rapid boiling mode is larger than the heating capacity at which the COP is maximized at the outside air temperature at that time, and the carbon emission amount per unit capacity in the rapid boiling mode is increased. However, it may be less than or equal to the carbon emission amount per unit capacity of the gas heater 6.

また、通常沸き上げモードでの運転時の加熱能力についても、COPカーブにおいて、COPが最大となる加熱能力となるように、ヒートポンプ部2の加熱能力をa1と導出したが、これに限定されず、通常沸き上げモードでの運転時の加熱能力は比較的COPが高くなる範囲で種々設定可能である。 Further, regarding the heating capacity during operation in the normal boiling mode, the heating capacity of the heat pump unit 2 is derived as a1 so as to maximize the COP in the COP curve, but the heating capacity is not limited to this. The heating capacity during operation in the normal boiling mode can be variously set within a range in which the COP is relatively high.

(5−7)変形例G
上述の実施形態では、急速沸き上げモードでの運転において、沸き上げ制御部36は加熱能力a2に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるまで、圧縮機11の周波数を制御した。しかし、加熱能力の設定方法としては、これに代えて、あるいは、これに加えて、沸き上げ制御部36は加熱能力a2に基づき、出湯温度センサ22で検知される出湯温度が目標出湯温度になるように、室外熱交換器12と対向して配置されるファン15の回転数を制御してもよい。
(5-7) Modification G
In the above-described embodiment, in the operation in the rapid boiling mode, the boiling control unit 36 is based on the heating capacity a2, and the frequency of the compressor 11 is reached until the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature. Was controlled. However, as a method of setting the heating capacity, instead of or in addition to this, the boiling control unit 36 sets the hot water discharge temperature detected by the hot water discharge temperature sensor 22 as the target hot water discharge temperature based on the heating capacity a2. As described above, the rotation speed of the fan 15 arranged to face the outdoor heat exchanger 12 may be controlled.

この場合、出湯温度センサ22で検知される出湯温度が目標出湯温度に到達した後において、通常沸き上げモードでの運転時の回転数(加熱能力a1に基づく回転数)より大きい回転数(加熱能力a2に基づく回転数)でファン15が制御され、また通常沸き上げモードでの運転時のポンプ17の回転数より大きい回転数でポンプ17が制御される。このように、急速沸き上げモードでの運転時にはポンプ17が大きい回転数で駆動されるため、温水回路部3を循環する温水の流量が多くなり、出湯温度を一定に維持しつつ、通常沸き上げモードでの運転時と比べて単位時間あたりに貯湯タンク5に貯留される温水の量を多くすることができる。 In this case, after the hot water temperature detected by the hot water temperature sensor 22 reaches the target hot water temperature, the rotation speed (heating capacity) is larger than the rotation speed (rotation speed based on the heating capacity a1) during operation in the normal boiling mode. The fan 15 is controlled by the rotation speed based on a2), and the pump 17 is controlled at a rotation speed higher than the rotation speed of the pump 17 during operation in the normal boiling mode. In this way, since the pump 17 is driven at a large rotation speed during operation in the rapid boiling mode, the flow rate of hot water circulating in the hot water circuit unit 3 increases, and normal boiling is performed while maintaining the hot water temperature constant. The amount of hot water stored in the hot water storage tank 5 can be increased per unit time as compared with the operation in the mode.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present invention is shown by the scope of claims rather than the description of the above-described embodiment, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

例えば、上述の実施形態および変形例では、給湯システム1が、補助加熱部として、ガス加熱器6を有する場合を説明したが、補助加熱部は、ガス加熱器6に限られない。従って、給湯システム1が、補助加熱部として、電気ヒータ等のその他の加熱部を有していてもよい。補助加熱部としては、ヒートポンプ部2以外の加熱手段であって、一次エネルギー効率がヒートポンプ部2より低いものであれば、本発明を適用可能である。より具体的には、ヒートポンプ部2のCOPが最大となる加熱能力で比較したとき、補助加熱部の一次エネルギー効率は、ヒートポンプ部2の一次エネルギー効率よりも低くなる。電気ヒータやガス等の燃焼式の加熱手段がこれにあたる。 For example, in the above-described embodiment and modification, the case where the hot water supply system 1 has the gas heater 6 as the auxiliary heating unit has been described, but the auxiliary heating unit is not limited to the gas heater 6. Therefore, the hot water supply system 1 may have another heating unit such as an electric heater as an auxiliary heating unit. As the auxiliary heating unit, the present invention can be applied as long as it is a heating means other than the heat pump unit 2 and the primary energy efficiency is lower than that of the heat pump unit 2. More specifically, when compared with the heating capacity that maximizes the COP of the heat pump unit 2, the primary energy efficiency of the auxiliary heating unit is lower than the primary energy efficiency of the heat pump unit 2. Combustion-type heating means such as electric heaters and gases correspond to this.

