JP6938238B2 - Konjac powder and its manufacturing method - Google Patents

Konjac powder and its manufacturing method Download PDF

Info

Publication number
JP6938238B2
JP6938238B2 JP2017121438A JP2017121438A JP6938238B2 JP 6938238 B2 JP6938238 B2 JP 6938238B2 JP 2017121438 A JP2017121438 A JP 2017121438A JP 2017121438 A JP2017121438 A JP 2017121438A JP 6938238 B2 JP6938238 B2 JP 6938238B2
Authority
JP
Japan
Prior art keywords
powder
dietary fiber
konjac
mass
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121438A
Other languages
Japanese (ja)
Other versions
JP2018164450A (en
Inventor
鶴田 織寛
織寛 鶴田
勝 松浦
勝 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orihiro Plantdew Co Ltd
Original Assignee
Orihiro Plantdew Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orihiro Plantdew Co Ltd filed Critical Orihiro Plantdew Co Ltd
Priority to CN201780061538.5A priority Critical patent/CN109788790B/en
Priority to PCT/JP2017/036680 priority patent/WO2018070382A1/en
Publication of JP2018164450A publication Critical patent/JP2018164450A/en
Application granted granted Critical
Publication of JP6938238B2 publication Critical patent/JP6938238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、こんにゃく粉末に含まれる粉末粒子における水溶性食物繊維と不溶性食物繊維の割合を制御可能なこんにゃく粉末及びその製造方法に関する。 The present invention relates to konjac powder in which the ratio of water-soluble dietary fiber and insoluble dietary fiber in powder particles contained in konjac powder can be controlled, and a method for producing the same.

2015年版日本食品標準成分表(文部科学省、化学技術・学術審議会、資源調査分科会編集)によれば、こんにゃく精粉中の食物繊維の総量(質量基準)は79.9%である。こんにゃく精粉を、こんにゃく精粉に対して30倍程度(質量基準)の水に溶解させることで、この水溶性食物繊維であるグルコマンナンが溶解して、混合物は糊状となる。こうして得られたこんにゃく糊に、水に1質量%程度の濃度に懸濁させた消石灰を練り込み、成型して80〜90℃で加熱させることにより、こんにゃくを得ることができる。こんにゃく中では、食物繊維の95質量%以上が不溶性食物繊維として測定される。
我々日本人は、昔からこんにゃくを日常的に食す唯一の民族であるが、今日ではこんにゃくの低カロリーと不溶性食物繊維の両面から健康に及ぼす効果が認識され、その活用が期待されている。しかしながら、こんにゃくの調理には手間と時間が掛かり、更には、調理方法が限られているために、こんにゃくは今や頻繁に食すことが困難な食材の一つとなっている。
更に、こんにゃくは多くの水分を取り込んでいるため、こんにゃく中の食物繊維の割合は2〜3質量%であり、こんにゃくを介して不溶性食物繊維を積極的に活用しようとしても自ずと限界がある。
不溶性食物繊維の含有割合を高めたこんにゃく加工製品としては、こんにゃくを乾燥後製粉して得られるこんにゃくパウダーが知られている。特許文献1には、水分を含むこんにゃくを挽肉状に破砕後、水洗によるあく抜き、脱水を経て得られるこんにゃくペーストを、乾燥して、精粉機でパウダー化するこんにゃくパウダーの製造方法が開示されている。
According to the 2015 Standard Tables of Food Composition in Japan (edited by the Ministry of Education, Culture, Sports, Science and Technology, the Chemical Technology and Academic Council, and the Resource Research Subcommittee), the total amount of dietary fiber (mass standard) in konjac refined powder is 79.9%. By dissolving konjac refined powder in about 30 times (mass basis) of water as compared with konjac refined powder, this water-soluble dietary fiber, glucomannan, is dissolved and the mixture becomes paste-like. Konjac can be obtained by kneading slaked lime suspended in water at a concentration of about 1% by mass into the konjac paste thus obtained, molding the slaked lime, and heating the mixture at 80 to 90 ° C. In konjac, 95% by mass or more of dietary fiber is measured as insoluble dietary fiber.
We Japanese have long been the only people who eat konjac on a daily basis, but today it is recognized that konjac has both low calorie and insoluble dietary fiber effects on health, and its utilization is expected. However, cooking konjac takes time and effort, and due to the limited cooking methods, konjac is now one of the difficult foods to eat frequently.
Furthermore, since konjac takes in a large amount of water, the proportion of dietary fiber in konjac is 2 to 3% by mass, and there is naturally a limit to the active utilization of insoluble dietary fiber through konjac.
As a processed konjac product having an increased content of insoluble dietary fiber, konjac powder obtained by milling konjac after drying is known. Patent Document 1 discloses a method for producing konjac powder, which is obtained by crushing konjac containing water into minced meat, draining by washing with water, and dehydrating the konjac paste, which is dried and powdered with a refiner. ing.

特開平4−99453号公報Japanese Unexamined Patent Publication No. 4-99453

特許文献1に記載される方法によれば、不溶性食物繊維の含有量の高いこんにゃくパウダーを得ることができる。しかしながら、こんにゃく原料粉から水分量の多いこんにゃくを製造した後、更に、水分を含むこんにゃくを挽肉状に破砕後、水洗によるあく抜き、脱水を経て得られるこんにゃくペーストを、乾燥して、精粉機でパウダー化する工程が必要となる。従って、特許文献1の方法では、製造工程数が増加し、また製造工程も複雑となり、製造の効率化を図ることが難しい。
また、特許文献1には、こんにゃくパウダーの各粒子に含まれる水溶性食物繊維と不溶性食物繊維との割合を制御する点についての記載や示唆はない。
According to the method described in Patent Document 1, konjac powder having a high content of insoluble dietary fiber can be obtained. However, after producing konjac with a large amount of water from the konjac raw material powder, the konjac containing water is further crushed into a ground meat, and the konjac paste obtained by draining and dehydrating by washing with water is dried and refined. The process of powdering with konjac is required. Therefore, in the method of Patent Document 1, the number of manufacturing steps increases, the manufacturing process becomes complicated, and it is difficult to improve the efficiency of manufacturing.
Further, Patent Document 1 does not describe or suggest that the ratio of the water-soluble dietary fiber and the insoluble dietary fiber contained in each particle of the konjac powder is controlled.

本発明の目的は、食物繊維の含有割合が高く、目的に応じて水溶性食物繊維と不溶性食物繊維の割合を制御可能であり、食物繊維の直接摂取や食品への配合に有用な、こんにゃく粉末及びその効率よい製造方法を提供することにある。 An object of the present invention is a konjac powder which has a high content ratio of dietary fiber, can control the ratio of water-soluble dietary fiber and insoluble dietary fiber according to the purpose, and is useful for direct intake of dietary fiber and compounding into foods. And to provide an efficient manufacturing method thereof.

本発明にかかるこんにゃく粉末の製造方法は、
こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、該こんにゃく原料粉末に含まれる粉末粒子に該糖水酸化カルシウム水溶液を供給する混合工程と、
前記糖水酸化カルシウム水溶液が供給された粉末粒子において該糖水酸化カルシウム水溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程と、を有し、
前記混合工程及び前記不溶性食物繊維形成工程が、前記粉末粒子の粒子としての形態が維持された状態で行われる
ことを特徴とする。
本発明にかかるこんにゃく粉末は、
粉末全体(乾燥物基準)に対して食物繊維を50質量%以上、100質量%未満含み、食物繊維が水溶性食物繊維と不溶性食物繊維とからなり、全食物繊維に対する水溶性食物繊維と不溶性食物繊維の割合(質量基準)が50:50〜1:99の範囲にあることを特徴とする。
The method for producing konjac powder according to the present invention is
A mixing step of mixing the konjac raw material powder and the calcium sugar hydroxide aqueous solution and supplying the sugar hydroxide aqueous solution to the powder particles contained in the konjac raw material powder.
It has an insoluble dietary fiber forming step of forming insoluble dietary fiber by the action of the calcium hydroxide aqueous solution in the powder particles supplied with the calcium sugar hydroxide aqueous solution to obtain konjac powder.
The mixing step and the insoluble dietary fiber forming step are carried out in a state where the morphology of the powder particles as particles is maintained.
The konjac powder according to the present invention is
Contains 50% by mass or more and less than 100% by mass of dietary fiber with respect to the whole powder (based on dry matter), and the dietary fiber consists of water-soluble dietary fiber and insoluble dietary fiber. It is characterized in that the ratio of fibers (based on mass) is in the range of 50:50 to 1:99.

