JP6940998B2 - Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method - Google Patents

Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method Download PDF

Info

Publication number
JP6940998B2
JP6940998B2 JP2017149495A JP2017149495A JP6940998B2 JP 6940998 B2 JP6940998 B2 JP 6940998B2 JP 2017149495 A JP2017149495 A JP 2017149495A JP 2017149495 A JP2017149495 A JP 2017149495A JP 6940998 B2 JP6940998 B2 JP 6940998B2
Authority
JP
Japan
Prior art keywords
heavy metal
atom
metal ion
compound
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017149495A
Other languages
Japanese (ja)
Other versions
JP2019025443A (en
Inventor
秀也 菊池
秀也 菊池
淳平 上瀧
淳平 上瀧
鈴木 隆之
隆之 鈴木
洋一郎 中村
洋一郎 中村
孝博 大西
孝博 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Tokyo Roki Co Ltd
Tokyo Denki University
Original Assignee
Hino Motors Ltd
Tokyo Roki Co Ltd
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Tokyo Roki Co Ltd, Tokyo Denki University filed Critical Hino Motors Ltd
Priority to JP2017149495A priority Critical patent/JP6940998B2/en
Publication of JP2019025443A publication Critical patent/JP2019025443A/en
Application granted granted Critical
Publication of JP6940998B2 publication Critical patent/JP6940998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、光応答性重金属イオン吸着材料と、それを用いた重金属イオン回収方法に関する。 The present invention relates to a photoresponsive heavy metal ion adsorbing material and a heavy metal ion recovery method using the same.

化合物への光の照射の有無により可逆的に変色するフォトクロミック化合物を有する共重合体を含み、光照射に応答して水溶液中の種々の重金属イオンの捕集と回収との両機能を備える重金属イオン吸着材料が知られている(例えば、特許文献1〜3)。しかしながら、この分子は重金属イオンの吸着とともに色調変化を示すため、吸着材料としてよりも重金属センサーとして注目されることが殆どである。また、フォトクロミック分子への光照射には紫外光を用いることが通常であるが、分子劣化が副反応として起こるため材料の作動寿命に与える影響が大きいのが欠点である。 Heavy metal ions containing a copolymer having a photochromic compound that reversibly changes color depending on the presence or absence of light irradiation of the compound, and having both functions of collecting and recovering various heavy metal ions in an aqueous solution in response to light irradiation. Adsorbent materials are known (for example, Patent Documents 1 to 3). However, since this molecule shows a change in color tone with the adsorption of heavy metal ions, it is mostly attracting attention as a heavy metal sensor rather than as an adsorption material. Further, although ultraviolet light is usually used for irradiating photochromic molecules with light, there is a drawback that the effect on the operating life of the material is large because molecular deterioration occurs as a side reaction.

例えば、このようなフォトクロミック化合物の1種であるスピロピラン系化合物において、スピロピラン系部位は、閉環体と開環体の2種類の状態に切り替わることができ(これらは互いに異性体である。)、重金属イオンを吸着できるのは開環体だけである。光照射の有無でそれぞれの状態へ繰り返し切り替わる。通常は閉環体の方が安定であり、暗所下では閉環体の方が圧倒的に安定に存在する。しかし、スピロピラン周辺の極性を上げると、暗所下でも開環体の安定性も増してくることが知られている。よって、開環体の安定性を向上させたい場合は高い極性場にスピロピランを置くという手法がよく用いられている。
一方、フォトクロミック分子を重金属イオンセンシングに用いる場としては、アセトン、トルエン、クロロホルムなどの極性有機溶媒が知られている(例えば、非特許文献1と2)が、脂肪族系炭化水素の溶媒であるヘキサン、シクロヘキサンなどの実用的な溶媒や軽油などの非極性有機液体については知られていない。
For example, in a spiropirane compound which is one of such photochromic compounds, the spiropirane site can be switched to two types of states, a ring-closed body and a ring-opened body (these are isomers of each other), and are heavy metals. Only ring-opened compounds can adsorb ions. It repeatedly switches to each state depending on the presence or absence of light irradiation. Normally, the ring-closed body is more stable, and the ring-closed body is overwhelmingly stable in the dark. However, it is known that increasing the polarity around spiropyran also increases the stability of the ring-opened body even in the dark. Therefore, when it is desired to improve the stability of the ring-opened body, a method of placing spiropyran in a high polar field is often used.
On the other hand, polar organic solvents such as acetone, toluene, and chloroform are known as places where photochromic molecules are used for heavy metal ion sensing (for example, Non-Patent Documents 1 and 2), but they are aliphatic hydrocarbon solvents. Practical solvents such as hexane and cyclohexane and non-polar organic liquids such as light oil are not known.

特許第4919447号公報Japanese Patent No. 4919447 特許第4736362号公報Japanese Patent No. 47363362 特許第5376627号公報Japanese Patent No. 5376627

ズー(Zhou)ら、「ノベル・キーレーション・オブ・フォートークローミック・スピロナフソクサザイネズ・トゥー・ダイベーレント・メタル・アイウンズ(Novel Chelation Of Photochromic Spironaphthoxazines to Divalent Metal Ions)」、ジャーナル・オブ・フォートーケミストリー・アンド・フォートーバイオロジー・エー・ケミストリー(Journal of Photochemistry and Photobiology A: Chemistry)、1995年、第92巻、第3号、p.193−199Zhou et al., "Novell Chemistry Of Photochromic Spironaphothoxines to Divalent Metals to Divalent Metals" Fort Chemistry and Fortobiology A Chemistry (Journal of Photochemistry and Photochemistry A: Chemistry), 1995, Vol. 92, No. 3, p. 193-199 バーン(Byrne)ら、「フォートー・レゲナーラブル・サーフィス・ウィズ・ポテンシアル・フォー・オプティッカル・センシング(Photo−Regenerable Surface With Potential For Optical Sensing)」、 ジャーナル・オブ・マティアリアルズ・ケミストリー(Journal of Materials Chemistry)、2006年、第16号,p.1332−1337Byrne et al., "Forto-Regenable Surface With Potential For Optical Sensing", Journal of Matthias , 2006, No. 16, p. 1332-1337

しかしながら、非極性有機液体中で重金属イオンを光応答で吸着制御できる材料を機能させるためには、材料自体が十分に有機液体に馴染む必要がある。さらに、当該材料には、この非極性有機液体中において光照射によって可逆的に重金属イオンを吸着脱着制御する機能を維持することも要求される。この2つの要件を兼ね備えた材料開発のハードルは高い。
また、光照射中に重金属イオンを吸着し、光照射を止めると脱離するという挙動が、操作の簡便性やコストの面で問題があった。実用上では、この逆の操作、すなわち、暗所下で重金属イオンを吸着し、脱離するときだけ光照射するというプロセスになった方が有利である。当該材料をそのような挙動に変更するには、材料周辺の極性を上げるという手法がよく用いられるが、軽油などのほとんど極性のないアルカン溶媒中で実現することは極めて困難である。特に、非極性の有機液体という場に限定された場合では、上記のような手法で開環体を安定化させることはできない問題があった。
However, in order for a material capable of adsorbing and controlling heavy metal ions in a non-polar organic liquid to function, the material itself must be sufficiently compatible with the organic liquid. Further, the material is also required to maintain a function of reversibly adsorbing and desorbing heavy metal ions in this non-polar organic liquid by irradiation with light. The hurdle for developing a material that combines these two requirements is high.
Further, the behavior of adsorbing heavy metal ions during light irradiation and desorbing when the light irradiation is stopped has a problem in terms of ease of operation and cost. In practical use, it is advantageous to perform the reverse operation, that is, a process of adsorbing heavy metal ions in a dark place and irradiating light only when they are desorbed. In order to change the material to such behavior, a method of increasing the polarity around the material is often used, but it is extremely difficult to realize it in an alkane solvent having almost no polarity such as light oil. In particular, in the case of being limited to a non-polar organic liquid, there is a problem that the ring-opened body cannot be stabilized by the above method.

本発明は、上記事情に鑑みてなされたものであって、暗所下で重金属イオンを吸着させる機能を持つ樹脂材料として、異なる機能を持つ単量体の共重合体を用いることによって問題点を解決できた。 The present invention has been made in view of the above circumstances, and there is a problem by using a copolymer of monomers having different functions as a resin material having a function of adsorbing heavy metal ions in a dark place. I was able to solve it.

本発明者らは、上記課題を解決するために鋭意検討した結果、暗所下で重金属イオンを吸着させる材料として樹脂材料を用いることより、暗所下で非極性有機液体中の重金属イオンを吸着し、380〜1000nmの可視光照射で脱離できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have adsorbed heavy metal ions in a non-polar organic liquid in a dark place by using a resin material as a material for adsorbing heavy metal ions in a dark place. Then, they have found that they can be desorbed by irradiation with visible light of 380 to 1000 nm, and have completed the present invention.

すなわち、本発明は、以下の(1)〜(12)に関する。
[1] 式(1)で示される重合可能なエチレン性不飽和結合を有する化合物(A)または前記化合物(A)の光異性体(A’)と、炭素数6〜24のアルキル基を有する重合可能なエチレン性不飽和単量体(B)と、の共重合体(P)を含むことを特徴とする光応答性重金属イオン吸着材料。
That is, the present invention relates to the following (1) to (12).
[1] It has a compound (A) having a polymerizable ethylenically unsaturated bond represented by the formula (1) or a photoisomer (A') of the compound (A), and an alkyl group having 6 to 24 carbon atoms. A photoresponsive heavy metal ion-adsorbing material comprising a polymerizable ethylenically unsaturated monomer (B) and a copolymer (P).

Figure 0006940998
Figure 0006940998

(式(1)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、X、Xは独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、X〜X5は独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、Rは−(CH)n−G−(CH)m−であり、n、mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基であり、Rは、水素原子、Cl原子、Br原子、F原子、−NO、−CF若しく炭素数1〜10のアルキル基であり、Rは、水素原子、Cl原子、Br原子、F原子、−NO、−CF若しく炭素数1〜10のアルキル基であり、R10は重合可能なエチレン性不飽和結合を有する炭層数2〜10の有機基である。)
[2] 前記共重合体(P)の単量体は、2つ以上の官能基を有する架橋剤(C)をさらに含むことを特徴とする[1]に記載の光応答性重金属イオン吸着材料。
[3] 前記式(1)で示される化合物(A)が式(2)または式(3)で示される化合物(A)であることを特徴とする[1]または[2]のいずれかに記載の光応答性重金属イオン吸着材料。
(In formula (1), X is a carbon atom or nitrogen atom to which one hydrogen atom is bonded, and X 1 and X 6 are carbon atoms or nitrogen atoms to which one hydrogen atom is independently bonded and R 8 is bonded independently. There, X 2 to X 5 are independently a carbon atom hydrogen atom is bonded one young properly R 9 or a nitrogen atom,, Y is an oxygen atom or a sulfur atom, R 1, R 2 independently represent a hydrogen atom Alternatively, it is an alkyl group, R 5 is − (CH 2 ) n-G- (CH 2 ) m-, n and m are independently integers from 0 to 5, and G is −C (Z 1 ). (Z 2 )-or a benzene ring in which CH may be substituted with N, Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, and R 8 is a hydrogen atom. Cl atom, Br atom, F atom, -NO 2 , -CF 3 It is an alkyl group having 1 to 10 carbon atoms, and R 9 is a hydrogen atom, Cl atom, Br atom, F atom, -NO 2 , -. CF 3 is an alkyl group having 1 to 10 carbon atoms, and R 10 is an organic group having 2 to 10 coal layers having a polymerizable ethylenically unsaturated bond.)
[2] The photoresponsive heavy metal ion adsorbing material according to [1], wherein the monomer of the copolymer (P) further contains a cross-linking agent (C) having two or more functional groups. ..
[3] Any of [1] or [2], wherein the compound (A) represented by the formula (1) is a compound (A) represented by the formula (2) or the formula (3). The photoresponsive heavy metal ion adsorbing material according to the above.

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

(式(2)(3)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、Rは−(CH)n−G−(CH)m−であり、n、mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基である。)
[4] 前記式(1)で示される化合物(A)において、Rは式(4)または式(5)で示される基であることを特徴とする[1]〜[3]のいずれかに記載の光応答性重金属イオン吸着材料。
(In formulas (2) and (3), X is a carbon atom or a nitrogen atom to which one hydrogen atom is bonded, Y is an oxygen atom or a sulfur atom, and R 1 and R 2 are independent hydrogen atoms or alkyl groups. R 5 is-(CH 2 ) n-G- (CH 2 ) m-, n and m are independently integers from 0 to 5, and G is -C (Z 1 ) (Z 2). )-Or a benzene ring in which CH may be substituted with N, and Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.)
[4] In the compound (A) represented by the formula (1), any one of [1] to [3], wherein R 5 is a group represented by the formula (4) or the formula (5). The photoresponsive heavy metal ion adsorbing material according to.

Figure 0006940998
Figure 0006940998

(式(4)中、Rは炭素数1〜3のアルキル基である。) (In formula (4), R 7 is an alkyl group having 1 to 3 carbon atoms.)

Figure 0006940998
Figure 0006940998

(式(5)中、n、mは独立に1〜3の整数である。)
[5] 前記化合物(A)及びエチレン性不飽和単量体(B)の少なくとも1つが(メタ)アクリレート誘導体またはスチレン誘導体であることを特徴とする[1]〜[4]のいずれかに記載の光応答性重金属イオン吸着材料。
[6] 前記架橋剤(C)が2つ以上の官能基を有する多官能(メタ)アクリレートであることを特徴とする[2]〜[5]のいずれかに記載の光応答性重金属イオン吸着材料。
[7] 前記式(1)中、Xは水素原子が一個結合した炭素原子であり、Yは酸素原子であり、R及びRはメチル基であり、前記エチレン性不飽和単量体(B)がn−C1837基を有する重合可能なエチレン性不飽和単量体であることを特徴とする[1]〜[6]のいずれかに記載の光応答性重金属イオン吸着材料。
[8] [1]〜[7]のいずれかに記載の光応答性重金属イオン吸着材料が担持されている繊維、細粒、フィルムまたは細管からなる光応答性重金属イオン吸着体。
[9] [1]〜[7]のいずれかに記載の光応答性重金属イオン吸着材料を用いて重金属イオンを暗所下で吸着し、380nm以上の可視光照射により脱離することを特徴とする重金属イオンの回収方法。
[10] 前記重金属イオンが亜鉛(II)イオンまたは鉛(II)イオンであることを特徴とする[9]に記載の重金属イオン回収方法。
[11]前記非極性有機液体は軽油であることを特徴とする[9]又は[10]に記載の重金属イオン回収方法。
[12] 前記光応答性重金属イオン吸着材料と、重金属イオンとを、暗所下で錯形成により吸着させる工程と、ピーク波長380nm以上の可視光で重金属イオンを前記吸着材料から脱離させる工程と、を有する請求項[9]〜[11]のいずれかに記載の重金属イオンの回収方法。
(In equation (5), n and m are independently integers 1 to 3.)
[5] Described in any one of [1] to [4], wherein at least one of the compound (A) and the ethylenically unsaturated monomer (B) is a (meth) acrylate derivative or a styrene derivative. Photoresponsive heavy metal ion adsorbing material.
[6] The photoresponsive heavy metal ion adsorption according to any one of [2] to [5], wherein the cross-linking agent (C) is a polyfunctional (meth) acrylate having two or more functional groups. material.
[7] In the formula (1), X is a carbon atom to which one hydrogen atom is bonded, Y is an oxygen atom, R 1 and R 2 are methyl groups, and the ethylenically unsaturated monomer (the ethylenically unsaturated monomer). photoresponsive heavy metal ion adsorption material according to any one of, wherein [1] to [6] that B) is a polymerizable ethylenically unsaturated monomer having an n-C 18 H 37 group.
[8] A photoresponsive heavy metal ion adsorbent composed of fibers, fine particles, a film or a thin tube on which the photoresponsive heavy metal ion adsorbent according to any one of [1] to [7] is supported.
[9] The feature is that heavy metal ions are adsorbed in a dark place using the photoresponsive heavy metal ion adsorbing material according to any one of [1] to [7] and desorbed by irradiation with visible light of 380 nm or more. How to recover heavy metal ions.
[10] The heavy metal ion recovery method according to [9], wherein the heavy metal ion is zinc (II) ion or lead (II) ion.
[11] The heavy metal ion recovery method according to [9] or [10], wherein the non-polar organic liquid is light oil.
[12] A step of adsorbing the photoresponsive heavy metal ion adsorbing material and the heavy metal ion by complex formation in a dark place, and a step of desorbing the heavy metal ion from the adsorbed material with visible light having a peak wavelength of 380 nm or more. The method for recovering heavy metal ions according to any one of claims [9] to [11].