本発明を利用すれば、システム全体の加熱量に占める補助加熱部による加熱量の比率を減少させることにより、給湯システム全体の総合的なエネルギー効率を向上できる。 By utilizing the present invention, the overall energy efficiency of the entire hot water supply system can be improved by reducing the ratio of the amount of heat generated by the auxiliary heating unit to the amount of heat of the entire system.

2 ヒートポンプ部(ヒートポンプ式加熱部)
5 貯湯タンク
5a〜5d 貯湯温度センサ(貯湯量検出部)
6 ガス加熱器(補助加熱部)
10 給湯端末(出湯部)
10a 浴槽
11 圧縮機
12 室外熱交換器(熱源側熱交換器)
13 膨張弁(膨張機構)
15 ファン
16 給湯用熱交換器(利用側熱交換器)
23 流量センサ(出湯量検出部)
30 制御部
38 履歴情報記憶部
39 出湯予測部
41 冷媒回路
2 Heat pump section (heat pump type heating section)
5 Hot water storage tanks 5a to 5d Hot water storage temperature sensor (hot water storage amount detector)
6 Gas heater (auxiliary heating unit)
10 Hot water supply terminal (hot water outlet)
10a Bathtub 11 Compressor 12 Outdoor heat exchanger (heat source side heat exchanger)
13 Expansion valve (expansion mechanism)
15 Fan 16 Heat exchanger for hot water supply (heat exchanger on the user side)
23 Flow rate sensor (hot water discharge amount detection unit)
30 Control unit 38 History information storage unit 39 Hot water discharge prediction unit 41 Refrigerant circuit

特開2013−113495号公報Japanese Unexamined Patent Publication No. 2013-11495

Claims (8)

