JP6940686B2 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP6940686B2
JP6940686B2 JP2020508685A JP2020508685A JP6940686B2 JP 6940686 B2 JP6940686 B2 JP 6940686B2 JP 2020508685 A JP2020508685 A JP 2020508685A JP 2020508685 A JP2020508685 A JP 2020508685A JP 6940686 B2 JP6940686 B2 JP 6940686B2
Authority
JP
Japan
Prior art keywords
pressure
rotation speed
compressor
gas
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020508685A
Other languages
Japanese (ja)
Other versions
JPWO2019186861A1 (en
Inventor
謙次 森田
謙次 森田
正彦 高野
正彦 高野
英晴 田中
英晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Publication of JPWO2019186861A1 publication Critical patent/JPWO2019186861A1/en
Application granted granted Critical
Publication of JP6940686B2 publication Critical patent/JP6940686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、気体圧縮機に係り、駆動負荷の軽減を行う気体圧縮機に関する。 The present invention relates to a gas compressor and relates to a gas compressor that reduces a driving load.

例えば、空気等の気体を吸い込み、容積型やターボ型といった圧縮機構によって高圧の圧縮気体を生成する気体圧縮機では、従来から駆動負荷の軽減を図る種々の運転制御方法が知られている。 For example, in a gas compressor that sucks a gas such as air and generates a high-pressure compressed gas by a compression mechanism such as a positive displacement type or a turbo type, various operation control methods for reducing a drive load have been conventionally known.

駆動源の回転を一定に固定する一定速圧縮機では、吐出圧力が、ユーザが所望する目標圧力に達すると、圧縮機本体の吸気路に設置された吸込み絞り弁を閉じ、流入する気体量を制限することで動力負荷を軽減する無負荷運転制御が知られている。このような無負荷運転は、必要な消費動力を定格動力の70%程度にすることができる。 In a constant-speed compressor that fixes the rotation of the drive source to a constant speed, when the discharge pressure reaches the target pressure desired by the user, the suction throttle valve installed in the intake passage of the compressor body is closed to reduce the amount of inflowing gas. No-load operation control that reduces the power load by limiting is known. In such no-load operation, the required power consumption can be reduced to about 70% of the rated power.

また、インバータ等の電力変換装置を用いて電動機の回転数を変化させる可変速制御の気体圧縮機では、目標圧力に達するまでは電力変換装置によって高回転(全速)で運転し、吐出圧力が当該圧力を上回ると、電力変換装置によって回転数が低下させて動力の低減を図る技術が知られている。 Further, in a variable speed controlled gas compressor that changes the rotation speed of a motor using a power conversion device such as an inverter, the power conversion device operates at a high rotation speed (full speed) until the target pressure is reached, and the discharge pressure is the same. When the pressure is exceeded, a power conversion device reduces the number of revolutions to reduce the power.

例えば、ユーザ(圧縮気体の需要者)側での圧縮気体の使用量が多く、ユーザ側吐出圧力が目標圧力より下回っていれば、定格での最高回転数で運転し、やがてユーザ側の使用量が減少し、ユーザ側吐出圧力が目標圧力を上回ると、回転数を低下させて動力の低減を行うようになっている。このような回転数を変化させる制御のとしては、P、PI又はPIDという、吐出圧力に比例して回転数を変化させる制御方法が一般に知られている。 For example, if the amount of compressed gas used on the user (consumer of compressed gas) side is large and the discharge pressure on the user side is lower than the target pressure, the operation is performed at the maximum rotation speed at the rated speed, and eventually the amount used on the user side. When the discharge pressure on the user side exceeds the target pressure, the rotation speed is reduced to reduce the power. As a control for changing the rotation speed, a control method called P, PI or PID, which changes the rotation speed in proportion to the discharge pressure, is generally known.

更に、可変速制御の気体圧縮機では、更に動力低減を図る技術として、電力変換装置による回転数制御に加えて、吸込み絞り弁や放気弁を併用した無負荷運転方法が知られている。例えば、特許文献1は、空気圧縮機であって、目標圧力(P0)を基調としてPID制御運転を行うが、ユーザ側の空気使用量が低下し、ユーザ側吐出圧力がP0から所定の圧力まで昇圧すると、回転数をP0以上又はP0より高い所定の圧力範囲に保ったままで回転数を低下させる制御を行う。より具体的には、P0よりも高い上限圧(P1)にまで圧力が上昇すると、吸込絞り弁を閉じ、電動機の回転数を下限回転数に下げて動力の低減を図るとともに、ユーザ側吐出口よりも上流側の圧縮空気を大気に放気し、圧縮機本体の負荷(電動機の負荷)を低下させ、更なる動力の低減を図る運転方法である。 Further, in the variable speed control gas compressor, as a technique for further reducing the power, a no-load operation method using a suction throttle valve and an air release valve in addition to the rotation speed control by the power conversion device is known. For example, Patent Document 1 is an air compressor, which performs PID control operation based on a target pressure (P0), but the amount of air used on the user side decreases, and the discharge pressure on the user side ranges from P0 to a predetermined pressure. When the pressure is increased, control is performed to reduce the rotation speed while maintaining the rotation speed in a predetermined pressure range of P0 or higher or higher than P0. More specifically, when the pressure rises to an upper limit pressure (P1) higher than P0, the suction throttle valve is closed, the rotation speed of the motor is lowered to the lower limit rotation speed to reduce the power, and the discharge port on the user side. This is an operation method in which compressed air on the upstream side is released to the atmosphere to reduce the load of the compressor body (load of the motor) and further reduce the power.

また、特許文献1は、上限圧P1に達して電動機を下限回転数で運転するが、ユーザ側の空気使用量が徐々に増加して、ユーザ側吐出圧力がP0とP1の間の圧力である下限圧(P2)に達すると、回転数は下限回転数のまま放気弁を締める及び/又は吸込絞り弁を開として、再度P1に達するまで昇圧する負荷運転を行う制御も開示する。ユーザ側圧力を一定範囲内に保ちつつ動力の低減を図ることができる技術である。このような無負荷運転中に必要な消費動力は定格動力の30%程度にすることができる。
なお、絞り弁の開閉制御と、放気とは必ずしも併用するものではなく、何れか一方であっても相当の動力低減効果がある。
Further, in Patent Document 1, the upper limit pressure P1 is reached and the motor is operated at the lower limit rotation speed, but the amount of air used on the user side gradually increases, and the discharge pressure on the user side is a pressure between P0 and P1. Also disclosed is a control in which when the lower limit pressure (P2) is reached, the air release valve is closed and / or the suction throttle valve is opened while the rotation speed remains at the lower limit rotation speed, and a load operation is performed in which the pressure is increased until P1 is reached again. This is a technology that can reduce power while keeping the pressure on the user side within a certain range. The power consumption required during such no-load operation can be about 30% of the rated power.
It should be noted that the opening / closing control of the throttle valve and the air release are not necessarily used in combination, and either one of them has a considerable power reduction effect.