本発明によれば、こんにゃく原料粉末に糖水酸化カルシウム水溶液を添加して、こんにゃく原料粉末に含まれる粉末粒子の粒子としての形態を維持しつつ、これらを混合し、粉末粒子の表面及びその内部に供給された糖水酸化カルシウム水溶液の作用により生成する不溶性食物繊維の含有量を増加させた粉末粒子を含むこんにゃく粉末を得ることができる。
こんにゃく粉末に含まれる水溶性食物繊維に対する不溶性食物繊維の割合は、糖水酸化カルシウム水溶液と粉末粒子の反応条件を選択することによって制御することができる。
更に、本発明にかかるこんにゃく粉末の製造方法では、こんにゃく原料粉末に含まれる粉末粒子の粒子形態を維持した状態で、糖水酸化カルシウム水溶液を作用させて、目的とするこんにゃく粉末を直接得ることができる。従って、本発明にかかるこんにゃく粉末の製造方法では、従来技術における、こんにゃく糊を調製する工程、こんにゃく糊をアルカリ凝固剤の添加及び加熱によりゲル化する工程、水分を含むこんにゃくの塊の裁断、脱水、乾燥、粉末化を行う工程を省略して、極めて効率よく全食物繊維に対して不溶性食物繊維を50質量%以上含むこんにゃく粉末を製造することができる。
更に、本発明にかかる製造方法により得られるこんにゃく粉末に含まれる粉末粒子は、吸水性を有しており、吸水した状態の粉末粒子を直接摂取した場合においても食感に優れ、かつ嚥下性が良好であり、更に、吸水性が必要とされる食品添加物として好適に利用できる。
According to the present invention, an aqueous calcium sugar hydroxide solution is added to the konjac raw material powder, and these are mixed while maintaining the morphology of the powder particles contained in the konjac raw material powder as particles, and are mixed on the surface of the powder particles and inside the powder particles. It is possible to obtain a konjac powder containing powder particles having an increased content of insoluble dietary fiber produced by the action of the supplied calcium hydroxide aqueous solution.
The ratio of insoluble dietary fiber to water-soluble dietary fiber contained in konjac powder can be controlled by selecting the reaction conditions of the calcium sugar hydroxide aqueous solution and the powder particles.
Further, in the method for producing konjac powder according to the present invention, the target konjac powder can be directly obtained by allowing an aqueous solution of calcium sugar hydroxide to act while maintaining the particle morphology of the powder particles contained in the konjac raw material powder. .. Therefore, in the method for producing konjac powder according to the present invention, in the prior art, a step of preparing konjac paste, a step of gelling konjac paste by adding an alkaline coagulant and heating, cutting and dehydrating a lump of konjac containing water. It is possible to produce konjac powder containing 50% by mass or more of insoluble dietary fiber with respect to the total dietary fiber extremely efficiently by omitting the steps of drying and pulverizing.
Further, the powder particles contained in the konjac powder obtained by the production method according to the present invention have water absorption, and even when the powder particles in the water-absorbed state are directly ingested, they have an excellent texture and swallowability. It is good and can be suitably used as a food additive that requires water absorption.

従って、本発明によれば、直接摂取した場合においても食感に優れ、かつ嚥下性が良好であるこんにゃく粉末及びその製造方法を提供することができる。
更に、本発明によれば、飲料や食品の食感や風味を損なうことなく飲料や食品への添加が可能であり、食物繊維の含有率が高く、かつ使用目的に応じて水溶性食物繊維と不溶性食物繊維の割合を制御可能であるこんにゃく粉末及びその効率よい製造方法を提供することができる。
Therefore, according to the present invention, it is possible to provide konjac powder having an excellent texture and good swallowing ability even when directly ingested, and a method for producing the same.
Further, according to the present invention, it can be added to beverages and foods without impairing the texture and flavor of beverages and foods, the content of dietary fiber is high, and water-soluble dietary fiber is used depending on the purpose of use. It is possible to provide konjac powder having a controllable proportion of insoluble dietary fiber and an efficient method for producing the konjac powder.

従来技術によるこんにゃくの乾燥、細断及び精粉化を経て得られるこんにゃく粉末は、食物繊維含有量が高く、水分を多く含むこんにゃくに比べて取扱い性が格段によく、食物繊維摂取用の食品として非常に優れた製品である。しかしながら、従来技術によるこんにゃく粉末に含まれる粉末粒子は吸水性が低く、あるいは吸水性を持たず、そのまま摂取した際の食感が独特であり、用途が限定される場合があった。
更に、従来技術におけるこんにゃく粉末の製造では、水分を多量に含むこんにゃくの細断、乾燥及び粉末化のための工程が必須であり、また、こんにゃく糊に対するこんにゃく粉の収率(質量基準)も低く、こんにゃく粉末の製造効率を上げることには限界があった。
本発明者らは、こんにゃく粉末の製造方法について鋭意検討した結果、こんにゃく原料粉末中のグルコマンナンを水に溶解することなく、粉末粒子中に閉じ込めた状態で、水溶性のグルコマンナンから不溶性食物繊維を形成することが可能であれば、広範な用途に利用可能で、且つ製造効率のよいこんにゃく粉末を提供できるとの結論を得た。
Konjac powder obtained through drying, shredding, and refinement of konjac by conventional techniques has a high dietary fiber content and is much easier to handle than konjac containing a large amount of water, and is a food for dietary fiber intake. It is a very good product. However, the powder particles contained in the konjac powder according to the prior art have low water absorption or do not have water absorption, and have a unique texture when ingested as they are, and their uses may be limited.
Further, in the production of konjac powder in the prior art, steps for shredding, drying and pulverizing konjac containing a large amount of water are indispensable, and the yield (mass standard) of konjac powder with respect to konjac paste is low. , There was a limit to increasing the production efficiency of konjac powder.
As a result of diligent studies on a method for producing konjac powder, the present inventors made insoluble dietary fiber from water-soluble glucomannan in a state where glucomannan in the konjac raw material powder was confined in powder particles without being dissolved in water. It was concluded that if it is possible to form konjac powder, it is possible to provide konjac powder that can be used in a wide range of applications and has high production efficiency.

ところで、こんにゃく原料粉末中のグルコマンナンを水に溶解してアルカリ性にし、加熱することでこんにゃくゲルとなる理由の一つとして、グルコマンナン中のアセチル基がアルカリ条件下で外れることによりゲル化が進行すると言われている。しかしながら、グルコマンナン中のアセチル基の数が少ないので、この点についての完全証明となっていないというのが定説となっている。
一方、こんにゃく粉に水酸化カルシウムを添加することによってグルコマンナンのカルシウム架橋が生じるとの報告もある。
以上の様に、こんにゃくゲルの形成過程については未だ不明瞭ではあるが、こんにゃく製造過程での不溶性食物繊維の形成について、本発明者らが着目したのは、水酸化カルシウムの添加である。
By the way, one of the reasons why glucomannan in konjac raw material powder is dissolved in water to make it alkaline and then heated to form konjac gel is that gelation progresses when the acetyl group in glucomannan is removed under alkaline conditions. It is said that. However, since the number of acetyl groups in glucomannan is small, it is a well-established theory that this point is not completely proved.
On the other hand, it has been reported that the addition of calcium hydroxide to konjac flour causes calcium cross-linking of glucomannan.
As described above, the formation process of konjac gel is still unclear, but the present inventors focused on the addition of calcium hydroxide for the formation of insoluble dietary fiber in the konjac production process.

