JP5046659B2 - air compressor - Google Patents

air compressor Download PDF

Info

Publication number
JP5046659B2
JP5046659B2 JP2007009700A JP2007009700A JP5046659B2 JP 5046659 B2 JP5046659 B2 JP 5046659B2 JP 2007009700 A JP2007009700 A JP 2007009700A JP 2007009700 A JP2007009700 A JP 2007009700A JP 5046659 B2 JP5046659 B2 JP 5046659B2
Authority
JP
Japan
Prior art keywords
air
path
compressor
discharge path
oil case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007009700A
Other languages
Japanese (ja)
Other versions
JP2008175152A (en
Inventor
坂口智健
高野正彦
後藤真吾
田中英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2007009700A priority Critical patent/JP5046659B2/en
Publication of JP2008175152A publication Critical patent/JP2008175152A/en
Application granted granted Critical
Publication of JP5046659B2 publication Critical patent/JP5046659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は空気圧縮機に関し、特に安定圧力を所望の値に制御可能な空気圧縮機に関するものである。   The present invention relates to an air compressor, and more particularly to an air compressor capable of controlling a stable pressure to a desired value.

空気圧縮機の運転状態は、通常、「起動」「全負荷運転」「部分負荷運転」「無負荷運転」「停止」の5つの場合に大別できる。特許文献1には、吸気調節弁(吸込み絞り弁)を用い、この吸気調節弁内に設けられた弁体が移動することによって、これらの各運転を行う例が開示されている。   The operating state of the air compressor can be broadly classified into five cases of “start-up”, “full load operation”, “partial load operation”, “no load operation”, and “stop”. Patent Document 1 discloses an example in which each operation is performed by using an intake control valve (suction throttle valve) and moving a valve body provided in the intake control valve.

特開2001-90683号公報Japanese Patent Laid-Open No. 2001-90683

三相誘導電動機を用いる空気圧縮機は、電動機の回転を伝動ベルトないしはギヤやカップリングなどを介して圧縮機本体へ伝える構造であることが多い。例えば、スターデルター方式にて起動する電動機を動力源とする油冷式スクリュー圧縮機の場合、「起動」時には運転開始直後の圧縮機本体の回転によって生成された圧縮空気を用いて吸込み絞り弁を閉じ、それ以上空気を取り込まないようにすることで電動機の負荷が軽い状態を保ち、電動機が十分加速してデルター運転に切換った後適切な時間を経て、吸込み絞り弁を開いて空気を取り込み、圧縮を開始する。   An air compressor using a three-phase induction motor often has a structure for transmitting the rotation of the motor to the compressor body through a transmission belt or a gear or a coupling. For example, in the case of an oil-cooled screw compressor that uses a motor driven by the star delta system as a power source, at the time of `` start-up '', a suction throttle valve is used using compressed air generated by the rotation of the compressor body immediately after the start of operation. By closing and preventing further air intake, the load on the motor is kept light, and after a suitable time has elapsed after the motor has fully accelerated and switched to delta operation, the intake throttle valve is opened and air is taken in Start compression.

圧縮が開始されると、「全負荷運転」では吸込み絞り弁は全開状態で空気を取り込む。「部分負荷運転」では圧縮空気の使用量に応じて吸込み絞り弁を少しずつ閉め、圧縮機に取り込む空気量を減じる、いわゆるサクションアンロード運転となる。また、「無負荷運転」においては、吸込み絞り弁を全閉にしてオイルケース内の空気を大気中に放気して動力低減を図る、いわゆるインテグラルアンロード運転となる。   When the compression is started, in the “full load operation”, the suction throttle valve takes in air in a fully opened state. “Partial load operation” is a so-called suction unload operation in which the suction throttle valve is gradually closed in accordance with the amount of compressed air used to reduce the amount of air taken into the compressor. The “no-load operation” is a so-called integral unload operation in which the suction throttle valve is fully closed and the air in the oil case is discharged into the atmosphere to reduce power.

さらに、「停止」時には圧縮機本体内部の圧縮途中の空気や、既に圧縮した空気が油と一緒に吸込み側に逆流する現象が起こるため、停止信号が入力された直後に吸込み絞り弁を閉じる必要がある。   In addition, when “stopping”, the air inside the compressor body or air that has already been compressed flows back to the suction side together with oil, so it is necessary to close the suction throttle valve immediately after the stop signal is input There is.

以上のように、空気圧縮機では、運転の各状態に応じて吸込み絞り弁の開閉を制御しなければならない。   As described above, in the air compressor, opening and closing of the suction throttle valve must be controlled in accordance with each operating state.