特開2001−280275号公報Japanese Unexamined Patent Publication No. 2001-280275

ところで、特許文献1では、無負荷及び負荷運転中は、電動機の回転数を下限回転数として省エネを図るが、圧縮機は、圧縮空気の使用状況の変化にたいして圧力変動が生じる。吐出空気量が一定であっても、圧縮空気の使用量が変化すれば圧力も変動する。圧縮空気圧力に特定圧力(以上)が必要な場合、使用量が多すぎれば圧縮空気の生成が間に合わず、特定圧力を下回ることもある。即ち使用量の変化に対する追随性が低下する。 By the way, in Patent Document 1, during no-load and load operation, the number of revolutions of the motor is set as the lower limit to save energy, but the compressor causes pressure fluctuations with respect to changes in the usage state of compressed air. Even if the amount of discharged air is constant, the pressure also fluctuates if the amount of compressed air used changes. When a specific pressure (or more) is required for the compressed air pressure, if the amount used is too large, the compressed air may not be generated in time and may fall below the specific pressure. That is, the ability to follow changes in the amount used is reduced.

このような圧力変動に対して、一般に気体圧縮機は、ユーザ側吐出口の下流配管が、圧縮気体を貯留する気体槽(リザーバタンクともいう。)に接続され、気体槽から配管を介して各ユーザ側の末端機器に圧縮気体が供給される構成をとる。即ち上述したような動力低減を図るための種々の運転制御は、気体槽がある程度の容積を持つことで効率的に実現できるものであるともいえる。 In response to such pressure fluctuations, in a gas compressor, the downstream pipe of the discharge port on the user side is generally connected to a gas tank (also referred to as a reservoir tank) for storing compressed gas, and each is connected from the gas tank via a pipe. The configuration is such that the compressed gas is supplied to the terminal equipment on the user side. That is, it can be said that various operation controls for reducing power as described above can be efficiently realized when the gas tank has a certain volume.

気体槽は、容積が大きければユーザ側末端での圧縮気体使用量の変化に対する圧力変動に一定のバッファとして機能し、圧縮機本体に要求する差圧変動の割合を比較的小さい範囲にさせることができる。これによって、圧縮機は回転数変化の頻度を減少させることができ、その分動力低減にも寄与する。また、急激な圧力変動が低減することは、電動機等の駆動源のハンチングやトリップ等の防止にも寄与する。 If the volume is large, the gas tank functions as a constant buffer for pressure fluctuations with respect to changes in the amount of compressed gas used at the end on the user side, and the ratio of differential pressure fluctuations required for the compressor body can be kept within a relatively small range. can. As a result, the compressor can reduce the frequency of changes in the number of revolutions, which also contributes to the reduction of power. In addition, the reduction of sudden pressure fluctuations also contributes to the prevention of hunting and tripping of drive sources such as motors.

上述のように、圧力変動のバッファとして機能する上で要求される気体槽の容積は比較的大きく、圧縮機を小型化しても実際の使用環境の構成では、設置スペースを確保する必要がある。 As described above, the volume of the gas tank required to function as a buffer for pressure fluctuation is relatively large, and even if the compressor is miniaturized, it is necessary to secure an installation space in the configuration of the actual usage environment.

圧力変動に対する追随性を保持しつつ動力低減効果を図る技術が望まれる。更には、圧縮機設備の省スペース化を図る技術が望まれる。 A technology for reducing power while maintaining the ability to follow pressure fluctuations is desired. Further, a technique for saving space in compressor equipment is desired.

上記課題を解決するために、例えば請求の範囲に記載の構成を適用する。即ち気体を吸込み圧縮気体を吐き出す圧縮機本体と、前記圧縮気体の吐出圧力を検出する圧力検出装置と、前記圧縮機本体の駆動源と、前記圧力検出装置の検出値に応じて前記駆動源を可変速に制御する制御装置とを有する気体圧縮機であって、前記制御装置は、前記吐出圧力が設定圧力P0であるときに前記駆動源の回転数が全速回転数となり、前記吐出圧力が前記設定圧力P0から上限圧力P1に上昇したときに前記駆動源の回転数が前記全速回転数から下限回転数まで低下し、前記設定圧力P0から前記上限圧力P1までの前記吐出圧力に対して前記全速回転数から前記下限回転数までの前記駆動源の回転数が比例するように、前記駆動源の回転数を制御するものである構成である。
In order to solve the above problems, for example, the configuration described in the claims is applied. That is, the compressor main body that sucks in gas and discharges the compressed gas, the pressure detection device that detects the discharge pressure of the compressed gas, the drive source of the compressor main body, and the drive source according to the detection value of the pressure detection device. A gas compressor having a control device for controlling at a variable speed, in which the rotation speed of the drive source becomes the full speed rotation speed when the discharge pressure is the set pressure P0, and the discharge pressure is the said. When the set pressure P0 rises to the upper limit pressure P1, the rotation speed of the drive source decreases from the full speed rotation speed to the lower limit rotation speed, and the full speed is relative to the discharge pressure from the set pressure P0 to the upper limit pressure P1. The configuration is such that the rotation speed of the drive source is controlled so that the rotation speed of the drive source from the rotation speed to the lower limit rotation speed is proportional.

本発明によれば、圧力変動に対する気体圧縮機の追随性が向上し又動力負荷の低減を図ることができる。更には、気体槽を含めた圧縮機設備の省スペース化等にも寄与する。 According to the present invention, it is possible to improve the followability of the gas compressor to pressure fluctuations and reduce the power load. Furthermore, it also contributes to space saving of compressor equipment including a gas tank.

本発明を適用した実施例1による空気圧縮機の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the air compressor according to Example 1 to which this invention was applied. 実施例1による空気圧縮機の圧力と回転数等の遷移を模式的にしめす遷移図である。It is a transition diagram which schematically shows the transition such as the pressure and the rotation speed of the air compressor according to Example 1. 本発明を適用した実施例2による空気圧縮機の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the air compressor by Example 2 to which this invention was applied. 実施例2による空気圧縮機の圧力と回転数等の遷移を模式的にしめす遷移図である。It is a transition diagram which shows typically the transition such as the pressure and the rotation speed of the air compressor according to Example 2.

以下、図面を用いて発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings.

図1に、本発明を適用した実施例形態の例である空気圧縮機50(以下、「圧縮機50」と称する場合がある。)の構成を模式的に示す。 FIG. 1 schematically shows the configuration of an air compressor 50 (hereinafter, may be referred to as “compressor 50”) which is an example of an embodiment to which the present invention is applied.

圧縮機50は、圧縮機本体1、電動機2、電力変換装置3、制御装置4、気液分離器12、エアクーラ16、圧力センサ17、オイルクーラ21、ファン装置25を主に備え、基台からパネル40によって前後左右及び上面が囲まれたパッケージ型圧縮機の構成を有する。 The compressor 50 mainly includes a compressor main body 1, an electric motor 2, a power converter 3, a control device 4, a gas-liquid separator 12, an air cooler 16, a pressure sensor 17, an oil cooler 21, and a fan device 25. It has a package type compressor structure in which the front, rear, left and right sides and the upper surface are surrounded by the panel 40.

圧縮機本体1は、容積型やターボ型といった圧縮機構を有し、吸込フィルタ8から吸い込んだ空気を圧縮する。圧縮機本体1の圧縮作動室には、油配管20を介して潤滑油が供給され、空気とともに気液混合の圧縮気体を吐き出すようになっている。
本実施例では、回転型のスクリューロータを圧縮機構として備えるものとして説明する。
The compressor main body 1 has a compression mechanism such as a positive displacement type or a turbo type, and compresses the air sucked from the suction filter 8. Lubricating oil is supplied to the compression operating chamber of the compressor main body 1 via an oil pipe 20, and a gas-liquid mixed compressed gas is discharged together with air.
In this embodiment, a rotary screw rotor will be described as being provided as a compression mechanism.