本発明者らは、こんにゃく原料粉末中のグルコマンナンを、水に溶解することなく、こんにゃく原料粉末が粒子状のままで、本来水溶性食物繊維であるグルコマンナンを不溶性の食物繊維に変換するには、水酸化カルシウムの形態で粉末粒子に直接吸収させることが好ましいとの結論に至った。その際、こんにゃく精粉等のこんにゃく原料粉末に含まれる粉末粒子の粒子としての形態を維持させつつ水酸化カルシウムの溶液を粉末粒子に吸収させることが肝要である。
粉末粒子の粒子としての形態の維持とは、こんにゃく原料粉末に含まれる粉末粒子が、粒子の外形形状や大きさの変化の有無にかかわらず、その一次粒子の状態を維持していることを意味する。従って、粉末粒子の粒子としての形態の維持には、粒子の形状や大きさが変化する場合も含まれる。
本発明にかかる製造方法においては、糖水酸化カルシウム水溶液との混合工程及び粉末粒子内での不溶性食物繊維の形成工程において、こんにゃく原料粉末が粉末の状態で加工されてこんにゃく粉末となり、その間において粉末粒子の粒子としての形状が維持される。
粉末粒子の粒子としての形態を、糖水酸化カルシウム水溶液との混合において維持するには、こんにゃく原料粉末に混合する糖水酸化カルシウム水溶液から供給される水分量を調節する方法を好ましく用いることができる。本発明者らが検討した結果、こんにゃく原料粉末の量に対して加える糖水酸化カルシウム水溶液の量を、好ましくは3倍量以下(質量基準)とすることで、粉末粒子の形態を維持しつつ加工することができる、という結論を得た。例えば、こんにゃく原料粉末に対して3.5倍量(質量基準)の糖水酸化カルシウム水溶液を加えると、吸水により水溶性グルコマンナンが一部溶出して糊状となり、粒子同士が固く結着するために、一粒、一粒バラバラの一次粒子の状態を維持することは困難である場合があった。
水酸化カルシウムの水に対する溶解度は極めて低く、低温で最もよく溶解する条件下であっても最大0.15質量%である。こんにゃく原料粉末中の食物繊維1g当たり18mg程度のカルシウムを水酸化カルシウム水溶液により供給しようとすれば、こんにゃく原料粉末に対して16倍量程度の消石灰の水溶液が必要となり、こんにゃく原料粉末が溶解し、粉末の状態を維持することができない。
The present inventors can convert glucomannan in the konjac raw material powder into insoluble dietary fiber without dissolving the glucomannan in the konjac raw material powder in the form of particles of the konjac raw material powder, which is originally a water-soluble dietary fiber. Concluded that it is preferable to allow the powder particles to absorb directly in the form of calcium hydroxide. At that time, it is important to allow the powder particles to absorb the solution of calcium hydroxide while maintaining the morphology of the powder particles contained in the konjac raw material powder such as konjac refined powder.
Maintaining the morphology of the powder particles as particles means that the powder particles contained in the konjac raw material powder maintain the state of the primary particles regardless of whether or not the outer shape or size of the particles is changed. do. Therefore, maintaining the morphology of powder particles as particles includes cases where the shape and size of the particles change.
In the production method according to the present invention, in the step of mixing with an aqueous solution of calcium sugar hydroxide and the step of forming insoluble dietary fiber in powder particles, the konjac raw material powder is processed into konjac powder in a powder state, and the powder particles are in the meantime. The shape of the konjac as a particle is maintained.
In order to maintain the morphology of the powder particles as particles in mixing with the calcium sugar hydroxide aqueous solution, a method of adjusting the amount of water supplied from the sugar hydroxide aqueous solution mixed with the konjac raw material powder can be preferably used. As a result of the examination by the present inventors, the amount of the calcium hydroxide aqueous solution added to the amount of the konjac raw material powder is preferably 3 times or less (mass basis), so that the processing is performed while maintaining the morphology of the powder particles. I came to the conclusion that it can be done. For example, when 3.5 times the amount (mass basis) of an aqueous solution of calcium sugar hydroxide is added to the konjac raw material powder, water-soluble glucomannan is partially eluted by water absorption to form a paste, and the particles are firmly bound to each other. In addition, it may be difficult to maintain the state of the primary particles, which are separated from each other.
The solubility of calcium hydroxide in water is extremely low, up to 0.15% by mass even under the conditions of best dissolution at low temperatures. If about 18 mg of calcium per 1 g of dietary fiber in the konjac raw material powder is to be supplied by a calcium hydroxide aqueous solution, an aqueous solution of slaked lime about 16 times as much as the konjac raw material powder is required, and the konjac raw material powder is dissolved. The powder state cannot be maintained.