本発明によれば、非極性有機液体中に含まれている重金属イオンに対して、暗所下で高い効率で吸着材料が吸着し、380〜1000nmの可視光照射でこの吸着材料から脱離して回収することができる。光照射中に重金属イオンを吸着し、光照射を止めると脱離するという従来の方法より、操作の簡便性やコストの面で優れている。さらに、脱離・回収処理工程において、380〜1000nm以上の可視光を用いるため、光照射による吸着材料の劣化を抑制でき、重金属イオンの繰り返し吸着回収作動寿命が改善された。
特に、本発明の一実施態様によれば、スピロピラン部位の開環体において、そのπ電子状態が分子全体に広がるような分子構造を待つ単量体を用いる。また、これらの新規スピロピランは開環体πの電子が局所的にならないように、炭化フッ素基やニトロ基などのような電子吸引性を持つ置換基を持つ。さらには、本発明の一実施態様では、この単量体は、重金属イオンと二配位座で結合するようにメトキシ基やピリジン基を有している。以上のような複合的な工夫によって、特定な単量体からなる光応答性高分子材料を用いることで、ヘキサンや軽油のような極性のないアルカン溶媒中においても、暗所下で亜鉛(II)イオンや鉛(II)イオンなどの重金属イオンを吸着し、可視光照射で脱離することに成功した。
According to the present invention, the adsorbed material is highly efficiently adsorbed to the heavy metal ions contained in the non-polar organic liquid in a dark place, and is desorbed from the adsorbed material by irradiation with visible light at 380 to 1000 nm. Can be recovered. It is superior in terms of ease of operation and cost to the conventional method of adsorbing heavy metal ions during light irradiation and desorbing them when light irradiation is stopped. Further, since visible light having a diameter of 380 to 1000 nm or more is used in the desorption / recovery treatment step, deterioration of the adsorbed material due to light irradiation can be suppressed, and the repeated adsorption / recovery operation life of heavy metal ions is improved.
In particular, according to one embodiment of the present invention, in the ring-opened body of the spiropyran site, a monomer that waits for a molecular structure such that its π-electronic state spreads throughout the molecule is used. In addition, these novel spiropyrans have an electron-withdrawing substituent such as a fluorine carbide group or a nitro group so that the electrons of the ring-opening body π do not become local. Further, in one embodiment of the present invention, the monomer has a methoxy group or a pyridine group so as to bond with a heavy metal ion in a dicoordinated position. By using a photoresponsive polymer material composed of a specific monomer through the above-mentioned complex ingenuity, zinc (II) can be used in a dark place even in a non-polar alkane solvent such as hexane or light oil. ) Succeeded in adsorbing heavy metal ions such as ions and lead (II) ions and desorbing them by irradiation with visible light.

図1は、本発明実施例1の共重合体P1とその異性体P1’の構造式及び暗所と380〜1000nm光照射での相互変化を示す図である。FIG. 1 is a diagram showing the structural formulas of the copolymer P1 of Example 1 of the present invention and its isomer P1'and mutual changes in a dark place and irradiation with light of 380 to 1000 nm. 図2は本発明の実施例1において共重合体P1の紫外可視吸収スペクトルを測定したグラフであり、曲線(a)はn−ヘキサン溶媒中暗所下静置した場合、曲線(b)は非極性溶媒中380〜1000nm可視光照射した場合、曲線(c)は亜鉛(II)イオン存在中暗所下静置した場合の可視光照射のスペクトルである。曲線(d)は亜鉛(II)イオン存在中380〜1000nm可視光照射した場合の可視光照射のスペクトルである。FIG. 2 is a graph obtained by measuring the ultraviolet-visible absorption spectrum of the copolymer P1 in Example 1 of the present invention. The curve (a) is not shown when the copolymer P1 is allowed to stand in a dark place in an n-hexane solvent. When irradiated with visible light at 380 to 1000 nm in a polar solvent, the curve (c) is a spectrum of visible light irradiation when the mixture is allowed to stand in a dark place in the presence of zinc (II) ions. The curve (d) is a spectrum of visible light irradiation when 380 to 1000 nm visible light is irradiated in the presence of zinc (II) ions. 図3は本発明の実施例1において共重合体P1の紫外可視吸収スペクトルを測定したグラフであり、曲線(a)はn−ヘキサン溶媒中暗所下静置した場合、曲線(b)は非極性溶媒中380〜1000nm可視光照射した場合、曲線(c)は鉛(II)イオン存在中暗所下静置した場合の可視光照射のスペクトルである。曲線(d)は鉛(II)イオン存在中380〜1000nm可視光照射した場合の可視光照射のスペクトルである。FIG. 3 is a graph obtained by measuring the ultraviolet-visible absorption spectrum of the copolymer P1 in Example 1 of the present invention. The curve (a) is not shown when the copolymer P1 is allowed to stand in a dark place in an n-hexane solvent. When irradiated with visible light at 380 to 1000 nm in a polar solvent, the curve (c) is a spectrum of visible light irradiation when the mixture is allowed to stand in a dark place in the presence of lead (II) ions. The curve (d) is a spectrum of visible light irradiation when 380 to 1000 nm visible light is irradiated in the presence of lead (II) ions. 図4は、本発明実施例2の共重合体P2とその異性体P2’の構造式及び暗所と380〜1000可視光照射での相互変化を示す図である。FIG. 4 is a diagram showing the structural formulas of the copolymer P2 of Example 2 of the present invention and its isomer P2'and the mutual changes between the dark place and 380 to 1000 visible light irradiation. 図5は本発明の実施例2において共重合体P2の紫外可視吸収スペクトルを測定したグラフであり、曲線(a)はn−ヘキサン溶媒中暗所下静置した場合、曲線(b)は非極性溶媒中380〜1000nm可視光照射した場合、曲線(c)は亜鉛(II)イオン存在中暗所下静置した場合の可視光照射のスペクトルである。曲線(d)は亜鉛(II)イオン存在中380〜1000nm可視光照射した場合の可視光照射のスペクトルである。曲(e)は0℃で亜鉛(II)イオン存在中380〜1000nm可視光照射した場合の可視光照射のスペクトルである。FIG. 5 is a graph obtained by measuring the ultraviolet-visible absorption spectrum of the copolymer P2 in Example 2 of the present invention. The curve (a) is not shown when the copolymer P2 is allowed to stand in a dark place in an n-hexane solvent. When irradiated with visible light at 380 to 1000 nm in a polar solvent, the curve (c) is a spectrum of visible light irradiation when the mixture is allowed to stand in a dark place in the presence of zinc (II) ions. The curve (d) is a spectrum of visible light irradiation when 380 to 1000 nm visible light is irradiated in the presence of zinc (II) ions. The curved line (e) is a spectrum of visible light irradiation when 380 to 1000 nm visible light is irradiated in the presence of zinc (II) ions at 0 ° C. 図6は本発明の実施例2において共重合体P2の紫外可視吸収スペクトルを測定したグラフであり、曲線(a)はn−ヘキサン溶媒中暗所下静置した場合、曲線(b)は非極性溶媒中380〜1000nm可視光照射した場合、曲線(c)は鉛(II)イオン存在中暗所下静置した場合の可視光照射のスペクトルである。曲線(d)は鉛(II)イオン存在中380nm可視光照射した場合の可視光照射のスペクトルである。曲(e)は0℃で亜鉛(II)イオン存在中380nm可視光照射した場合の可視光照射のスペクトルである。FIG. 6 is a graph obtained by measuring the ultraviolet-visible absorption spectrum of the copolymer P2 in Example 2 of the present invention. The curve (a) is not shown when the copolymer P2 is allowed to stand in a dark place in an n-hexane solvent. When irradiated with visible light at 380 to 1000 nm in a polar solvent, the curve (c) is a spectrum of visible light irradiation when the mixture is allowed to stand in a dark place in the presence of lead (II) ions. The curve (d) is a spectrum of visible light irradiation when 380 nm visible light is irradiated in the presence of lead (II) ions. The curved line (e) is a spectrum of visible light irradiation when 380 nm visible light is irradiated in the presence of zinc (II) ions at 0 ° C. 図7は蛍光X線分析による、架橋された共重合体P4、P4−1、P4−2を用いて重金属イオン吸着後に溶液中に残存しているZn2+強度を示すグラフである。FIG. 7 is a graph showing the Zn 2+ intensity remaining in the solution after adsorption of heavy metal ions using the crosslinked copolymers P4, P4-1 and P4-2 by fluorescent X-ray analysis. 図8は架橋された共重合体P4、P4−1、P4−2のZn2+吸着率評価を示すグラフである。FIG. 8 is a graph showing the evaluation of Zn 2+ adsorption rate of the crosslinked copolymers P4, P4-1 and P4-2. 図9は蛍光X線分析による、架橋された共重合体P4、P4−1、P4−2を用いて重金属イオン吸着後に溶液中に残存しているPb2+強度を示すグラフである。FIG. 9 is a graph showing the Pb 2+ intensity remaining in the solution after adsorption of heavy metal ions using the crosslinked copolymers P4, P4-1 and P4-2 by fluorescent X-ray analysis. 図10は架橋された共重合体P4、P4−1、P4−2のPb2+吸着率評価を示すグラフである。FIG. 10 is a graph showing the evaluation of Pb 2+ adsorption rate of the crosslinked copolymers P4, P4-1 and P4-2. 図11は蛍光X線分析による、架橋された共重合体P5、P5−1、P6、P6−1を用いて重金属イオン吸着後に溶液中に残存しているZn2+強度を示すグラフである。FIG. 11 is a graph showing the Zn 2+ intensity remaining in the solution after adsorption of heavy metal ions using the crosslinked copolymers P5, P5-1, P6, and P6-1 by fluorescent X-ray analysis. 図12はP5、架橋された共重合体P5−1、P6、P6−1のZn2+吸着率評価を示すグラフである。FIG. 12 is a graph showing the evaluation of Zn 2+ adsorption rate of P5 and crosslinked copolymers P5-1, P6 and P6-1. 図13は蛍光X線分析による、架橋された共重合体P5、P5−1、P6、P6−1を用いて重金属イオン吸着後に溶液中に残存しているPb2+強度を示すグラフである。FIG. 13 is a graph showing the Pb 2+ intensity remaining in the solution after adsorption of heavy metal ions using the crosslinked copolymers P5, P5-1, P6, and P6-1 by fluorescent X-ray analysis. 図14は架橋された共重合体P5、P5−1、P6、P6−1のPb2+吸着率評価を示すグラフである。FIG. 14 is a graph showing the evaluation of Pb 2+ adsorption rate of the crosslinked copolymers P5, P5-1, P6 and P6-1. 図15は架橋された共重合体P4のZn2+吸着繰り返し耐久性評価実験を示すグラフである。 FIG. 15 is a graph showing a Zn 2 + adsorption repeated durability evaluation experiment of the crosslinked copolymer P4. 図16は架橋された共重合体P6のZn2+吸着繰り返し耐久性評価実験を示すグラフである。 FIG. 16 is a graph showing a Zn 2 + adsorption repeated durability evaluation experiment of the crosslinked copolymer P6. 実施例4の架橋された共重合体P4の合成方法を示す図である。It is a figure which shows the synthesis method of the crosslinked copolymer P4 of Example 4. FIG. CDCl中において化合物4のHNMRスペクトルである。 1 HNMR spectrum of compound 4 in CDCl 3. (CDSO中において化合物5のHNMRスペクトルである(CD 3 ) 1 1 HNMR spectrum of compound 5 in 2 SO. CDCl中においてP1のHNMRスペクトルである。It is a 1 HNMR spectrum of the P1 during CDCl 3. CDOD中において化合物9のHNMRスペクトルである。 1 1 HNMR spectrum of compound 9 in CD 3 OD. CDCl中においてP2のHNMRスペクトルである。It is a 1 HNMR spectrum of P2 during CDCl 3. CDCl中において化合物11のHNMRスペクトルである。 1 HNMR spectrum of compound 11 in CDCl 3. CDCl中においてP3のHNMRスペクトルである。It is a 1 HNMR spectrum of P3 in a CDCl 3.

本発明について詳細に説明する。
<光応答性重金属イオン吸着材料>
本発明の光応答性重金属イオン吸着材料は、式(1)で示される重合可能なエチレン性不飽和結合を有する化合物(A)または前記化合物(A)の光異性体(A’)と、炭素数6〜24のアルキル基を有する重合可能なエチレン性不飽和単量体(B)と、の共重合体(P)を含むことを特徴とする。
The present invention will be described in detail.
<Photoreactive heavy metal ion adsorption material>
The photoresponsive heavy metal ion-adsorbing material of the present invention comprises a compound (A) having a polymerizable ethylenically unsaturated bond represented by the formula (1) or a photoisomer (A') of the compound (A) and carbon. It is characterized by containing a copolymer (P) of a polymerizable ethylenically unsaturated monomer (B) having an alkyl group of several 6 to 24.

Figure 0006940998
Figure 0006940998

(式(1)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、X、Xは独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、X〜X5は独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、
は−(CH)n−G−(CH)m−であり、n、mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基であり、Rは、水素原子、F原子、Cl原子、Br原子、―NO、−CF若しく炭素数1〜10のアルキル基であり、Rは、水素原子、F原子、Cl原子、Br原子、―NO、−CF若しく炭素数1〜10のアルキル基であり、R10は重合可能なエチレン性不飽和結合を有する炭層数2〜10の有機基である。)
(In formula (1), X is a carbon atom or nitrogen atom to which one hydrogen atom is bonded, and X 1 and X 6 are carbon atoms or nitrogen atoms to which one hydrogen atom is independently bonded and R 8 is bonded independently. There, X 2 to X 5 are independently a carbon atom hydrogen atom is bonded one young properly R 9 or a nitrogen atom,, Y is an oxygen atom or a sulfur atom, R 1, R 2 independently represent a hydrogen atom Or an alkyl group,
R 5 is − (CH 2 ) n−G− (CH 2 ) m−, n and m are independently integers from 0 to 5, and G is −C (Z 1 ) (Z 2 ) −, Alternatively, CH is a benzene ring in which CH may be substituted with N, Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, and R 8 is a hydrogen atom, F atom, Cl atom, Br atom, -NO 2 , -CF 3 is an alkyl group having 1 to 10 carbon atoms, and R 9 is a hydrogen atom, F atom, Cl atom, Br atom, -NO 2 , -CF 3 young carbon atom. It is an alkyl group of 1 to 10, and R 10 is an organic group having 2 to 10 coal layers having a polymerizable ethylenically unsaturated bond. )

式(1)で示される化合物(A)は重金属イオンと可逆的に錯形成する構造を有し、また、長鎖アルキル基を有する化合物(B)から由来のセグメントは、共重合体(P)に疎水性(親油性)を付与して非極性有機液体に馴染むことができ、暗所下でイオン性異性体を形成し、金属イオンの錯形成をすることができる。また、式(1)で示される化合物(A)は、スピロピラン部位の開環体において、そのπ電子状態が分子全体に広がるような分子構造を待つことを特徴とする。 The compound (A) represented by the formula (1) has a structure that reversibly complexes with a heavy metal ion, and the segment derived from the compound (B) having a long-chain alkyl group is a copolymer (P). Can be blended with non-polar organic liquids by imparting hydrophobicity (lipophilicity) to the compound, and can form ionic isomers in a dark place to form a complex of metal ions. Further, the compound (A) represented by the formula (1) is characterized by waiting for a molecular structure in which the π-electron state of the ring-opened body at the spiropyran site spreads throughout the molecule.

〜Xの組み合わせの具体例は表1に示す。ABは、F原子、Cl原子、Br原子、―NO、および−CFからなる群から選択される1つの置換基である。ABは、Cl原子、―NO、および−CFからなる群から選択される1つの置換基であることが好ましく、―NO、および−CFからなる群から選択される1つの置換基であることより好ましい。 Specific examples of combinations of X 1 to X 6 are shown in Table 1. AB is one substituent selected from the group consisting of F atom, Cl atom, Br atom, -NO 2 and -CF 3. AB is preferably one substituent selected from the group consisting of Cl atom, -NO 2 and -CF 3 , and one substituent selected from the group consisting of -NO 2 and -CF 3. Is more preferable.

Figure 0006940998
Figure 0006940998

前記化合物(A)は、X〜XがいずれもCHである式(1a)で示される化合物であることが好ましい。その場合、X、Xの組わせとしては、例えば、それぞれ、CH,CH;CH,N;N,CH;C−R、N;C−R,CH;C−R,C−R;N,C−Rなどが挙げられる。X、Xの少なくとも1つは窒素原子であることが好ましく、X、Xのいずれか1つは窒素原子であり、もう1つは窒素原子でないこと(キノリン構造)がより好ましい。 The compound (A) is preferably a compound represented by the formula (1a) in which X 3 to X 6 are all CH. In that case, as a combination of X 1 and X 2 , for example, CH, CH; CH, N; N, CH; C-R 8 , N; C-R 8 , CH; C-R 8 , C, respectively. -R 9; N, like C-R 9. It is preferable that at least one of X 1 and X 2 is a nitrogen atom, and it is more preferable that any one of X 1 and X 2 is a nitrogen atom and the other is not a nitrogen atom (quinoline structure).