各状態における要請としては、「起動」時には容量制御弁を閉じた後、オイルケース内の圧力を出来るだけ低くすることで電動機の負荷を軽くし、よりスムーズに起動させる必要がある。一方、「無負荷運転」時のインテグラルアンロード運転(吸込み絞り弁を全閉とし、さらに放気する運転)では、動力低減の観点からオイルケース内の圧力はできるだけ低くする方がよいものの、圧力を下げ過ぎると圧縮機本体の吸込み側と圧縮後の吐出し側との圧力差が小さくなってしまうという問題があった。   As a request in each state, at the time of “start-up”, it is necessary to close the capacity control valve and then reduce the pressure in the oil case as much as possible to lighten the load on the motor and start it more smoothly. On the other hand, in the integral unload operation during “no-load operation” (operation in which the suction throttle valve is fully closed and then vented), the pressure inside the oil case is better as much as possible from the viewpoint of power reduction. If the pressure is too low, there is a problem that the pressure difference between the suction side of the compressor body and the discharge side after compression becomes small.

このような問題によって、例えば、スクリュー圧縮機においては、圧縮機本体内のローターが安定して回転出来ずに大きな騒音を発生させてしまうことがある。したがって、「起動」時及び「無負荷運転」時の動力低減を重視するあまり、オイルケース内の圧力を低くしすぎると、圧縮機本体の運転音の増大を招いてしまう。そのため、「起動」時と「無負荷運転」時それぞれにおける望ましいオイルケース内圧力を単一の放気経路で実現するのは難しい。   Due to such a problem, for example, in a screw compressor, the rotor in the compressor body may not rotate stably and may generate a large noise. Therefore, too much emphasis is placed on power reduction during “start-up” and “no-load operation”, and if the pressure in the oil case is too low, the operation noise of the compressor body increases. For this reason, it is difficult to realize a desirable oil case internal pressure at the time of “start-up” and “no-load operation” by a single air discharge path.

これまでの圧縮機では上記のような現象を勘案し、「起動」時の電動機のスムーズな起動と、「無負荷運転」時のインテグラルアンロード運転における騒音抑制が両立するオイルケース内圧力となる放気経路を構成して運転することが多かった。   In the past compressors, considering the above-mentioned phenomenon, the oil case internal pressure is compatible with both smooth start-up of the motor at "start-up" and noise suppression at integral unload operation at "no-load operation". In many cases, the air route was configured to drive.

特許文献1の構成は、オイルケースからの経路として、吐出流路のほかに、これから分岐した複数の分岐経路や吐出流路とは異なる経路、さらには、複数空間の間を連通するバイパス流路を複数備えているが、これまでの圧縮機は、「起動」時の電動機のスムーズな起動と「無負荷運転」時のインテグラルアンロード運転における騒音抑制が両立するオイルケース内圧力となる単一の放気経路によって運転するものが一般的で、「起動」時、「無負荷運転」時それぞれにおいて理想的なオイルケース内圧力で運転することが難しいという課題があった。   The configuration of Patent Document 1 includes, as a path from an oil case, in addition to a discharge flow path, a plurality of branch paths branched from now on, a path different from the discharge flow path, and a bypass flow path communicating between a plurality of spaces However, conventional compressors have a single oil case pressure that achieves both smooth start-up of the motor during `` start-up '' and noise suppression during integral unload operation during `` no-load operation ''. In general, the engine is operated by an air discharge route, and there is a problem that it is difficult to operate at an ideal oil case internal pressure at the time of “start-up” and “no-load operation”.

本発明は上記課題に鑑みてなされたものであり、各状態において騒音を抑制して運転可能な空気圧縮機を提供することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to provide an air compressor that can be operated while suppressing noise in each state.

上記目的を達成するための本発明の具体的態様は以下の通りである。
第一の態様では、吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路と、負荷運転時には前記放気経路の断面積を起動時の断面積より小となるように制御する制御装置とを備える構成とした。
Specific embodiments of the present invention for achieving the above object are as follows.
In the first aspect, the compressor main body that compresses the air sucked from the suction throttle valve, the oil case that is positioned in the discharge path of the compressed air discharged from the compressor main body, and the air that branches off from the discharge path and air release path for performing, at the time of no-load operation and a structure and a control unit for controlling the small city of so that sectional area of the startup sectional area of the air release path.

この第一の態様においては、前記制御装置は、放気経路に設けられる電磁弁を制御することによって前記放気経路の断面積を変化させることが望ましい。   In the first aspect, it is preferable that the control device changes a cross-sectional area of the air discharge path by controlling an electromagnetic valve provided in the air discharge path.