本発明者らは、こんにゃく原料粉末に含まれるグルコマンナンから、粉末粒子の粒子としての形態を維持しつつ不溶性食物繊維を形成するためのアルカリ凝固剤について種々検討した結果、本来水には0.15%程度しか溶解しない水酸化カルシウムを、必要とされる濃度まで溶解した水溶液を得る手段が必須であり、こんにゃく製造用のアルカリ凝固剤の調製用として、本発明者らによって開発済みである非還元糖水溶液に水酸化カルシウムを溶解する技術を応用することが有効であるとの結論に至った。その結果、溶解状態にあるカルシウム濃度を高めることが可能な糖水酸化カルシウム水溶液を、本発明にかかるこんにゃく粉末の製造にアルカリ凝固剤として用いることにより、以下の各効果を得ることができるとの新たな知見を得た。
(1)糖水酸化カルシウム水溶液を作用させて不溶性食物繊維を形成し、不溶性食物繊維の含有率が全食物繊維に対して50質量%以上となる様に不溶性食物繊維の含有率を高めたこんにゃく粉末は、30質量%程度の含水アルコール洗浄により不要なアルカリ成分を除去する脱アルカリ処理を行い、乾燥粉末とした後でも吸水性を有し、25℃で1時間水に浸漬後も、少なくとも60質量%以上の粉末が水中で粒子状を保持した。この様に、こんにゃく粉末粒子が水溶性食物繊維を含んでいても、水中に溶出する成分は極めて僅かであるか、または、全く無いのである。
(2)こんにゃく粉末に含まれる粉末粒子が吸水性を有することにより、飲料や水分を含む食品に添加した場合には、飲料や水分を含む食品と馴染み易く、かつ飲料や水分を含む食品の食感や風味を損なうことが極めて少ない。また、こんにゃく粉末に含まれる粉末粒子が不溶性食物繊維に加えて50質量%〜40質量%程度の量で水溶性食物繊維を更に含む場合でも、粉末粒子を水や温水に分散させた場合でも、粉末粒子の形態が維持され、粉末粒子としての機能を保持することができる。
(3)こんにゃく粉末は、食物繊維強化用食品そのものとして、あるいは飲料や食品に対する食物繊維強化用の食品添加物や補助成分として極めて有用である。
(4)こんにゃく原料粉末に糖水酸化カルシウム水溶液を作用させる際の条件を変更することによって、こんにゃく粉末粒子中に含まれる食物繊維における水溶性食物繊維と不溶性食物繊維の割合を、こんにゃく粉末の用途に応じて制御することができる。また、水溶性食物繊維の不溶化用のアルカリ剤としての糖水酸化カルシウム水溶液は、水酸化ナトリウム水溶液や消石灰の水懸濁液に比べて、取り扱い性において格段に優れている。更に、糖水酸化カルシウム水溶液では、水酸化カルシウム濃度の調整も容易であり、水酸化カルシウムの濃度や作用条件を変更することで、こんにゃく原料粉末に含まれる水溶性食物繊維の不溶化を容易に制御することができる。
(5)従来技術における、こんにゃく糊を調製する工程、こんにゃく糊をアルカリ凝固剤の添加及び加熱によりゲル化する工程、水分を含むこんにゃくの塊の裁断、乾燥、粉末化を行う工程を省略して、極めて効率よく、水溶性食物繊維と不溶性食物繊維の比率を目的に応じて調整したこんにゃく粉末を製造することができる。
本発明は、上述した本発明者らの新たな知見にもとづいて完成されたものである。
As a result of various studies on an alkaline coagulant for forming insoluble dietary fiber from glucomannan contained in the konjac raw material powder while maintaining the form of powder particles as particles, the present inventors have found that water originally contains 0. A means for obtaining an aqueous solution in which calcium hydroxide, which dissolves only about 15%, is dissolved to a required concentration is indispensable, and has been developed by the present inventors for the preparation of an alkaline coagulant for producing konjac. We have come to the conclusion that it is effective to apply the technique of dissolving calcium hydroxide in an aqueous solution of reduced sugar. As a result, by using an aqueous solution of calcium sugar hydroxide capable of increasing the concentration of calcium in a dissolved state as an alkaline coagulant in the production of the konjac powder according to the present invention, the following effects can be obtained. I got a lot of knowledge.
(1) A konjac powder in which an aqueous solution of calcium sugar hydroxide is allowed to act to form insoluble dietary fiber, and the content of insoluble dietary fiber is increased so that the content of insoluble dietary fiber is 50% by mass or more with respect to the total dietary fiber. Is water-absorbent even after being de-alkali treated to remove unnecessary alkaline components by washing with about 30% by mass of hydrous alcohol to form a dry powder, and at least 60% by mass even after being immersed in water at 25 ° C. for 1 hour. % Or more of the powder remained particulate in water. Thus, even if the konjac powder particles contain water-soluble dietary fiber, there are very few or no components eluted in the water.
(2) Since the powder particles contained in the konjac powder have water absorbency, when added to beverages and foods containing water, they are easily compatible with beverages and foods containing water, and foods containing beverages and water. Very little loss of texture or flavor. Further, even when the powder particles contained in the konjac powder further contain water-soluble dietary fibers in an amount of about 50% by mass to 40% by mass in addition to the insoluble dietary fibers, or when the powder particles are dispersed in water or warm water, the powder particles may be dispersed. The morphology of the powder particles is maintained, and the function as the powder particles can be maintained.
(3) Konjac powder is extremely useful as a dietary fiber-enriching food itself, or as a dietary fiber-enhancing food additive or auxiliary ingredient for beverages and foods.
(4) By changing the conditions for allowing an aqueous solution of calcium sugar hydroxide to act on the konjac raw material powder, the ratio of water-soluble dietary fiber and insoluble dietary fiber in the dietary fiber contained in the konjac powder particles can be used for konjac powder. It can be controlled accordingly. Further, the aqueous solution of calcium sugar hydroxide as an alkaline agent for insolubilizing water-soluble dietary fiber is remarkably superior in handleability as compared with the aqueous solution of sodium hydroxide and the aqueous suspension of slaked lime. Further, in the sugar slaked calcium hydroxide aqueous solution, the calcium hydroxide concentration can be easily adjusted, and by changing the calcium hydroxide concentration and the operating conditions, the insolubilization of the water-soluble dietary fiber contained in the konjac raw material powder can be easily controlled. be able to.
(5) In the prior art, the steps of preparing konjac paste, gelling konjac paste by adding an alkaline coagulant and heating, and cutting, drying, and pulverizing konjac lumps containing water are omitted. It is possible to produce konjac powder in which the ratio of water-soluble dietary fiber to insoluble dietary fiber is adjusted according to the purpose with extreme efficiency.
The present invention has been completed based on the above-mentioned new findings of the present inventors.

本発明にかかるこんにゃく粉末の製造方法は、
(1)こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、こんにゃく原料粉末に含まれる粉末粒子に糖水酸化カルシウム水溶液を供給する混合工程と、
(2)糖水酸化カルシウム水溶液が供給された粉末粒子において糖水酸化カルシウム水溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程と、
を有する。
混合工程及び不溶性食物繊維形成工程は、粉末粒子の粒子としての形態が維持された状態で行われる。
本発明において、こんにゃく原料粉末とは、こんにゃくの製造用として、あるいはこんにゃく製造用として利用し得る水溶性のグルコマンナンを含むこんにゃく粉であり、水に溶解する。本発明にかかるこんにゃく粉は、こんにゃく原料粉末を上記の工程によって処理して得られるこんにゃく粉であり、不溶性食物繊維の含有量がこんにゃく原料粉末に対して絶対的に多くなっていることにより、水に溶解することは無く、こんにゃく原料粉末と明確に区別されるものである。したがって、こんにゃく原料粉末はこんにゃくの製造に用いることができるが、本発明にかかるこんにゃく粉を用いてこんにゃくを製造することはできない。また、特許文献1に記載されるような従来のこんにゃくパウダーに対しては、本発明にかかるこんにゃく粉は、水溶性食物繊維の含有量が従来のこんにゃくパウダーよりも多いことにより明確に区別される。
不溶性食物繊維形成工程においては、こんにゃく原料粉末に含まれる粉末粒子に糖水酸化カルシウム水溶液が供給され、粉末粒子内、すなわち、粉末粒子の表面及び内部の少なくとも一部においてグルコマンナンから不溶性食物繊維が形成される。
本発明の方法によれば、グルコマンナンからの不溶性食物繊維の形成によって、乾物当たりの全食物繊維に対する不溶性食物繊維含量を、50質量%以上、60質量%以上、70質量%以上、80質量%以上、あるいは90質量%以上であるこんにゃく粉末を得ることができる。なお、乾物当たりの不溶性食物繊維含量の上限は特に限定されないが、乾物当たりの全食物繊維に対する不溶性食物繊維含量は、100質量%未満、あるいは99.0質量%以下とすることができる。
上述した混合工程と不溶性食物繊維形成工程は同時に行うことができる。あるいは、混合工程により得られた混合物を、必要に応じて攪拌しつつ、あるいは静置により、不溶性食物繊維形成に必要な時間保持して、不溶性食物繊維の生成を進行させてこんにゃく粉末を得ることもできる。この場合、混合物は粉末状態のまま加工されて、こんにゃく粉末を得ることができる。
本発明の一形態によれば、本来含有する食物繊維のうち水溶性食物繊維92%、不溶性食物繊維8%(日本食品標準成分表2015年版により算出)とされる、こんにゃく芋から製造されるこんにゃく精粉の不溶性食物繊維の割合を任意にコントロールすることの出来る技術を提供することができる。
The method for producing konjac powder according to the present invention is
(1) A mixing step of mixing the konjac raw material powder and the calcium sugar hydroxide aqueous solution and supplying the sugar hydroxide aqueous solution to the powder particles contained in the konjac raw material powder.
(2) An insoluble dietary fiber forming step of forming insoluble dietary fiber by the action of the calcium sugar hydroxide aqueous solution in the powder particles supplied with the calcium sugar hydroxide aqueous solution to obtain konjac powder, and an insoluble dietary fiber forming step.
Have.
The mixing step and the insoluble dietary fiber forming step are carried out in a state where the morphology of the powder particles as particles is maintained.
In the present invention, the konjac raw material powder is a konjac powder containing water-soluble glucomannan that can be used for producing konjac or for producing konjac, and is soluble in water. The konjac flour according to the present invention is konjac flour obtained by treating the konjac raw material powder by the above step, and the content of insoluble dietary fiber is absolutely higher than that of the konjac raw material powder, so that water It does not dissolve in konjac and is clearly distinguished from konjac raw material powder. Therefore, although the konjac raw material powder can be used for producing konjac, konjac cannot be produced using the konjac flour according to the present invention. Further, the konjac flour according to the present invention is clearly distinguished from the conventional konjac powder as described in Patent Document 1 because the content of water-soluble dietary fiber is higher than that of the conventional konjac powder. ..
In the insoluble dietary fiber forming step, an aqueous solution of calcium sugar hydroxide is supplied to the powder particles contained in the konjac raw material powder, and insoluble dietary fiber is formed from glucomannan in the powder particles, that is, at least a part of the surface and the inside of the powder particles. Will be done.
According to the method of the present invention, the insoluble dietary fiber content with respect to the total dietary fiber per dry matter is increased by 50% by mass or more, 60% by mass or more, 70% by mass or more, and 80% by mass by forming the insoluble dietary fiber from glucomannan. The above, or 90% by mass or more of konjac powder can be obtained. The upper limit of the insoluble dietary fiber content per dry matter is not particularly limited, but the insoluble dietary fiber content with respect to the total dietary fiber per dry matter can be less than 100% by mass or 99.0% by mass or less.
The above-mentioned mixing step and the insoluble dietary fiber forming step can be performed at the same time. Alternatively, the mixture obtained in the mixing step is held for a time required for insoluble dietary fiber formation while stirring as necessary or by standing to promote the production of insoluble dietary fiber to obtain konjac powder. You can also. In this case, the mixture can be processed in the powder state to obtain konjac powder.
According to one form of the present invention, konjac produced from konjac potato, which is said to contain 92% of water-soluble dietary fiber and 8% of insoluble dietary fiber (calculated according to the 2015 edition of the Japanese Food Standard Ingredients Table) among the originally contained dietary fibers. It is possible to provide a technique capable of arbitrarily controlling the proportion of insoluble dietary fiber in konjac.