温水を貯留する貯湯タンク(5)と、
前記貯湯タンク(5)の温水を利用側へ供給する出湯部(10)と、
前記貯湯タンク(5)の温水の沸き上げを行うヒートポンプ式加熱部(2)と、
前記貯湯タンク(5)から前記出湯部(10)に供給される温水を加熱可能な補助加熱部(6)と、
前記貯湯タンク(5)から前記出湯部(10)へ供給される出湯量を検出する出湯量検出部(23)と、
前記貯湯タンク(5)からの出湯量を予測する制御部(30)と、
を備え、
前記ヒートポンプ式加熱部(2)によって前記貯湯タンク(5)の温水の沸き上げが行われるヒートポンプ単独運転と、
前記貯湯タンク(5)の温水の沸き上げおよび前記補助加熱部(6)による温水の加熱が同時に行われる補助加熱併用運転と、
が可能であって、
前記ヒートポンプ単独運転は、互いに加熱能力が異なる、第1のモードでの沸き上げ、および、第2のモードでの沸き上げを含み、
前記第1のモードでの沸き上げの加熱能力は、前記第2のモードでの沸き上げの加熱能力よりも高く、かつ、前記第1のモードでの沸き上げのヒートポンプ効率は前記第2のモードでの沸き上げのヒートポンプ効率よりも低く、
前記制御部(30)は、前記第2のモードでの沸き上げでは前記貯湯タンク(5)の貯湯量が所定量よりも少なくなる大量出湯を予測した場合、あるいは、前記大量出湯が生じていると判断した場合、前記第1のモードでの沸き上げを行い、その後、前記ヒートポンプ単独運転だけでは熱量不足となる場合に、前記補助加熱併用運転を行う、
給湯システム。
Hot water storage tank (5) for storing hot water and
A hot water outlet (10) that supplies hot water from the hot water storage tank (5) to the user side,
A heat pump type heating unit (2) for boiling hot water in the hot water storage tank (5), and
An auxiliary heating unit (6) capable of heating hot water supplied from the hot water storage tank (5) to the hot water outlet unit (10), and
A hot water discharge amount detection unit (23) for detecting the amount of hot water supplied from the hot water storage tank (5) to the hot water discharge unit (10),
A control unit (30) that predicts the amount of hot water discharged from the hot water storage tank (5), and
With
The heat pump independent operation in which the hot water of the hot water storage tank (5) is boiled by the heat pump type heating unit (2), and
Auxiliary heating combined operation in which hot water is boiled in the hot water storage tank (5) and hot water is heated by the auxiliary heating unit (6) at the same time.
Is possible,
The heat pump independent operation includes boiling in the first mode and boiling in the second mode, which have different heating capacities from each other.
The heating capacity of boiling in the first mode is higher than the heating capacity of boiling in the second mode, and the heat pump efficiency of boiling in the first mode is higher than that of the second mode. Lower than the heat pump efficiency of boiling in
When the control unit (30) predicts a large amount of hot water to be stored in the hot water storage tank (5) less than a predetermined amount in boiling in the second mode, or the large amount of hot water is generated. If it is determined that the heat pump is boiled in the first mode, and then the auxiliary heating combined operation is performed when the heat amount is insufficient only by the heat pump independent operation.
Hot water supply system.
前記第1のモードでの沸き上げの加熱能力は、そのときの外気温度においてCOPが最大となる加熱能力よりも大きく、かつ、前記第1のモードでの沸き上げの1次エネルギー効率が前記補助加熱部(6)を単独で運転させたときの1次エネルギー効率以上である、
請求項1に記載の給湯システム。
The heating capacity of boiling in the first mode is larger than the heating capacity at which the COP is maximized at the outside air temperature at that time, and the primary energy efficiency of boiling in the first mode assists the heating capacity. It is higher than the primary energy efficiency when the heating unit (6) is operated independently.
The hot water supply system according to claim 1.
前記貯湯タンク(5)の貯湯量を検出する貯湯量検出部(5a〜5d)をさらに備え、
前記貯湯量検出部(5a〜5d)によって検出された前記貯湯量が第1貯湯量よりも小さくなった場合に前記第2のモードでの沸き上げが開始され、
前記第1貯湯量よりもさらに小さい第2貯湯量となった場合に、前記第2のモードでの沸き上げから前記第1のモードでの沸き上げを行う、
請求項1または請求項2に記載の給湯システム。
A hot water storage amount detecting unit (5a to 5d) for detecting the hot water storage amount of the hot water storage tank (5) is further provided.
When the hot water storage amount detected by the hot water storage amount detection unit (5a to 5d) becomes smaller than the first hot water storage amount, boiling in the second mode is started.
When the second hot water storage amount is smaller than the first hot water storage amount, the boiling in the first mode is performed from the boiling in the second mode.
The hot water supply system according to claim 1 or 2.
前記出湯部(10)から温水が供給される浴槽(10a)をさらに備え、
前記浴槽(10a)に目標温度の湯を供給する湯張り指示があった場合に、前記第1のモードでの沸き上げを行う、
請求項1または請求項2に記載の給湯システム。
A bathtub (10a) to which hot water is supplied from the hot water outlet (10) is further provided.
When there is a hot water filling instruction to supply hot water of a target temperature to the bathtub (10a), boiling is performed in the first mode.
The hot water supply system according to claim 1 or 2.
前記制御部(30)は、
前記出湯量検出部により検出された出湯量と出湯時刻の履歴情報を記憶する履歴情報記憶部(38)と、
前記履歴情報記憶部(38)の前記履歴情報に基づき出湯予定量と出湯予定時刻を予測する出湯予測部(39)と、
を有し、
前記出湯予測部(39)により予測された前記出湯予定量が前記出湯予定時刻までに前記貯湯タンク(5)に貯湯されるように前記ヒートポンプ式加熱部(2)を動作させるとき、前記出湯予測部(39)により予測されていない出湯があった場合に、前記第1のモードでの沸き上げを行う、