また、第二の態様では、吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路と、この放気経路に設けられる電磁弁及びオリフィスとを備え、負荷運転時には前記放気経路の断面積を起動時の断面積より小となるように前記電磁弁を制御する制御装置とを備える構成とした。
In the second aspect, the compressor main body compresses the air sucked from the suction throttle valve, the oil case located in the discharge path of the compressed air discharged from the compressor main body, and the branch from the discharge path. a gas release passage for performing air release, and a solenoid valve and an orifice provided in the air release path, during no-load operation to a small city of so that sectional area of the startup sectional area of the air release path And a control device for controlling the electromagnetic valve.

上記のいずれかの態様にあっては、前記放気経路は複数の経路を有し、前記制御装置が前記複数の経路のうちの一の経路の開閉を制御することが望ましく、さらには、前記制御装置が、前記一の経路の開閉を制御するために、前記一の経路に設けられる電磁弁の開閉を制御することが好適である。   In any one of the above aspects, it is desirable that the air release path has a plurality of paths, and the control device controls opening and closing of one of the plurality of paths, and further, In order for the control device to control opening and closing of the one path, it is preferable to control opening and closing of an electromagnetic valve provided in the one path.

また、第三の態様としては、吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路とを備えた空気圧縮機において、
前記放気経路が分岐部を有して第1の放気経路と第2の放気経路とに分岐し、前記第2の分岐経路には電磁弁が設けられ、
前記電磁弁が、前記空気圧縮機の起動時に開となり無負荷運転時に閉となるように制御する制御装置を備えた構成とした。
Further, as a third aspect, a compressor main body for compressing air sucked from the suction throttle valve, an oil case positioned in a discharge path for compressed air discharged from the compressor main body, and a branch from the discharge path. In an air compressor having an air release path for releasing air,
The air release path has a branch part and branches into a first air release path and a second air release path, and the second branch path is provided with an electromagnetic valve,
The electromagnetic valve is configured to include a control device that controls the air compressor to be opened when the air compressor is started and to be closed during no-load operation.

上記の第一から第三のいずれかにおいて、前記制御装置は、
無負荷運転時に、前記オイルケース内の圧力Pが、前記圧縮機本体の運転音の大きくなる圧力領域の上限圧力P0よりも高い圧力となるように制御することが望ましい。
In any one of the first to third aspects, the control device includes:
It is desirable to control so that the pressure P in the oil case is higher than the upper limit pressure P 0 in the pressure region where the operation noise of the compressor body is large during no-load operation .

本発明によれば、各運転状態において、騒音を抑制しつつ運転可能な空気圧縮機を提供することができる。   According to the present invention, it is possible to provide an air compressor that can be operated while suppressing noise in each operation state.

本発明の実施形態は、各運転状態における空気圧縮機の安定圧力を所望の値に制御する手段に関するものであり、安定圧力調整機能付きの空気圧縮機について、以下、図面を用いて説明する。   Embodiments of the present invention relate to means for controlling a stable pressure of an air compressor in each operating state to a desired value, and an air compressor with a stable pressure adjusting function will be described below with reference to the drawings.

図1は本実施例の空気圧縮機の系統を示す図である。圧縮機本体1を駆動する電動機2の動力は伝達手段3によって伝えられる。伝達手段3には、例えば伝動ベルトやギヤ、カップリングなどがある。当該構成を備え、電動機2によって伝達手段3を介して駆動されることによって、圧縮機本体1内に供給された空気を圧縮する。なお、本実施例では、電動機2の起動方式はスターデルター方式を例に説明するが、その他にも直入れ方式、インバーターによるソフトスタートであっても同様である。   FIG. 1 is a diagram showing a system of an air compressor of the present embodiment. The power of the electric motor 2 that drives the compressor body 1 is transmitted by the transmission means 3. Examples of the transmission means 3 include a transmission belt, a gear, and a coupling. With this configuration, the air supplied into the compressor body 1 is compressed by being driven by the electric motor 2 via the transmission means 3. In the present embodiment, the starting method of the electric motor 2 will be described by taking the star delta method as an example, but the same applies to a direct insertion method and a soft start by an inverter.