こんにゃく原料粉末としては、糖水酸化カルシウム水溶液を用いる処理によって目的とするこんにゃく粉末を得ることができるものであれば特に制限なく利用できる。こんにゃく原料粉末としては、例えば、通常用いられる特等粉、一等粉、或いは、ティマックマンナン(オリヒロ(株)製)等のこんにゃく精粉を用いることができる。
なお、こんにゃく原料粉末の精製度に応じて、本発明にかかるこんにゃく粉の食物繊維の含有量を所望とする量に調整することができる。例えば、こんにゃく粉末(乾燥物基準)において、50質量%以上100質量%未満、60質量%以上100質量%未満、70質量%〜100質量%未満、80質量%〜100質量%未満、あるいは90質量%〜100質量%未満の範囲内で食物繊維の含有量を選択することができる。また、食物繊維の含有量の上限は99質量%とすることができる。
こんにゃく原料粉末に添加するアルカリ凝固剤として、糖水酸化カルシウム水溶液が用いられる。この糖水酸化カルシウム水溶液は、水、糖及び水酸化カルシウムを含み、糖及び水酸化カルシウムが水に溶解している水溶液である。
糖としては、非還元糖が好ましい。非還元糖は、糖水酸化カルシウム水溶液の目的とする凝固剤としての効果に影響を与えず、かつ水酸化カルシウムの溶解度を向上させる機能を有する。なお、糖として還元糖を用いた場合、水酸化カルシウムが強塩基であるため、所謂褐変反応を起こす場合がある。
非還元糖としては、入手が容易という点ではスクロース(ショ糖)、トレハロースを挙げることができる。スクロースは水酸化カルシウムの溶解能、ならびに糖と共に溶解する水酸化カルシウムのアルカリ性剤としての安定性が高いのでより好ましい。スクロースとして、市販のグラニュー糖、上白糖等の種々の砂糖製品が利用できる。上白糖には褐変の原因となる少量の転化糖(還元糖)が含まれている場合があり、グラニュー糖を用いるのが更に好ましい。
The konjac raw material powder can be used without particular limitation as long as the desired konjac powder can be obtained by treatment with an aqueous solution of calcium sugar hydroxide. As the konjac raw material powder, for example, commonly used special powder, first-class powder, or konjac refined powder such as Timac Mannan (manufactured by Orihiro Co., Ltd.) can be used.
The dietary fiber content of the konjac flour according to the present invention can be adjusted to a desired amount according to the degree of purification of the konjac raw material powder. For example, in konjac powder (dry matter standard), 50% by mass or more and less than 100% by mass, 60% by mass or more and less than 100% by mass, 70% by mass to less than 100% by mass, 80% by mass to less than 100% by mass, or 90% by mass. The content of dietary fiber can be selected in the range of% to less than 100% by mass. Further, the upper limit of the content of dietary fiber can be 99% by mass.
An aqueous solution of calcium sugar hydroxide is used as an alkaline coagulant to be added to the konjac raw material powder. This calcium hydroxide aqueous solution contains water, sugar and calcium hydroxide, and is an aqueous solution in which sugar and calcium hydroxide are dissolved in water.
As the sugar, non-reducing sugar is preferable. The non-reducing sugar does not affect the effect of the aqueous calcium hydroxide solution as a coagulant, and has a function of improving the solubility of calcium hydroxide. When a reducing sugar is used as the sugar, calcium hydroxide is a strong base and may cause a so-called browning reaction.
Examples of non-reducing sugars include sucrose (sucrose) and trehalose in terms of easy availability. Sucrose is more preferable because it has a high ability to dissolve calcium hydroxide and the stability of calcium hydroxide that dissolves together with sugar as an alkaline agent. As sucrose, various sugar products such as commercially available granulated sugar and white sugar can be used. The white sugar may contain a small amount of invert sugar (reducing sugar) that causes browning, and it is more preferable to use granulated sugar.

アルカリ成分として用いる水酸化カルシウムとしては、食品用途して利用し得るものであれば特に限定されない。工業的な大量生産における製造コストの低減という観点からは、石灰岩から得られる消石灰が有用である。
糖水酸化カルシウム水溶液は、水酸化カルシウムを糖とともに水に添加して攪拌混合するか、あるいは、糖を溶解した糖水溶液に水酸化カルシウムの過剰量を加え攪拌混合し、その後不溶性の画分を除く方法等によって調製することができる。
水酸化カルシウムの糖の共存下における溶解度も水溶液の調製温度によって変化する。通常は同一糖濃度の水溶液中への水酸化カルシウムの溶解濃度は温度と反比例する。すなわち、より低い温度の方がより高い濃度で水酸化カルシウムを溶解させることができる。また、糖濃度や温度等の条件によっては水酸化カルシウムの溶解濃度を正確に予測できない場合があり、そのような場合は、過剰量の水酸化カルシウムを添加して、調製された水溶液中に残存する固形分を分離した後のアルカリ水溶液を糖水酸化カルシウム水溶液として利用することができる。この固形分の分離は、静置後の上清取得によって行えばよいが、更に、遠心分離、膜ろ過、或いは、ろ過助剤の使用による清澄処理等の公知の分離方法で、浮遊している微細な粒子を取り除き、所謂透明な溶液として使用することはより好ましい。
The calcium hydroxide used as an alkaline component is not particularly limited as long as it can be used for food purposes. Slaked lime obtained from limestone is useful from the viewpoint of reducing manufacturing costs in industrial mass production.
The sugar slaked calcium hydroxide aqueous solution is prepared by adding calcium hydroxide to water together with sugar and stirring and mixing, or by adding an excess amount of calcium hydroxide to a sugar aqueous solution in which sugar is dissolved and stirring and mixing, and then removing the insoluble fraction. It can be prepared by a method or the like.
The solubility of calcium hydroxide in the coexistence of sugar also changes depending on the preparation temperature of the aqueous solution. Normally, the dissolution concentration of calcium hydroxide in an aqueous solution having the same sugar concentration is inversely proportional to the temperature. That is, the lower the temperature, the higher the concentration of calcium hydroxide that can be dissolved. In addition, the dissolved concentration of calcium hydroxide may not be accurately predicted depending on the conditions such as sugar concentration and temperature. In such a case, an excess amount of calcium hydroxide is added and remains in the prepared aqueous solution. The alkaline aqueous solution after separating the solid content can be used as the calcium hydroxide aqueous solution. The solid content may be separated by obtaining the supernatant after standing, but it is further suspended by a known separation method such as centrifugation, membrane filtration, or clarification treatment using a filtration aid. It is more preferable to remove fine particles and use it as a so-called transparent solution.