電動機2は、圧縮機本体1の駆動源である。駆動源としては内燃機関を適用することもできる。電動機2は、電力による回転力を軸同により、或いはベルト又はギヤを介して圧縮機本体1のスクリューロータに供給する。電力変換装置は、制御装置4からの指令に基づいて電動機2に供給する電力の周波数を変換し、電動機2の回転数を変更させる。 The electric motor 2 is a drive source for the compressor main body 1. An internal combustion engine can also be applied as the drive source. The electric motor 2 supplies the rotational force due to the electric power to the screw rotor of the compressor main body 1 by the same axis or via a belt or a gear. The power conversion device converts the frequency of the electric power supplied to the electric motor 2 based on the command from the control device 4 to change the rotation speed of the electric motor 2.

制御装置4は、MPUやCPUといった半導体演算装置及び記憶装置を備え、プログラムとの協働によって圧縮機50の全体制御を行う機能部を実現する。なお、制御装置4は、アナログ回路構成及びこれらの組み合わせから構成することもできる。制御装置4は、吐出気体温度を検出する温度センサ11や吐出気体の圧力を検出する圧力センサ17からの検出値の入力を受け、電力変換装置3に周波数指令を出力したり、各種弁体の開閉指令等を出力するようになっている。詳細は後述する。
The control device 4 includes a semiconductor arithmetic unit such as an MPU and a CPU and a storage device, and realizes a functional unit that controls the entire compressor 50 in cooperation with a program. The control device 4 can also be configured from an analog circuit configuration and a combination thereof. The control device 4 receives input of a detection value from the temperature sensor 11 that detects the discharge gas temperature and the pressure sensor 17 that detects the pressure of the discharge gas, outputs a frequency command to the power conversion device 3, and outputs various valve bodies. It is designed to output open / close commands. Details will be described later.

気液分離器12は、圧縮機本体1から吐き出された気液混合の圧縮気体から油を一次分離する分離器である。本実施例では、圧縮気体が内筒内を旋回することで遠心力によって油と空気を分離する旋回分離式を適用するものとするが、衝突分離式を適用することもできる。分離された油は、気液分離器12の底部に貯留され、気液分離器12内の空気圧力やポンプ23によって油配管20を介してオイルクーラ21に搬送され、所定の温度まで冷却された後、圧縮機本体1に還流されるようになっている。
The gas-liquid separator 12 is a separator that firstly separates oil from the compressed gas of the gas-liquid mixture discharged from the compressor main body 1. In this embodiment, the swirl separation type that separates oil and air by centrifugal force by swirling the compressed gas in the inner cylinder is applied, but the collision separation type can also be applied. The separated oil is stored in the bottom of the gas-liquid separator 12, is conveyed to the oil cooler 21 via the oil pipe 20 by the air pressure in the gas-liquid separator 12 or the pump 23, and is cooled to a predetermined temperature. After that, it is returned to the compressor main body 1.

二次フィルタ13は、例えば、不織布等を備え、気液分離器12で油と一次分離された圧縮空気の二次分離を行う。二次分離された圧縮空気は、下流側の吐出配管に流れ更に下流側への流通を許可する逆止弁15を経由してエアクーラ16に流れる。 The secondary filter 13 is provided with, for example, a non-woven fabric or the like, and performs secondary separation of compressed air primary separated from oil by a gas-liquid separator 12. The secondarily separated compressed air flows to the discharge pipe on the downstream side and flows to the air cooler 16 via the check valve 15 that allows distribution to the downstream side.

エアクーラ16は、熱交換機であり、ファン装置25が駆動することで、吸気口30から外気が冷却風として圧縮機50内部に吸い込まれ、排気口32から外部に吐き出されるようになっている。ファン装置25は、温度センサ11の検出値に応じて可変速制御されるようになっている。なお、オイルクーラ21の上流には電磁式の三方弁22及びバイパス配管24が配置し、制御装置4が、温度センサ11の検出値に応じて、気液分離器12から還流される潤滑油流路の切り替えやポンプ23の駆動状態を制御するようになっている。エアクーラ16は、圧縮作用によって高温となった圧縮空気とファン装置25が生成する冷却風と熱交換することで、圧縮空気を所定温度(例えば、70度)まで冷却する。
これら冷却系により、冷却風は、電動機2や圧縮機本体1を空冷した後、下流側のエアクーラ16やオイルクーラ21に流れ、各クーラと熱交換を行うようになっている。
Air cooler 16 is heat exchange換機, that the fan device 25 is driven, the outside air from the intake port 30 is sucked into the compressor 50 as cooling air is adapted to be discharged from the exhaust port 32 to the outside .. The fan device 25 is controlled at a variable speed according to the detection value of the temperature sensor 11. An electromagnetic three-way valve 22 and a bypass pipe 24 are arranged upstream of the oil cooler 21, and the control device 4 recirculates the lubricating oil flow from the gas-liquid separator 12 according to the detected value of the temperature sensor 11. It is designed to control the switching of the path and the driving state of the pump 23. Air cooler 16, by compressed air and the fan unit 25 heated to high temperature by the compression action is cooling air and heat exchange conversion for generating the compressed air predetermined temperature (e.g., 70 degrees) cooled to.
With these cooling systems, the cooling air cools the motor 2 and the compressor body 1 by air, and then flows to the air cooler 16 and the oil cooler 21 on the downstream side to exchange heat with each cooler.

エアクーラ16の出口から外部配管59までの管路上(又は外部配管59上でもよい)には、圧力センサ17が配置する。圧力センサ17は、制御装置4と制御通信可能に接続されており、圧縮機50から吐き出された圧縮空気の圧力値を制御装置4に出力するようになっている。制御装置4は、圧力センサ17からの入力値を監視し、後述する設定圧力や上限圧力等に応じた周波数指令や弁体の開閉指令を出力するようになっている。 A pressure sensor 17 is arranged on the pipeline from the outlet of the air cooler 16 to the external pipe 59 (or may be on the external pipe 59). The pressure sensor 17 is connected to the control device 4 so as to be capable of control communication, and outputs the pressure value of the compressed air discharged from the compressor 50 to the control device 4. The control device 4 monitors the input value from the pressure sensor 17 and outputs a frequency command and a valve body opening / closing command according to a set pressure, an upper limit pressure, and the like, which will be described later.

エアクーラ16で所定温度に冷却された圧縮空気は、その後、圧縮機50から外部配管59を介して吐き出されるようになっている。外部配管59は、気体槽60と接続する。気体槽60は、所定圧力の圧縮気体を貯留する圧力容器である。圧縮空気は、気体槽60から末端配管(不図示)を介して圧縮空気を利用する末端機器に供給されるようになっている。
The compressed air cooled to a predetermined temperature by the air cooler 16 is then discharged from the compressor 50 via the external pipe 59. The external pipe 59 is connected to the gas tank 60. The gas tank 60 is a pressure vessel that stores compressed gas at a predetermined pressure. The compressed air is supplied from the gas tank 60 to the terminal equipment using the compressed air via a terminal pipe (not shown).