圧縮機本体1で圧縮される空気は、吸込みフィルタ8、吸込み絞り弁10を経由して圧縮機本体1に吸い込まれる。そして、圧縮機本体1に吸い込まれた空気は圧縮機本体1において所定の圧力まで圧縮され、吐出経路に位置するオイルケース7、熱交換器5、除湿器6を経て圧縮空気吐出し口9へと向かう。具体的には、圧縮機本体1で圧縮されてオイルケース7を経てオイルが取り除かれた後、熱交換器5により冷却、さらに除湿器6で除湿された後、圧縮空気吐出し口9より吐出される。   The air compressed by the compressor body 1 is sucked into the compressor body 1 via the suction filter 8 and the suction throttle valve 10. The air sucked into the compressor main body 1 is compressed to a predetermined pressure in the compressor main body 1, passes through the oil case 7, the heat exchanger 5, and the dehumidifier 6 located in the discharge path to the compressed air discharge port 9. Head to. Specifically, after being compressed by the compressor body 1 and removed through the oil case 7, the oil is cooled by the heat exchanger 5, further dehumidified by the dehumidifier 6, and then discharged from the compressed air discharge port 9. Is done.

次に、圧縮機の各運転状態での吸込み絞り弁10の動作について図2を用いて説明する。図2は、本実施例の要部を示す図である。空気圧縮機の「起動」時において、起動直後に圧縮機本体1で生成された圧縮空気がオイルケース7と放気電磁弁11を介して吸込み絞り弁10の操作室13へ入り、ピストン12を空気取入口15側へと押す。ピストン12の先端には弁体14が取り付けてあり、ピストン12に動きに合わせて図中左(すなわち、空気取入口15側)へ動き、最終的に吸込み絞り弁10の空気取入口15を塞ぐ。   Next, the operation of the suction throttle valve 10 in each operation state of the compressor will be described with reference to FIG. FIG. 2 is a diagram showing a main part of the present embodiment. At the “start-up” of the air compressor, the compressed air generated in the compressor body 1 immediately after the start enters the operation chamber 13 of the suction throttle valve 10 through the oil case 7 and the discharge solenoid valve 11, and the piston 12 is Push to the air intake 15 side. A valve body 14 is attached to the tip of the piston 12 and moves to the left in the drawing (that is, the air intake 15 side) in accordance with the movement of the piston 12 and finally closes the air intake 15 of the suction throttle valve 10. .

このように、弁体14によって空気取入口15が塞がれることで、圧縮機本体1はそれ以上空気を取り込むことなく運転を続ける。また、操作室13に入りピストン12を押した後の圧縮空気は、操作室13からオリフィス16を介して吸込み絞り弁10の一次側部分17へつながる第1の放気経路(以下、放気経路Aと称する。)と、放気経路Bと称する操作室13から補助電磁弁18、オリフィス19を介して吸込み絞り弁10の一次側部分17へつながる第2の放気経路の二系統の放気経路によって放気される。   In this way, the air intake 15 is blocked by the valve body 14, so that the compressor body 1 continues to operate without taking in more air. The compressed air after entering the operation chamber 13 and pushing the piston 12 is connected to the primary side portion 17 of the suction throttle valve 10 from the operation chamber 13 through the orifice 16 (hereinafter referred to as an “air release route”). A), and two air discharges of the second air discharge path connected from the operation chamber 13 called the air discharge path B to the primary side portion 17 of the suction throttle valve 10 through the auxiliary electromagnetic valve 18 and the orifice 19. It is vented by the route.

すなわち、本実施例における放気経路は、吐出経路から分岐し、放気電磁弁11及び操作室13を経て、放気経路A及びBから一次側部分17へと至る経路となる。なお、吸込み絞り弁10の一次側部分17とは、空気取入口15の相当部分であり、空気流路上は弁体14よりも上流側であり、大気圧となる。   That is, the air release path in the present embodiment is a path that branches from the discharge path, passes through the air release electromagnetic valve 11 and the operation chamber 13, and extends from the air release paths A and B to the primary side portion 17. The primary side portion 17 of the suction throttle valve 10 is a portion corresponding to the air intake port 15, which is upstream of the valve body 14 on the air flow path and is at atmospheric pressure.

このとき、圧縮機本体1は前述した通り空気の圧縮を行わないのでオイルケース7には新たな圧縮空気は流入せず、且つ内部に残留する圧縮空気は、放気経路AおよびBを介して吸込み絞り弁10の一次側部分17に放気される。したがって、オイルケース7内部の圧力は低くなる。これにより、圧縮機本体1を駆動する電動機2の負荷は軽い状態に維持され、速やかに加速し起動を終える。   At this time, since the compressor body 1 does not compress air as described above, new compressed air does not flow into the oil case 7 and the compressed air remaining inside passes through the air discharge paths A and B. The suction throttle valve 10 is discharged to the primary side portion 17. Therefore, the pressure inside the oil case 7 becomes low. Thereby, the load of the electric motor 2 which drives the compressor main body 1 is maintained in a light state, and it accelerates quickly and finishes starting.