Figure 0006940998
Figure 0006940998

(式(1a)中の表記の意味は、式(1)と同じである。) (The meaning of the notation in the formula (1a) is the same as that in the formula (1).)

本発明の一実施態様において、R、Rの少なくとも1つの置換基は、―NO、若しく−CFのような電子吸引性基であることが好ましい。Rは―NOであり、或いはRは−CFであることがより好ましい。
が窒素原子であり、かつXが窒素原子でない場合、Rは水素原子若しく炭素数1〜10のアルキル基であり、Rは―NO、若しく−CFであることが好ましい。Xが窒素原子であり、かつX1が窒素原子でない場合、Rは―NO若しく−CFであり、Rは水素原子若しく炭素数1〜10のアルキル基であることが好ましい。
が窒素原子であり、かつXが窒素原子でない場合、Rは水素原子、メチル基若しくはエチル基であり、Rは―NO、若しく−CFであることがより好ましい。Xが窒素原子であり、かつXが窒素原子でない場合、Rは―NO若しく−CFであり、Rは水素原子、メチル基若しくはエチル基であることがより好ましい。
In one embodiment of the invention, the at least one substituent of R 8 and R 9 is preferably an electron-withdrawing group such as -NO 2 or -CF 3. More preferably, R 8 is -NO 2 or R 9 is -CF 3.
If X 1 is a nitrogen atom and X 2 is not a nitrogen atom, then R 8 is a hydrogen atom or an alkyl group with 1 to 10 carbon atoms, and R 9 is -NO 2 and young -CF 3. Is preferable. When X 2 is a nitrogen atom and X 1 is not a nitrogen atom, it is preferable that R 8 is −NO 2 or −CF 3 and R 9 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. ..
When X 1 is a nitrogen atom and X 2 is not a nitrogen atom, it is more preferable that R 8 is a hydrogen atom, a methyl group or an ethyl group, and R 9 is −NO 2 and younger −CF 3. If X 2 is a nitrogen atom and X 1 is not a nitrogen atom, then R 8 is more preferably -NO 2 or -CF 3 , and R 9 is more preferably a hydrogen atom, a methyl group or an ethyl group.

前記式(1)で示される化合物(A)が式(2)または式(3)で示される化合物(A)であることが特に好ましい。 It is particularly preferable that the compound (A) represented by the formula (1) is the compound (A) represented by the formula (2) or the formula (3).

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

(式(2)(3)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、Rは−(CH)n−G−(CH)m−であり、n,mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基である。) (In formulas (2) and (3), X is a carbon atom or a nitrogen atom to which one hydrogen atom is bonded, Y is an oxygen atom or a sulfur atom, and R 1 and R 2 are independent hydrogen atoms or alkyl groups. R 5 is − (CH 2 ) n−G − (CH 2 ) m−, n and m are independently integers from 0 to 5, and G is −C (Z 1 ) (Z 2). )-Or a benzene ring in which CH may be substituted with N, and Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.)

式(1)中のベンゼン環に結合している水素原子は置換されていてもよい。この場合の置換基は例えばメチル基、メトキシ基、アミノ基、ニトロ基、ハロゲン基、シアノ基、等が例示され、金属イオンとの錯形成効率の点からは、置換しないかまたはメトキシ基、メチル基、アミノ基等の電子供与性の置換基が好ましい。置換する場合の置換基数は、1つのベンゼン環に1または2が好ましい。 The hydrogen atom bonded to the benzene ring in the formula (1) may be substituted. Examples of the substituent in this case include a methyl group, a methoxy group, an amino group, a nitro group, a halogen group, a cyano group, and the like. An electron-donating substituent such as a group or an amino group is preferable. When substituting, the number of substituents is preferably 1 or 2 per benzene ring.

本発明の一実施態様の光応答性重金属イオン吸着材料は、前記式(1)で示される化合物(A)において、Rとしては、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基などの直鎖状アルキレン基及びイソプロピレン基、イソブチレン基、s−ブチレン、t−ブチレン基、イソペンチレン基、ネオペンチレン基などの分枝鎖状アルキレン基が挙げられ、ピリジン環の2,6位に上記アルキレン基をそれぞれ置換した置換基、ピリジン環の2,4位に上記アルキレン基をそれぞれ置換した置換基、ピリジン環の3,5位に上記アルキレン基をそれぞれ置換した置換基などが挙げられる。Rは、式(4)または式(5)で示される基であることが好ましい。 Photoresponsive heavy metal ion adsorption material of one embodiment of the present invention, in the formula (1) compound represented by (A), as is R 5, ethylene group, propylene group, butylene group, pentamethylene group, hexamethylene Linear alkylene groups such as groups and branched alkylene groups such as isopropylene group, isobutylene group, s-butylene, t-butylene group, isopentylene group and neopentylene group can be mentioned at the 2nd and 6th positions of the pyridine ring. Examples thereof include a substituent in which the alkylene group is substituted, a substituent in which the alkylene group is substituted at the 2nd and 4th positions of the pyridine ring, and a substituent in which the alkylene group is substituted at the 3rd and 5th positions of the pyridine ring. R 5 is preferably a group represented by the formula (4) or the formula (5).

Figure 0006940998
Figure 0006940998

(式(4)中、Rは炭素数1〜3のアルキル基である。) (In formula (4), R 7 is an alkyl group having 1 to 3 carbon atoms.)

Figure 0006940998
Figure 0006940998

(式(5)中、n、mは独立に1〜3の整数である。)
式(4)中、Rのアルキル基としては、メチル基、エチル基、プロピル基等が例示され、メチル基が好ましい。
式(5)中、n、mは独立に1〜2の整数であることが好ましく、1であることがより好ましい。
(In equation (5), n and m are independently integers 1 to 3.)
In the formula (4), examples of the alkyl group of R 7 include a methyl group, an ethyl group, a propyl group and the like, and a methyl group is preferable.
In the formula (5), n and m are preferably integers of 1 to 2 independently, and more preferably 1.

本発明の一実施態様の化合物(A)において、R10は重合可能なエチレン性不飽和結合を有する炭層数2〜10の有機基である。この有機基は、例えば、アルケン、ジエン、スチレンなどの炭素二重結合を1つ以上持つ不飽和炭化水素から1個の水素原子を引き抜いた置換基であってもよく、R11−CO−若しくはR11−SO−であってもよい。R11は重合可能なエチレン性不飽和結合を有する炭層数2〜9の有機基であることが好ましく、R11はアルケン、ジエン、スチレンなどの炭素二重結合を1つ以上持つ不飽和炭化水素から1個の水素原子を引き抜いた置換基であることがより好ましい。
10は、好ましく式(6)に示す(メタ)アクリル酸構造を持つ置換基である。
In compound (A) of one embodiment of the present invention, R 10 is an organic group having 2 to 10 carbon layers having a polymerizable ethylenically unsaturated bond. This organic group may be, for example, a substituent obtained by extracting one hydrogen atom from an unsaturated hydrocarbon having one or more carbon double bonds such as alkene, diene, and styrene, and R 11 −CO 2 −. Alternatively, it may be R 11 −SO 2 −. R 11 is preferably an organic group having 2 to 9 coal layers having a polymerizable ethylenically unsaturated bond, and R 11 is an unsaturated hydrocarbon having one or more carbon double bonds such as alkene, diene and styrene. It is more preferable that the substituent is obtained by extracting one hydrogen atom from the above.
R 10 is preferably a substituent having a (meth) acrylic acid structure represented by the formula (6).

12CH=CR13C−CO− (6)
(式(6)中、R13は水素原子又はメチル基であり、R12は水素原子又は炭素1〜5のアルキル基である。)
R 12 CH = CR 13 C-CO 2- (6)
(In formula (6), R 13 is a hydrogen atom or a methyl group, and R 12 is a hydrogen atom or an alkyl group of carbons 1 to 5.)

本発明の一実施態様において、式(6)中、R13は水素原子又はメチル基であり、R12は水素原子、メチル基、又はエチル基であることが好ましい。R13は水素原子又はメチル基であり、R12は水素原子であることがより好ましい。 In one embodiment of the present invention, in formula (6), R 13 is preferably a hydrogen atom or a methyl group, and R 12 is preferably a hydrogen atom, a methyl group, or an ethyl group. More preferably, R 13 is a hydrogen atom or a methyl group, and R 12 is a hydrogen atom.

本発明の1実施態様に係る化合物(A)が、式(7)で示される化合物であるが好ましい。 The compound (A) according to one embodiment of the present invention is preferably the compound represented by the formula (7).

Figure 0006940998
Figure 0006940998

(式(7)中の表記の意味は、式(1)と同じである。)
式(7)中の各置換基の好ましい例は、上記と同様である。
(The meaning of the notation in the formula (7) is the same as that in the formula (1).)
Preferred examples of each substituent in the formula (7) are the same as described above.

具体的には、本発明の一実施態様にかかる化合物(A)として、式(8)に示す2−(3,3−ジメチル−6’−ニトロスピロ[インドリン−2,2’−ピラノ[3,2−h]キノリン]−1−イル)エチルメタクリレート(2−(3,3−dimethyl−6’−nitrospiro[indoline−2,2’−pyrano[3,2−h]quinolin]−1−yl)ethyl methacrylate)(以下、化合物5)を共重合体(P)(例えば、後述のP1、P4、P4−1、P4−2)のための単量体成分として使用するのが好ましい。また、本発明の別の一実施態様の化合物(A)として、式(9)に示す(6−((3,3−ジメチル−8’−(トリフルオロメチル)スピロ[インドリン−2,2’−ピラノ[3,2−c]キノリン]−1−メチル)ピリジン−2−イルメタクリレート)(6−((3,3−dimethyl−8’−(trifluoromethyl)spiro[indoline−2,2’−pyrano[3,2−c]quinolin]−1−yl)methyl)pyridin−2−yl methacrylate)(以下、化合物9)を共重合体(P)(例えば、後述のP2、P5、P5−1)のための単量体成分として使用するのが好ましい。本発明のその他の実施態様の化合物(A)として、式(10)に示す2−(3,3−ジメチル−8’−(トリフルオロメチル)スピロ[インドリン−2,2’−ピラノ[3,2−c]キノリン]−1−イル)エチルメタクリレート(2−(3,3−dimethyl−8’−(trifluoromethyl)spiro[indoline−2,2’−pyrano[3,2−c]quinolin]−1−yl)ethyl methacrylate)(以下、化合物11)を共重合体(P)(例えば、後述のP3、P6、P6−1)のための単量体成分として使用するのが好ましい。ここで、メタクリロイル基はアクリロイル基でもよい。 Specifically, as the compound (A) according to one embodiment of the present invention, 2- (3,3-dimethyl-6'-nitrospiro [indoline-2,2'-pyrano [3,] represented by the formula (8)) is used. 2-h] quinoline] -1-yl) ethyl methacrylate (2- (3,3-dimethyl-6'-nitrospiro [indoline-2,2'-pyrano [3,2-h] quinolin] -1-yl) It is preferable to use ethyl methylate (hereinafter, compound 5) as a monomer component for the copolymer (P) (for example, P1, P4, P4-1 and P4-2 described later). Further, as the compound (A) of another embodiment of the present invention, it is represented by the formula (9) (6-((3,3-dimethyl-8'-(trifluoromethyl) spiro [indoline-2,2'". -Pyrano [3,2-c] quinoline] -1-methyl) Pyridine-2-yl methacrylate) (6-((3,3-dimethyl-8'-(trifluoromethyl) spiro [indoline-2,2'-pyrano [3,2-c] quinolin] -1-yl) methyl) pyridin-2-yl methyllate) (hereinafter, compound 9) is used as a copolymer (P) (for example, P2, P5, P5-1 described later). 2- (3,3-dimethyl-8'-(trifluoromethyl) represented by the formula (10) as the compound (A) of another embodiment of the present invention is preferably used as a monomer component for this purpose. Spiro [indolin-2,2'-pyrano [3,2-c] quinoline] -1-yl) ethyl methacrylate (2- (3,3-dimethyl-8'-(trifluoromethyl) spiro [indoline-2,2' -Pyrano [3,2-c] quinolin] -1-yl) etyl methylate) (hereinafter, compound 11) is a single amount for a copolymer (P) (for example, P3, P6, P6-1 described later). It is preferably used as a body component. Here, the methacryloyl group may be an acryloyl group.

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

(化合物(A)または化合物(A)の光異性体化合物(A’))
可視光照射に応答して重金属イオンを可逆的に液中で吸着・脱離する、式(1)に示す化合物(A)構造を持つフォトクロミック化合物として、本発明の一実施形態では、メロシアニン構造を取り得るスピロピラン化合物やスピロオキサジン化合物を使用する。
以下、共重合体(P)の単量体である化合物(A)が式(1)でXは水素原子が一個結合した炭素原子であり、Yが酸素原子である場合、すなわち共重合体(P)が化合物(A)由来のセグメント(a)としてスピロピラン系セグメントを有する場合について説明する。
スピロピランは、異性化により、電気的に中性な無色のスピロピラン構造体(閉環構造)と、分子内に双性イオンを有するメロシアニン構造体(開環構造)とをとり得る。両者は可視光照射によって液中で可逆的に異性化する。スピロピラン構造体と、メロシアニン構造体との異性化の例を次の式(11)に示す。このスピロピランの挙動はエステル結合しさらに共重合しても同様である。
(Compound (A) or photoisomer compound (A') of compound (A))
In one embodiment of the present invention, a merocyanine structure is used as a photochromic compound having a compound (A) structure represented by the formula (1), which reversibly adsorbs and desorbs heavy metal ions in a liquid in response to visible light irradiation. Use possible spiropyran compounds or spirooxazine compounds.
Hereinafter, when the compound (A) which is a monomer of the copolymer (P) is the formula (1), X is a carbon atom to which one hydrogen atom is bonded, and Y is an oxygen atom, that is, the copolymer ( The case where P) has a spiropirane-based segment as the segment (a) derived from the compound (A) will be described.
By isomerization, spiropirane can take an electrically neutral colorless spiropirane structure (ring-closed structure) and a merocyanine structure having zwitterions in the molecule (ring-opened structure). Both are reversibly isomerized in liquid by irradiation with visible light. An example of isomerization of the spiropyran structure and the merocyanine structure is shown in the following formula (11). The behavior of this spiropyran is the same even if it is ester-bonded and further copolymerized.

Figure 0006940998
Figure 0006940998

式(11)中、R、R、R、R、R、R10、X〜Xは式(1)と共通である。 In the formula (11), R 1 , R 2 , R 5 , R 8 , R 9 , R 10 , and X 1 to X 6 are common to the formula (1).

そして、可視光(波長380〜1000nm)照射下では、前記スピロピラン構造をとる。上記可視光照射下にあったスピロピラン構造に、暗所下に静置すると、スピロピラン構造が開環してメロシアニン構造体に異性化する。メロシアニン構造体をとるため、共重合体は着色している。このとき、暗所下に前記液中に重金属の陽イオンが溶存していると、メロシアニン構造における酸素原子すなわち式(11)における酸素原子(式(1)のY原子)は、電子密度が高く、この部位で、陽イオンである重金属イオンと錯形成を生じる。 Then, under irradiation with visible light (wavelength 380 to 1000 nm), the spiropyran structure is formed. When the spiropyran structure that was exposed to the above visible light is allowed to stand in a dark place, the spiropyran structure is ring-opened and isomerized into a merocyanine structure. The copolymer is colored to take the merocyanine structure. At this time, if a heavy metal cation is dissolved in the liquid in a dark place, the oxygen atom in the merocyanine structure, that is, the oxygen atom in the formula (11) (Y atom in the formula (1)) has a high electron density. At this site, complex formation occurs with heavy metal ions, which are cations.

次に、メロシアニン構造体を可視光(波長380〜1000nm)の照射をすると、この錯形成はメロシアニン構造体が閉環してスピロピラン構造体に異性化する。これまで錯形成により吸着していた重金属イオンは、脱離して液中に遊離する。 Next, when the merocyanine structure is irradiated with visible light (wavelength 380 to 1000 nm), this complex formation causes the merocyanine structure to close and isomerize to the spiropyran structure. Heavy metal ions that have been adsorbed by complex formation are desorbed and released into the liquid.

次に、スピロピラン構造に暗所に置くと、スピロピラン構造体が再度、メロシアニン構造となり、遊離していた重金属イオンと錯形成し、かつ着色する。 Next, when the spiropyran structure is placed in a dark place, the spiropyran structure becomes a merocyanine structure again, complex with free heavy metal ions, and is colored.