また、圧縮機本体1の吸込み側(吸込フィルタ8の下流)には、吸込絞り弁5が配置する。吸込絞り弁5は、圧縮機50の運転状態に応じて、吸込ポートから圧縮機本体1の圧縮作動室内への吸気の流入を許可・制限する弁体である。本実施例において、吸込絞り弁5は、圧縮機本体1の吐出圧力を作動源として弁体としてのピストンが開閉する構成として説明するが、電磁弁や他の圧力を作動源としてもよい。吸込絞り弁5の開閉は、制御装置4によって実行される。 Further, a suction throttle valve 5 is arranged on the suction side of the compressor main body 1 (downstream of the suction filter 8). The suction throttle valve 5 is a valve body that permits / restricts the inflow of intake air from the suction port into the compression operation chamber of the compressor main body 1 according to the operating state of the compressor 50. In the present embodiment, the suction throttle valve 5 will be described as having a configuration in which the piston as a valve body opens and closes using the discharge pressure of the compressor main body 1 as an operating source, but an electromagnetic valve or another pressure may be used as an operating source. The opening and closing of the suction throttle valve 5 is executed by the control device 4.

本実施例の特徴の一つとして、吸込絞り弁5は、後述する上限圧力P1に達すると閉弁する点が上げられる。より具体的には、吸込絞り弁5は、上限圧力P1になるまでは全開であり、P1になると閉弁するようになっている。 One of the features of this embodiment is that the suction throttle valve 5 closes when the upper limit pressure P1 described later is reached. More specifically, the suction throttle valve 5 is fully open until the upper limit pressure P1 is reached, and is closed when the upper limit pressure P1 is reached.

次いで、制御装置4の制御について詳細に説明する。
図2に、本実施例による吐出圧力、電動機2の回転数(電力変換装置3の周波数)、吸込絞り弁5の状態遷移を時系列で示す。同図中、設定圧力はP0、上限圧力はP1とし夫々0.70Mpa、0.80Mpaを例とする。なお、設定圧力とは、ユーザ側からの任意設定入力或いは初期設定の圧力であり、圧縮機50が吐出目標とする圧力値である。上限圧力とは、機器定格仕様によって定まる最大吐出圧力であり、機器保守や種々の保安基準によって定まる圧力値である。本実施例では、保安基準による保安圧力よりも低い圧力を上限圧力P1として設定するものとして説明する。
Next, the control of the control device 4 will be described in detail.
FIG. 2 shows the discharge pressure, the rotation speed of the motor 2 (frequency of the power conversion device 3), and the state transition of the suction throttle valve 5 in chronological order according to this embodiment. In the figure, the set pressure is P0 and the upper limit pressure is P1, and 0.70 Mpa and 0.80 Mpa are taken as examples, respectively. The set pressure is an arbitrary setting input or an initial setting pressure from the user side, and is a pressure value targeted by the compressor 50 for discharge. The upper limit pressure is the maximum discharge pressure determined by the equipment rating specifications, and is the pressure value determined by equipment maintenance and various safety standards. In this embodiment, a pressure lower than the safety pressure according to the safety standard will be described as the upper limit pressure P1.

また、電動機2の全速回転数は6000rpm/min、下限回転数は800rpm/minを例とする。全速回転数は電動機2の定格上の最高回転数であり、下限回転数とはこれよりも低い所定の回転数である。例えば、特許文献1に示す負荷運転や無負荷運転といった圧縮機の駆動時にとり得る最低回転数である。
なお、同図では、簡単のために圧力や回転数の遷移は模式的に示しており、本発明は必ずしも図示する数値に限定されるものではない。
Further, the full speed rotation speed of the motor 2 is 6000 rpm / min, and the lower limit rotation speed is 800 rpm / min as an example. The full speed rotation speed is the maximum rated rotation speed of the motor 2, and the lower limit rotation speed is a predetermined rotation speed lower than this. For example, it is the minimum rotation speed that can be taken when driving a compressor such as load operation and no-load operation shown in Patent Document 1.
In the figure, for the sake of simplicity, the transition of pressure and rotation speed is schematically shown, and the present invention is not necessarily limited to the numerical values shown.

先ず、制御装置4は、例えばユーザ等の入力による所定の設定圧力P0を目標としてPID制御を行うようになっている。即ち吐出圧力の変動に応じて、電変換装置3から出力する周波数値を変化させ、圧縮機本体1の吐出空気量を増減する制御である。なお、P或いはPI制御を適用してもよい。
First, the control device 4 is adapted to perform PID control with a target of a predetermined set pressure P0 input by, for example, a user or the like. That according to the fluctuation of the discharge pressure, by changing the frequency value output from the power converter 3, a control to increase or decrease the discharge amount of air of the compressor body 1. In addition, P or PI control may be applied.

図2の時間t0〜t1において、圧縮機50が運転開始すると、制御装置4は、電動機2が所定の増速レートで定格の全速運転となるように周波数指令値を電力変換装置3に出力し、圧力センサ17からの入力値がP0となるようにPID制御での運転を行う。なお、この時、吸込絞り弁5は開(Open)である。
When the compressor 50 starts operation at the time t0 to t1 of FIG. 2, the control device 4 outputs a frequency command value to the power conversion device 3 so that the motor 2 operates at the rated full speed at a predetermined acceleration rate. , The operation is performed by PID control so that the input value from the pressure sensor 17 becomes P0. At this time, the suction throttle valve 5 is open.

次いで、時間t1〜t2において、圧縮空気の使用者側での空気使用量が減少(例えば20%程度の使用量)し、吐出圧力が設定圧力P0よりも昇圧すると、制御装置4は、全速回転数と下限回転数の間となる所定周波数の指令を電力変換装置3に出力する(全速回転周波数>所定周波数>下限回転)。より具体的には、吐出圧力がP0から上昇するのに応じて徐々に所定周波数を減少させ電動機の回転数を低下させるようになっている。本実施例では、設定圧力P0より高く上限圧力P1未満の圧力帯域において、これに対応する回転数は、圧力値と比例の関係であるものとするが、吐出圧力が高くなる程回転数の低下割合を増加させる或いは吐出圧力が低いときほど回転数の低下割合を増加させる等、吐出圧力と対応回転数対応に偏りをつけるようにしてもよい。更には、当該圧力帯域で所定圧力幅毎に所定回転数分を増減するといった段階的な周波数変更であってもよい。 Then, at time t1 to t2, when the amount of compressed air used on the user side decreases (for example, the amount used is about 20%) and the discharge pressure is higher than the set pressure P0, the control device 4 rotates at full speed. A command of a predetermined frequency between the number and the lower limit rotation speed is output to the power conversion device 3 (full speed rotation frequency> predetermined frequency> lower limit rotation). More specifically, as the discharge pressure rises from P0, the predetermined frequency is gradually reduced to reduce the rotation speed of the motor. In this embodiment, in the pressure band higher than the set pressure P0 and less than the upper limit pressure P1, the corresponding rotation speed is proportional to the pressure value, but the higher the discharge pressure, the lower the rotation speed. The discharge pressure and the corresponding rotation speed may be biased by increasing the ratio or increasing the decrease ratio of the rotation speed as the discharge pressure is lower. Further, the frequency may be changed stepwise by increasing or decreasing a predetermined number of revolutions for each predetermined pressure width in the pressure band.