「全負荷運転」では、放気電磁弁11内の経路を切り換えることで操作室13へ入る圧縮空気は遮断され、ピストン12を押す作用は無くなる。代わりに圧縮機本体1の運転によって吸込み絞り弁10の二次側部分20が負圧になり、弁体14を図中右側へ動かすことで空気取入口15が開き、圧縮機本体1へ空気が取り込まれ圧縮を行う。なお、吸込み絞り弁10の二次側部分20とは、空気流路上において弁体14よりも圧縮機本体1に近い部分であり、上述の一次側部分17よりも下流側の部分である。   In “full load operation”, the compressed air entering the operation chamber 13 is shut off by switching the path in the discharge electromagnetic valve 11, and the action of pushing the piston 12 is lost. Instead, the operation of the compressor body 1 causes the secondary side portion 20 of the suction throttle valve 10 to become negative pressure, and the air intake 15 is opened by moving the valve body 14 to the right side in the figure, so that air enters the compressor body 1. Captured and compressed. The secondary side portion 20 of the suction throttle valve 10 is a portion closer to the compressor body 1 than the valve body 14 on the air flow path, and is a portion downstream of the primary side portion 17 described above.

「部分負荷運転」時のサクションアンロード運転は、圧縮空気の使用量が減った場合の運転であるが、このとき余剰空気によってオイルケース7内部の圧力が上昇する。圧力がある値まで上昇すると、圧力調整弁21が開き始め吸込み絞り弁10の操作室13へ圧縮空気が供給される。それに伴いピストン12は図中左側へ徐々に押され、ピストン12の先端に取り付けられた弁体14と空気取入口15との距離が狭まることで圧縮機本体1に取り込まれる空気は漸減し、動力は低減する。このとき、放気電磁弁11を介して操作室13へつながる経路は遮断されており、オイルケース7内部の圧縮空気は操作室13へ供給されない。そのためピストン12を押す力は限定的となり、弁体14による空気取入口15の閉鎖までには至らない。   The suction unload operation during the “partial load operation” is an operation when the amount of compressed air used is reduced. At this time, the pressure inside the oil case 7 increases due to excess air. When the pressure rises to a certain value, the pressure adjustment valve 21 starts to open, and compressed air is supplied to the operation chamber 13 of the suction throttle valve 10. As a result, the piston 12 is gradually pushed to the left in the figure, and the distance between the valve body 14 attached to the tip of the piston 12 and the air intake 15 is reduced, so that the air taken into the compressor body 1 gradually decreases, and the power Is reduced. At this time, the path connected to the operation chamber 13 via the air release electromagnetic valve 11 is blocked, and the compressed air inside the oil case 7 is not supplied to the operation chamber 13. Therefore, the force that pushes the piston 12 is limited, and the air intake 15 is not closed by the valve body 14.

「無負荷運転」時のインテグラルアンロード運転では、「起動」時と同様、圧縮機本体1で圧縮された空気の一部が吸込み絞り弁10の操作室13へ入り、ピストン12を図中左側へ押し、ピストン12の先端の弁体14によって空気取入口15を塞ぐ。操作室13に入りピストン12を動かした後の圧縮空気は、放気経路Aを介して吸込み絞り弁10の一次側部分17へ放気される。しかしながら、このときは「起動時」と異なり、放気経路Bを遮断するように制御装置4が制御を行う。具体的には、放気経路Bの経路途中に設置された補助電磁弁18内部通路が切り換えられ、放気経路Bが遮断されるように制御装置4が補助電磁弁18を制御する。   In the integral unload operation during “no load operation”, a part of the air compressed by the compressor main body 1 enters the operation chamber 13 of the suction throttle valve 10 as in the “start-up” operation, and the piston 12 enters the left side in the figure. The air intake 15 is closed by the valve body 14 at the tip of the piston 12. The compressed air after entering the operation chamber 13 and moving the piston 12 is discharged to the primary side portion 17 of the suction throttle valve 10 via the discharge path A. However, at this time, unlike the “start-up”, the control device 4 performs control so as to block the air release path B. Specifically, the internal passage of the auxiliary electromagnetic valve 18 installed in the middle of the air release path B is switched, and the control device 4 controls the auxiliary electromagnetic valve 18 so that the air release path B is blocked.

そのため、「無負荷運転」時のインテグラルアンロード運転における放気は放気経路Aのみを介して行われることになる。このように、制御装置4が補助電磁弁18を制御し、放気量が減ることによって、オイルケース7内の圧力は高めに維持される。その結果として圧縮機本体1の運転が安定し、騒音等の発生条件が緩和されることになる。   Therefore, the air release in the integral unload operation during the “no load operation” is performed only through the air release path A. In this way, the control device 4 controls the auxiliary electromagnetic valve 18 to reduce the air discharge amount, so that the pressure in the oil case 7 is kept high. As a result, the operation of the compressor body 1 is stabilized, and the conditions for generating noise and the like are eased.