本発明の光応答性重金属イオン吸着材料は、この可逆的に錯形成する基を有する共重合体を含むことにより、重金属イオンを含む非極性有機液体から重金属イオンを吸着させて回収することができる。 The photoresponsive heavy metal ion adsorbing material of the present invention can adsorb and recover heavy metal ions from a non-polar organic liquid containing heavy metal ions by containing a copolymer having a group that reversibly forms a complex. ..

図1には、化合物5を単量体として得られて共重合体(P1)のスピロピラン/メロシアニンセグメントの異性化を示す図である。 FIG. 1 is a diagram showing the isomerization of the spiropyran / merocyanine segment of the copolymer (P1) obtained by using compound 5 as a monomer.

メロシアニン構造体の場合、キノリン環にある窒素原子と酸素原子の電子密度が高く、この部位で、金属陽イオン(M2+)(例えば、亜鉛(II)イオン、鉛(II)イオン)と錯形成を生じる。 In the case of the merocyanine structure, the electron density of the nitrogen atom and the oxygen atom in the quinoline ring is high, and at this site, complex formation with metal cations (M 2+ ) (for example, zinc (II) ion, lead (II) ion). Produces.

図4には、化合物9を単量体として得られて共重合体(P2)のスピロピラン/メロシアニンセグメントの異性化を示す図である。
メロシアニン構造体の場合、キノリン環にある酸素原子の電子密度が高く、また、ピリジン環のN原子の電子密度も高く、この部位で、金属陽イオン(M2+)(例えば、亜鉛(II)イオン、鉛(II)イオン)と錯形成を生じる。
(エチレン性不飽和単量体(B))
本発明の一実施態様にいて、炭素数6〜24のアルキル基を有する重合可能なエチレン性不飽和単量体(B)は、エチレン、スチレン、(メタ)アクリレートなどが挙げられる。透光性から(メタ)アクリレートが好ましい。エチレン性不飽和単量体に置換されている炭素数6〜24のアルキル基は、疎水性及び合成容易の観点からラウリル基、ミリスチル基、パルミチル基、ステアリル基、ベヘニル基などが好ましく、中でもステアリル基が特に好ましい。
FIG. 4 is a diagram showing the isomerization of the spiropyran / merocyanine segment of the copolymer (P2) obtained by using compound 9 as a monomer.
For merocyanine structure, high electron density of oxygen atoms in the quinoline ring, also electron density N atom of the pyridine ring is high, at this site, a metal cation (M 2+) (e.g., zinc (II) ion , Lead (II) ions) and complex formation.
(Ethylene unsaturated monomer (B))
In one embodiment of the present invention, examples of the polymerizable ethylenically unsaturated monomer (B) having an alkyl group having 6 to 24 carbon atoms include ethylene, styrene, and (meth) acrylate. (Meta) acrylate is preferable because of its translucency. The alkyl group having 6 to 24 carbon atoms substituted with the ethylenically unsaturated monomer is preferably a lauryl group, a myristyl group, a palmityl group, a stearyl group, a behenyl group or the like from the viewpoint of hydrophobicity and ease of synthesis, and among them, stearyl group. Groups are particularly preferred.

(架橋剤(C))
架橋剤(C)がエチレングリコールジメタクリレート等2つ以上の官能基を有する多官能(メタ)アクリレートであってもよい。架橋剤は共重合体を透明でかつ水に不溶とするために用いられ、含有量は共重合成分中、数モル%程度で充分である。
(Crosslinking agent (C))
The cross-linking agent (C) may be a polyfunctional (meth) acrylate having two or more functional groups such as ethylene glycol dimethacrylate. The cross-linking agent is used to make the copolymer transparent and insoluble in water, and the content of the cross-linking agent is sufficient to be about several mol% in the copolymer components.

さらに、共重合体中には、以上に挙げた以外の単量体成分を必要に応じて吸着材料の吸着・脱離作用を妨げない範囲で含んで重合しても良い。 Further, the copolymer may contain a monomer component other than those listed above, if necessary, within a range that does not interfere with the adsorption / desorption action of the adsorbent material.

(共重合体(P))
本発明の重金属イオン吸着材料の共重合原料モノマーである化合物(A)及びエチレン性不飽和単量体(B)の少なくとも1つが(メタ)アクリレート誘導体であることを好ましい。なお、(メタ)アクリレートとは、アクリレートおよびメタクリレートの少なくとも一方を示す。
本発明の重金属イオン吸着材料の一実施態様において、一般式(12)に表す共重合体(P)の単量体原料としての式(1)の化合物(A)及びエチレン性不飽和単量体(B)は(メタ)アクリレート誘導体である。セグメント(a)とセグメント(b)との重合比は、セグメント(a)の疎水性(親油性)、膜に要求される厚み等に合わせて適宜選択される。セグメント(b)が多ければ、セグメント(b)内の重金属イオンとの錯形成部位の数も単純に増加する一方、共重合体の透明性は劣化する傾向がある。また、セグメント(a)が多ければ、共重合体の疎水性増加により重金属イオンが前記錯形成部位へ吸着しやすくなるが、セグメント(b)に重金属イオンが吸着する(以下、物理吸着という。)量も増加してしまう傾向がある。
(Copolymer (P))
It is preferable that at least one of the compound (A) and the ethylenically unsaturated monomer (B), which are the copolymer raw material monomers of the heavy metal ion adsorbing material of the present invention, is a (meth) acrylate derivative. The (meth) acrylate refers to at least one of acrylate and methacrylate.
In one embodiment of the heavy metal ion-adsorbing material of the present invention, the compound (A) of the formula (1) and the ethylenically unsaturated monomer as the monomer raw material of the copolymer (P) represented by the general formula (12). (B) is a (meth) acrylate derivative. The polymerization ratio of the segment (a) and the segment (b) is appropriately selected according to the hydrophobicity (lipophilicity) of the segment (a), the thickness required for the film, and the like. If the number of segments (b) is large, the number of complex formation sites with heavy metal ions in the segment (b) also simply increases, but the transparency of the copolymer tends to deteriorate. Further, if the number of segments (a) is large, heavy metal ions are easily adsorbed on the complex formation site due to the increase in hydrophobicity of the copolymer, but heavy metal ions are adsorbed on the segment (b) (hereinafter referred to as physical adsorption). The amount also tends to increase.

Figure 0006940998
Figure 0006940998

(R、R、R、R、R、X、X、X、Yは、は式(1)と共通であり、Rは、炭素数6〜24のアルキル基であり、疎水性及び合成容易の観点からラウリル基、ミリスチル基、パルミチル基、ステアリル基、ベヘニル基などが好ましく、中でもステアリル基が特に好ましい。)
共重合体(P)の具体例としては、以下の式(13)、式(14)、式(15)に表す共重合体(P1)、(P2)、(P3)が挙げられる。
(R 1 , R 2 , R 5 , R 8 , R 9 , X 1 , X 2 , X, Y are common to the formula (1), and R 6 is an alkyl group having 6 to 24 carbon atoms. From the viewpoint of hydrophobicity and ease of synthesis, lauryl group, myristyl group, palmityl group, stearyl group, behenyl group and the like are preferable, and stearyl group is particularly preferable.)
Specific examples of the copolymer (P) include copolymers (P1), (P2), and (P3) represented by the following formulas (13), (14), and (15).

Figure 0006940998
Figure 0006940998

共重合体(P1)において、化合物(A)としての化合物5由来のセグメントを有する。 In the copolymer (P1), it has a segment derived from compound 5 as compound (A).

Figure 0006940998
Figure 0006940998

共重合体(P2)において、化合物(A)としての化合物9由来のセグメントを有する。 In the copolymer (P2), it has a segment derived from compound 9 as compound (A).

Figure 0006940998
Figure 0006940998

共重合体(P3)において、化合物(A)としての化合物11由来のセグメントを有する。 In the copolymer (P3), it has a segment derived from compound 11 as compound (A).

また、前記共重合体(P)の単量体は、2つ以上の官能基を有する架橋剤(C)として、エチレンジメタクリレート(EGDMA)をさらに含む共重合体(P)の具体例としては、以下の式(16)〜(18)に表す共重合体(P4)〜(P6)が挙げられる。 Further, as a specific example of the copolymer (P) in which the monomer of the copolymer (P) further contains ethylene dimethacrylate (EGDMA) as a cross-linking agent (C) having two or more functional groups. , The copolymers (P4) to (P6) represented by the following formulas (16) to (18) can be mentioned.

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

Figure 0006940998
Figure 0006940998

本発明の吸収材料に用いられた具体例である共重合体P1〜P6は、炭素数18のアルキル基(ステアリル基)を有する重合可能なエチレン性不飽和単量体(B)から由来のセグメントを有するので、非極性液体中でも一定の馴染み性がある。また、共重合体P4〜P6の共重合に用いる原料には2つ以上の官能基を有する架橋剤(C)が存在しているので、共重合体P4〜P6からなる吸収材料の主鎖は完全に有機液体中に溶解されることがなく、吸収材料を有機液体から回収することが容易である。 The copolymers P1 to P6, which are specific examples used in the absorbent material of the present invention, are segments derived from a polymerizable ethylenically unsaturated monomer (B) having an alkyl group (stearyl group) having 18 carbon atoms. Therefore, it has a certain degree of familiarity even in non-polar liquids. Further, since the cross-linking agent (C) having two or more functional groups is present in the raw material used for the copolymerization of the copolymers P4 to P6, the main chain of the absorbent material composed of the copolymers P4 to P6 is It is easy to recover the absorbent material from the organic liquid without being completely dissolved in the organic liquid.

以上の共重合成分を重合して共重合体を作製する際に、フィルム状、粒状、糸状、網状など任意の形状の成形体に成形することができる。フィルム状のものが作製時の厚みの調整が容易であり、また重金属イオン含む有機液体と接触させやすいため好ましい。 When the above copolymerization components are polymerized to produce a copolymer, it can be molded into a molded product having an arbitrary shape such as a film shape, a granular shape, a thread shape, or a net shape. A film-like material is preferable because it is easy to adjust the thickness at the time of production and it is easy to come into contact with an organic liquid containing heavy metal ions.

本発明の一実施例形態としては、ヘキサンや軽油などの脂肪族炭化水素の液体環境においても容易に馴染む長鎖アルキル基をもつ単量体と、極小極性場においても可視光照射で可逆的に分子構造変化するフォトクロミック単量体と、樹脂材料全体を架橋によってヘキサンや軽油などの脂肪族炭化水素中に溶解させないようにするための単量体との共重合体であってもよい。 In one embodiment of the present invention, a monomer having a long-chain alkyl group that easily adapts to a liquid environment of an aliphatic hydrocarbon such as hexane or light oil and a monomer having a long-chain alkyl group and a minimal polar field can be reversibly irradiated with visible light. It may be a copolymer of a photochromic monomer whose molecular structure changes and a monomer for preventing the entire resin material from being dissolved in an aliphatic hydrocarbon such as hexane or light oil by cross-linking.

本発明の一実施態様の重金属イオン吸着材料によると、一見、非極性有機液体中の馴染み性について逆向きの狙いのようであるが、共存させることでこれら相反する特徴が同時に実現できた。エチレン不飽和性単量体由来の分子の主骨格に、化合物(A)由来のスピロピラン構造を置き、様々な官能基を付与することで極小極性場においても可視光照射のみで分子構造変化を伴いながら、液体中に溶解・分散している重金属イオンを光応答的に吸着することができた。 According to the heavy metal ion-adsorbing material of one embodiment of the present invention, it seems that the aim is opposite to the compatibility in the non-polar organic liquid, but by coexistence, these contradictory characteristics can be realized at the same time. By placing a spiropyran structure derived from compound (A) on the main skeleton of a molecule derived from an ethylene unsaturated monomer and imparting various functional groups, the molecular structure changes with only visible light irradiation even in a very minimal polar field. However, heavy metal ions dissolved and dispersed in the liquid could be adsorbed photoresponsively.

<光応答性重金属イオン吸着体>
光応答性重金属イオン吸着材料が、例えば、繊維、細粒、多孔質膜または細管に担持されていることができる。その場合、非極性有機流体に繊維又は細粒を入れ、或いは、多孔質膜又は細管に有機流体を流すことによって、それらに担持されている光応答性重金属イオン材料が光照射しながら重金属イオンを吸着することができる。
<Photoresponsive heavy metal ion adsorbent>
The photoresponsive heavy metal ion-adsorbing material can be supported, for example, on fibers, fine granules, porous membranes or tubules. In that case, by putting fibers or fine particles in the non-polar organic fluid, or by flowing the organic fluid through the porous membrane or thin tube, the photoresponsive heavy metal ion material supported on them emits heavy metal ions while irradiating with light. Can be adsorbed.

<重金属イオンの回収方法>
本発明における重金属イオンの回収方法は、上記光応答性重金属イオン吸着材料を用いて、例えば、亜鉛(II)イオン、鉛(II)イオンを含む重金属イオン有機液体から、亜鉛(II)イオン、鉛(II)イオンを、吸着することを特徴とする。
例えば、前記光応答性重金属イオン吸着材料の共重合体と、重金属イオンとを、暗所上に静置して、錯形成により吸着させる工程と、380〜1000nmの可視光を吸着材料に照射して、重金属イオンを共重合体から脱離させる工程とを含む。
<Recovery method of heavy metal ions>
The method for recovering heavy metal ions in the present invention uses the above photoresponsive heavy metal ion adsorbing material, for example, from a heavy metal ion organic liquid containing zinc (II) ion and lead (II) ion, zinc (II) ion and lead. (II) It is characterized by adsorbing ions.
For example, a step of allowing the copolymer of the photoresponsive heavy metal ion adsorbing material and the heavy metal ion to stand in a dark place and adsorbing them by complex formation, and irradiating the adsorbed material with visible light of 380 to 1000 nm. This includes a step of desorbing heavy metal ions from the copolymer.

具体的にはまず、前記光応答性重金属イオン吸着材料と、亜鉛(II)イオン等を含む重金属イオンを含む非極性有機液体とを、暗所下で接触させ、一定時間で静置する。錯形成により重金属イオンのみを吸着材料の共重合体の該当セグメントに吸着させる。
次いで、暗所下で、吸着材料に重金属イオンを吸着させたまま、吸着材料を取り出して回収用溶媒と接触させる。380〜1000nmの可視光を吸着材料に照射をしで光応答性重金属イオン吸着材料から吸着された重金属イオンを回収用溶媒に放出する。
Specifically, first, the photoresponsive heavy metal ion adsorbing material and a non-polar organic liquid containing heavy metal ions including zinc (II) ions and the like are brought into contact with each other in a dark place and allowed to stand for a certain period of time. By complex formation, only heavy metal ions are adsorbed on the relevant segment of the copolymer of the adsorbing material.
Then, in a dark place, the adsorbed material is taken out and brought into contact with the recovery solvent while the heavy metal ions are adsorbed on the adsorbed material. By irradiating the adsorbed material with visible light of 380 to 1000 nm, the heavy metal ions adsorbed from the photoresponsive heavy metal ion adsorbing material are released into the recovery solvent.

本発明の重金属イオン回収方法は、光応答性吸着材料を用いて重金属イオンを含む非極性有機液体から前記重金属イオンを回収用溶媒中へ回収する。
回収用溶媒は同じまたは異なる有機液体でもよい。例えば、n−ヘキサンが好ましい。
In the heavy metal ion recovery method of the present invention, the heavy metal ions are recovered from a non-polar organic liquid containing heavy metal ions into a recovery solvent using a photoresponsive adsorbent material.
The recovery solvent may be the same or different organic liquids. For example, n-hexane is preferable.

重金属イオン回収方法の実施態様の一例として、2価の亜鉛イオンを、化合物5由来の構造を有する共重合体(P1)である重金属イオン吸着材料を用いて回収する回収方法を以下に説明する。 As an example of the embodiment of the heavy metal ion recovery method, a recovery method for recovering divalent zinc ions using a heavy metal ion adsorbing material which is a copolymer (P1) having a structure derived from compound 5 will be described below.