請求項1または請求項2に記載の給湯システム。
The control unit (30)
A history information storage unit (38) that stores history information of the amount of hot water discharged and the time of hot water discharged detected by the hot water discharge amount detection unit, and
A hot water forecasting unit (39) that predicts a hot water scheduled amount and a hot water scheduled time based on the history information of the history information storage unit (38).
Have,
When the heat pump type heating unit (2) is operated so that the planned hot water discharge amount predicted by the hot water discharge prediction unit (39) is stored in the hot water storage tank (5) by the scheduled hot water discharge time, the hot water discharge prediction unit (2) When there is a hot water that is not predicted by the part (39), boiling in the first mode is performed.
The hot water supply system according to claim 1 or 2.
前記貯湯タンク(5)の貯湯量を検出する貯湯量検出部(5a〜5d)をさらに備え、
前記制御部(30)は、
前記出湯量検出部(23)により検出された出湯量と出湯時刻の履歴情報を記憶する履歴情報記憶部(38)と、
前記履歴情報記憶部(38)の前記履歴情報に基づき出湯予定量と出湯予定時刻を予測する出湯予測部(39)と、
を有し、
前記出湯予定量が、前記貯湯量検出部(5a〜5d)によって検出された前記貯湯量と、前記第2のモードでの沸き上げで運転した場合の前記出湯予定時刻における貯湯予定量との合計値よりも大きい場合に、前記第1のモードでの沸き上げを行う、
請求項1または請求項2に記載の給湯システム。
A hot water storage amount detecting unit (5a to 5d) for detecting the hot water storage amount of the hot water storage tank (5) is further provided.
The control unit (30)
A history information storage unit (38) that stores history information of the amount of hot water discharged and the time of hot water discharged detected by the hot water discharge amount detection unit (23), and
A hot water forecasting unit (39) that predicts a hot water scheduled amount and a hot water scheduled time based on the history information of the history information storage unit (38).
Have,
The planned amount of hot water is the sum of the amount of hot water stored detected by the hot water storage amount detection unit (5a to 5d) and the planned amount of hot water stored at the scheduled hot water discharge time when the operation is performed by boiling in the second mode. If it is larger than the value, the boiling in the first mode is performed.
The hot water supply system according to claim 1 or 2.
前記ヒートポンプ式加熱部(2)は、圧縮機(11)、熱源側熱交換器(12)、膨張機構(13)、および、利用側熱交換器(16)が接続され、冷媒が循環する冷媒回路(41)を有し、
前記利用側熱交換器(16)を用いて前記貯湯タンク(5)へ温水を供給しており、
前記第1のモードでの沸き上げは、外気温度が同一である場合において、前記第2のモードでの沸き上げよりも前記圧縮機(11)の周波数が大きい、
請求項1から請求項6のいずれか1項に記載の給湯システム。
The heat pump type heating unit (2) is connected to a compressor (11), a heat source side heat exchanger (12), an expansion mechanism (13), and a user side heat exchanger (16), and a refrigerant through which the refrigerant circulates. Has a circuit (41)
Hot water is supplied to the hot water storage tank (5) using the user-side heat exchanger (16).
The boiling in the first mode has a higher frequency of the compressor (11) than the boiling in the second mode when the outside air temperature is the same.
The hot water supply system according to any one of claims 1 to 6.
前記ヒートポンプ式加熱部(2)は、圧縮機(11)、熱源側熱交換器(12)、膨張機構(13)、および、利用側熱交換器(16)が接続され、冷媒が循環する冷媒回路(41)と、前記熱源側熱交換器(12)に送風して熱交換させるファン(15)とを有し、
前記利用側熱交換器(16)を用いて前記貯湯タンク(5)へ温水を供給しており、
前記第1のモードでの沸き上げは、外気温度が同一である場合において、前記第2のモードでの沸き上げよりも前記ファン(15)の回転数が大きい、
請求項1から請求項6のいずれか1項に記載の給湯システム。
The heat pump type heating unit (2) is connected to a compressor (11), a heat source side heat exchanger (12), an expansion mechanism (13), and a user side heat exchanger (16), and a refrigerant circulates. It has a circuit (41) and a fan (15) that blows air to the heat source side heat exchanger (12) to exchange heat.
Hot water is supplied to the hot water storage tank (5) using the user-side heat exchanger (16).
In the boiling in the first mode, when the outside air temperature is the same, the rotation speed of the fan (15) is larger than that in the boiling in the second mode.
The hot water supply system according to any one of claims 1 to 6.
JP2017150147A 2017-08-02 2017-08-02 Hot water supply system Active JP6944832B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017150147A JP6944832B2 (en) 2017-08-02 2017-08-02 Hot water supply system
CN201880038655.4A CN110730889B (en) 2017-08-02 2018-07-27 Hot water supply system
PCT/JP2018/028302 WO2019026801A1 (en) 2017-08-02 2018-07-27 Hot water supply system
EP18841308.2A EP3663670A4 (en) 2017-08-02 2018-07-27 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150147A JP6944832B2 (en) 2017-08-02 2017-08-02 Hot water supply system

Publications (2)

Publication Number Publication Date
JP2019027740A JP2019027740A (en) 2019-02-21
JP6944832B2 true JP6944832B2 (en) 2021-10-06

Family

ID=65233840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150147A Active JP6944832B2 (en) 2017-08-02 2017-08-02 Hot water supply system

Country Status (4)

Country Link
EP (1) EP3663670A4 (en)
JP (1) JP6944832B2 (en)
CN (1) CN110730889B (en)
WO (1) WO2019026801A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226062B2 (en) * 2019-04-22 2023-02-21 三菱電機株式会社 heat pump water heater
US20230112157A1 (en) * 2020-03-16 2023-04-13 Altus Thermal, Inc. Method and system for implementing advanced operating modes in electric resistance water heaters and heat pump water heaters
GB202101678D0 (en) * 2021-02-07 2021-03-24 Octopus Energy Ltd Methods and systems and apparatus to support reduced energy and water usage
GB2613709B (en) * 2021-02-07 2024-02-28 Octopus Energy Heating Ltd Methods and systems and apparatus to support reduced energy and water usage
WO2022168034A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Methods and systems and apparatus to support reduced energy and water usage
CN112949177B (en) * 2021-02-26 2024-03-08 国网北京市电力公司 Multi-optimization target weighting method and system in comprehensive energy system construction
CN116734453B (en) * 2023-07-11 2024-01-12 珠海三体芯变频科技有限公司 Air conditioner heat pump equipment data management system and method based on big data

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930357B2 (en) * 2007-12-17 2012-05-16 三菱電機株式会社 Heat pump water heater
JP2009275932A (en) * 2008-05-12 2009-11-26 Denso Corp Hot water supply apparatus
JP5277714B2 (en) * 2008-05-13 2013-08-28 株式会社デンソー Water heater
JP5329245B2 (en) * 2009-01-20 2013-10-30 ダイキン工業株式会社 Water heater
EP2559953B1 (en) * 2010-04-15 2016-09-28 Mitsubishi Electric Corporation Hot water supply system and method for operating the system
JP5605296B2 (en) * 2011-04-20 2014-10-15 株式会社デンソー Hybrid water heater
CN202016886U (en) * 2011-04-21 2011-10-26 唐福辉 Multifunctional water distiller
JP5401531B2 (en) * 2011-11-29 2014-01-29 リンナイ株式会社 Hot water storage hot water supply system
JP2014173808A (en) * 2013-03-12 2014-09-22 Sanden Corp Hot water supply apparatus
JP6507954B2 (en) * 2015-09-08 2019-05-08 株式会社デンソー Water heater
JP2017072265A (en) * 2015-10-05 2017-04-13 パナソニックIpマネジメント株式会社 Heat pump water heater
JP2017083045A (en) * 2015-10-26 2017-05-18 パナソニックIpマネジメント株式会社 Heat pump water heater

Also Published As

Publication number Publication date
CN110730889B (en) 2022-01-04
CN110730889A (en) 2020-01-24
EP3663670A1 (en) 2020-06-10
WO2019026801A1 (en) 2019-02-07
EP3663670A4 (en) 2021-07-14
JP2019027740A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6944832B2 (en) Hot water supply system
JP6381362B2 (en) Solar power generator linked heat pump hot water storage hot water supply system
JP2006286450A (en) Fuel cell system, its control method, and its control device
JP6052675B2 (en) HEAT PUMP SYSTEM CONTROL DEVICE, HEAT PUMP SYSTEM, AND HEAT PUMP SYSTEM CONTROL METHOD
JP6097933B2 (en) Hot water storage water heater
JP2007285607A (en) Hot water storage type water heater
JP2012220086A (en) Heat pump system and control method therefor
JP2016044849A (en) Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP5115452B2 (en) Hot water storage water heater
JP2010203633A (en) Storage type water heater
JP2011200101A (en) Energy storage system
JP2010112681A (en) Storage type hot water supply device
JP5401946B2 (en) Hot water storage water heater
JP7116907B2 (en) hot water storage system
JP6672982B2 (en) Hot water storage system
JP5353328B2 (en) Heat pump water heater
JP2005223964A (en) Operation control system for cogeneration system
JP2006349285A (en) Heat pump type water heater
EP3450875B1 (en) Hot-water supply system
JP6890014B2 (en) Hot water supply system
JP5585513B2 (en) Hot water system
JP6913785B2 (en) Hot water supply system
JP6906164B2 (en) Cogeneration system and its operation method
JP5690192B2 (en) Hot water storage water heater
JPH1089766A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6944832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150