換言すれば、放気経路の断面積を、起動時と無負荷運転時とで変化させるように制御することによって、圧縮機本体1の運転の安定と騒音抑制が図れるということである。そのための具体的な形態としては、放気経路に設けられる電磁弁18を制御することによって放気経路の断面積を変化させるが、本実施例ではオリフィスと併設させる構造を採用している。   In other words, it is possible to achieve stable operation and noise suppression of the compressor body 1 by controlling the cross-sectional area of the air release path so as to change between startup and no-load operation. As a specific form for that purpose, the cross-sectional area of the air release path is changed by controlling the electromagnetic valve 18 provided in the air release path.

図3は、インテグラルアンロード運転時のスクリュー圧縮機における圧縮機本体の運転音とオイルケース内圧力との関係を示す図であり、縦軸が圧縮機本体運転音Sを、横軸がオイルケース内圧力Pをそれぞれ示している。   FIG. 3 is a diagram showing the relationship between the operation sound of the compressor main body and the oil case internal pressure in the screw compressor during the integral unload operation, where the vertical axis represents the compressor main body operation sound S and the horizontal axis represents the oil case. The internal pressure P is shown respectively.

オイルケース内の圧力が高い場合(図3において、例えばP=P1の場合)、圧縮機本体の吸込み側と圧縮後の吐出し側との圧力差は大きい。このとき、圧縮機ローターは安定して回転し、運転音も小さく抑えられる。しかし、放気量が増えてオイルケース内の圧力Pが徐々に下がっていくと、ある圧力P0を境として、運転音Sが急激に増大する。この図3中に斜線部で示したP0以下の領域にオイルケース圧力が位置する場合、例えばP=P2においては、圧縮機吸込み側と吐出し側との圧力差が小さくなり、ローターの安定した回転が実現できず、圧縮機本体から過大な騒音が発生する。 When the pressure in the oil case is high (in FIG. 3, for example, P = P 1 ), the pressure difference between the suction side of the compressor body and the discharge side after compression is large. At this time, the compressor rotor rotates stably, and the operation sound is suppressed to a low level. However, when the pressure P in the oil case is increasing gas release amount gradually decreases, as the boundary a certain pressure P 0, the operating noise S rapidly increases. In the case where the oil case pressure is located in a region below P 0 indicated by the hatched portion in FIG. 3, for example, at P = P 2 , the pressure difference between the compressor suction side and the discharge side becomes small, and the rotor Stable rotation cannot be realized, and excessive noise is generated from the compressor body.

すなわち、本実施例の制御装置4は、インテグラルアンロード運転時に、オイルケース内の圧力が、図3に斜線で示した過大騒音発生領域内に入らないように制御を行う。そのための具体的構成として、オイルケース7内から圧縮空気を放気するための系統を複数設けたものであり(放気経路A、B)、これらの経路の開閉を各運転状態に応じて制御して、圧縮機吸込み側と吐出し側との圧力差が小さくなることを抑制している。   That is, the control device 4 according to the present embodiment performs control so that the pressure in the oil case does not enter the excessive noise generation region indicated by the oblique lines in FIG. 3 during the integral unload operation. As a specific configuration for this purpose, a plurality of systems for releasing compressed air from the oil case 7 are provided (air release paths A and B), and the opening and closing of these paths is controlled according to each operation state. Thus, the pressure difference between the compressor suction side and the discharge side is suppressed from becoming small.

本実施例は、オイルケース7内の圧力が過大騒音発生領域内に入らないように制御を行うものであれば、特に具体的な構成が限定されるものではない。したがって、オイルケース内の圧力を監視するセンサを設けてもよく、運転状態によって予め設定されたパターンで放気電磁弁11や補助電磁弁18を制御してもよい。   In the present embodiment, the specific configuration is not particularly limited as long as the control is performed so that the pressure in the oil case 7 does not enter the excessive noise generation region. Therefore, a sensor for monitoring the pressure in the oil case may be provided, and the discharge electromagnetic valve 11 and the auxiliary electromagnetic valve 18 may be controlled in a pattern set in advance depending on the operation state.