図2に、n−ヘキサン中の共重合体P1の紫外可視吸収スペクトルの例を示す。
まず、暗所下で石英セル内に入れたn−ヘキサン溶媒中の共重合体の紫外可視吸収スペクトルは、図2の曲線(a)に示すように500〜600nmに吸収がある。これは共重合体P1の化合物5セグメントが、メロシアニン構造体(開環体)とっていることを示す。
これに可視光(380〜1000nm)を照射し、定常状態になると図2の曲線(b)に示すように500〜600nm付近に吸収強度が弱くなる。メロシアニン構造体(開環体)からスピロピラン構造(閉環体)に光異性化したことを示す。
暗所下、重金属イオンとして、亜鉛(II)イオンを添加すると、図2の曲線(c)に示すように、ピーク波長550nmの強い吸収が観測される。メロシアニン構造体(開環体)による亜鉛(II)イオンを吸着したことを示す。
FIG. 2 shows an example of an ultraviolet-visible absorption spectrum of the copolymer P1 in n-hexane.
First, the ultraviolet-visible absorption spectrum of the copolymer in the n-hexane solvent placed in the quartz cell in a dark place has absorption at 500 to 600 nm as shown in the curve (a) of FIG. This indicates that the compound 5 segment of the copolymer P1 has a merocyanine structure (ring-opened body).
When this is irradiated with visible light (380 to 1000 nm) and becomes a steady state, the absorption intensity becomes weak in the vicinity of 500 to 600 nm as shown in the curve (b) of FIG. It shows that the merocyanine structure (ring-opened body) was photoisomerized to the spiropyran structure (ring-closed body).
When zinc (II) ions are added as heavy metal ions in a dark place, strong absorption with a peak wavelength of 550 nm is observed as shown in the curve (c) of FIG. It shows that the zinc (II) ion was adsorbed by the merocyanine structure (ring-opened body).

さらにこれに可視光(380〜1000nm)を照射し、定常状態になると、図2の曲線(d)に示すように、550nm付近の吸収強度が大幅に弱くなる。メロシアニン構造体(開環体)から、スピロピラン構造(閉環体)に異性化したことを示す。亜鉛(II)イオンも脱離した。 Further, when this is irradiated with visible light (380 to 1000 nm) and becomes a steady state, the absorption intensity near 550 nm is significantly weakened as shown in the curve (d) of FIG. It shows that the merocyanine structure (ring-opened body) was isomerized to the spiropyran structure (ring-closed body). Zinc (II) ions were also eliminated.

以下に、本発明を実施例によって具体的に説明する。なお、本実施例により本発明を限定するものではない。なお、特記しない限り吸収スペクトル測定は室温で行った。 Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to the present embodiment. Unless otherwise specified, the absorption spectrum was measured at room temperature.

(合成例1)
<化合物1の合成>
(Synthesis Example 1)
<Synthesis of compound 1>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに、2,3,3−Trimethylindolenine 3mL、2−Iodoethanol 1.5mL、トルエン(関東化学株式会社製(蒸留後使用)、特級、純度99.5%)5mLを入れ、攪拌した。なお、2−Iodoethanolには安定剤であるCopper chipが含まれているため、事前に濾過しCopper chipを取り除いた。
温度を80℃に設定し24時間反応させた。反応終了後、析出した目的物を吸引濾過し回収した。目的物を純水に溶解させた後、クロロホルムと目的物が溶解した純水が同体積となるように分液漏斗に入れ数回振り混ぜ、残留の2,3,3−Trimethylindolenineを取り除き、水層を回収し、エバポレータ及び真空ポンプを用いて水・溶媒を完全に除去し化合物1を得た。
In a two-necked flask equipped with a cooling tube and a stirrer, 2,3,3-Trimethylindolinine 3 mL, 2-Idoethanol 1.5 mL, toluene (manufactured by Kanto Chemical Co., Inc. (used after distillation), special grade, purity 99.5%) 5 mL was added and stirred. Since 2-Ideothanol contains a copper chip as a stabilizer, the copper chip was removed by filtering in advance.
The temperature was set to 80 ° C. and the reaction was carried out for 24 hours. After completion of the reaction, the precipitated target product was suction-filtered and recovered. After dissolving the target product in pure water, put it in a separatory funnel so that chloroform and pure water in which the target product are dissolved have the same volume, and shake it several times to remove residual 2,3,3-Trimethylindolinine, and water. The layer was recovered, and water and solvent were completely removed using an evaporator and a vacuum pump to obtain Compound 1.

(合成例2)
<化合物2の合成>
(Synthesis Example 2)
<Synthesis of compound 2>

Figure 0006940998
Figure 0006940998

合成例1の化合物1 3.7gをビーカーに入れ、純水20mLに溶解させ攪拌させた。吸引濾過を行い水に溶解している部分のみを回収し、回収した水層をビーカーに移した。炭酸カリウム水溶液をビーカーに少しずつ加えた。この際、塩が遊離することによってビーカー内の溶液の色調が変化した。色調が変化しなくなったとき、添加を止めた。なお、炭酸カリウム水溶液の濃度は、pHが10前後になるように調整した。
ビーカー中の水溶液を分液漏斗に入れ同体積のクロロホルムを加えた後、クロロホルム層にある目的物をエバポレータ及び真空ポンプを用いて溶媒を完全に除去し化合物2(4,4−trimethyloxazolidinoindoline)を得た。
3.7 g of Compound 1 of Synthesis Example 1 was placed in a beaker, dissolved in 20 mL of pure water, and stirred. Suction filtration was performed to collect only the portion dissolved in water, and the collected aqueous layer was transferred to a beaker. Aqueous potassium carbonate solution was added to the beaker little by little. At this time, the color tone of the solution in the beaker changed due to the liberation of the salt. When the color tone did not change, the addition was stopped. The concentration of the potassium carbonate aqueous solution was adjusted so that the pH was around 10.
The aqueous solution in the beaker is placed in a separatory funnel, the same volume of chloroform is added, and then the solvent is completely removed from the target substance in the chloroform layer using an evaporator and a vacuum pump to obtain compound 2 (4,5-trimethyloxozolidinoline). rice field.

(合成例3)
<化合物3の合成>
(Synthesis Example 3)
<Synthesis of compound 3>

Figure 0006940998
Figure 0006940998

8−hydroxy−5−nitroquinoline:1.0g(東京化成工業(株)製純度98.0%)、ヘキサメチレンテトラミン:0.7g(和光純薬工業(株)製純度99.0%)、トリプルオロ酢酸:10mL(和光純薬工業(株)製純度98.0%)を二口フラスコに入れ撹枠した。90℃で15時間反応を行った。15時間後、2Mの塩酸を5mL加え、90℃で6時間反応させた。反応終了後、500mLビーカーに300mL程の純水を入れ、その中に反応溶液を入れた。
この際、目的物である8−hydroxy−5−nitroquinoline−7−carbaldehydeは水には溶解しないため析出するが、ヘキサメチレンテトラミンは水に溶解する。吸引慮過を用いて析出物を回収後、減圧乾燥を行った。この際、水溶液は非常に強い酸性下になっているため十分に注意する。ヘキサメチレンテトラミンを完全に取り除くため、300mL程の純水が入ったビーカーに、減圧乾燥を行った析出物を入れ、もう一度水洗いした。この際、析出物は水上に浮遊する形となるが、30分間撹枠または、30分間超音波をかけヘキサメチレンテトラミンを取り除いた。同様に吸引櫨過を用いて析出物を回収後、減圧乾燥を行い目的物の化合物3(8−hydroxy−5−nitroquinoline−7−carbaldehyde)を得た。
8-hydroxy-5-nitroquininline: 1.0 g (purity 98.0% manufactured by Tokyo Chemical Industry Co., Ltd.), hexamethylenetetramine: 0.7 g (purity 99.0% manufactured by Wako Pure Chemical Industries, Ltd.), triple Oroacetic acid: 10 mL (purity 98.0% manufactured by Wako Pure Chemical Industries, Ltd.) was placed in a two-necked flask and stirred. The reaction was carried out at 90 ° C. for 15 hours. After 15 hours, 5 mL of 2M hydrochloric acid was added, and the mixture was reacted at 90 ° C. for 6 hours. After completion of the reaction, about 300 mL of pure water was placed in a 500 mL beaker, and the reaction solution was placed therein.
At this time, the target substance 8-hydroxy-5-nitroquinoline-7-carbaldehide precipitates because it does not dissolve in water, but hexamethylenetetramine dissolves in water. After collecting the precipitate using suction care, it was dried under reduced pressure. At this time, be careful because the aqueous solution is under very strong acidity. In order to completely remove hexamethylenetetramine, the precipitate dried under reduced pressure was placed in a beaker containing about 300 mL of pure water and washed again with water. At this time, the precipitate was suspended on water, and hexamethylenetetramine was removed by applying a stirring frame for 30 minutes or ultrasonic waves for 30 minutes. Similarly, after recovering the precipitate using a suction pad, the precipitate was dried under reduced pressure to obtain the target compound 3 (8-hydroxy-5-nitroquinoline-7-carbaldehide).

(合成例4)
<化合物4の合成>
(Synthesis Example 4)
<Synthesis of compound 4>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに化合物2、1.0g、エタノール4mL(和光純薬(株)製精製済み)を入れ攪拌した。窒素循環を10分間行った後、化合物3、0.97gとエタノール4mL(和光純薬(株)製精製済み)を加え、沸点還流下(100℃)で5時間反応を行った。反応終了後、速やかに反応溶液が入った二口なすフラスコを冷凍庫(約−20℃)に入れ、約15h静置させ、目的物を結晶化させた。吸引濾過を用いて、結晶化した目的物を回収した。回収した目的物を冷却したエタノールを少量用いて洗浄を行い、化合物4(2−(3,3−dimethyl−6’−nitrospiro[indoline−2,2’−pyrano[3,2−h]quinolin]−1−yl)ethan−1−ol)を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図18に示す。低極性溶媒である重クロロホルム中において化合物4の閉環体とその開環体異性体が共存していることが観測された。 Compound 2, 1.0 g, and ethanol 4 mL (purified by Wako Pure Chemical Industries, Ltd.) were placed in a two-necked flask equipped with a cooling tube and a stirrer and stirred. After the nitrogen cycle was carried out for 10 minutes, 0.97 g of Compound 3 and 4 mL of ethanol (purified by Wako Pure Chemical Industries, Ltd.) were added, and the reaction was carried out under reflux at boiling point (100 ° C.) for 5 hours. After completion of the reaction, the two-necked flask containing the reaction solution was immediately placed in a freezer (about −20 ° C.) and allowed to stand for about 15 hours to crystallize the target product. Crystallized objects were recovered using suction filtration. The recovered target product was washed with a small amount of cooled ethanol, and compound 4 (2- (3,3-dimethyl-6'-nitrospiro [indoline-2,2'-pyrano [3,2-h] quinolin]] -1-yl) ethanol-1-ol) was obtained. The result of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform is shown in FIG. It was observed that the closed ring of Compound 4 and its open ring isomer coexisted in deuterated chloroform, which is a low polar solvent.

(合成例5)
<化合物5の合成>
(Synthesis Example 5)
<Synthesis of compound 5>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコにDCC(N,N’−ジシクロヘキシルカルボジイミド)(東京化成工業99.5%)0.40g、DMAP(ジメチル−4−アミノピリジン)(東京化成工業99.5%)0.016g、ジクロロメタン(和光純薬工業99.5%)5mLを入れ撹拌した。メタクリル酸(東京化成工業99.8%)0.17mLを加え30分程撹拌させたのち、化合物4(合成済み)0.56gを加え24時間反応を行った。反応終了後、反応溶液をエバポレーターで除去し減圧ポンプで乾燥させたのち、アセトン(和光純薬工業99.0%):メタノール(和光純薬工業99.0%)=1:1を用いてカラムクロマトグラフィーを行いRf=0.6の部分を回収し化合物5を得た。重DMSO中において測定したHNMR(DMSO−d6)の結果を図19に示す。極性溶媒である重DMSOにおいて化合物5の開環異性体由来のシグナルのみが観測された。 DCC (N, N'-dicyclohexylcarbodiimide) (Tokyo Chemical Industry 99.5%) 0.40 g, DMAP (dimethyl-4-aminopyridine) (Tokyo Chemical Industry 99. 0.016 g (5%) and 5 mL of dichloromethane (Wako Pure Chemical Industries, Ltd. 99.5%) were added and stirred. After adding 0.17 mL of methacrylic acid (Tokyo Chemical Industry 99.8%) and stirring for about 30 minutes, 0.56 g of compound 4 (synthesized) was added and the reaction was carried out for 24 hours. After completion of the reaction, the reaction solution was removed with an evaporator and dried with a vacuum pump, and then a column was used using acetone (Wako Pure Chemical Industries, Ltd. 99.0%): methanol (Wako Pure Chemical Industries, Ltd. 99.0%) = 1: 1. Chromatography was performed and the portion of Rf = 0.6 was recovered to obtain Compound 5. The results of 1 1 HNMR (DMSO-d6) measured in heavy DMSO are shown in FIG. Only the signal derived from the ring-opening isomer of compound 5 was observed in heavy DMSO, which is a polar solvent.

(合成例6)
<化合物6の合成>
(Synthesis Example 6)
<Synthesis of compound 6>

Figure 0006940998
Figure 0006940998

4−Hydroxy−7(trifluoromethyl)quinolone(シグマアノレドリッチ、96%):l.0g、ヘキサメチレンテトラミン(和光純薬工業、99%):0.7g、トリフルオロ酢酸(和光純薬工業、98%):l0mLを二口フラスコに入れ攪拌した。90℃で15時間反応を行った。15時間後、2Mの塩酸を5mL加え、90℃で6時間反応させた。反応終了後、500mLビーカーに300mL程の超純水を入れ、その中に反応溶液を入れた。吸引濾過を用いて析出物を回収後、減圧乾燥を行った。この際、水溶液は非常に強い酸性下になっているため十分に注意する。ヘキサメチレンテトラミンを完全に取り除くため、300mL程の超純水を入ったビーカーに、減圧乾燥を行った析出物を入れ、もう一度水洗いした。この際、析出物は水上に浮遊する形となるが、30分間攪拌または、30分間超音波をかけヘキサメチレンテトラミンを取り除いた。同様に吸引濾過を用いて析出物を回収後、減圧乾燥を行い目的物である化合物6を得た。 4-Hydroxy-7 (trifluoromethyl) quinolone (sigma anoredrich, 96%): l. 0 g, hexamethylenetetramine (Wako Pure Chemical Industries, Ltd., 99%): 0.7 g, trifluoroacetic acid (Wako Pure Chemical Industries, Ltd., 98%): l 0 mL were placed in a two-necked flask and stirred. The reaction was carried out at 90 ° C. for 15 hours. After 15 hours, 5 mL of 2M hydrochloric acid was added, and the mixture was reacted at 90 ° C. for 6 hours. After completion of the reaction, about 300 mL of ultrapure water was placed in a 500 mL beaker, and the reaction solution was placed therein. After collecting the precipitate by suction filtration, it was dried under reduced pressure. At this time, be careful because the aqueous solution is under very strong acidity. In order to completely remove hexamethylenetetramine, the precipitate dried under reduced pressure was placed in a beaker containing about 300 mL of ultrapure water and washed again with water. At this time, the precipitate was suspended on water, and hexamethylenetetramine was removed by stirring for 30 minutes or ultrasonic waves for 30 minutes. Similarly, after collecting the precipitate by suction filtration, it was dried under reduced pressure to obtain the target compound 6.

(合成例7)
<化合物7の合成>
(Synthesis Example 7)
<Synthesis of compound 7>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える2口フラスコに、2,3,3−Trimethylindolenine 0.39mL、2−(Bromomethyl)−6−(hydroxymethyl)pyridine 500mg、アセトニトリル30mLを入れ攪拌した。温度を100℃に設定し24時間反応させた。反応終了後、反応溶媒をエバポレータを用いて乾燥させた。続いて少量のクロロホルムに溶解させた後、100mLの三角フラスコに移し、多量のn−ヘキサンを加えて冷蔵庫にて1晩放置させた。生じた沈殿物を回収し、真空ポンプを用いて溶媒を完全に除去し、化合物7を得た。 In a two-necked flask equipped with a cooling tube and a stirrer, 0.39 mL of 2,3,3-Trimethylindolinine, 500 mg of 2- (Bromomethyl) -6- (hydroxymethyl) pyridine, and 30 mL of acetonitrile were placed and stirred. The temperature was set to 100 ° C. and the reaction was carried out for 24 hours. After completion of the reaction, the reaction solvent was dried using an evaporator. Subsequently, after dissolving in a small amount of chloroform, the mixture was transferred to a 100 mL Erlenmeyer flask, a large amount of n-hexane was added, and the mixture was allowed to stand overnight in a refrigerator. The resulting precipitate was recovered and the solvent was completely removed using a vacuum pump to give compound 7.

(合成例8)
<化合物8の合成>
(Synthesis Example 8)
<Synthesis of Compound 8>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに、化合物7、0.77g、エタノール10mL(和光純薬工業、99.5%)、ピペリジン(東京化成工業、99%)0.25mLを入れ攪拌した。窒素循環を10分間行った後、化合物6、0.97gを加え、沸点還流下(90℃)で3時間反応を行った。反応終了後、反応溶媒をエバポレータで除去し減圧ポンプで乾燥させたのち、ヘキサン(和光純薬工業99.5%)及びクロロホルム(和光純薬工業99.5%)を用いて再結晶を行い析出した化合物8を得た。 Compound 7, 0.77 g, ethanol 10 mL (Wako Pure Chemical Industries, Ltd., 99.5%) and piperidine (Tokyo Chemical Industry, 99%) 0.25 mL were placed in a two-necked flask equipped with a cooling tube and a stir bar and stirred. .. After the nitrogen cycle was carried out for 10 minutes, 0.97 g of Compound 6 was added, and the reaction was carried out under reflux at boiling point (90 ° C.) for 3 hours. After completion of the reaction, the reaction solvent was removed with an evaporator, dried with a vacuum pump, and then recrystallized using hexane (Wako Pure Chemical Industries, Ltd. 99.5%) and chloroform (Wako Pure Chemical Industries, Ltd. 99.5%) to precipitate. Compound 8 was obtained.

(合成例9)
<化合物9の合成>
(Synthesis Example 9)
<Synthesis of compound 9>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに化合物8、0.5g、DCC(N,N’−ジシクロヘキシルカルボジイミド)(東京化成工業99.5%)0.12g、DMAP(N,N−ジメチル−4−アミノピリジン)0.002g、クロロホルム2mL入れ攪拌した。メタクリル酸0.1mLを加え30分ほど攪拌させたのち、化合物8、0.18gを加ええ24時間反応を行った。反応終了後、反応溶媒をエパポレーターで除去し減圧ポンプで乾燥させたのち、ヘキサン(和光純薬工業99.5%):アセトン(和光純薬工業99.5%)=1:9を用いてカラムクロマトグラフィ一行いRf=0.5の部分を回収し化合物9を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図21に示す。 Compound 8, 0.5 g, DCC (N, N'-dicyclohexylcarbodiimide) (Tokyo Chemical Industry 99.5%) 0.12 g, DMAP (N, N-dimethyl-) in a two-necked flask equipped with a cooling tube and a stir bar. 0.002 g of 4-aminopyridine) and 2 mL of chloroform were added and stirred. After adding 0.1 mL of methacrylic acid and stirring for about 30 minutes, 0.18 g of Compound 8 was added and the reaction was carried out for 24 hours. After completion of the reaction, the reaction solvent was removed with an evaporator and dried with a vacuum pump, and then a column using hexane (Wako Pure Chemical Industries, Ltd. 99.5%): acetone (Wako Pure Chemical Industries, Ltd. 99.5%) = 1: 9. Chromatography was performed and the portion of Rf = 0.5 was recovered to obtain Compound 9. The results of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform are shown in FIG.

(合成例10)
<化合物10の合成>
(Synthesis Example 10)
<Synthesis of compound 10>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに化合物6、0.5g、化合物3 0.58g、エタノール(和光純薬工業99.5%)を入れ攪拌した。窒素循環を10分間行った後、沸点還流下(100℃)で6時間反応を行った。反応終了後、反応溶媒をエパポレーターで除去し減圧ポンプで乾燥させたのち、ヘキサン(和光純薬工業99.5%)及びクロロホルム(和光純薬工業99.5%)を用いて再結晶を行い析出した化合物10を得た。 Compound 6, 0.5 g, compound 3 0.58 g, and ethanol (Wako Pure Chemical Industries, Ltd. 99.5%) were placed in a two-necked flask equipped with a cooling tube and a stir bar and stirred. After the nitrogen cycle was carried out for 10 minutes, the reaction was carried out under reflux at boiling point (100 ° C.) for 6 hours. After completion of the reaction, the reaction solvent was removed with an evaporator, dried with a vacuum pump, and then recrystallized using hexane (Wako Pure Chemical Industries, Ltd. 99.5%) and chloroform (Wako Pure Chemical Industries, Ltd. 99.5%) to precipitate. Compound 10 was obtained.

(合成例11)
<化合物11の合成>
(Synthesis Example 11)
<Synthesis of compound 11>

Figure 0006940998
Figure 0006940998

冷却管、撹枠子を備える2口なラスコにDCC(N,N’ージシクロヘキシルカルボジイミド)(東京化成工業99.5%)0.097g、DMAP(メチルアミノピリジン)(東京化成工業99.5%)0.017g、クロロホルム2mLを入れ撹枠した。メタクリル酸0.027mLを加え30分ほど攪拌させたのち、化合物10、0.09gを加ええ24時間反応を行った。反応終了後、反応溶媒をエパポレーターで除去し減圧ポンプで乾燥させたのち、ヘキサン(和光純薬工業99.5%):アセトン(和光純薬工業99.5%)=1:9を用いてカラムクロマトグラフィ一行いRf=0.5の部分を回収し化合物11を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図23に示す。化合物11の開環異性体由来のシグナルのみが観測された。 DCC (N, N'-dicyclohexylcarbodiimide) (Tokyo Chemical Industry 99.5%) 0.097 g, DMAP (methylaminopyridine) (Tokyo Chemical Industry 99.5%) in a two-port Rasco equipped with a cooling tube and a stirring frame. ) 0.017 g and 2 mL of chloroform were added and stirred. After adding 0.027 mL of methacrylic acid and stirring for about 30 minutes, 0.09 g of compound 10 was added and the reaction was carried out for 24 hours. After completion of the reaction, the reaction solvent was removed with an evaporator and dried with a vacuum pump, and then a column using hexane (Wako Pure Chemical Industries, Ltd. 99.5%): acetone (Wako Pure Chemical Industries, Ltd. 99.5%) = 1: 9. Chromatography was performed and the portion of Rf = 0.5 was recovered to obtain Compound 11. The result of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform is shown in FIG. Only the signal derived from the ring-opening isomer of compound 11 was observed.

(実施例1)
<共重合体P1の合成>
(Example 1)
<Synthesis of copolymer P1>

Figure 0006940998
Figure 0006940998

冷却管、撹拌子を備える二口なすフラスコに、重合可能なエチレン性不飽和単量体(B)としてステアリルメタクリレート単量体(SMA,商品名 製造メーカ)1.33gをベンゾニトリル2mLに溶解させ、重合モル比(SMA/化合物5)98:2に対応するように、化合物(A)として化合物5、0.036gを投入し、窒素循環を15分間行った(総モノマー濃度2.0M)。重合開始剤アゾビスイソブチロニトリル(AIBN)0.01gを加えた後、反応温度65℃にて15時間重合反応を行った。この際、窒素循環は継続して行った。なお、重合反応が進行すると、溶液に粘性が増し撹拌子が停止するため、停止した時を重合反応終了の目安とした。反応終了後、ビーカーにメタノールを入れ、攪拌を行いながら反応溶液を少量ずつ滴下した(再沈殿)。吸引濾過を用いて沈殿した未精製の目的物を回収した。また、ベンゾニトリルを完全に取り除くために続いてアセトンを用いて再沈殿を行った。減圧乾燥を行い、共重合体P1を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図20に示す。 In a two-mouthed flask equipped with a cooling tube and a stirrer, 1.33 g of stearyl methacrylate monomer (SMA, trade name manufacturer) as a polymerizable ethylenically unsaturated monomer (B) was dissolved in 2 mL of benzonitrile. , 0.036 g of compound 5 as compound (A) was added so as to correspond to the polymerization molar ratio (SMA / compound 5) 98: 2, and nitrogen circulation was carried out for 15 minutes (total monomer concentration 2.0 M). After adding 0.01 g of the polymerization initiator azobisisobutyronitrile (AIBN), the polymerization reaction was carried out at a reaction temperature of 65 ° C. for 15 hours. At this time, the nitrogen cycle was continued. As the polymerization reaction progressed, the viscosity of the solution increased and the stirrer stopped. Therefore, the time when the stirrer stopped was used as a guideline for the completion of the polymerization reaction. After completion of the reaction, methanol was placed in a beaker, and the reaction solution was added dropwise little by little while stirring (reprecipitation). The unpurified target product precipitated by suction filtration was recovered. In addition, reprecipitation was subsequently carried out with acetone to completely remove benzonitrile. Drying under reduced pressure was carried out to obtain a copolymer P1. The results of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform are shown in FIG.

<共重合体P1の亜鉛(II)イオンの光応答性>
P1のスピロピラン部位の濃度が0.05mMとなるようにn−ヘキサン中に溶解させ石英セル内に入れた(n−ヘキサン5mlに対して、共重合体P1が0.04gである)、暗所下に静置して、平衡状態を確認した後、紫外可視吸収スペクトル測定を行った。590nm付近の吸収帯を観測した(図2,曲線(a))。続いて、下記の光源とフィルターを用いて、可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行うと590nm付近の吸収帯が減少した(図2,曲線(b))。以上より、暗所下でも開環体を形成していることが確認できた。
次に、2−エチルヘキサン酸亜鉛(II)をスピロピラン部位に対して10倍モルとなるように添加し、平衡状態となるまで静置した後、紫外可視吸収スペクトル測定を行うと550nm付近の吸収帯の吸光度が大幅に増大した(図2,曲線(c))。続いて、同様な光源を用いて、可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行ったところ、亜鉛(II)イオン付加体由来の吸収帯が減少したことより亜鉛(II)イオンが脱離したことが示唆された。(図2、曲線(d))
<Photoresponsiveness of zinc (II) ion of copolymer P1>
It was dissolved in n-hexane so that the concentration of the spiropyran site of P1 was 0.05 mM and placed in a quartz cell (0.04 g of copolymer P1 with respect to 5 ml of n-hexane) in a dark place. After allowing it to stand underneath and confirming the equilibrium state, the ultraviolet-visible absorption spectrum was measured. An absorption band near 590 nm was observed (Fig. 2, curve (a)). Subsequently, using the following light source and filter, visible light (380 to 1000 nm) was irradiated until the light became steady state, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorption band near 590 nm decreased (Fig. 2, curve). (B)). From the above, it was confirmed that the ring-opened body was formed even in a dark place.
Next, zinc (II) 2-ethylhexanoate was added so as to be 10 times the molar amount of the spiropirane moiety, and the mixture was allowed to stand until it reached an equilibrium state. The absorbance of the band increased significantly (Fig. 2, curve (c)). Subsequently, using a similar light source, visible light (380 to 1000 nm) was irradiated until the light became steady, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorption band derived from the zinc (II) ion adduct decreased. This suggested that zinc (II) ions were desorbed. (Fig. 2, curve (d))

光源:
商品名 オプティカルモジュレックス
形式番号 SX−UI500XQ
製造メーカ ウシオ電機株式会社
入力電圧 AC100V 50−60Hz
入力電力 15VA
適合ランプ クセノンショートアークランプ
light source:
Product name Optical Modlex Model number SX-UI500XQ
Manufacturer Ushio, Inc. Input voltage AC100V 50-60Hz
Input power 15VA
Compatible lamp Xenon short arc lamp

装着フィルター:
商品名 シャープカットフィルター
形式番号 SCF−50S−54O(
製造メーカ シグマ光機製波長約
カット波長: 540nm以下の近紫外線をカットする。
Mounting filter:
Product name Sharp cut filter Model number SCF-50S-54O (
Manufacturer SIGMA KOKI Wavelength Approximately cut wavelength: Cuts near-ultraviolet rays of 540 nm or less.

(共重合体P1の鉛(II)イオンの光応答性)
上記亜鉛(II)イオン時と同様の条件で石英セル内にn−ヘキサン溶液を調製し、2−エチルヘキサン鉛(II)をスピロピラン部位に対して10倍モルとなるように添加した。暗所下で平衡状態となるまで静置した後、紫外可視吸収スペクトル測定を行うと、560nm付近の鉛(II)イオン付加体由来の吸収帯が観測された(図3,曲線(c))。続いて、可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行ったところ、鉛(II)イオン付加体由来の吸収帯が減少し、鉛(II)イオンが脱離したことが示唆された(図3,曲線(d))。
(Photoresponsiveness of lead (II) ion of copolymer P1)
An n-hexane solution was prepared in a quartz cell under the same conditions as for zinc (II) ion, and 2-ethylhexane lead (II) was added so as to be 10 times the molar amount with respect to the spiropirane moiety. When the ultraviolet-visible absorption spectrum was measured after allowing it to stand in a dark place until it reached an equilibrium state, an absorption band derived from a lead (II) ion adduct near 560 nm was observed (Fig. 3, curve (c)). .. Subsequently, visible light (380 to 1000 nm) was irradiated until the light became a steady state, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorption band derived from the lead (II) ion adduct decreased, and the lead (II) ion It was suggested that was desorbed (Fig. 3, curve (d)).

(実施例2)
<共重合体P2の合成>
(Example 2)
<Synthesis of copolymer P2>

Figure 0006940998
Figure 0006940998

化合物(A)として化合物5の代わりに化合物9を用いること以外に、共重合体P1の合成方法と同じ方法で、共重合体P2を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図22に示す。 The copolymer P2 was obtained by the same method as the method for synthesizing the copolymer P1 except that the compound 9 was used instead of the compound 5 as the compound (A). The result of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform is shown in FIG.

<共重合体P2の亜鉛(II)イオンの光応答性>
上記合成したP−2のスピロピラン部位が0.05mMになるようなn−ヘキサン溶液を調製した。暗所下に静置して、平衡状態を確認した後、紫外可視吸収スペクトル測定を行うと、550nm付近の吸収帯を確認した(図5の曲線(a))。続いて、実施例1と同様な光源とフィルターを用いて、可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行うと550nm付近の吸収帯が減少した(図5の曲線(a))。以上より、暗所下で開環体を形成していることが確認できた。
次に、2−エチルヘキサン酸亜鉛(II)をスピロピラン部位に対して10倍モルとなるように添加し、平衡状態となるまで静置した後、紫外可視吸収スペクトル測定を行うと 520nm付近の吸収帯の吸光度が大幅に増大した。(図5の曲線(c))。続いて、同じ光源とフィルターを用いて、可視光(380〜1000nm)を光定常状態まで照射し、紫外可視吸収スペクトル測定を行うと、亜鉛(II)イオン付加体由来の吸収帯が減少したことより亜鉛(II)イオンが脱離したことが示唆された(図5の曲線(d))。また、0℃で可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行ったところさらに吸光度が減少したことから、低温にすると高効率に亜鉛(II)イオンを脱離可能であることもわかった(図5の曲線(e))。
<Photoresponsiveness of zinc (II) ion of copolymer P2>
An n-hexane solution was prepared so that the spiropyran site of the synthesized P-2 was 0.05 mM. After standing in a dark place and confirming the equilibrium state, the ultraviolet-visible absorption spectrum was measured, and an absorption band near 550 nm was confirmed (curve (a) in FIG. 5). Subsequently, using the same light source and filter as in Example 1, visible light (380 to 1000 nm) was irradiated until the light became a steady state, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorption band near 550 nm decreased (). Curve (a) in FIG. From the above, it was confirmed that the ring-opened body was formed in a dark place.
Next, zinc (II) 2-ethylhexanoate was added so as to be 10 times the molar amount with respect to the spiropyran site, and the mixture was allowed to stand until it reached an equilibrium state. The absorbance of the band increased significantly. (Curve (c) in FIG. 5). Subsequently, when visible light (380 to 1000 nm) was irradiated to a light steady state using the same light source and filter and the ultraviolet-visible absorption spectrum was measured, the absorption band derived from the zinc (II) ion adduct decreased. It was further suggested that zinc (II) ions were desorbed (curve (d) in FIG. 5). In addition, visible light (380 to 1000 nm) was irradiated at 0 ° C. until the light became steady, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorbance further decreased. Therefore, zinc (II) ions were highly efficient at low temperatures. Was also found to be desorbable (curve (e) in FIG. 5).

(共重合体P2の鉛(II)イオンの光応答性)
亜鉛(II)イオン時と同様の条件で石英セル内にn−ヘキサン溶液を調製し、2−エチルヘキサン鉛(II)をスピロピラン部位に対して10倍モルとなるように添加した。暗所下で平衡状態となるまで静置した後、紫外可視吸収スペクトル測定を行うと、550nm付近の鉛(II)イオン付加体由来の吸収帯が観測された(図6の曲線(c))。続いて、同じ光源とフィルターを用いて、可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行うと、鉛(II)イオン付加体由来の吸収帯が減少し、鉛(II)イオンが脱離したことが示唆された。(図6の曲線(d))。亜鉛(II)イオン時と同様に、0℃で可視光(380〜1000nm)を光定常状態となるまで照射し、紫外可視吸収スペクトル測定を行ったところ、さらに吸光度が減少し、低温化での高効率な鉛(II)イオンの脱離を確認した(図6の曲線(e))。
(Photoresponsiveness of lead (II) ion of copolymer P2)
An n-hexane solution was prepared in a quartz cell under the same conditions as for zinc (II) ion, and 2-ethylhexane lead (II) was added in a 10-fold molar amount with respect to the spiropirane moiety. When the ultraviolet-visible absorption spectrum was measured after allowing it to stand in a dark place until it reached an equilibrium state, an absorption band derived from a lead (II) ion adduct near 550 nm was observed (curve (c) in FIG. 6). .. Subsequently, using the same light source and filter, visible light (380 to 1000 nm) was irradiated until the light became steady, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorption band derived from the lead (II) ion adduct decreased. However, it was suggested that lead (II) ions were desorbed. (Curve (d) in FIG. 6). Similar to the case of zinc (II) ion, visible light (380 to 1000 nm) was irradiated at 0 ° C. until the light became steady state, and the ultraviolet-visible absorption spectrum was measured. As a result, the absorbance was further reduced and the temperature was lowered. Highly efficient desorption of lead (II) ions was confirmed (curve (e) in FIG. 6).

(実施例3)
<共重合体P3の合成>
(Example 3)
<Synthesis of copolymer P3>

Figure 0006940998
Figure 0006940998

化合物(A)として化合物5の代わりに化合物11を用いること以外に、共重合体P1の合成方法と同じ方法で、共重合体P3を得た。重クロロホルム中において測定したHNMR(CDCl)の結果を図24に示す。 The copolymer P3 was obtained by the same method as the method for synthesizing the copolymer P1 except that the compound 11 was used instead of the compound 5 as the compound (A). The results of 1 1 HNMR (CDCl 3 ) measured in deuterated chloroform are shown in FIG.

<共重合体P3の亜鉛(II)イオンの光応答性>
共重合体P1と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P3>
It exhibits the same photoresponsiveness as the copolymer P1.

(共重合体P3の鉛(II)イオンの光応答性)
共重合体P1と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P3)
It exhibits the same photoresponsiveness as the copolymer P1.

(実施例4)
<共重合体P4の合成>
(Example 4)
<Synthesis of copolymer P4>

Figure 0006940998
Figure 0006940998

50mLサンプル瓶内にステアリルメタクリレート単量体(SMA、東京化成株式会社、95%)1.33g、化合物(A)として化合物5 0.036g、架橋剤としてエチレンジメタクリレート(EGDMA、東京化成工業(株)製純度97%)0.04mLを入れ、ベンゾニトリル(和光純薬(株)製精製済)2mLに溶解させた。(架橋率5%、総モノマー濃度2M,重合モル比(SMA/化合物5)95:5(mol%))。そして、重合開始剤アゾビスイソブチロニトリル(AIBN)0.01gを加えた後5分間撹拌させた後、以下の工程を行った。(1)あらかじめ図17の様にスペーサー2(中央を切り抜いた5mm厚のテフロン(登録商標)シート)と2枚のガラス板1を有する反応装置を作成し;(2)作成したスペーサー2付ガラス板1内に反応溶液2を注射針付シリンジ3を用いて注入し;(3)固定治具4を用いて2枚のガラス板1とスペーサー2とを固定し;(4)63℃の電気炉内で6時間反応させ、P4フィルム6を得た。
反応終了後、トルエンの入ったシャーレ内に合成したP4フィルム6を入れ、未反応のモノマーを取り除いた。モノマーが流出しなくなるまで適度にトルエンの交換を行った。その後、n−ヘキサンにP4を浸漬させ、溶媒の置換を十分に行った後、減圧乾燥させ、フィルム状の式(16)に表す共重合体P4を得た。
1.33 g of stearyl methacrylate monomer (SMA, Tokyo Chemical Industry Co., Ltd., 95%) in a 50 mL sample bottle, 0.036 g of compound as compound (A), ethylene dimethacrylate (EGDMA, Tokyo Chemical Industry Co., Ltd.) as a cross-linking agent. ) Purity 97%) 0.04 mL was added and dissolved in 2 mL of benzonitrile (purified by Wako Pure Chemical Industry Co., Ltd.). (Crosslink ratio 5%, total monomer concentration 2M, polymerization molar ratio (SMA / compound 5) 95: 5 (mol%)). Then, after adding 0.01 g of the polymerization initiator azobisisobutyronitrile (AIBN) and stirring for 5 minutes, the following steps were carried out. (1) As shown in FIG. 17, a reaction device having a spacer 2 (a 5 mm thick Teflon (registered trademark) sheet cut out at the center) and two glass plates 1 was prepared in advance; (2) The glass with the spacer 2 was prepared. The reaction solution 2 is injected into the plate 1 using a syringe 3 with an injection needle; (3) the two glass plates 1 and the spacer 2 are fixed using a fixing jig 4; (4) electricity at 63 ° C. The reaction was carried out in the furnace for 6 hours to obtain P4 film 6.
After completion of the reaction, the synthesized P4 film 6 was placed in a petri dish containing toluene, and unreacted monomers were removed. Toluene was exchanged moderately until the monomer did not flow out. Then, P4 was immersed in n-hexane, the solvent was sufficiently replaced, and then the mixture was dried under reduced pressure to obtain a film-like copolymer P4 represented by the formula (16).

<共重合体P4の亜鉛(II)イオンの光応答性>
共重合体P1と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P4>
It exhibits the same photoresponsiveness as the copolymer P1.

(共重合体P4の鉛(II)イオンの光応答性)
共重合体P1と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P4)
It exhibits the same photoresponsiveness as the copolymer P1.

(実施例5)
重合モル比(SMA/化合物5)95:5の代わりに、重合モル比(SMA/化合物5)98:2を用いて、実施例4と同様の方法でフィルム状の共重合体P4−1を得た。
(Example 5)
Using a polymerization molar ratio (SMA / Compound 5) 98: 2 instead of the polymerization molar ratio (SMA / Compound 5) 95: 5, a film-like copolymer P4-1 was prepared in the same manner as in Example 4. Obtained.

<共重合体P4−1の亜鉛(II)イオンの光応答性>
共重合体P1と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P4-1>
It exhibits the same photoresponsiveness as the copolymer P1.

(共重合体P4−1の鉛(II)イオンの光応答性)
共重合体P1と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P4-1)
It exhibits the same photoresponsiveness as the copolymer P1.

(実施例6)
重合モル比(SMA/化合物5)95:5の代わりに、重合モル比(SMA/化合物5)90:10を用いて、実施例4と同様の方法でフィルム状の共重合体P4−2を得た。
(Example 6)
Using a polymerization molar ratio (SMA / compound 5) 90:10 instead of the polymerization molar ratio (SMA / compound 5) 95: 5, a film-like copolymer P4-2 was prepared in the same manner as in Example 4. Obtained.

<共重合体P4−2の亜鉛(II)イオンの光応答性>
共重合体P1と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P4-2>
It exhibits the same photoresponsiveness as the copolymer P1.

(共重合体P4−2の鉛(II)イオンの光応答性)
共重合体P1と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P4-2)
It exhibits the same photoresponsiveness as the copolymer P1.

(実施例7)
(共重合体P4、P4−1,P4−2の亜鉛(II)イオンの暗所吸着性)
合成した架橋型高分子のP4(95,5)のスピロピラン部位に対し、2−エチルヘキサン酸亜鉛(II)のZn2+を同じ物質量(0.87mmol/L)になるようにn−ヘキサン(100mL)中に溶解させ、Zn2+含有n−ヘキサン溶液を定量評価用に調製した。その後、定量評価用のZn2+含有n−ヘキサン溶液の濃度に対して、0.5倍モル(0.44mmol/L)、0.25倍モル(0.22mmol/L)となるように溶液濃度を希釈し、異なる濃度のZn2+含有n−ヘキサン溶液を合計3種類調製した。
続いて、直径0.8cmに切り取った濾紙に、調製した3種類のZn2+含有n−ヘキサン溶液を50μL浸透させて、濾紙を完全に乾燥させた後、蛍光X線分析装置(PANalytical社製、Epsilon5)を用いて50μL中のZn2+の規格化強度を測定した。この測定を3回繰り返し行い、各3種の濃度条件におけるZn2+の規格化強度の平均値を算出した。これらの値を基に、調製したZn2+含有n−ヘキサン溶液の濃度を横軸、算出したZn2+含有n−ヘキサン溶液の規格化強度を縦軸として検量線を作成した。最小二乗法によって得られた検量線の直線性はR=0.999以上の良好な直線性を示した。
続いて、合成したP4(95,5)を定量評価用のZn2+含有n−ヘキサン溶液(0.87mmol/L)5mL中に約12時間浸漬させ暗所下でZn2+を吸着させた。その後、吸着されなかった残留しているZn2+のn−ヘキサン溶液を回収した。この回収したn−ヘキサン溶液を50μL取り、濾紙に浸透させて完全に乾燥させた後、蛍光X線分析装置(PANalytical社製、Epsilon5)を用いてZn2+吸着後のZn2+含有n−ヘキサン溶液50μL中の規格化強度を測定した。なお、回収した溶液については3回測定を行った。
(Example 7)
(Dark adsorption of zinc (II) ions of copolymers P4, P4-1 and P4-2)
Synthesized crosslinked to spiropyran site of P4 (95,5) of the polymer, 2-ethylhexanoic same amount of substance of Zn 2+ of zinc (II) (0.87mmol / L) to become as n- hexane ( It was dissolved in 100 mL) to prepare a Zn 2+ -containing n-hexane solution for quantitative evaluation. Then, the solution concentration is 0.5 times (0.44 mmol / L) and 0.25 times (0.22 mmol / L) the concentration of the Zn 2+ -containing n-hexane solution for quantitative evaluation. Was diluted to prepare a total of 3 types of Zn 2+ -containing n-hexane solutions having different concentrations.
Subsequently, 50 μL of the prepared 3 types of Zn 2+ -containing n-hexane solution was permeated into the filter paper cut to a diameter of 0.8 cm to completely dry the filter paper, and then a fluorescent X-ray analyzer (manufactured by PANalytical). The standardized strength of Zn 2+ in 50 μL was measured using Episilon 5). This measurement was repeated three times, and the average value of the normalized intensity of Zn 2+ under each of the three concentration conditions was calculated. Based on these values, a calibration curve was prepared with the concentration of the prepared Zn 2+ -containing n-hexane solution on the horizontal axis and the calculated normalization strength of the Zn 2+ -containing n-hexane solution on the vertical axis. The linearity of the calibration curve obtained by the least squares method showed good linearity of R 2 = 0.999 or more.
Subsequently, the synthesized P4 (95,5) was immersed in 5 mL of a Zn 2+ -containing n-hexane solution (0.87 mmol / L) for quantitative evaluation for about 12 hours to adsorb Zn 2+ in a dark place. Then, the residual Zn 2+ n-hexane solution that was not adsorbed was recovered. 50 μL of this recovered n-hexane solution is taken, permeated into a filter paper and completely dried, and then a Zn 2+ -containing n-hexane solution after Zn 2+ adsorption is used using a fluorescent X-ray analyzer (PANalytical, Episilon 5). The standardized strength in 50 μL was measured. The recovered solution was measured three times.

P4−1(98,2),P4−2(90、10)も同様の評価方法で定量分析を行った。
図7に、架橋型P4(95,5)、P4−1(98,2),P4−2(90、10)を用いたZn2+吸着量の定量結果を示す。
また、測定結果を基に各種スピロピラン及び組成比ごとのZn2+吸着率を図8に示す。架橋型P4におけるZn2+吸着率が高いことから光照射せず暗所下で吸着することが確認された。また、架橋型P4−2(90,10)はスピロピラン部位に対して半分の物質量の亜鉛(II)イオンに対して31.8%もの吸着率を得た。これは軽油中の重金属イオンが少ない場合においても、高効率で重金属イオンを吸着できることが示唆される。
Quantitative analysis was also performed on P4-1 (98, 2) and P4-2 (90, 10) by the same evaluation method.
FIG. 7 shows the quantitative results of the amount of Zn 2+ adsorbed using the crosslinked P4 (95,5), P4-1 (98,2), and P4-2 (90, 10).
Further, based on the measurement results, various spiropyran and Zn 2+ adsorption rate for each composition ratio are shown in FIG. Since the Zn 2+ adsorption rate in the crosslinked P4 was high, it was confirmed that the cross-linked P4 was adsorbed in a dark place without being irradiated with light. In addition, the crosslinked P4-2 (90, 10) obtained an adsorption rate of 31.8% with respect to zinc (II) ion, which is half the amount of substance with respect to the spiropyran site. This suggests that heavy metal ions can be adsorbed with high efficiency even when the amount of heavy metal ions in light oil is small.

(実施例8)
<共重合体P4、P4−1,P4−2の鉛(II)イオンの暗所吸着性>
同様に、架橋型P4、P4−1,P4−2を用いたPb2+吸着量の定量結果を図9に示す。
また、測定結果を基に各種スピロピラン及び組成比ごとのPb2+吸着率を図10に示す。また、架橋型P4−2(90,10)はスピロピラン部位に対して半分の物質量の鉛(II)イオンに対して35.8.%もの吸着率を得た。これは軽油中の重金属イオンが少ない場合においても、高効率で重金属イオンを吸着できることが示唆される。
(Example 8)
<Dark adsorption of lead (II) ions of copolymers P4, P4-1 and P4-2>
Similarly, FIG. 9 shows the quantification results of the amount of Pb 2 + adsorbed using the crosslinked P4, P4-1 and P4-2.
Further, based on the measurement results, various spiropyran and Pb 2+ adsorption rate for each composition ratio are shown in FIG. In addition, the crosslinked P4-2 (90, 10) has 35.8. An adsorption rate of% was obtained. This suggests that heavy metal ions can be adsorbed with high efficiency even when the amount of heavy metal ions in light oil is small.

実施例7と8において、亜鉛(II)イオンに引き続き、鉛(II)イオンにおいても高吸着率を確認した。図8と図10と比較すると、組成比ごと(P4−1、P−4,P4−2)の亜鉛(II)イオン上昇率が高いことから、鉛(II)イオンとは違う吸着形態を形成していることが示唆される。 In Examples 7 and 8, a high adsorption rate was confirmed for lead (II) ion as well as zinc (II) ion. Compared with FIGS. 8 and 10, since the zinc (II) ion rise rate is high for each composition ratio (P4-1, P-4, P4-2), an adsorption form different from that of lead (II) ions is formed. It is suggested that it is doing.

(実施例9)
<共重合体P5の合成>
(Example 9)
<Synthesis of copolymer P5>

Figure 0006940998
Figure 0006940998

化合物(A)として化合物5、0.036gの代わりに化合物9、0.042gを用いること以外に、共重合体P4の合成方法と同じ方法で、フィルム状の式(17)に表す共重合体P5を得た。 The copolymer represented by the film-like formula (17) in the same manner as the method for synthesizing the copolymer P4, except that the compound 9 and 0.042 g are used instead of the compound 5 and 0.036 g as the compound (A). Obtained P5.

<共重合体P5の亜鉛(II)イオンの光応答性>
共重合体P2と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P5>
It exhibits the same photoresponsiveness as the copolymer P2.

(共重合体P5の鉛(II)イオンの光応答性)
共重合体P2と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P5)
It exhibits the same photoresponsiveness as the copolymer P2.

(実施例10)
重合モル比(SMA/PNSPMA)95:5の代わりに、重合モル比(SMA/化合物9)90:10を用いて、実施例5と同様の方法でフィルム状の共重合体P5−1を得た。
(Example 10)
Using the polymerization molar ratio (SMA / Compound 9) 90:10 instead of the polymerization molar ratio (SMA / PNSMAPA) 95: 5, a film-like copolymer P5-1 was obtained in the same manner as in Example 5. rice field.

<共重合体P5−1の亜鉛(II)イオンの光応答性>
共重合体P2と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P5-1>
It exhibits the same photoresponsiveness as the copolymer P2.

(共重合体P5−1の鉛(II)イオンの光応答性)
共重合体P2と同様な光応答性を示す。
(実施例11)
<共重合体P6の合成>
(Photoresponsiveness of lead (II) ion of copolymer P5-1)
It exhibits the same photoresponsiveness as the copolymer P2.
(Example 11)
<Synthesis of copolymer P6>

Figure 0006940998
Figure 0006940998

化合物(A)として化合物5、0.036gの代わりに化合物11、0.042gを用いること以外に、共重合体P4の合成方法と同じ方法で、フィルム状の式(18)に表す共重合体P6を得た。 The copolymer represented by the film-like formula (18) in the same manner as the method for synthesizing the copolymer P4, except that the compound 11, 0.042 g is used instead of the compound 5, 0.036 g as the compound (A). Obtained P6.

<共重合体P6の亜鉛(II)イオンの光応答性>
共重合体P2と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P6>
It exhibits the same photoresponsiveness as the copolymer P2.

(共重合体P6の鉛(II)イオンの光応答性)
共重合体P2と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P6)
It exhibits the same photoresponsiveness as the copolymer P2.

(実施例12)
重合モル比(SMA/化合物11)95:5の代わりに、重合モル比(SMA/化合物11)90:10を用いて、実施例5と同様の方法でフィルム状の共重合体P6−1を得た。
(Example 12)
Using the polymerization molar ratio (SMA / Compound 11) 90:10 instead of the polymerization molar ratio (SMA / Compound 11) 95: 5, the film-like copolymer P6-1 was prepared in the same manner as in Example 5. Obtained.

<共重合体P6−1の亜鉛(II)イオンの光応答性>
共重合体P2と同様な光応答性を示す。
<Photoresponsiveness of zinc (II) ion of copolymer P6-1>
It exhibits the same photoresponsiveness as the copolymer P2.

(共重合体P6−1の鉛(II)イオンの光応答性)
共重合体P2と同様な光応答性を示す。
(Photoresponsiveness of lead (II) ion of copolymer P6-1)
It exhibits the same photoresponsiveness as the copolymer P2.

(実施例13)
(共重合体P5、P5−1,P6,P6−1の亜鉛(II)イオンの暗所吸着性)
同様の実験方法で架橋型P5、P5−1,P6,P6−1におけるZn2+吸着量の定量評価を行った。図11に、Zn2+吸着量の定量結果を示す。
測定結果を基に各種スピロピラン及び組成比ごとのZn2+吸着率を図12に示す。
(Example 13)
(Dark adsorption of zinc (II) ions of copolymers P5, P5-1, P6, P6-1)
The amount of Zn 2+ adsorbed in the crosslinked P5, P5-1, P6, and P6-1 was quantitatively evaluated by the same experimental method. FIG. 11 shows the quantitative results of Zn 2+ adsorption amount.
Based on the measurement results, various spiropyran and Zn 2+ adsorption rate for each composition ratio are shown in FIG.

(実施例14)
(共重合体P5、P5−1,P6,P6−1の鉛(II)イオンの暗所吸着性)
同様の実験方法で架橋型P5、P5−1,P6,P6−1におけるPb2+吸着量の定量評価を行った。図13に、Pb2+吸着量の定量結果を示す。
測定結果を基に各種スピロピラン及び組成比ごとのPb2+吸着率を図14に示す。
(Example 14)
(Dark adsorption of lead (II) ions of copolymers P5, P5-1, P6, P6-1)
Quantitative evaluation of the amount of Pb 2+ adsorbed in crosslinked P5, P5-1, P6, and P6-1 was performed by the same experimental method. FIG. 13 shows the quantitative results of Pb 2+ adsorption amount.
Based on the measurement results, Pb 2+ adsorption rates for various spiropyranes and composition ratios are shown in FIG.

実施例13と14において、架橋型P5方が架橋型P6より金属イオンの吸着率が高く、架橋型P5−1の方が架橋型P6−1より金属イオンの吸着率が高い結果となった。一配位座から二配位座に結合部位を増やした結果、全ての組成比において金属イオンの吸着率が上昇したと考えられる。亜鉛(II)イオン、鉛(II)イオンなどの金属イオンの吸着においてピリジン部位の導入は有効であると考えられる。 In Examples 13 and 14, the cross-linked P5 had a higher metal ion adsorption rate than the cross-linked P6, and the cross-linked P5-1 had a higher metal ion adsorption rate than the cross-linked P6-1. It is considered that as a result of increasing the number of binding sites from the monocoordinated constellation to the dicoordinated constellation, the adsorption rate of metal ions increased in all composition ratios. It is considered that the introduction of the pyridine moiety is effective in the adsorption of metal ions such as zinc (II) ion and lead (II) ion.

また、組成比ごと(P5からP5−1まで、または、P6からP6−1まで)の亜鉛(II)イオン上昇率が高いことから、鉛(II)イオンとは違う吸着形態を形成していることが示唆される。 In addition, since the zinc (II) ion rise rate is high for each composition ratio (P5 to P5-1 or P6 to P6-1), an adsorption form different from that of lead (II) ions is formed. Is suggested.

(実施例15)
(繰り返し耐久評価実験)
P4、P6のスピロピラン部位が0.05mMになるように各々、n−ヘキサン5mLに溶解させた。スピロピラン部位に対して等量となるように2−エチルヘキサン酸亜鉛(II)を添加した。暗所下で室温条件において平衡状態に達した後、紫外可視吸収スペクトル測定を行った。次に室温下で、実施例1と同様な光源とフィルターを用いて、可視光を120秒間照射した後、紫外可視吸収スペクトル測定を行った。その後、15分暗所下に静置させ平衡状態に達した後、紫外可視吸収スペクトル測定を行った。上記の操作を30回繰り返し重金属イオンの吸脱着評価を行った。結果を図15と16に示す。
(Example 15)
(Repeated durability evaluation experiment)
Each of P4 and P6 was dissolved in 5 mL of n-hexane so that the spiropyran site was 0.05 mM. Zinc (II) 2-ethylhexanoate was added in equal amounts to the spiropyran site. After reaching an equilibrium state at room temperature in a dark place, ultraviolet-visible absorption spectrum measurement was performed. Next, at room temperature, using the same light source and filter as in Example 1, visible light was irradiated for 120 seconds, and then the ultraviolet-visible absorption spectrum was measured. Then, it was allowed to stand in a dark place for 15 minutes to reach an equilibrium state, and then the ultraviolet-visible absorption spectrum was measured. The above operation was repeated 30 times to evaluate the adsorption and desorption of heavy metal ions. The results are shown in FIGS. 15 and 16.

1.ガラス板
2.スペーサー
3.注射器
4.固定治具
5.反応溶液
6.P4フィルム
1. 1. Glass plate 2. Spacer 3. Syringe 4. Fixing jig 5. Reaction solution 6. P4 film

Claims (12)

式(1)で示される重合可能なエチレン性不飽和結合を有する化合物(A)または前記化合物(A)の光異性体(A’)と、
炭素数6〜24のアルキル基を有する重合可能なエチレン性不飽和単量体(B)と、 の共重合体(P)を含むことを特徴とする光応答性重金属イオン吸着材料。
Figure 0006940998
(式(1)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、X、Xは独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、X〜X5は独立に水素原子が一個若しくRが結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、Rは−(CH)n−G−(CH)m−であり、n、mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基であり、Rは、水素原子、F原子、Cl原子、Br原子、−NO、−CF若しく炭素数1〜10のアルキル基であり、Rは、水素原子、F原子、Cl原子、Br原子、−NO、−CF若しく炭素数1〜10のアルキル基であり、R10は重合可能なエチレン性不飽和結合を有する炭層数2〜10の有機基である。)
A compound (A) having a polymerizable ethylenically unsaturated bond represented by the formula (1) or a photoisomer (A') of the compound (A).
A photoresponsive heavy metal ion adsorbing material comprising a copolymer (P) of a polymerizable ethylenically unsaturated monomer (B) having an alkyl group having 6 to 24 carbon atoms.
Figure 0006940998
(In formula (1), X is a carbon atom or nitrogen atom to which one hydrogen atom is bonded, and X 1 and X 6 are carbon atoms or nitrogen atoms to which one hydrogen atom is independently bonded and R 8 is bonded independently. There, X 2 to X 5 are independently a carbon atom hydrogen atom is bonded one young properly R 9 or a nitrogen atom,, Y is an oxygen atom or a sulfur atom, R 1, R 2 independently represent a hydrogen atom Alternatively, it is an alkyl group, R 5 is − (CH 2 ) n-G- (CH 2 ) m-, n and m are independently integers from 0 to 5, and G is −C (Z 1 ). (Z 2 )-or a benzene ring in which CH may be substituted with N, Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, and R 8 is a hydrogen atom. F atom, Cl atom, Br atom, -NO 2 , -CF 3 Young alkyl group with 1 to 10 carbon atoms, R 9 is hydrogen atom, F atom, Cl atom, Br atom, -NO 2 ,- CF 3 is an alkyl group having 1 to 10 carbon atoms, and R 10 is an organic group having 2 to 10 coal layers having a polymerizable ethylenically unsaturated bond.)
前記共重合体(P)の単量体は、2つ以上の官能基を有する架橋剤(C)をさらに含むことを特徴とする請求項1に記載の光応答性重金属イオン吸着材料。 The photoresponsive heavy metal ion adsorbing material according to claim 1, wherein the monomer of the copolymer (P) further contains a cross-linking agent (C) having two or more functional groups. 前記架橋剤(C)が2つ以上の官能基を有する多官能(メタ)アクリレートであることを特徴とする請求項2に記載の光応答性重金属イオン吸着材料。The photoresponsive heavy metal ion adsorbing material according to claim 2, wherein the cross-linking agent (C) is a polyfunctional (meth) acrylate having two or more functional groups. 前記式(1)で示される化合物(A)が式(2)または式(3)で示される化合物(A)であることを特徴とする請求項1〜3のいずれか1項に記載の光応答性重金属イオン吸着材料。
Figure 0006940998
Figure 0006940998
(式(2)(3)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子であり、R、Rは独立に水素原子またはアルキル基であり、Rは−(CH)n−G−(CH)m−であり、n、mは独立に0〜5の整数であり、Gは、−C(Z)(Z)−、又はCHをNで置換してもよいベンゼン環であり、Z、Zは独立に水素原子または炭素数1〜5のアルキル基である。)
The light according to any one of claims 1 to 3 , wherein the compound (A) represented by the formula (1) is the compound (A) represented by the formula (2) or the formula (3). Responsive heavy metal ion adsorption material.
Figure 0006940998
Figure 0006940998
(In formulas (2) and (3), X is a carbon atom or a nitrogen atom to which one hydrogen atom is bonded, Y is an oxygen atom or a sulfur atom, and R 1 and R 2 are independent hydrogen atoms or alkyl groups. R 5 is-(CH 2 ) n-G- (CH 2 ) m-, n and m are independently integers from 0 to 5, and G is -C (Z 1 ) (Z 2). )-Or a benzene ring in which CH may be substituted with N, and Z 1 and Z 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.)
前記式(1)で示される化合物(A)において、Rは式(4)または式(5)で示される基であることを特徴とする請求項1〜のいずれか1項に記載の光応答性重金属イオン吸着材料。
Figure 0006940998
(式(4)中、Rは炭素数1〜3のアルキル基である。)
Figure 0006940998
(式(5)中、n、mは独立に1〜3の整数である。)
The invention according to any one of claims 1 to 4 , wherein in the compound (A) represented by the formula (1), R 5 is a group represented by the formula (4) or the formula (5). Photoresponsive heavy metal ion adsorption material.
Figure 0006940998
(In formula (4), R 7 is an alkyl group having 1 to 3 carbon atoms.)
Figure 0006940998
(In equation (5), n and m are independently integers 1 to 3.)
前記化合物(A)及びエチレン性不飽和単量体(B)の少なくとも1つが(メタ)アクリレート誘導体またはスチレン誘導体であることを特徴とする請求項1〜のいずれか1項に記載の光応答性重金属イオン吸着材料。 The photoresponse according to any one of claims 1 to 5 , wherein at least one of the compound (A) and the ethylenically unsaturated monomer (B) is a (meth) acrylate derivative or a styrene derivative. Heavy metal ion adsorbing material. 前記式(1)中、Xは水素原子が一個結合した炭素原子であり、Yは酸素原子であり、R及びRはメチル基であり、
前記エチレン性不飽和単量体(B)がn−C1837基を有する重合可能なエチレン性不飽和単量体である
ことを特徴とする1〜6のいずれか1項に記載の光応答性重金属イオン吸着材料。
In the above formula (1), X is a carbon atom to which one hydrogen atom is bonded, Y is an oxygen atom, and R 1 and R 2 are methyl groups.
Light according to any one of 1 to 6, characterized in that the ethylenically unsaturated monomer (B) is a polymerizable ethylenically unsaturated monomer having an n-C 18 H 37 group Responsive heavy metal ion adsorbing material.
前記請求項1〜7のいずれか1項に記載の光応答性重金属イオン吸着材料が担持されている繊維、細粒、フィルムまたは細管からなる光応答性重金属イオン吸着体。 A photoresponsive heavy metal ion adsorbent comprising a fiber, fine particles, a film or a thin tube on which the photoresponsive heavy metal ion adsorbing material according to any one of claims 1 to 7 is supported. 前記請求項1〜7のいずれか1項に記載の光応答性重金属イオン吸着材料を用いて重金属イオンを含む非極性有機液体から重金属イオンを暗所下で吸着し、380nm以上の可視光照射により脱離することを特徴とする重金属イオン回収方法。 Using the photoresponsive heavy metal ion adsorbing material according to any one of claims 1 to 7, heavy metal ions are adsorbed from a non-polar organic liquid containing heavy metal ions in a dark place, and by irradiation with visible light of 380 nm or more. A heavy metal ion recovery method characterized by desorption. 前記重金属イオンが亜鉛(II)イオンまたは鉛(II)イオンであることを特徴とする請求項9に記載の重金属イオン回収方法。 The heavy metal ion recovery method according to claim 9, wherein the heavy metal ion is zinc (II) ion or lead (II) ion. 前記非極性有機液体は軽油であることを特徴とする請求項9又は10に記載の重金属イオン回収方法。 The heavy metal ion recovery method according to claim 9 or 10, wherein the non-polar organic liquid is light oil. 前記光応答性重金属イオン吸着材料と、重金属イオンとを、暗所下で錯形成により吸着させる工程と、
ピーク波長380nm以上の可視光で重金属イオンを前記吸着材料から脱離させる工程と、
を有する請求項9〜11のいずれか1項に記載の重金属イオン回収方法。
A step of adsorbing the photoresponsive heavy metal ion adsorbing material and heavy metal ions by complex formation in a dark place.
A step of desorbing heavy metal ions from the adsorbed material with visible light having a peak wavelength of 380 nm or more, and
The heavy metal ion recovery method according to any one of claims 9 to 11.
JP2017149495A 2017-08-01 2017-08-01 Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method Active JP6940998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017149495A JP6940998B2 (en) 2017-08-01 2017-08-01 Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149495A JP6940998B2 (en) 2017-08-01 2017-08-01 Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method

Publications (2)

Publication Number Publication Date
JP2019025443A JP2019025443A (en) 2019-02-21
JP6940998B2 true JP6940998B2 (en) 2021-09-29

Family

ID=65475182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149495A Active JP6940998B2 (en) 2017-08-01 2017-08-01 Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method

Country Status (1)

Country Link
JP (1) JP6940998B2 (en)

Also Published As

Publication number Publication date
JP2019025443A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
TWI360570B (en) Azo compound and composition for photo-alignment l
ES2762934T3 (en) Ion exchange membrane and method of manufacturing it
Yang et al. Preparation of a monolithic magnetic stir bar for the determination of sulfonylurea herbicides coupled with HPLC
JP5186734B2 (en) Azo compound, composition for photo-alignment film, photo-alignment film and liquid crystal display element
JP4900632B2 (en) Photo-alignment film material, photo-alignment film and method for producing the same
CN105518035B (en) Compound, polymer, liquid crystal alignment film, liquid crystal display element, and optical anisotropic body
KR20130112924A (en) Indeno-fused ring compounds having photochromic properties
KR101110090B1 (en) Polymerizable copolymers for alignment layers
TWI584959B (en) Hydrophilically modified fluorinated membrane (iii)
KR100938340B1 (en) Derivatives of Rhodamine capable of FRET OFF-ON and manufacturing method thereof
JP6940998B2 (en) Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method
JP5392902B2 (en) Photoresponsive carbon dioxide absorbing material and carbon dioxide recovery method
KR20160013178A (en) Cyanostilbenes
US11834442B2 (en) Mechanical regulation of photoswitching
JP2006282990A (en) Thermoplastic resin composition, method for producing the same, and optical actuator material
JP6547963B2 (en) Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method
JP5376627B2 (en) Photoresponsive copper ion adsorbing material and copper ion recovery method
WO2015029596A1 (en) Method for producing polarizing film
JP7148466B2 (en) Method for producing photo-alignable polymer
JP2007268444A (en) Photoresponsive metal ion adsorbent material and metal ion recovery process
Nakahara et al. Self-assembling phenomena of benzo-18-crown-6/crowned-spirobenzopyran copolymers in aqueous solution and controlled release of entrapped organic dyes using external stimuli
Ye et al. A pillar [5] arene-containing cross-linked polymer: synthesis, characterization and adsorption of dihaloalkanes and n-alkylene dinitriles
JPH1194813A (en) Preparation of polymer filler for liquid chromatography and polymer filler
JP2003053185A (en) Photoresponsive metallic ion adsorbing material and method for recovering metallic ion
JP6413687B2 (en) Thermosetting composition having photo-alignment, alignment layer, substrate with alignment layer, and retardation plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210903

R150 Certificate of patent or registration of utility model

Ref document number: 6940998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150