このように制御装置4は、吐出圧力が設定圧力P0を上回った場合に、下限回転数とせずにそれよりも高い回転数且つ全速より低い回転数となる周波数制御で圧縮機本体1を運転するようになっている。また、t1からt2において、吸込絞り弁5は全開である。 In this way, when the discharge pressure exceeds the set pressure P0, the control device 4 operates the compressor main body 1 with frequency control in which the rotation speed is higher than the lower limit rotation speed and lower than the full speed. It has become like. Further, from t1 to t2, the suction throttle valve 5 is fully open.

次いで、時間t2〜において、圧縮空気の使用量が更に減少すると吐出圧力は更に昇圧し、やがて上限圧力(P1)に達する。吐出圧力が上限圧力P1に達すると、制御装置4は、下限回転数となる周波数指令値を電力変換装置3に出力し又吸込絞り弁5を閉(Close)とする制御指令を出力する。これによって、圧力センサ17の圧力上昇が停止する。
Then, at time t2-, when the amount of compressed air used is further reduced, the discharge pressure is further increased and eventually reaches the upper limit pressure (P1). When the discharge pressure reaches the upper limit pressure P1, the controller 4 outputs the frequency command value as the lower limit rotation speed to the power converter 3 also a suction throttle valve 5 outputs a control command to close (C lose). As a result, the pressure rise of the pressure sensor 17 is stopped.

つまり、本実施例の特徴の一つとして、吐出圧力が設定圧力P0から上限圧力P1の間は、全速回転数未満且つ下限回転数より高い回転数で圧縮機本体1を運転させる点が上げられる。即ち吐出圧力がP0より高くP1よりも低い圧力帯域の場合、下限回転数よりも高い回転数で運転していることから、当該圧力帯域において下限回転数で運転する場合よりも吐出圧力の変動に対して追随性が向上するという効果がある。 That is, as one of the features of this embodiment, when the discharge pressure is between the set pressure P0 and the upper limit pressure P1, the compressor main body 1 is operated at a rotation speed less than the full speed rotation speed and higher than the lower limit rotation speed. .. That is, in the case where the discharge pressure is higher than P0 and lower than P1, since the operation is performed at a rotation speed higher than the lower limit rotation speed, the discharge pressure fluctuates more than when operating at the lower limit rotation speed in the pressure band. On the other hand, it has the effect of improving followability.

例えば、圧縮空気の使用量が減少によって吐出圧力がP0を上回り、回転数を下限回転数として圧縮機本体1の吐出空気量を減少させるが、その後、圧縮空気の使用量が再度増加した場合を考える。
空気使用量が再度増加することによって、気体槽60の圧力が低下するが、当該低下に応じて圧縮機本体1の吐出空気量を増加させる為に下限回転数から全速運転を再開しても、回転数が全速に至るまでには時間的なズレが生ずる。即ち電動機2や圧縮機本体1の慣性によるトリップを回避する為や、急激な過電流を出力することによる電力変換装置3の保守の為に、増速レートを超えた運転は困難である。このため、再増加した使用空気量と同等以上の空気量を圧縮機本体1が吐き出すまでにはタイムラグが生じ、使用空気の増加量がより多ければ、使用者側の圧縮空気圧が設定圧力P0を下回る場合もある。
For example, when the discharge pressure exceeds P0 due to the decrease in the amount of compressed air used, the amount of discharged air in the compressor body 1 is reduced with the rotation speed as the lower limit, but then the amount of compressed air used increases again. think.
The pressure in the gas tank 60 decreases as the amount of air used increases again, but even if full-speed operation is restarted from the lower limit rotation speed in order to increase the amount of discharged air in the compressor body 1 in response to the decrease. There will be a time lag before the number of revolutions reaches full speed. That is, it is difficult to operate beyond the acceleration rate in order to avoid trips due to inertia of the motor 2 and the compressor body 1 and to maintain the power conversion device 3 by outputting a sudden overcurrent. Therefore, there is a time lag until the compressor main body 1 discharges an amount of air equal to or greater than the re-increased amount of air used, and if the amount of increased air used is larger, the compressed air pressure on the user side sets the set pressure P0. It may be lower.

これに対して、本実施例は、吐出圧力が設定圧力P0より高く、上限圧力P1未満にあるときに、全速回転数未満及び下限回転数より高い回転数で圧縮機本体1を運転する。よって、上記のような使用空気量の再増加のときに、圧縮機本体1の運転を全速回転数によるものまで復帰させる時間は相対的に短くすることができる。 On the other hand, in this embodiment, when the discharge pressure is higher than the set pressure P0 and is lower than the upper limit pressure P1, the compressor main body 1 is operated at a rotation speed less than the full speed rotation speed and a rotation speed higher than the lower limit rotation speed. Therefore, when the amount of air used is increased again as described above, the time for returning the operation of the compressor main body 1 to the one at the full speed rotation speed can be relatively shortened.

また、設定圧力P0から上限圧力P1の間は、全速回転よりは低い回転であることからその分の消費動力を削減する効果も期待できるし、更に、昇圧のために必要とする動力が低減できるという省エネ効果を期待することもできる。 Further, since the rotation between the set pressure P0 and the upper limit pressure P1 is lower than the full speed rotation, the effect of reducing the power consumption by that amount can be expected, and further, the power required for boosting can be reduced. You can also expect the energy saving effect.

例えば、従来の吸込絞り弁制御では、設定圧力P0から上限圧力P1の間(使用空気量比が低下)は、吸込絞り弁を徐々に閉塞させる為、圧縮機の吸気圧力も徐々に低下する。そして、全閉時にはほぼ真空圧にまで低下する。即ち吸込み側が真空の圧力で、吐出側が上限圧力P1という圧力差で圧縮機本体1が駆動することとなる。
これに対して本実施例は、使用空気量比が低下しても吸込絞り弁5は全開のままである。このため圧縮機本体1の吸気圧力は、ほぼ大気圧を維持したままとなる。即ち上限圧力に向かうにしたがって、圧縮機本体1の吸気圧力が低下するため昇圧量が増加するものの本実施例の場合、上限圧力に達するための昇圧量ですむので、その分省エネ効果が大きくなる。
For example, in the conventional suction throttle valve control, the suction throttle valve is gradually closed between the set pressure P0 and the upper limit pressure P1 (the ratio of the amount of air used decreases), so that the intake pressure of the compressor also gradually decreases. Then, when fully closed, the pressure drops to almost the vacuum pressure. That is, the compressor main body 1 is driven by a pressure difference of a vacuum pressure on the suction side and an upper limit pressure P1 on the discharge side.
On the other hand, in this embodiment, the suction throttle valve 5 remains fully open even if the ratio of the amount of air used decreases. Therefore, the intake pressure of the compressor main body 1 remains substantially atmospheric pressure. That is, as the intake pressure of the compressor main body 1 decreases toward the upper limit pressure, the boosting amount increases, but in the case of this embodiment, the boosting amount for reaching the upper limit pressure is sufficient, and the energy saving effect increases accordingly. ..

更に、本実施例のように気体槽60を備える場合、気体槽60の容積を小さくすることが可能となる。一般に気体槽60は、空気使用量等の増減による圧力変動を緩和する役割を持つ。換言すれば、圧力は空気量の変動によるところが多いことから、使用量に対して一定容量の圧縮空気を予め貯留しておくことで、使用に伴う圧力変動幅を小さくするためのバッファとして機能させることができる。本実施例は、圧力変動に対する追随性が高くなることから、その分、気体槽60の容積を小さくすることが可能となる。 Further, when the gas tank 60 is provided as in this embodiment, the volume of the gas tank 60 can be reduced. Generally, the gas tank 60 has a role of alleviating pressure fluctuations due to an increase or decrease in the amount of air used. In other words, since the pressure is often due to fluctuations in the amount of air, by storing a certain amount of compressed air in advance with respect to the amount used, it functions as a buffer to reduce the range of pressure fluctuations associated with use. be able to. In this embodiment, since the followability to the pressure fluctuation is improved, the volume of the gas tank 60 can be reduced accordingly.