以上説明した実施例によれば、圧縮機の各運転状態における安定圧力(オイルケース内圧力)を個別に制御することができるため、よりスムーズな電動機の起動と無負荷運転時のインテグラルアンロード運転における圧縮機本体騒音の抑制を両立することができる。また、動力低減の観点から言えば、無負荷運転時の安定圧力は低い方がよいから、本体騒音が発生しない下限の圧力を設定できる効果もある。   According to the embodiment described above, since the stable pressure (pressure in the oil case) in each operation state of the compressor can be individually controlled, the motor can be started more smoothly and the integral unload operation during no-load operation can be performed. It is possible to achieve both suppression of compressor main body noise. Moreover, from the viewpoint of power reduction, since it is better that the stable pressure during no-load operation is low, there is an effect that a lower limit pressure at which main body noise is not generated can be set.

「停止」時は、「起動」時と同様に、操作室13に圧縮空気が供給されることで空気取入口15は弁体14によって閉じられ、停止に伴って圧縮機本体1から逆流してくる圧縮空気、油の漏洩を防ぐ。このとき、放気経路A、Bは共に吸込み絞り弁10の一次側17へつながる経路が確保された状態になっており、オイルケース7内部の圧縮空気を速やかに放気する。   At the time of “stop”, the compressed air is supplied to the operation chamber 13 and the air intake 15 is closed by the valve body 14 in the same manner as at the time of “start-up”. Prevent leakage of compressed air and oil. At this time, the air discharge paths A and B are both in a state where a path connected to the primary side 17 of the suction throttle valve 10 is secured, and the compressed air inside the oil case 7 is quickly discharged.

なお、放気経路A、Bの開閉を制御する放気電磁弁11と補助電磁弁18の動作は、圧縮機の制御装置4によって制御されるが、制御装置4は、それだけではなく、空気圧縮機の運転に必要な部分の制御を行っている。   Note that the operations of the air release electromagnetic valve 11 and the auxiliary electromagnetic valve 18 that control the opening and closing of the air release paths A and B are controlled by the control device 4 of the compressor. It controls the parts necessary for machine operation.

本実施例の空気圧縮機の系統を示す図。The figure which shows the system | strain of the air compressor of a present Example. 本実施例の要部を示す図。The figure which shows the principal part of a present Example. 圧縮機本体の運転音とオイルケース内圧力との関係を示す図。The figure which shows the relationship between the driving sound of a compressor main body, and the oil case internal pressure.

符号の説明Explanation of symbols

1…圧縮機本体、2…電動機、3…伝動手段、4…制御装置、5…熱交換器、6…除湿器、7…オイルケース、8…吸込みフィルタ、9…圧縮空気吐出し口、10…吸込み絞り弁、11…放気電磁弁、12…ピストン、13…操作室、14…弁体、15…空気取入口、16…オリフィス、17…一次側部分、18…補助電磁弁、19…オリフィス、20…二次側部分、21…圧力調整弁、A…放気経路A、B…放気経路B。   DESCRIPTION OF SYMBOLS 1 ... Compressor main body, 2 ... Electric motor, 3 ... Transmission means, 4 ... Control apparatus, 5 ... Heat exchanger, 6 ... Dehumidifier, 7 ... Oil case, 8 ... Suction filter, 9 ... Compressed air discharge port, 10 DESCRIPTION OF SYMBOLS ... Suction throttle valve, 11 ... Exhaust solenoid valve, 12 ... Piston, 13 ... Operation chamber, 14 ... Valve body, 15 ... Air intake, 16 ... Orifice, 17 ... Primary part, 18 ... Auxiliary solenoid valve, 19 ... Orifice, 20 ... secondary side part, 21 ... pressure regulating valve, A ... air release path A, B ... air release path B.

Claims (7)

吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路と、負荷運転時には前記放気経路の断面積を起動時の断面積より小となるように制御する制御装置とを備えた空気圧縮機。 A compressor body that compresses air sucked from the suction throttle valve, an oil case that is positioned in a discharge path of compressed air that is discharged from the compressor body, and an air discharge path that diverges from the discharge path and discharges air , no-load air compressor and a control device for controlling the small city of so that the cross-sectional area than the cross-sectional area of the startup of the gas release path during operation. 前記制御装置は、放気経路に設けられる電磁弁を制御することによって前記放気経路の断面積を変化させることを特徴とする請求項1記載の空気圧縮機。   The air compressor according to claim 1, wherein the control device changes a cross-sectional area of the air discharge path by controlling an electromagnetic valve provided in the air discharge path. 吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路と、この放気経路に設けられる電磁弁及びオリフィスとを備え、負荷運転時には前記放気経路の断面積を起動時の断面積より小となるように前記電磁弁を制御する制御装置とを備えた空気圧縮機。 A compressor body that compresses air sucked from the suction throttle valve, an oil case that is positioned in a discharge path of compressed air that is discharged from the compressor body, and an air discharge path that diverges from the discharge path and discharges air the air release is provided in the path and an electromagnetic valve and the orifice, the control device at the time of no-load operation for controlling the solenoid valve than in the small city of so that the cross-sectional area of the startup sectional area of the air release path And an air compressor. 前記放気経路は複数の経路を有し、前記制御装置は前記複数の経路のうちの一の経路の開閉を制御することを特徴とする請求項1乃至3のいずれかに記載の空気圧縮機。   The air compressor according to any one of claims 1 to 3, wherein the air discharge path has a plurality of paths, and the control device controls opening and closing of one of the plurality of paths. . 前記制御装置は、前記一の経路の開閉を制御するために、前記一の経路に設けられる電磁弁の開閉を制御することを特徴とする請求項4に記載の空気圧縮機。   5. The air compressor according to claim 4, wherein the control device controls opening and closing of an electromagnetic valve provided in the one path in order to control opening and closing of the one path. 吸込み絞り弁から吸い込まれる空気を圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮空気の吐出経路に位置するオイルケースと、前記吐出経路から分岐して放気を行う放気経路とを備えた空気圧縮機において、
前記放気経路は分岐部を有して第1の放気経路と第2の放気経路とに分岐し、前記第2の分岐経路には電磁弁が設けられ、
前記電磁弁が、前記空気圧縮機の起動時に開となり無負荷運転時に閉となるように制御する制御装置を備えた空気圧縮機。
A compressor body that compresses air sucked from the suction throttle valve, an oil case that is positioned in a discharge path of compressed air that is discharged from the compressor body, and an air discharge path that diverges from the discharge path and discharges air In an air compressor with
The air release path has a branching portion and branches into a first air release path and a second air release path, and the second branch path is provided with an electromagnetic valve,
The air compressor provided with the control apparatus which controls that the said solenoid valve opens at the time of starting of the said air compressor, and closes at the time of a no-load driving | operation.
前記制御装置は、
無負荷運転時に、前記オイルケース内の圧力Pが、前記圧縮機本体の運転音の大きくなる圧力領域の上限圧力P0よりも高い圧力となるように制御することを特徴とする請求項1乃至6のいずれかに記載の空気圧縮機。
The controller is
The pressure P in the oil case is controlled so as to be higher than the upper limit pressure P 0 in the pressure region where the operation noise of the compressor body becomes large during no-load operation. The air compressor according to any one of 6.
JP2007009700A 2007-01-19 2007-01-19 air compressor Expired - Fee Related JP5046659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009700A JP5046659B2 (en) 2007-01-19 2007-01-19 air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009700A JP5046659B2 (en) 2007-01-19 2007-01-19 air compressor

Publications (2)

Publication Number Publication Date
JP2008175152A JP2008175152A (en) 2008-07-31
JP5046659B2 true JP5046659B2 (en) 2012-10-10

Family

ID=39702340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009700A Expired - Fee Related JP5046659B2 (en) 2007-01-19 2007-01-19 air compressor

Country Status (1)

Country Link
JP (1) JP5046659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308994B2 (en) * 2009-11-04 2013-10-09 株式会社日立産機システム air compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979166A (en) * 1995-09-14 1997-03-25 Hitachi Ltd Air compressor

Also Published As

Publication number Publication date
JP2008175152A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP3837278B2 (en) Compressor operation method
KR20190015554A (en) How gas turbines and gas turbines operate
JP5706681B2 (en) Multistage compressor
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
JP6058054B2 (en) Compressor control method
JP4532327B2 (en) Compressor and operation control method thereof
WO2015052981A1 (en) Oil supply type compressor
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
TW202043624A (en) A method for controlling a compressor towards an unloaded state
JPH0979166A (en) Air compressor
JP2009144685A (en) Oil-cooled screw compressor
JP5046659B2 (en) air compressor
WO2020213353A1 (en) Gas compressor
WO2015141596A1 (en) Air compressor
GB2597563A (en) Regenerative pump start and actuation stage for high-speed centrifugal fuel pump
JP6940686B2 (en) Gas compressor
KR101319192B1 (en) Steam driven compressor
JP5308994B2 (en) air compressor
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
CN110685796B (en) Method for operating an internal combustion engine, internal combustion engine and motor vehicle
JP3325744B2 (en) air compressor
KR102314324B1 (en) Gas Heat pump
CN108368837B (en) Liquid-cooled compressor and method of operating the same
JP2010101186A (en) Engine-driven air compressor and its operating method
JP7427523B2 (en) Operation control method for engine-driven compressor and engine-driven compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees