JP6939456B2 - Silicon single crystal growing device and silicon single crystal manufacturing method - Google Patents

Silicon single crystal growing device and silicon single crystal manufacturing method Download PDF

Info

Publication number
JP6939456B2
JP6939456B2 JP2017221250A JP2017221250A JP6939456B2 JP 6939456 B2 JP6939456 B2 JP 6939456B2 JP 2017221250 A JP2017221250 A JP 2017221250A JP 2017221250 A JP2017221250 A JP 2017221250A JP 6939456 B2 JP6939456 B2 JP 6939456B2
Authority
JP
Japan
Prior art keywords
single crystal
metal ring
silicon single
raw material
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017221250A
Other languages
Japanese (ja)
Other versions
JP2019089684A (en
Inventor
鈴木 聡
聡 鈴木
義博 児玉
義博 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017221250A priority Critical patent/JP6939456B2/en
Publication of JP2019089684A publication Critical patent/JP2019089684A/en
Application granted granted Critical
Publication of JP6939456B2 publication Critical patent/JP6939456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、FZ法(フローティングゾーン法又は浮遊帯溶融法)による半導体シリコン単結晶(FZシリコン単結晶)の育成装置及び製造方法に関する。 The present invention relates to an apparatus for growing and manufacturing a semiconductor silicon single crystal (FZ silicon single crystal) by the FZ method (floating zone method or floating zone melting method).

FZ法は、例えば、現在半導体素子として最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして、使用される。図6にFZシリコン単結晶の製造工程の一例を示す。高周波誘導電流を印加する高周波コイルの上方に原料となる半導体棒(原料棒)を、下方に単結晶の種結晶を配置する。原料棒の下端部を溶融して種結晶に融着させ((a)種付工程)、更にこの種付の際に結晶に生じた転位を抜くための絞り(ネッキング)を行い((b)ネッキング工程)、その後に晶出側半導体棒(半導体単結晶棒)を所望の直径まで拡大させながら成長させる((c)コーン部形成工程)。更に、晶出側半導体棒を所望の直径に制御しつつ成長を行い((d)直胴部形成工程)、原料の供給を止め、晶出側半導体棒の直径を縮小させて該晶出側半導体棒を原料半導体棒から切り離す((e)切り離し工程)。以上のような工程を経て、半導体単結晶(FZシリコン単結晶)を製造することができる。 The FZ method is used, for example, as one of the methods for producing a semiconductor single crystal such as a silicon single crystal, which is currently most often used as a semiconductor element. FIG. 6 shows an example of the manufacturing process of the FZ silicon single crystal. A semiconductor rod (raw material rod) as a raw material is arranged above the high-frequency coil to which a high-frequency induced current is applied, and a single crystal seed crystal is arranged below. The lower end of the raw material rod is melted and fused to the seed crystal ((a) seeding step), and further drawing (necking) is performed to remove dislocations generated in the crystal during this seeding ((b)). Necking step), and then the crystallized side semiconductor rod (semiconductor single crystal rod) is grown while being expanded to a desired diameter ((c) cone portion forming step). Further, the crystallizing side semiconductor rod is grown while being controlled to a desired diameter ((d) straight body forming step), the supply of raw materials is stopped, and the diameter of the crystallizing side semiconductor rod is reduced to reduce the crystallizing side. The semiconductor rod is separated from the raw material semiconductor rod ((e) separation step). A semiconductor single crystal (FZ silicon single crystal) can be produced through the above steps.

しかし、FZ法による単結晶製造中に、原料溶融が不均一となり溶融面に突起状の溶け残り(ハナと呼ぶ)が発生することがある。特に原料棒に多結晶シリコンを使用した場合、結晶組織が不均一であることにより溶融しやすい部分としにくい部分の差がより助長されるため、ハナの発生頻度は高くなる。このようなハナが発生して溶融せず残存する時間が長ければ、高周波コイルと接触して放電する等の不具合により単結晶製造を継続できず、製造工程を終了しなければならない。 However, during the production of a single crystal by the FZ method, the melting of the raw material may become non-uniform and a protrusion-like undissolved residue (called Hana) may occur on the molten surface. In particular, when polycrystalline silicon is used for the raw material rod, the non-uniform crystal structure further promotes the difference between the portion that is easily melted and the portion that is difficult to melt, so that the frequency of occurrence of Hana increases. If such a shaving is generated and does not melt and remains for a long time, the single crystal production cannot be continued due to a defect such as contact with the high frequency coil and discharge, and the production process must be completed.

これを防止するために、例えば非特許文献1に示すように、銅のような導電率の高い金属環(ショートリング)を高周波コイルの上方に原料棒を包囲するように配置して単結晶製造を行う(図4参照)。この場合、ショートリング4を通過する磁束の密度が変化し、その磁束密度変化を打ち消すような逆誘導電流がショートリングに流れる。この逆誘導電流により生じる磁束により原料棒下方側のショートリングと高周波コイルの間の磁束密度は増加し、逆にショートリングの上方側の磁束密度は減ぜられる。これにより原料棒の軸方向の温度勾配が増大し、原料溶融面近傍で急激に加熱、溶融させることで溶融部の加熱不均一を低減し、ハナの発生を抑制できる。 In order to prevent this, for example, as shown in Non-Patent Document 1, a metal ring (short ring) having high conductivity such as copper is arranged above the high frequency coil so as to surround the raw material rod to produce a single crystal. (See FIG. 4). In this case, the density of the magnetic flux passing through the short ring 4 changes, and a reverse induced current that cancels the change in the magnetic flux density flows through the short ring. The magnetic flux generated by this reverse induced current increases the magnetic flux density between the short ring on the lower side of the raw material rod and the high frequency coil, and conversely decreases the magnetic flux density on the upper side of the short ring. As a result, the temperature gradient in the axial direction of the raw material rod is increased, and by rapidly heating and melting in the vicinity of the raw material melting surface, the heating non-uniformity of the molten portion can be reduced and the generation of honey can be suppressed.

このようにショートリングを使用することにより、原料溶融部近傍では磁場強度を増大させ、原料の均一溶融化を図ることができるが、同時に全体ではFZ投入電力の増大を招く。また、高周波コイルは非軸対称形状であるため、結晶断面方向の各方向で加熱が必ずしも均一ではなく、FZ投入電力の増大はこの高周波コイルの不均一加熱を助長する。これにより、FZ結晶成長時の加熱変動の度合いが増大するため、熱応力増大による有転位化、或いは単結晶化部分の急激な溶解・急激な凝固による多結晶成長が生じ、単結晶成長を阻害する要因となる。このように従来技術では、十分な単結晶取得を妨げられ、生産性・歩留の低下に繋がるため好ましくない。 By using the short ring in this way, the magnetic field strength can be increased in the vicinity of the raw material melting portion to achieve uniform melting of the raw material, but at the same time, the FZ input power is increased as a whole. Further, since the high-frequency coil has a non-axisymmetric shape, heating is not always uniform in each direction in the crystal cross-sectional direction, and an increase in the FZ input power promotes non-uniform heating of the high-frequency coil. As a result, the degree of heating fluctuation during FZ crystal growth increases, causing dislocation due to increased thermal stress, or polycrystalline growth due to rapid dissolution and rapid solidification of the single crystallized portion, which inhibits single crystal growth. It becomes a factor to do. As described above, the conventional technique is not preferable because it hinders the acquisition of a sufficient single crystal and leads to a decrease in productivity and yield.

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.15−17、MARCEL DEKKER, INC.発行WOLFGANG KELLER, ALFRED MUHLBAUER, "Floating-Zone Silicon" p. 15-17, MARCEL DEKKER, INC. Issue

本発明はこのような事情を鑑みてなされたものであり、FZ法による半導体単結晶の製造において、金属環(ショートリング)を使用した場合に、より効率よく原料棒の安定溶融が可能となるような、シリコン単結晶育成装置及びシリコン単結晶製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and when a metal ring (short ring) is used in the production of a semiconductor single crystal by the FZ method, stable melting of the raw material rod becomes possible. It is an object of the present invention to provide such a silicon single crystal growing apparatus and a silicon single crystal manufacturing method.

上記課題を達成するために、本発明では、チャンバー、原料棒を取り付けるための上軸、種結晶を取り付けるための下軸、原料棒を溶融するための高周波コイル、及び前記高周波コイルの上方に前記原料棒を包囲するように配置された金属環を具備するFZ法によるシリコン単結晶育成装置であって、前記金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものであるシリコン単結晶育成装置を提供する。 In order to achieve the above problems, in the present invention, the chamber, the upper shaft for attaching the raw material rod, the lower shaft for attaching the seed crystal, the high frequency coil for melting the raw material rod, and the above the high frequency coil. A silicon single crystal growing apparatus by the FZ method including a metal ring arranged so as to surround a raw material rod, in which a closed circuit in which the main body of the metal ring is a main circuit is formed and the metal ring is formed. Provided is a silicon single crystal growing apparatus in which a closed circuit serving as a sub circuit is further provided.

このように副回路が設けられた金属環を用いることで、原料加熱を溶融部近傍にさらに集中することができるため、原料のハナの発生をさらに抑制することができる。また、より効率よく原料棒の安定した溶融が行われことでFZ投入電力が低下し、熱応力増大による有転位化、或いは単結晶化部分の急激な溶解・急激な凝固による多結晶成長が生じるのを抑制することができる。 By using the metal ring provided with the sub-circuit in this way, the heating of the raw material can be further concentrated in the vicinity of the molten portion, so that the generation of the raw material can be further suppressed. In addition, the stable melting of the raw material rod is performed more efficiently, so that the FZ input power is reduced, and dislocations occur due to an increase in thermal stress, or polycrystalline growth occurs due to rapid melting and rapid solidification of the single crystallized portion. Can be suppressed.

この場合、前記金属環が、2個以上の副回路が設けられたものであることが好ましい。 In this case, it is preferable that the metal ring is provided with two or more subcircuits.

このような金属環を具備するシリコン単結晶育成装置であれば、更に安定した原料棒の溶融が可能となる。 A silicon single crystal growing apparatus provided with such a metal ring enables more stable melting of the raw material rod.

また、前記金属環が、該金属環の主回路によって形成される平面の上方に副回路が設けられたものであることが好ましい。 Further, it is preferable that the metal ring is provided with a sub circuit above the plane formed by the main circuit of the metal ring.

このような立体的に副回路が設けられた金属環を具備するシリコン単結晶育成装置であれば、原料棒の安定した溶融がより確実に行われ、熱応力増大による有転位化、或いは単結晶化部分の急激な溶解・急激な凝固による多結晶成長が生じることを更に抑制することができる。 In the case of a silicon single crystal growing apparatus provided with a metal ring provided with such a three-dimensional sub-circuit, stable melting of the raw material rod is performed more reliably, dislocation due to an increase in thermal stress, or a single crystal. It is possible to further suppress the occurrence of polycrystalline growth due to rapid dissolution and rapid solidification of the converted portion.

また、本発明では、FZ法によるシリコン単結晶製造方法であって、チャンバー内において、原料棒を上軸に、種結晶を下軸に取り付けた後、高周波コイルの上方に前記原料棒を包囲するように金属環を配置して、前記高周波コイルで前記原料棒を溶融してシリコン単結晶を製造する際に、前記金属環として、該金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものを用いるシリコン単結晶製造方法を提供する。 Further, the present invention is a method for producing a silicon single crystal by the FZ method, in which a raw material rod is attached to an upper shaft and a seed crystal is attached to a lower shaft in a chamber, and then the raw material rod is surrounded above a high-frequency coil. When the metal ring is arranged as described above and the raw material rod is melted by the high frequency coil to produce a silicon single crystal, a closed circuit in which the main body of the metal ring is the main circuit is formed as the metal ring. Further, the present invention provides a method for producing a silicon single crystal using the metal ring further provided with a closed circuit serving as a sub circuit.

このように副回路が設けられた金属環を用いることで、原料加熱を溶融部近傍にさらに集中することができるため、原料のハナの発生をさらに抑制することができる。また、より効率よく原料棒の安定した溶融が行われことでFZ投入電力が低下し、熱応力増大による有転位化、或いは単結晶化部分の急激な溶解・急激な凝固による多結晶成長が生じるのを抑制することができる。 By using the metal ring provided with the sub-circuit in this way, the heating of the raw material can be further concentrated in the vicinity of the molten portion, so that the generation of the raw material can be further suppressed. In addition, the stable melting of the raw material rod is performed more efficiently, so that the FZ input power is reduced, and dislocations occur due to an increase in thermal stress, or polycrystalline growth occurs due to rapid melting and rapid solidification of the single crystallized portion. Can be suppressed.

この場合、前記金属環を、2個以上の副回路が設けられたものとすることが好ましい。 In this case, it is preferable that the metal ring is provided with two or more subcircuits.

このような金属環とすれば、更に安定した原料棒の溶融が可能となる。 With such a metal ring, more stable melting of the raw material rod becomes possible.

また、前記金属環を、該金属環の主回路によって形成される平面の上方に副回路が設けられたものとすることが好ましい。 Further, it is preferable that the metal ring is provided with a sub circuit above the plane formed by the main circuit of the metal ring.

このような立体的に副回路が設けられた金属環とすれば、原料棒の安定した溶融がより確実に行われ、熱応力増大による有転位化、或いは単結晶化部分の急激な溶解・急激な凝固による多結晶成長が生じることを更に抑制することができる。 With such a metal ring provided with a three-dimensional sub-circuit, stable melting of the raw material rod is performed more reliably, dislocations occur due to an increase in thermal stress, or the single crystallized portion is rapidly melted or rapidly melted. It is possible to further suppress the occurrence of polycrystalline growth due to solidification.

以上のように、本発明のシリコン単結晶育成装置及びシリコン単結晶製造方法であれば、金属環を用いたFZ法による半導体単結晶の製造において、原料加熱を溶融部近傍にさらに集中することができるため、原料のハナの発生をさらに抑制することができ、FZ投入電力が低下する。これは単結晶成長阻害状態から遠ざかる方向であり、結晶取得率の向上、すなわち生産性及び歩留が向上し、製品の安定供給に繋がる。また、より高品質の結晶を取得するために難易度の高い製造条件を適用していく場合でも、結晶取得率の低下分を補うことができる。したがって、FZ法による半導体単結晶の製造において、金属環を使用した場合に、より効率よく原料棒の安定溶融が可能となる、シリコン単結晶育成装置及びシリコン単結晶製造方法を提供することができる。 As described above, in the case of the silicon single crystal growing apparatus and the silicon single crystal manufacturing method of the present invention, in the manufacturing of the semiconductor single crystal by the FZ method using a metal ring, the heating of the raw material can be further concentrated in the vicinity of the melting portion. Therefore, it is possible to further suppress the generation of shavings as a raw material, and the FZ input power is reduced. This is a direction away from the single crystal growth-inhibited state, which leads to an improvement in the crystal acquisition rate, that is, an improvement in productivity and yield, leading to a stable supply of products. Further, even when a highly difficult production condition is applied in order to acquire a higher quality crystal, it is possible to compensate for the decrease in the crystal acquisition rate. Therefore, it is possible to provide a silicon single crystal growing apparatus and a silicon single crystal production method capable of more efficiently stable melting of a raw material rod when a metal ring is used in the production of a semiconductor single crystal by the FZ method. ..

本発明のシリコン単結晶育成装置に用いられる金属環の一例である。This is an example of a metal ring used in the silicon single crystal growing apparatus of the present invention. 従来のシリコン単結晶育成装置に用いられる金属環の一例である。This is an example of a metal ring used in a conventional silicon single crystal growing apparatus. FZ法によるシリコン単結晶育成装置の一例である。This is an example of a silicon single crystal growing apparatus by the FZ method. 従来技術における金属環の作用効果を説明するための図である。It is a figure for demonstrating the action effect of a metal ring in the prior art. 本発明における金属環の作用効果を説明するための図である。It is a figure for demonstrating the action and effect of a metal ring in this invention. FZ法によるシリコン単結晶製造方法の一例である。This is an example of a silicon single crystal manufacturing method by the FZ method.

上述のように、FZ法による半導体単結晶の製造において、金属環を使用した場合に、より効率よく原料棒の安定溶融が可能となるような、シリコン単結晶育成装置及びシリコン単結晶製造方法の開発が求められていた。 As described above, in the production of a semiconductor single crystal by the FZ method, a silicon single crystal growing apparatus and a silicon single crystal production method that enable stable melting of a raw material rod more efficiently when a metal ring is used. Development was required.

従来、FZ法による単結晶製造時のハナ発生防止対策として、金属環を使用することで問題なく結晶取得できており、安定生産に支障はないものであった。しかしながら、近年は単結晶の大直径化及び高品質化の市場要求に対応してきており、これに伴い単結晶製造条件は難易度の高いものに変わり、FZ投入電力も増加している。このため、高周波コイルの不均一加熱の度合いは増大し、ミクロな視点では原料棒の溶融が進む部分とそうでない部分の差異が大きくなるため、成長状態としてはハナが発生しやすい方向、またマクロな視点では結晶にかかる熱応力の増大により、単結晶成長を阻害しやすい方向にあった。 Conventionally, as a measure to prevent the generation of shavings during single crystal production by the FZ method, crystals can be obtained without problems by using a metal ring, and there is no problem in stable production. However, in recent years, the market demand for larger diameter and higher quality single crystals has been met, and along with this, the single crystal production conditions have changed to more difficult ones, and the FZ input power has also increased. For this reason, the degree of non-uniform heating of the high-frequency coil increases, and from a microscopic point of view, the difference between the part where the raw material rod melts and the part where it does not melt becomes large. From this point of view, the increase in thermal stress applied to the crystal tended to inhibit the growth of the single crystal.

このような問題に対処すべく検討を行い、本体の閉回路(主回路)に加え、これとは別にさらに副回路を設けた形状の金属環を使用することを想到し、本発明のシリコン単結晶育成装置及びシリコン単結晶製造方法を完成させた。 After studying to deal with such a problem, we came up with the idea of using a metal ring having a shape in which a sub circuit is further provided in addition to the closed circuit (main circuit) of the main body. The crystal growth device and the silicon single crystal production method were completed.

即ち、本発明は、チャンバー、原料棒を取り付けるための上軸、種結晶を取り付けるための下軸、原料棒を溶融するための高周波コイル、及び前記高周波コイルの上方に前記原料棒を包囲するように配置された金属環を具備するFZ法によるシリコン単結晶育成装置であって、前記金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものであるシリコン単結晶育成装置である。 That is, the present invention surrounds the raw material rod above the chamber, the upper shaft for attaching the raw material rod, the lower shaft for attaching the seed crystal, the high frequency coil for melting the raw material rod, and the high frequency coil. A silicon single crystal growing apparatus by the FZ method provided with a metal ring arranged in, which forms a closed circuit in which the main body of the metal ring serves as a main circuit, and a closed circuit in which the metal ring serves as a sub circuit. Is a silicon single crystal growing apparatus further provided with.

以下、本発明について具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described, but the present invention is not limited thereto.

本発明のシリコン単結晶育成装置に用いる金属環(ショートリング)の一例を図1に示す。このような金属環1は、本体2と副回路3からなるものである。本体2は主回路となる閉回路を形成し、副回路3は本体の一部とともに副回路となる閉回路を形成する。また、上述の非特許文献1に開示されているような、従来から用いられている金属環を図2に示す。図2の金属環の構成は本体2のみであり、本体2が主回路となる閉回路を形成するが、副回路は形成されない。このように、金属環が副回路となる閉回路がさらに設けられたものであることが本発明の特徴である。 FIG. 1 shows an example of a metal ring (short ring) used in the silicon single crystal growing apparatus of the present invention. Such a metal ring 1 is composed of a main body 2 and a sub circuit 3. The main body 2 forms a closed circuit as a main circuit, and the sub circuit 3 forms a closed circuit as a sub circuit together with a part of the main body. Further, FIG. 2 shows a conventionally used metal ring as disclosed in Non-Patent Document 1 described above. The structure of the metal ring in FIG. 2 is only the main body 2, and the main body 2 forms a closed circuit as a main circuit, but a sub circuit is not formed. As described above, it is a feature of the present invention that a closed circuit in which the metal ring serves as a sub circuit is further provided.

また、金属環が、2個以上の副回路が設けられたものであることが好ましい。さらに、金属環が、該金属環の主回路によって形成される平面の上方に副回路が設けられたものであることがより好ましい。また、副回路の高さは原料棒の直径の半分程度とすることが好ましい。 Further, it is preferable that the metal ring is provided with two or more subcircuits. Further, it is more preferable that the metal ring is provided with a sub circuit above the plane formed by the main circuit of the metal ring. Further, the height of the auxiliary circuit is preferably about half the diameter of the raw material rod.

本発明のシリコン単結晶育成装置に用いる金属環は、導電率の高い金属でできているものであれば特に限定されないが、銅でできているものであることが好ましい。また、金属環の内部は、冷却水を流せるように空洞(即ち、パイプ状)になっていることが好ましい。金属環がパイプ状であれば、本発明のシリコン単結晶育成装置をシリコン単結晶の製造に用いた際に、高温となった金属環が溶損するのを防止することができる。 The metal ring used in the silicon single crystal growing apparatus of the present invention is not particularly limited as long as it is made of a metal having high conductivity, but it is preferably made of copper. Further, it is preferable that the inside of the metal ring is hollow (that is, pipe-shaped) so that cooling water can flow. When the metal ring is in the shape of a pipe, it is possible to prevent the metal ring at a high temperature from being melted and damaged when the silicon single crystal growing apparatus of the present invention is used for producing a silicon single crystal.

本発明に使用する基本的な装置構成は、金属環を用いること以外は従来の装置と同じであり、例えば図3のシリコン単結晶育成装置21に、図1に示すような金属環1を設置した装置を使用することができる。 The basic apparatus configuration used in the present invention is the same as that of the conventional apparatus except that a metal ring is used. For example, the metal ring 1 as shown in FIG. 1 is installed in the silicon single crystal growing apparatus 21 of FIG. The device can be used.

以下、本発明のシリコン単結晶育成装置について説明する。図3のシリコン単結晶育成装置21において、チャンバー11内には上軸12及び下軸13が設けられている。上軸12には原料棒14(原料半導体棒)として所定の直径の半導体棒が、下軸13には種結晶15が取り付けられるようになっている。さらに、原料棒14を溶融する高周波コイル16を備え、溶融帯域18を原料棒14に対して相対的に上方に移動させながら晶出半導体棒19を成長させることができる。また、成長中に、ドーパントガスドープノズル20(ドーパントガス供給手段)からドーパントガスを供給できるようになっている。図3において、本発明の特徴である図1に示すような金属環1は、高周波コイル16の上方に、原料棒14を包囲するように配置される。 Hereinafter, the silicon single crystal growing apparatus of the present invention will be described. In the silicon single crystal growing apparatus 21 of FIG. 3, an upper shaft 12 and a lower shaft 13 are provided in the chamber 11. A semiconductor rod having a predetermined diameter is attached to the upper shaft 12 as a raw material rod 14 (raw material semiconductor rod), and a seed crystal 15 is attached to the lower shaft 13. Further, a high-frequency coil 16 for melting the raw material rod 14 is provided, and the crystallized semiconductor rod 19 can be grown while moving the melting zone 18 relatively upward with respect to the raw material rod 14. Further, during the growth, the dopant gas can be supplied from the dopant gas dope nozzle 20 (dopant gas supply means). In FIG. 3, the metal ring 1 as shown in FIG. 1, which is a feature of the present invention, is arranged above the high-frequency coil 16 so as to surround the raw material rod 14.

以下に、金属環の作用効果について、図4、5を用いてさらに詳細に説明する。非特許文献1のような従来技術においても、金属環4を高周波コイル16の上方に原料棒を包囲するように配置して単結晶製造を行う。高周波コイル16によって磁束が印加されることで、金属環を通過する磁束5の密度が変化し、その磁束密度変化を打ち消すような逆誘導電流6が金属環に流れる。この逆誘導電流6により生じる磁束7により原料棒下方側の金属環と高周波コイルの間の磁束密度は増大し、逆に金属環の上方側の磁束密度は減ぜられる。これにより原料棒の軸方向の温度勾配が増大し、原料溶融面近傍で急激に加熱、溶融させることで溶融部の加熱不均一を低減し、ハナの発生を抑制できる。 Hereinafter, the action and effect of the metal ring will be described in more detail with reference to FIGS. 4 and 5. Even in the prior art as in Non-Patent Document 1, the metal ring 4 is arranged above the high-frequency coil 16 so as to surround the raw material rod to produce a single crystal. When the magnetic flux is applied by the high-frequency coil 16, the density of the magnetic flux 5 passing through the metal ring changes, and a reverse induced current 6 that cancels the change in the magnetic flux density flows through the metal ring. The magnetic flux 7 generated by the reverse induced current 6 increases the magnetic flux density between the metal ring on the lower side of the raw material rod and the high-frequency coil, and conversely decreases the magnetic flux density on the upper side of the metal ring. As a result, the temperature gradient in the axial direction of the raw material rod is increased, and by rapidly heating and melting in the vicinity of the raw material melting surface, the heating non-uniformity of the molten portion can be reduced and the generation of honey can be suppressed.

一方、従来技術に対し、本発明では、図5のように、金属環の効果をより高めるために、例えば、図1に示すような、本体の閉回路(主回路)に加え、これとは別にさらに副回路を設けた形状の金属環1を使用する。このような形状とすることで、金属環本体の主回路による効果に加えて、副回路(追加閉回路)による効果も期待できる。すなわち、図5のように、副回路を通過する磁束8の密度の変化を捕えて、その変化を打ち消す方向の逆誘導電流9が副回路に流れる。また、副回路の主回路と共通な部分を流れる電流は主回路と同一方向であり、本体側の磁束10を強める。高周波コイルによる磁束と合わせた全体の総和として、金属環と高周波コイルとの間では従来の場合より更に磁束密度変化が大きくなり、金属環本体上方の副回路を設けた範囲では磁束密度変化はより小さくなる。すなわち、この形状の金属環を使用することで、従来よりも原料加熱の際の温度勾配が更に増大するため、ハナの発生を防止する効果も増大し、効率的に原料溶融できるため、FZ印加電力が低減され、安定して結晶取得することができる。 On the other hand, in contrast to the prior art, in the present invention, as shown in FIG. 5, in order to further enhance the effect of the metal ring, for example, in addition to the closed circuit (main circuit) of the main body as shown in FIG. Separately, a metal ring 1 having a shape in which a sub circuit is further provided is used. With such a shape, in addition to the effect of the main circuit of the metal ring body, the effect of the sub circuit (additional closed circuit) can be expected. That is, as shown in FIG. 5, a reverse induced current 9 in a direction that captures a change in the density of the magnetic flux 8 passing through the sub circuit and cancels the change flows in the sub circuit. Further, the current flowing through the common portion with the main circuit of the sub circuit is in the same direction as the main circuit, and the magnetic flux 10 on the main body side is strengthened. As a total sum including the magnetic flux of the high-frequency coil, the change in magnetic flux density between the metal ring and the high-frequency coil is larger than in the conventional case, and the change in magnetic flux density is larger in the range where the sub circuit above the metal ring body is provided. It becomes smaller. That is, by using a metal ring having this shape, the temperature gradient at the time of heating the raw material is further increased as compared with the conventional case, so that the effect of preventing the generation of honey is also increased and the raw material can be melted efficiently, so that FZ is applied. The electric power is reduced and crystals can be obtained stably.

この時、副回路を通過する磁束が多い方が磁束密度の変化が増大するので、副回路を大きく取り、より多くの磁束を捕えた方が良い。しかし単一の閉回路をそのように設けようとすると形状が不安定になり支障をきたしやすい。このため、複数の閉回路を設け、適用しようとする結晶製造状態に応じて適正に配置するのが、実用上は効果的である。図1、5の態様では、図面に対して左右に副回路が2つ形成されたものである。もちろん、3つ、4つ以上形成してもよい。 At this time, since the change in the magnetic flux density increases as the amount of magnetic flux passing through the sub-circuit increases, it is better to take a large sub-circuit and capture a larger amount of magnetic flux. However, if a single closed circuit is provided in this way, the shape becomes unstable and tends to cause problems. Therefore, it is practically effective to provide a plurality of closed circuits and appropriately arrange them according to the crystal manufacturing state to be applied. In the aspects of FIGS. 1 and 5, two subcircuits are formed on the left and right sides of the drawing. Of course, three or four or more may be formed.

更に、副回路については、金属環本体が形成する平面内ではなく、例えば図1に示すように、本体の上方に副回路を設けることで、同一平面では捕えられない磁束を、副回路である閉回路内を通過させることができ、いわば立体的な磁束の活用ができるのでより効果的である。 Further, regarding the sub-circuit, the magnetic flux that cannot be captured in the same plane is generated by providing the sub-circuit above the main body, for example, as shown in FIG. 1, not in the plane formed by the metal ring main body. It is more effective because it can pass through a closed circuit and can utilize a three-dimensional magnetic flux.

また、本発明は、FZ法によるシリコン単結晶製造方法であって、チャンバー内において、原料棒を上軸に、種結晶を下軸に取り付けた後、高周波コイルの上方に前記原料棒を包囲するように金属環を配置して、前記高周波コイルで前記原料棒を溶融してシリコン単結晶を製造する際に、前記金属環として、該金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものを用いるシリコン単結晶製造方法である。 Further, the present invention is a method for producing a silicon single crystal by the FZ method, in which a raw material rod is attached to an upper shaft and a seed crystal is attached to a lower shaft in a chamber, and then the raw material rod is surrounded above a high frequency coil. When the metal ring is arranged as described above and the raw material rod is melted by the high frequency coil to produce a silicon single crystal, a closed circuit in which the main body of the metal ring is the main circuit is formed as the metal ring. Moreover, it is a silicon single crystal manufacturing method using the metal ring further provided with a closed circuit serving as a sub circuit.

この場合、金属環を、2個以上の副回路が設けられたものとすることが好ましい。さらに、金属環を、該金属環の主回路によって形成される平面の上方に副回路が設けられたものとすることがより好ましい。 In this case, it is preferable that the metal ring is provided with two or more subcircuits. Further, it is more preferable that the metal ring is provided with a sub circuit above the plane formed by the main circuit of the metal ring.

次に、本発明のシリコン単結晶製造方法の一例について図3を用いてさらに詳細に説明する。まず、上軸12には原料棒14として、例えば所定の直径のシリコン多結晶棒を取り付け、また下軸13に種結晶15を取り付ける。次に、原料棒14を包囲するように、副回路がさらに設けられた金属環1(例えば図1の金属環)を高周波コイル16の上方に配置して、高周波コイル16で原料棒14を溶融した後、種結晶15に融着させる。種結晶から成長させる晶出側半導体棒19を絞り17により無転位化し、両軸を回転させながら相対的に下降させ、溶融帯域18を原料棒14に対して相対的に上へと移動させながら晶出側半導体棒19(シリコン単結晶)を成長させる。 Next, an example of the silicon single crystal production method of the present invention will be described in more detail with reference to FIG. First, as a raw material rod 14, a silicon polycrystalline rod having a predetermined diameter is attached to the upper shaft 12, and a seed crystal 15 is attached to the lower shaft 13. Next, a metal ring 1 (for example, the metal ring of FIG. 1) further provided with an auxiliary circuit is arranged above the high-frequency coil 16 so as to surround the raw material rod 14, and the raw material rod 14 is melted by the high-frequency coil 16. After that, it is fused to the seed crystal 15. The crystallizing side semiconductor rod 19 to be grown from the seed crystal is dislocated by the drawing 17, and both axes are rotated and relatively lowered, and the melting zone 18 is moved relatively upward with respect to the raw material rod 14. The crystallizing side semiconductor rod 19 (silicon single crystal) is grown.

絞り17を形成した後、種結晶から成長させる晶出側半導体棒19を所望の直径まで拡径させながら成長させてコーン部を形成し、原料棒14と晶出側半導体棒19との間に溶融帯域18を形成して、晶出側半導体棒19を所望の直径に制御しつつ成長させて直胴部を形成する。そして、溶融帯域18を原料棒14の上端まで移動させて晶出側半導体棒19(シリコン単結晶)の成長を終え、晶出側半導体棒19の直径を縮径させて該晶出側半導体棒19を原料棒14から切り離して、半導体シリコン単結晶を製造する。 After the drawing 17 is formed, the crystallization side semiconductor rod 19 to be grown from the seed crystal is grown while expanding the diameter to a desired diameter to form a cone portion, and between the raw material rod 14 and the crystallization side semiconductor rod 19. The melting zone 18 is formed, and the crystallizing side semiconductor rod 19 is grown while being controlled to a desired diameter to form a straight body portion. Then, the melting zone 18 is moved to the upper end of the raw material rod 14, the growth of the crystallizing side semiconductor rod 19 (silicon single crystal) is completed, the diameter of the crystallizing side semiconductor rod 19 is reduced, and the crystallizing side semiconductor rod 19 is reduced in diameter. 19 is separated from the raw material rod 14 to produce a semiconductor silicon single crystal.

本発明のシリコン単結晶製造方法において、原料棒14を包囲するように、副回路がさらに設けられた金属環1を高周波コイル16の上方に配置して高周波コイル16で原料棒14を溶融することに特徴がある。このような金属環1を用いることにより、従来の金属環4を用いた場合よりも、原料溶融面近傍で急激に加熱、溶融させることで溶融部の加熱不均一を低減し、ハナの発生をさらに抑制することができる。 In the method for producing a silicon single crystal of the present invention, a metal ring 1 further provided with an auxiliary circuit is arranged above the high-frequency coil 16 so as to surround the raw material rod 14, and the raw material rod 14 is melted by the high-frequency coil 16. There is a feature in. By using such a metal ring 1, the heating non-uniformity of the molten portion is reduced by rapidly heating and melting in the vicinity of the raw material melting surface as compared with the case where the conventional metal ring 4 is used, and the generation of honey is generated. It can be further suppressed.

以下に本発明の実施例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.

[実施例]
直径150mmの多結晶原料棒を用いて直径205mmのFZ法による半導体シリコン単結晶の製造を行う際に、図1で示す形状の金属環を図3の装置に取り付けた装置を使用して、結晶取得トライを15回実施した。この時のハナ発生は皆無であった。15トライした中の14回は最後まで有転位化せず単結晶を取得できた。15トライした中の1回は直胴途中で有転位化したが、80%超の部分を単結晶として取得できた。
[Example]
When manufacturing a semiconductor silicon single crystal by the FZ method having a diameter of 205 mm using a polycrystalline raw material rod having a diameter of 150 mm, a crystal is used by using an apparatus in which a metal ring having a shape shown in FIG. 1 is attached to the apparatus of FIG. The acquisition trial was carried out 15 times. There was no Hana outbreak at this time. Of the 15 trials, 14 times, a single crystal could be obtained without dislocation until the end. One of the 15 trials was dislocated in the middle of the straight body, but more than 80% of the part could be obtained as a single crystal.

[比較例]
図1の金属環の代わりに、図2の金属環を使用した以外は、FZ法による半導体シリコン単結晶の製造を実施例と同条件で行い、結晶取得トライを15回実施した。この時、結晶取得トライ15回中、2回でハナの発生が顕著であり、うち1回はハナによる高周波コイル上での放電が発生し、単結晶製造を終了した。もう1回は放電等のハナが直接的原因とは認められなかったが、直胴で有転位化した。
[Comparison example]
A semiconductor silicon single crystal was produced by the FZ method under the same conditions as in the examples except that the metal ring of FIG. 2 was used instead of the metal ring of FIG. 1, and crystal acquisition trials were carried out 15 times. At this time, out of 15 crystal acquisition trials, the generation of hana was remarkable, and one of them was a discharge on the high-frequency coil by the hana, and the single crystal production was completed. Once again, Hana such as electric discharge was not found to be the direct cause, but it was dislocated in the straight body.

結果、15トライした中の3回は直胴途中で有転位化し、1回は放電により終了した(前記のトラブルを含む)。残りの11回は最後まで有転位化せず単結晶を取得できた。 As a result, 3 times out of 15 trials were dislocated in the middle of the straight body, and 1 time was completed by electric discharge (including the above-mentioned trouble). In the remaining 11 times, a single crystal could be obtained without dislocation until the end.

以上のように、本発明のシリコン単結晶育成装置及びシリコン単結晶製造方法であれば、FZ法による半導体結晶の製造において、金属環を使用した場合に、より効率よく原料棒の安定溶融が可能となることが分かった。 As described above, the silicon single crystal growing apparatus and the silicon single crystal manufacturing method of the present invention enable more efficient stable melting of raw material rods when a metal ring is used in the manufacturing of semiconductor crystals by the FZ method. It turned out to be.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な効果を奏するいかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any technical scope of the present invention having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect can be obtained. Included in.

1…本発明に用いる金属環、 2…本体、 3…副回路部、 4…従来技術の金属環、
5…金属環を通過する磁束、 6…逆誘導電流、 7…逆誘導電流により生じる磁束、
8…副回路を通過する磁束、 9…逆誘導電流、 10…本体側の磁束、
11…チャンバー、 12…上軸、 13…下軸、 14…原料棒、15…種結晶、
16…高周波コイル、 17…絞り、 18…溶融帯、 19…晶出側半導体棒、
20…ドーパントガスドープノズル、 21…シリコン単結晶育成装置。
1 ... Metal ring used in the present invention, 2 ... Main body, 3 ... Sub-circuit unit, 4 ... Metal ring of the prior art,
5 ... Magnetic flux passing through the metal ring, 6 ... Reverse induced current, 7 ... Magnetic flux generated by the reverse induced current,
8 ... Magnetic flux passing through the sub circuit, 9 ... Reverse induced current, 10 ... Magnetic flux on the main body side,
11 ... chamber, 12 ... upper shaft, 13 ... lower shaft, 14 ... raw material rod, 15 ... seed crystal,
16 ... high frequency coil, 17 ... aperture, 18 ... fusion zone, 19 ... crystallized semiconductor rod,
20 ... Dopant gas-doped nozzle, 21 ... Silicon single crystal growing device.

Claims (6)

チャンバー、原料棒を取り付けるための上軸、種結晶を取り付けるための下軸、原料棒を溶融するための高周波コイル、及び前記高周波コイルの上方に前記原料棒を包囲するように配置された金属環を具備するFZ法によるシリコン単結晶育成装置であって、前記金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものであることを特徴とするシリコン単結晶育成装置。 A chamber, an upper shaft for attaching a raw material rod, a lower shaft for attaching a seed crystal, a high-frequency coil for melting the raw material rod, and a metal ring arranged above the high-frequency coil so as to surround the raw material rod. A silicon single crystal growing apparatus according to the FZ method, wherein the main body of the metal ring forms a closed circuit as a main circuit, and the metal ring is further provided with a closed circuit as a sub circuit. A silicon single crystal growing apparatus characterized by being. 前記金属環が、2個以上の副回路が設けられたものであることを特徴とする請求項1に記載のシリコン単結晶育成装置。 The silicon single crystal growing apparatus according to claim 1, wherein the metal ring is provided with two or more subcircuits. 前記金属環が、該金属環の主回路によって形成される平面の上方に副回路が設けられたものであることを特徴とする請求項1又は請求項2に記載のシリコン単結晶育成装置。 The silicon single crystal growing apparatus according to claim 1 or 2, wherein the metal ring is provided with a sub circuit above a plane formed by the main circuit of the metal ring. FZ法によるシリコン単結晶製造方法であって、チャンバー内において、原料棒を上軸に、種結晶を下軸に取り付けた後、高周波コイルの上方に前記原料棒を包囲するように金属環を配置して、前記高周波コイルで前記原料棒を溶融してシリコン単結晶を製造する際に、前記金属環として、該金属環の本体が主回路となる閉回路を形成し、かつ、前記金属環に、副回路となる閉回路がさらに設けられたものを用いることを特徴とするシリコン単結晶製造方法。 This is a method for producing a silicon single crystal by the FZ method. In a chamber, a raw material rod is attached to an upper shaft and a seed crystal is attached to a lower shaft, and then a metal ring is arranged above the high frequency coil so as to surround the raw material rod. Then, when the raw material rod is melted by the high frequency coil to produce a silicon single crystal, a closed circuit in which the main body of the metal ring is the main circuit is formed as the metal ring, and the metal ring is formed. , A method for producing a silicon single crystal, which comprises using a closed circuit as a sub-circuit. 前記金属環を、2個以上の副回路が設けられたものとすることを特徴とする請求項4に記載のシリコン単結晶製造方法。 The method for producing a silicon single crystal according to claim 4, wherein the metal ring is provided with two or more subcircuits. 前記金属環を、該金属環の主回路によって形成される平面の上方に副回路が設けられたものとすることを特徴とする請求項4又は請求項5に記載のシリコン単結晶製造方法。 The method for producing a silicon single crystal according to claim 4 or 5, wherein the metal ring is provided with a sub circuit above a plane formed by the main circuit of the metal ring.
JP2017221250A 2017-11-16 2017-11-16 Silicon single crystal growing device and silicon single crystal manufacturing method Active JP6939456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221250A JP6939456B2 (en) 2017-11-16 2017-11-16 Silicon single crystal growing device and silicon single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221250A JP6939456B2 (en) 2017-11-16 2017-11-16 Silicon single crystal growing device and silicon single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2019089684A JP2019089684A (en) 2019-06-13
JP6939456B2 true JP6939456B2 (en) 2021-09-22

Family

ID=66835833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221250A Active JP6939456B2 (en) 2017-11-16 2017-11-16 Silicon single crystal growing device and silicon single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP6939456B2 (en)

Also Published As

Publication number Publication date
JP2019089684A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6318938B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP4957600B2 (en) Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus by FZ method
US10577718B2 (en) Method for manufacturing silicon single crystal ingot, and silicon single crystal ingot manufactured by the method
JP6248816B2 (en) Single crystal manufacturing method
JP6471683B2 (en) Method for producing silicon single crystal
JP6939456B2 (en) Silicon single crystal growing device and silicon single crystal manufacturing method
TWI737997B (en) Manufacturing method of silicon crystal ingot and manufacturing device of silicon crystal ingot
JP6332063B2 (en) Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method
JP6233182B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2007131482A (en) Method and apparatus for producing semiconductor crystal
TWI613333B (en) Method for forming monocrystalline silicon and wafer
KR101530272B1 (en) Apparatus and method for growing ingot
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JPH11189486A (en) Production of semiconductor single crystal by fz method
JP2017190261A (en) Method and apparatus for producing monocrystal
JP6996477B2 (en) Single crystal manufacturing method
JP5262346B2 (en) Method for producing silicon single crystal
JP6777013B2 (en) Single crystal manufacturing method
JP6954083B2 (en) Method for manufacturing silicon raw material rod for FZ and method for manufacturing FZ silicon single crystal
JP4146829B2 (en) Crystal manufacturing equipment
KR100958523B1 (en) Manufacturing Method for Silicon Single Crystalline Ingot with Enhanced Margin of Perfect Region
CN110291230A (en) Pass through the method and apparatus of FZ method pulling single crystal
JP5246209B2 (en) Manufacturing method of semiconductor single crystal rod
JP5846071B2 (en) Manufacturing method of semiconductor single crystal rod by FZ method
JP2019043788A (en) Method and apparatus for growing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150