以下に、本実施例におけ追随性向上の効果及び気体槽60の容積を小型化可能とする効果について例を用いて説明する。
例えば、使用空気量比100%時の空気量が6m3(立方メートル)/min、気液分離器12の容積を30L、吐出空気温度を80℃、設定圧力P0は0.7MPa、上限圧力P1は0.8MPaとする。使用空気量比が0%付近の場合、気液分離器12内の圧力は、上限圧力P1(0.8MPa)となる。その後、ユーザ側の使用空気量比が100%となっても設定圧力(0.7MPa)を確保できるように圧縮機本体1を運転する必要がある。
Hereinafter, the effect of improving the followability and the effect of making the volume of the gas tank 60 smaller can be described with reference to the present embodiment.
For example, when the working air volume ratio is 100%, the air volume is 6 m3 (cubic meter) / min, the volume of the gas-liquid separator 12 is 30 L, the discharge air temperature is 80 ° C., the set pressure P0 is 0.7 MPa, and the upper limit pressure P1 is 0. It is set to 0.8 MPa. When the working air amount ratio is around 0%, the pressure in the gas-liquid separator 12 becomes the upper limit pressure P1 (0.8 MPa). After that, it is necessary to operate the compressor main body 1 so that the set pressure (0.7 MPa) can be secured even when the air amount ratio on the user side becomes 100%.

ここで、気液分離器12内の圧力(圧力センサ17の検出値)が0.80Mpa→0.70MPaまで圧力降下する時間tを下記数式1で算出すると約0.3秒となる。 Here, the time t at which the pressure in the gas-liquid separator 12 (detected value of the pressure sensor 17) drops from 0.80 MPa to 0.70 MPa is calculated by the following mathematical formula 1 to be about 0.3 seconds.

Figure 0006940686
Figure 0006940686

全速回転まで復帰するための時間を0.3秒以下にしなければ、目標圧力P0を確保することができない。電動機2が、停止から全速までの加速時間に6秒を要する仕様の場合、上限圧力P1での消費動力比を65%とすれば、全速までに要する時間は約2秒となり、1.7秒間は目標圧力P0よりも低下する。そのため本実施例において、目標圧力P0を維持させるためには、圧縮機50の下流に約0.2m3の空気槽が必要となる。 The target pressure P0 cannot be secured unless the time for returning to full speed rotation is set to 0.3 seconds or less. If the motor 2 has a specification that requires 6 seconds to accelerate from stop to full speed, and the power consumption ratio at the upper limit pressure P1 is 65%, the time required to reach full speed is about 2 seconds, which is 1.7 seconds. Is lower than the target pressure P0. Therefore, in this embodiment, in order to maintain the target pressure P0, an air tank of about 0.2 m3 is required downstream of the compressor 50.

これに対して、吐出空気量6m3/min相当の圧縮機で、目標圧力P0〜上限圧力P1の間に回転数を下限回転数とし吸込絞り弁を徐々に閉弁する定速機及び可変速機に必要な気体槽は以下となる。 On the other hand, with a compressor equivalent to a discharge air amount of 6 m3 / min, a constant speed machine and a variable speed machine that gradually close the suction throttle valve with the rotation speed as the lower limit rotation speed between the target pressure P0 and the upper limit pressure P1. The gas tank required for this is as follows.

・定速機 ≒ 0.7m3(本実施例の3.5倍)
・可変速機 ≒ 0.4m3(本実施例の2倍)
このように、本実施例は圧力変動に対する追随性向上及び気体槽の小型化において著しい効果を発揮することがわかる。
・ Constant speed machine ≒ 0.7m3 (3.5 times that of this example)
-Variable speed machine ≒ 0.4 m3 (twice as much as this example)
As described above, it can be seen that this embodiment exerts a remarkable effect in improving the followability to pressure fluctuations and downsizing the gas tank.

次いで、本発明を適用した実施例2について説明する。
図3に、実施例2による圧縮機100の構成を模式的に示す。なお、実施例1と共通する構成については同一符号を用い、詳細な説明を省略する場合がある。
実施例1の圧縮機50との主な相違点は、実施例2の圧縮機100は、吸込絞り弁5を備えない。また、圧縮機100は吐出配管10において、逆止弁15と二次フィルタ13の間に放気弁14を備える。
Next, Example 2 to which the present invention is applied will be described.
FIG. 3 schematically shows the configuration of the compressor 100 according to the second embodiment. The same reference numerals may be used for the configurations common to those in the first embodiment, and detailed description may be omitted.
The main difference from the compressor 50 of the first embodiment is that the compressor 100 of the second embodiment does not include the suction throttle valve 5. Further, the compressor 100 includes an air release valve 14 between the check valve 15 and the secondary filter 13 in the discharge pipe 10.

放気弁14は、圧縮機本体1から逆止弁15までの圧縮空気を大気に放気する放気手段であり、弁体からなる。例えば、電磁弁などからなり制御装置4の制御指令によって開閉を行うようになっている。なお、バネ等の不勢力によって所定圧力で開弁する機械的な弁体から構成してもよい。本実施例において所定圧力とは上限圧力P1とする。
なお、図示しないが放気弁14は圧縮機本体1の吸込み側(吸込フィルタ8と吸込みポートの間)と接続し、圧縮空気を放気するようになっている。これに限らずパッケージ内部の何れかの空間或いは外部に直接放気するようにしてもよい。
The air release valve 14 is an air release means for releasing compressed air from the compressor main body 1 to the check valve 15 to the atmosphere, and is composed of a valve body. For example, it is composed of a solenoid valve and the like, and is opened and closed by a control command of the control device 4. It may be composed of a mechanical valve body that opens at a predetermined pressure by a force of force such as a spring. In this embodiment, the predetermined pressure is the upper limit pressure P1.
Although not shown, the air release valve 14 is connected to the suction side (between the suction filter 8 and the suction port) of the compressor main body 1 to release compressed air. Not limited to this, air may be directly released to any space inside the package or to the outside.

本実施例において、制御装置4は、圧力センサ17の検出値が上限圧力P1を検出すると放気弁を開弁(Open)するようになっている。即ち設定圧力P0から上限圧力P1までは、制御装置4は、全速より低く下限回転数よりも高い範囲の周波数で電動機2を駆動させるのは実施例1と同様である。上限圧P1以上になると、放気弁14を開弁して、動力負荷の低減を図る点を特徴の一つとする。
In this embodiment, the control device 4 opens the air release valve when the detection value of the pressure sensor 17 detects the upper limit pressure P1. That is, from the set pressure P0 to the upper limit pressure P1, the control device 4 drives the motor 2 at a frequency in a range lower than the full speed and higher than the lower limit rotation speed, as in the first embodiment. One of the features is that when the upper limit pressure P1 or more is reached, the air release valve 14 is opened to reduce the power load.

図4に、実施例2による吐出圧力、電動機2の回転数(電力変換装置3の周波数)、放気弁4の状態遷移を時系列で示す。なお、設定圧力P0や上限圧力P1等の数値は実施例1の図2と同様である。
FIG. 4 shows the discharge pressure according to the second embodiment, the rotation speed of the electric motor 2 (frequency of the power conversion device 3), and the state transition of the air release valve 14 in chronological order. The numerical values such as the set pressure P0 and the upper limit pressure P1 are the same as those in FIG. 2 of the first embodiment.

図4の時間t0〜t1において、制御装置4は、電動機2が所定の増速レートで定格の全速運転となるように電動機2を駆動させ、圧力センサ17からの入力値がP0となるようにPID制御での運転を行う。なお、この時、放気弁14は閉(Close)である。 At the time t0 to t1 of FIG. 4, the controller 4 drives the motor 2 so that the motor 2 operates at the rated full speed at a predetermined acceleration rate so that the input value from the pressure sensor 17 becomes P0. Operate under PID control. At this time, the air release valve 14 is closed.

次いで、時間t1〜t2において、圧縮空気の使用者側での空気使用量が減少(例えば20%程度の使用量)し、吐出圧力が設定圧力P0よりも昇圧すると、制御装置4は、全速回転数と下限回転数の間となる所定周波数の指令を電力変換装置3に出力する(全速回転周波数>所定周波数>下限回転)。 Then, at time t1 to t2, when the amount of compressed air used on the user side decreases (for example, the amount used is about 20%) and the discharge pressure is higher than the set pressure P0, the control device 4 rotates at full speed. A command of a predetermined frequency between the number and the lower limit rotation speed is output to the power conversion device 3 (full speed rotation frequency> predetermined frequency> lower limit rotation).

次いで、時間t2〜において、圧縮空気の使用量が更に減少すると吐出圧力は更に昇圧し、やがて上限圧力(P1)に達する。吐出圧力が上限圧力P1に達すると、制御装置4は、下限回転数となる周波数指令値を電力変換装置3に出力し又放気弁14を開(Open)とする制御指令を出力する。これによって、圧力センサ17の圧力上昇が停止し、逆止弁15から上流の圧力が降圧することになる。
なお、不図示であるが、吐出配管10には、保圧弁が配置し、上限圧力P1よりも高い保安圧力になると安全のために放気する弁体を備える。
Then, at time t2-, when the amount of compressed air used is further reduced, the discharge pressure is further increased and eventually reaches the upper limit pressure (P1). When the discharge pressure reaches the upper limit pressure P1, the control device 4 outputs a frequency command value, which is the lower limit rotation speed, to the power conversion device 3 and outputs a control command for opening the air release valve 14. As a result, the pressure rise of the pressure sensor 17 is stopped, and the pressure upstream from the check valve 15 is reduced.
Although not shown, the discharge pipe 10 is provided with a pressure holding valve, and is provided with a valve body that releases air for safety when the safety pressure becomes higher than the upper limit pressure P1.

実施例2によれば、実施例1と同様に、圧力変動に対する追随性の向上及び気体槽の小型化という効果を期待できる。また、上記t1〜t2の間のように、全速回転よりも少ない回転数で回転する分、消費動力の低減を図ることもできる。 According to the second embodiment, as in the first embodiment, the effects of improving the followability to the pressure fluctuation and downsizing the gas tank can be expected. Further, it is possible to reduce the power consumption by the amount of rotation at a rotation speed lower than the full speed rotation, such as between t1 to t2.

以上、本発明を実施するための形態について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更や置換が可能である。 Although the embodiment for carrying out the present invention has been described above, the present invention is not limited to the above-mentioned various examples, and various modifications and substitutions can be made without departing from the spirit of the present invention.

例えば、上記実施例1では、上限圧力P1に達すると吸込絞り弁5を閉弁、実施例2では放気弁14を開弁したが、これら両方を備え且つ制御するようにしてもよい。上限圧力P1以上において、両者による省エネ効果を更に期待することができる。
For example, in the first embodiment, closing the intake Komishibo Riben 5 reaches the upper limit pressure P1, has been opened Hokiben 14 In Example 2, it is also possible to and controlled with both these .. At the upper limit pressure P1 or higher, the energy saving effect of both can be further expected.

また、上記実施例1及び2では、上限圧力P1で、吸込絞り弁5を閉弁又は放気弁14を開弁したが、その後、圧縮空気の使用量が増加し圧力がP1より低くなった場合に、吸込絞り弁5を開弁又は放気弁14を閉弁するようにするようにしてもよい。更には、上限圧力P1が所定時間継続する場合には、自動的に圧縮機50、100の駆動を停止するようにしてもよい。所定時間としては、上限圧力P1の継続時間や直前までの所定時間における負荷率(全速回転数での運転継続時間と、全速より低い回転数での運転時間との比等)が上げられる。これらに更に圧縮機50・100の起動後最低運転時間(保守駆動時間)を考慮して停止するようにしてもよい。
Further, in Examples 1 and 2, the suction throttle valve 5 was closed or the air release valve 14 was opened at the upper limit pressure P1, but after that, the amount of compressed air used increased and the pressure became lower than P1. If it may be adapted to close the opening or Hokiben 14 suction Komishibo Riben 5. Further, when the upper limit pressure P1 continues for a predetermined time, the driving of the compressors 50 and 100 may be automatically stopped. As the predetermined time, the duration of the upper limit pressure P1 and the load factor (ratio of the operation duration at the full speed rotation speed to the operation time at the rotation speed lower than the full speed) in the predetermined time until immediately before can be raised. In addition to these, the compressors 50 and 100 may be stopped in consideration of the minimum operating time (maintenance driving time) after starting.

また、上記実施例では、空気圧縮機を例としたが、他の気体の圧縮機であっても、趣旨を逸脱しない範囲で本発明を適用することができる。 Further, in the above embodiment, the air compressor is taken as an example, but the present invention can be applied to other gas compressors as long as the gist is not deviated.

また、上記実施例では、パッケージ型の空気圧縮機を例とし、また気体槽60が圧縮機50・100と別体配置とする構成であるが、タンクマウント式等の圧縮機と気体槽が一体構成であってもよいし、パッケージ内に気体槽を内臓する構成であってもよい。 Further, in the above embodiment, a package type air compressor is taken as an example, and the gas tank 60 is arranged separately from the compressors 50 and 100, but the tank mount type compressor and the gas tank are integrated. It may be configured or may have a configuration in which a gas tank is built in the package.

また、上記実施例では、給油式の圧縮機を例としたが、水等の他の液体を圧縮作動室に供給する給液式圧縮機であってもよい。更には、無給液式の気体圧縮機にも適用することができる。また、圧縮本体を多段構成とする場合、放気弁14の配置場所は、高圧段側に限らず、中間段の空気を放気する位置であってもよい。
Further, in the above embodiment, the refueling type compressor is taken as an example, but the refueling type compressor may be used to supply another liquid such as water to the compression operation chamber. Furthermore, it can be applied to a liquid-free gas compressor. In the case of the compressor body and the multi-stage configuration, location of Hokiben 14 is not limited to the high-pressure stage, the intermediate stage air may be a position where the air release.

1…圧縮機本体、2…電動機、3…電力変換装置、4…制御装置、5…吸込絞り弁、7…吸込み口、8…吸込フィルタ、10…吐出配管、11…温度センサ、12…気液分離器、13…二次フィルタ、14…放気弁、15…逆止弁、16…エアクーラ、17…圧力センサ、20…油配管、21…オイルクーラ、22…三方弁、23…ポンプ、24…バイパス配管、25…ファン装置、30…吸気口、32…排気口、40…パネル、50・100…圧縮機、59…外部配管、60…気体槽 1 ... Compressor body, 2 ... Electric motor, 3 ... Power converter, 4 ... Control device, 5 ... Suction throttle valve, 7 ... Suction port, 8 ... Suction filter, 10 ... Discharge piping, 11 ... Temperature sensor, 12 ... Gas Liquid separator, 13 ... secondary filter, 14 ... air release valve, 15 ... check valve, 16 ... air cooler, 17 ... pressure sensor, 20 ... oil piping, 21 ... oil cooler, 22 ... three-way valve, 23 ... pump, 24 ... Bypass piping, 25 ... Fan device, 30 ... Intake port, 32 ... Exhaust port, 40 ... Panel, 50/100 ... Compressor, 59 ... External piping, 60 ... Gas tank

Claims (3)

気体を吸込み圧縮気体を吐き出す圧縮機本体と、前記圧縮気体の吐出圧力を検出する圧力検出装置と、前記圧縮機本体の駆動源と、前記圧力検出装置の検出値に応じて前記駆動源を可変速に制御する制御装置とを有する気体圧縮機であって、
前記制御装置は、前記吐出圧力が設定圧力P0であるときに前記駆動源の回転数が全速回転数となり、前記吐出圧力が前記設定圧力P0から上限圧力P1に上昇したときに前記駆動源の回転数が前記全速回転数から下限回転数まで低下し、前記設定圧力P0から前記上限圧力P1までの前記吐出圧力に対して前記全速回転数から前記下限回転数までの前記駆動源の回転数が比例するように、前記駆動源の回転数を制御するものである気体圧縮機。
The compressor body that sucks in gas and discharges compressed gas, the pressure detection device that detects the discharge pressure of the compressed gas, the drive source of the compressor body, and the drive source can be used according to the detection value of the pressure detection device. A gas compressor having a control device for controlling shifting.
In the control device , when the discharge pressure is the set pressure P0, the rotation speed of the drive source becomes the full speed rotation speed, and when the discharge pressure rises from the set pressure P0 to the upper limit pressure P1, the rotation of the drive source The number decreases from the full speed rotation speed to the lower limit rotation speed, and the rotation speed of the drive source from the full speed rotation speed to the lower limit rotation speed is proportional to the discharge pressure from the set pressure P0 to the upper limit pressure P1. A gas compressor that controls the rotation speed of the drive source.
請求項1に記載の気体圧縮機であって、
前記圧縮機本体の吸込み側に、吸気気体量を制御する吸込絞り弁を備え、
前記制御装置は、前記吐出圧力が前記上限圧力P1以上のときに、前記吸込絞り弁を閉弁し、前記吐出圧力が前記設定圧力P0より高く、前記上限圧力P1未満のときに、前記吸込絞り弁を全開にするものである気体圧縮機。
The gas compressor according to claim 1.
A suction throttle valve for controlling the amount of intake gas is provided on the suction side of the compressor body.
Wherein the controller, when the discharge pressure is above the upper limit pressure P1, the closes the intake Komishibo Ri valve, the discharge pressure is higher than the set pressure P0, when less than the upper limit pressure P1, the A gas compressor that fully opens the suction throttle valve.
請求項1に記載の気体圧縮機であって、
前記圧縮機本体の下流側に、前記圧縮気体を放気する放気を備え、
前記制御装置は、前記吐出圧力が前記上限圧力P1以上のときに、前記放気を開弁し、前記吐出圧力が前記設定圧力P0より高く、前記上限圧力P1未満のときに、前記放気弁を閉にするものである気体圧縮機。
The gas compressor according to claim 1.
An air release valve for releasing the compressed gas is provided on the downstream side of the compressor body.
Wherein the controller, when the discharge pressure is above the upper limit pressure P1, opens the air release valve, the discharge pressure is higher than the set pressure P0, when less than the upper limit pressure P1, the air release A gas compressor that closes the valve.
JP2020508685A 2018-03-29 2018-03-29 Gas compressor Active JP6940686B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013122 WO2019186861A1 (en) 2018-03-29 2018-03-29 Gas compressor

Publications (2)

Publication Number Publication Date
JPWO2019186861A1 JPWO2019186861A1 (en) 2021-01-07
JP6940686B2 true JP6940686B2 (en) 2021-09-29

Family

ID=68059783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508685A Active JP6940686B2 (en) 2018-03-29 2018-03-29 Gas compressor

Country Status (3)

Country Link
JP (1) JP6940686B2 (en)
CN (1) CN111902631B (en)
WO (1) WO2019186861A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900020982A1 (en) * 2018-12-11 2021-05-12 Fna S P A SMALL POWER PISTON ELECTRIC AIR COMPRESSOR

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130089A (en) * 1987-11-13 1989-05-23 Hitachi Ltd Device for reducing noise of air compressor
JP3914713B2 (en) * 1996-02-19 2007-05-16 株式会社日立産機システム Screw compressor operating method and screw compressor
JP4415340B2 (en) * 2000-06-02 2010-02-17 株式会社日立産機システム Screw compression device and operation control method thereof
JP3837278B2 (en) * 2000-08-10 2006-10-25 株式会社神戸製鋼所 Compressor operation method
JP2004019445A (en) * 2002-06-12 2004-01-22 Hitachi Industries Co Ltd Screw compressor and operation control method thereof
JP4127670B2 (en) * 2003-08-25 2008-07-30 株式会社日立産機システム Oil-free screw compressor
JP4795977B2 (en) * 2007-01-10 2011-10-19 株式会社神戸製鋼所 Compressor operation method
JP5674586B2 (en) * 2011-08-01 2015-02-25 株式会社日立産機システム Oil-cooled screw compressor
CN106605063B (en) * 2014-12-17 2019-01-08 株式会社日立产机系统 Air compression plant and control method

Also Published As

Publication number Publication date
JPWO2019186861A1 (en) 2021-01-07
CN111902631A (en) 2020-11-06
CN111902631B (en) 2022-03-25
WO2019186861A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6670645B2 (en) Multi-stage compressor
JP3837278B2 (en) Compressor operation method
US11725662B2 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
JPWO2018179789A1 (en) Gas compressor
JP2009047059A (en) Operating method of motor-driven compressor
JP6915152B2 (en) Gas compressor
WO2015052981A1 (en) Oil supply type compressor
JP6940686B2 (en) Gas compressor
RU2426011C2 (en) Method of controlling turbo compressor
TW202043624A (en) A method for controlling a compressor towards an unloaded state
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
WO2020213353A1 (en) Gas compressor
CN102840136B (en) Steam drive type compression device
JP2008144703A (en) Oilless screw compressor
JP4659851B2 (en) Oil-free screw compressor
JP2005069100A (en) Unlubricated screw compressor
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
JP5422431B2 (en) Control method of fluid compressor and fluid compressor
JP4608289B2 (en) Operation control method of screw compressor
JP5386532B2 (en) Compressor
JP5046659B2 (en) air compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210902

R150 Certificate of patent or registration of utility model

Ref document number: 6940686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150