糖の添加量は、糖水酸化カルシウム水溶液中で溶解状態を維持でき、目的とする水酸化カルシウムの溶解濃度を達成できる量であれば特に限定されない。糖濃度が高いと不溶性の水酸化カルシウムの沈降が阻害され、溶解させる水酸化カルシウムの濃度を制御する必要が生じる場合がある。また、35質量%程度の糖濃度となるように糖を添加した水酸化カルシウム水溶液では、水酸化カルシウムが凝集して粘着性のある塊状となる等の障害が発生する場合がある。従って、糖の添加量は、糖水酸化カルシウム水溶液に含まれる水に対して2〜30質量%、好ましくは4〜20質量%、更に好ましくは5〜15質量%の範囲となる量から選択するとよい。
糖水酸化カルシウム水溶液中で溶解状態にある水酸化カルシウムの濃度は、こんにゃく原料粉末粒子に含まれるグルコマンナンの不溶性食物繊維への目的とする変換率に応じて選択することができる。また、水酸化カルシウムの添加量は、糖水酸化カルシウム水溶液のアルカリ凝固剤としての機能及び保存安定性を得ることができる量であることが好ましい。糖水酸化カルシウム水溶液の調製時において、糖水溶液に溶解させる水酸化カルシウムの濃度が、6.50質量%を超えると不溶性の水酸化カルシウムが生じた場合に不溶性の水酸化カルシウムが沈降し難く、固液分離が困難となる場合がある。従って、糖水酸化カルシウム水溶液中の水酸化カルシウムの濃度は、0.25質量%〜6.50質量%の範囲とすることが好ましい。
The amount of sugar added is not particularly limited as long as it can maintain the dissolved state in the aqueous calcium hydroxide solution and can achieve the desired dissolved concentration of calcium hydroxide. When the sugar concentration is high, the precipitation of insoluble calcium hydroxide is inhibited, and it may be necessary to control the concentration of calcium hydroxide to be dissolved. Further, in an aqueous solution of calcium hydroxide to which sugar is added so as to have a sugar concentration of about 35% by mass, problems such as agglomeration of calcium hydroxide and a sticky mass may occur. Therefore, the amount of sugar added may be selected from an amount in the range of 2 to 30% by mass, preferably 4 to 20% by mass, and more preferably 5 to 15% by mass with respect to the water contained in the calcium sugar hydroxide aqueous solution. ..
The concentration of calcium hydroxide in a dissolved state in the aqueous calcium hydroxide solution can be selected according to the desired conversion rate of glucomannan contained in the konjac raw material powder particles into insoluble dietary fiber. The amount of calcium hydroxide added is preferably an amount capable of obtaining the function and storage stability of the aqueous calcium hydroxide solution as an alkaline coagulant. When the concentration of calcium hydroxide dissolved in the sugar aqueous solution exceeds 6.50% by mass at the time of preparing the sugar aqueous solution of calcium hydroxide, insoluble calcium hydroxide is hard to settle when insoluble calcium hydroxide is generated, and it is hard. Liquid separation may be difficult. Therefore, the concentration of calcium hydroxide in the aqueous calcium hydroxide solution is preferably in the range of 0.25% by mass to 6.50% by mass.

糖水酸化カルシウム水溶液の調製温度は、本発明にかかるこんにゃく粉末の製造における使用温度において、目的とするアルカリ凝固剤としての機能及び保存安定性を得ることができる温度とすればよく、特に制限はない。糖水酸化カルシウム水溶液の調製温度は、例えば、5℃〜70℃、例えば9〜11℃の冷却温度や21〜25℃の通常の室温から選択することができる。
調製温度において得られる糖の共存下での水酸化カルシウムの投入量は、溶解度の1〜4倍程度(質量基準)の割合の量を投入することが好ましい。
糖水酸化カルシウム水溶液は、アルカリ凝固剤としての目的とするグルコマンナンの不溶性食物繊維への変換機能を得ることができるアルカリ性を有していればよいが、例えば12.0〜13.0、好ましくは12.3〜12.8、より好ましくは12.5〜12.8の範囲から選択したpHのアルカリ性とすることができる。
好ましくは、糖として非還元糖を用いた糖水酸化カルシウム水溶液は、水溶液中に水酸化カルシウムに糖を共存させたことにより、水酸化カルシウムの固形分を含まず、水酸化カルシウムを高濃度で含み、50℃以下の水溶液の状態を保持する温度条件下において極めて安定であり、大量に調製して密封貯蔵し、必要に応じて希釈して使用することができ、こんにゃくの生産量に応じてその使用量を調節できるので、工業的な利用という点からも価値が高い。
The preparation temperature of the calcium sugar hydroxide aqueous solution may be set to a temperature at which the desired function as an alkaline coagulant and storage stability can be obtained at the operating temperature in the production of the konjac powder according to the present invention, and is not particularly limited. .. The preparation temperature of the aqueous calcium sugar hydroxide solution can be selected from, for example, a cooling temperature of 5 ° C. to 70 ° C., for example, 9 to 11 ° C., or a normal room temperature of 21 to 25 ° C.
The amount of calcium hydroxide added in the coexistence of sugar obtained at the preparation temperature is preferably an amount of about 1 to 4 times (mass basis) of the solubility.
The aqueous solution of calcium sugar hydroxide may have an alkalinity capable of obtaining the function of converting glucomannan into insoluble dietary fiber, which is the target as an alkali coagulant, and is, for example, 12.0 to 13.0, preferably 12.0 to 13.0. It can be alkaline with a pH selected from the range of 12.3 to 12.8, more preferably 12.5 to 12.8.
Preferably, the sugar slaked calcium hydroxide aqueous solution using a non-reducing sugar as the sugar does not contain the solid content of calcium hydroxide and contains a high concentration of calcium hydroxide due to the coexistence of the sugar in the aqueous solution. It is extremely stable under temperature conditions that maintain the state of an aqueous solution of 50 ° C. or lower, and can be prepared in large quantities, sealed and stored, diluted as necessary, and used, depending on the amount of konjac produced. Since the amount used can be adjusted, it is also highly valuable in terms of industrial use.

本発明のこんにゃく粉末の製造方法においては、先ず、こんにゃく原料粉末と糖水酸化カルシウム水溶液との混合物が調製される。この混合物の調製には、こんにゃく原料粉末に糖水酸化カルシウム水溶液を添加して、攪拌により混合する方法を好ましく用いることができる。
こんにゃく原料粉末への糖水酸化カルシウム水溶液の添加量は、糖水酸化カルシウム水溶液の水酸化カルシウム濃度に応じて、こんにゃく原料粉末に含まれる粉末粒子が粒子としての形態を維持することができ、こんにゃく原料粉末に含まれるグルコマンナンの不溶性食物繊維への目的とする変換割合が達成できる範囲から選択すればよい。
なお、粉末粒子の粒子としての形態の維持とは、先に記載した混合工程及び不溶性食物繊維形成工程(変換工程)を含む、糖水酸化カルシウム水溶液での処理工程を通して、粉末粒子における粒子の形態が壊れずにその一次粒子としての状態が維持されていることを意味し、糖水酸化カルシウム水溶液の粉末粒子内への浸透による粉末粒子の膨潤や、水分等の粉末粒子外への放出による粉末粒子の収縮、あるいは粒子外形の変化が生じる場合を含んでもよい。
In the method for producing konjac powder of the present invention, first, a mixture of konjac raw material powder and an aqueous solution of calcium sugar hydroxide is prepared. For the preparation of this mixture, a method of adding an aqueous solution of calcium sugar hydroxide to the konjac raw material powder and mixing by stirring can be preferably used.
The amount of the calcium hydroxide aqueous solution added to the konjac raw material powder is such that the powder particles contained in the konjac raw material powder can maintain the form as particles according to the calcium hydroxide concentration of the sugar hydroxide aqueous solution, and the konjac raw material powder. It may be selected from the range in which the desired conversion ratio of glucomannan contained in konjac into insoluble dietary fiber can be achieved.
The maintenance of the morphology of the powder particles as particles means that the morphology of the particles in the powder particles is changed through a treatment step with an aqueous solution of calcium sugar hydroxide, which includes the mixing step and the insoluble dietary fiber forming step (conversion step) described above. It means that the state as the primary particles is maintained without breaking, and the powder particles swell due to the permeation of the calcium sugar hydroxide aqueous solution into the powder particles and the powder particles due to the release of water etc. to the outside of the powder particles. It may include the case where shrinkage or change in particle outer shape occurs.

こんにゃく原料粉末への糖水酸化カルシウム水溶液の添加量に関しては、こんにゃく原料粉末に含まれる粉末粒子に糖水酸化カルシウム水溶液が供給され、各粉末粒子が糖水酸化カルシウム水溶液に接触可能となり、かつ、糖水酸化カルシウム水溶液との接触においても各粉末粒子が粒子状の形態を維持できるとの観点で、こんにゃく原料粉末と糖水酸化カルシウム水溶液の割合(質量基準)を決めればよく、こんにゃく原料粉末と糖水酸化カルシウム水溶液の割合は1:1〜1:3、より好ましくは1:1〜1:2の範囲から選択することがよい。
更に、こんにゃく原料粉末への水酸化カルシウムの供給量に応じてこんにゃく原料粉末に含まれるグルコマンナンの架橋ゲル化による不溶性食物繊維の生成を制御することができる。こんにゃく原料粉末への水酸化カルシウムの供給量は、こんにゃく原料粉末へのカルシウムの添加量を指標として決定することができる。例えば、先に挙げた2015年版日本食品標準成分表によれば、こんにゃく精粉の水分が6.0質量%、水溶性食物繊維が73.3質量%、不溶性食物繊維6.6質量%(乾物当たりに換算すれば7.0質量%)である。この様に、こんにゃく精粉中の水溶性食物繊維の含量は、全食物繊維に対して92%となっている。また、精粉こんにゃくについては、水分97.3質量%、水溶性食物繊維0.1質量%、不溶性食物繊維2.1質量%となっており、こんにゃくの不溶性食物繊維の含量は、全食物繊維に対して95%以上となっている。従って、理論上は、こんにゃく原料粉末に含まれる水溶性食物繊維の含有率の範囲内で、糖水酸化カルシウム水溶液の水酸化カルシウムの濃度及びその添加量を選択することにより、不溶性食物繊維の含有量をコントロールできるということとなる。
実用上、こんにゃく原料粉末に糖水酸化カルシウム水溶液を含浸させ、十分に反応させた後に、水または30質量%程度の含水アルコールにより余分のアルカリを除去する脱アルカリ工程により、グルコマンナン以外の成分が除かれる場合には、食物繊維含量は上昇することとなる。
例えば、上述したように、こんにゃく原料粉末と糖水酸化カルシウム水溶液の割合を1:1〜1:3(質量基準)の範囲から選択する場合には、糖水酸化カルシウム水溶液の水酸化カルシウムの濃度を0.50〜3.0質量%の範囲で変更することにより、糖水酸化カルシウム水溶液で処理した粉末粒子中の全食物繊維に対する水溶性食物繊維と不溶性食物繊維との割合を、50:50〜1:99の範囲、あるいは40:60〜1:99の範囲で制御することができる。
Regarding the amount of the calcium sugar hydroxide aqueous solution added to the konjac raw material powder, the sugar hydroxide aqueous solution is supplied to the powder particles contained in the konjac raw material powder, and each powder particle can come into contact with the sugar hydroxide calcium aqueous solution, and the calcium sugar hydroxide is added. From the viewpoint that each powder particle can maintain its particulate morphology even in contact with an aqueous solution, the ratio (mass basis) of the konjac raw material powder and the calcium sugar hydroxide aqueous solution may be determined. The ratio may be selected from the range of 1: 1 to 1: 3, more preferably 1: 1 to 1: 2.
Furthermore, the production of insoluble dietary fiber due to cross-linking gelation of glucomannan contained in the konjac raw material powder can be controlled according to the amount of calcium hydroxide supplied to the konjac raw material powder. The amount of calcium hydroxide supplied to the konjac raw material powder can be determined by using the amount of calcium added to the konjac raw material powder as an index. For example, according to the 2015 Standard Tables of Food Composition in Japan mentioned above, the water content of konjac refined powder is 6.0% by mass, the water-soluble dietary fiber is 73.3% by mass, and the insoluble dietary fiber is 6.6% by mass (dry matter). When converted to a hit, it is 7.0% by mass). As described above, the content of water-soluble dietary fiber in konjac fine powder is 92% of the total dietary fiber. Regarding refined konjac, the water content is 97.3% by mass, the water-soluble dietary fiber is 0.1% by mass, and the insoluble dietary fiber is 2.1% by mass, and the content of the insoluble dietary fiber of konjac is the total dietary fiber. It is 95% or more. Therefore, theoretically, the content of insoluble dietary fiber is selected by selecting the concentration of calcium hydroxide in the calcium hydroxide aqueous solution and the amount of the addition thereof within the range of the content of water-soluble dietary fiber contained in the konjac raw material powder. Will be able to control.
Practically, components other than glucomannan are removed by a dealkali step of impregnating konjac raw material powder with an aqueous solution of calcium sugar hydroxide, allowing it to react sufficiently, and then removing excess alkali with water or about 30% by mass of hydrous alcohol. If so, the dietary fiber content will increase.
For example, as described above, when the ratio of the konjac raw material powder and the calcium hydroxide aqueous solution is selected from the range of 1: 1 to 1: 3 (mass basis), the concentration of calcium hydroxide in the sugar hydroxide aqueous solution is 0. By changing in the range of .50 to 3.0% by mass, the ratio of water-soluble dietary fiber and insoluble dietary fiber to the total dietary fiber in the powder particles treated with the aqueous calcium hydroxide solution was changed from 50:50 to 1: It can be controlled in the range of 99 or in the range of 40:60 to 1:99.

グルコマンナンが糖水酸化カルシウム水溶液と接触すると、水酸化カルシウムの作用により糖鎖高分子が多数の架橋点を介して結合した水不溶性の構造、すなわち不溶性食物繊維を形成するものと推定される。この水不溶性の構造の形成は、糖水酸化カルシウム水溶液の粉末粒子の表面から内部への浸透に伴って、粉末粒子の表層から中央部へ向かって進行するものと考えられる。従って、粉末粒子への糖水酸化カルシウム水溶液の供給量や粉末粒子内への浸透の程度によって、粉末粒子に含まれるグルコマンナンからの不溶性食物繊維の生成量を制御することができる。
また、最初に形成されると推定される粉末粒子の表層の網目状構造は、通水性を有し、表層に網目構造が形成された状態でも、糖水酸化カルシウム水溶液の粉末粒子内への浸透が妨げられることがないと考えられる。更に、粉末粒子の表層に水不溶性の網目状構造が形成されることによって、糖水酸化カルシウム水溶液を用いた処理工程全体を通して、各粉末粒子は独立して粒子形状を維持し、各粒子間での粘着や癒着が起きず、各粒子の分散性のよい粉末を得ることができる。
また、粉末粒子の表層及び内部にグルコマンナンの架橋ゲルからなる網目状の構造が形成されることによって、粉末粒子は吸水性を有し、かつ吸水した水を保持する保水性を有する。これにより粉末粒子に良好な食感を付与可能であり、また、飲料や食品に添加する際に飲料や食品と馴染みやすく、これらの食感や風味を損なうことがない。
When glucomannan comes into contact with an aqueous solution of calcium hydroxide, it is presumed that the action of calcium hydroxide forms a water-insoluble structure in which sugar chain polymers are bound via a large number of cross-linking points, that is, insoluble dietary fiber. It is considered that the formation of this water-insoluble structure proceeds from the surface layer to the central portion of the powder particles as the powder particles of the calcium sugar hydroxide aqueous solution permeate from the surface to the inside. Therefore, the amount of insoluble dietary fiber produced from glucomannan contained in the powder particles can be controlled by the amount of the calcium sugar hydroxide aqueous solution supplied to the powder particles and the degree of penetration into the powder particles.
In addition, the network structure of the surface layer of the powder particles, which is presumed to be formed first, has water permeability, and even when the network structure is formed on the surface layer, the permeation of the calcium sugar hydroxide aqueous solution into the powder particles It is considered that it will not be hindered. Furthermore, by forming a water-insoluble network structure on the surface layer of the powder particles, each powder particle independently maintains the particle shape throughout the treatment process using the calcium sugar hydroxide aqueous solution, and between the particles. It is possible to obtain a powder having good dispersibility of each particle without causing adhesion or adhesion.
Further, by forming a network structure made of a crosslinked gel of glucomannan on the surface layer and inside of the powder particles, the powder particles have water absorption and water retention to retain the absorbed water. As a result, it is possible to impart a good texture to the powder particles, and when added to the beverage or food, it is easy to be compatible with the beverage or food, and these texture and flavor are not impaired.

本発明にかかるこんにゃく粉末の製造方法によれば、以下の2つのタイプのこんにゃく粉末を得ることができる。
(タイプ1)こんにゃく原料粉末に含まれるグルコマンナンのほぼ全て、あるいは90質量%以上、100質量%未満が、グルコマンナンの架橋ゲルからなる不溶性食物繊維として含有される。すなわち、粉末粒子に含まれる食物繊維が主として不溶性食物繊維からなるこんにゃく粉末。
(タイプ2)こんにゃく粉末に含まれるグルコマンナンの50質量%以上、90質量%未満がグルコマンナンの架橋ゲルからなる不溶性食物繊維として含有される。すなわち、粉末粒子に含まれる食物繊維における水溶性食物繊維と不溶性食物繊維の割合を目的に応じて調整したこんにゃく粉末。
(タイプ1のこんにゃく粉の製造)
タイプ1のこんにゃく粉末の製造では、こんにゃく原料粉末に対して糖水酸化カルシウム水溶液を介して供給されるカルシウムの量を0.75〜4.00質量%、好ましくは0.75〜1.00質量%の範囲から選択することとなるが、原料の精製度を高めることによって添加カルシウムの量を低減させることが可能である。
こんにゃく原料粉末には、一般的な基準として特等粉、一等粉等の品質規格があるが、例えば、こんにゃく原料粉末をエチルアルコール処理することにより、トリメチルアミン臭を低減したティマックマンナン(商品名、オリヒロ(株)製)の様に、精製度を高めたものもある。
すなわち、こんにゃく原料粉末に対して糖水酸化カルシウム水溶液を介して供給されるカルシウムの量は、こんにゃく原料粉末の加工状態によって異なり、精製度の高いティマックマンナン(オリヒロ(株)製)の場合には、0.75〜1.00質量%の範囲が好ましい。従って、こんにゃく原料粉末と糖水酸化カルシウム水溶液の割合を、好ましい範囲である1:1〜1:3の範囲(質量基準)から選択する場合には、糖水酸化カルシウム水溶液の水酸化カルシウムの濃度を0.4〜1.85質量%の範囲から選択することが好ましい。
タイプ1のこんにゃく粉における粉末全体(乾燥物基準)の全食物繊維に対する不溶性食物繊維の含有割合は、例えば90質量%以上、100質量%未満とすることができる。
タイプ1のこんにゃく粉における全食物繊維に対する水溶性食物繊維Aと不溶性食物繊維Bとの質量基準における割合(A:B)は、10:90〜1:99の範囲であることが好ましい。
(タイプ2のこんにゃく粉の製造)
タイプ2のこんにゃく粉における粉末全体(乾燥物基準)の全食物繊維に対する不溶性食物繊維の含有割合は、例えば50質量%以上あるいは60質量%以上、90質量%未満とすることができる。
タイプ2のこんにゃく粉末の製造では、全食物繊維に対する水溶性食物繊維Aと不溶性食物繊維Bとの質量基準における割合(A:B)を、50:50以上あるいは40:60以上、10:90未満の範囲、すなわちA/Bが、50/50以上あるいは40/60以上10/90未満で調整することができる。
タイプ2のこんにゃく粉末の製造には、こんにゃく原料粉末に対して糖水酸化カルシウム水溶液を介して供給されるカルシウムの量を0.50〜1.25質量%、好ましくは0.50〜1.00質量%の範囲から選択することが好ましい。このケースでもこんにゃく原料粉末に対して糖水酸化カルシウム水溶液を介して供給されるカルシウムの量が、こんにゃく原料粉末の加工状態によって異なり、こんにゃく精粉(特等粉)の場合では、0.50〜1.25質量%の範囲であり、ティマックマンナンの場合には、0.50〜0.73質量%の範囲である。
上記の如く、こんにゃく原料粉末に対して糖水酸化カルシウム水溶液を介して供給されるカルシウムの量は、原料に応じて適宜選択すれば良い。更に、こんにゃく原料粉末と糖水酸化カルシウム水溶液の割合を1:1〜1:3(質量基準)の範囲から選択し、糖水酸化カルシウム水溶液の水酸化カルシウムの濃度を0.3〜1.85質量%の範囲から選択することが好ましい。
According to the method for producing konjac powder according to the present invention, the following two types of konjac powder can be obtained.
(Type 1) Almost all of glucomannan contained in the konjac raw material powder, or 90% by mass or more and less than 100% by mass, is contained as an insoluble dietary fiber made of a crosslinked gel of glucomannan. That is, konjac powder in which the dietary fiber contained in the powder particles is mainly composed of insoluble dietary fiber.
(Type 2) 50% by mass or more and less than 90% by mass of glucomannan contained in konjac powder is contained as an insoluble dietary fiber composed of a crosslinked gel of glucomannan. That is, konjac powder in which the ratio of water-soluble dietary fiber and insoluble dietary fiber in the dietary fiber contained in the powder particles is adjusted according to the purpose.
(Manufacturing of type 1 konjac flour)
In the production of type 1 konjac powder, the amount of calcium supplied via the calcium hydroxide aqueous solution to the konjac raw material powder is 0.75 to 4.00% by mass, preferably 0.75 to 1.00% by mass. However, it is possible to reduce the amount of added calcium by increasing the degree of purification of the raw material.
As a general standard, konjac raw material powder has quality standards such as special powder and first-class powder. For example, konjac raw material powder is treated with ethyl alcohol to reduce the trimethylamine odor. Some products, such as those manufactured by Orihiro Co., Ltd., have a higher degree of purification.
That is, the amount of calcium supplied to the konjac raw material powder via the calcium hydroxide aqueous solution differs depending on the processing state of the konjac raw material powder, and in the case of highly purified Timac Mannan (manufactured by Orihiro Co., Ltd.) , 0.75 to 1.00% by mass is preferable. Therefore, when the ratio of the konjac raw material powder and the calcium hydroxide aqueous solution is selected from the preferable range of 1: 1 to 1: 3 (mass basis), the calcium hydroxide concentration of the sugar hydroxide aqueous solution is 0. It is preferable to select from the range of .4 to 1.85% by mass.
The content ratio of insoluble dietary fiber to the total dietary fiber of the whole powder (dried matter standard) in the type 1 konjac flour can be, for example, 90% by mass or more and less than 100% by mass.
The ratio (A: B) of the water-soluble dietary fiber A and the insoluble dietary fiber B to the total dietary fiber in the type 1 konjac flour is preferably in the range of 10:90 to 1:99.
(Manufacturing of type 2 konjac flour)
The content ratio of insoluble dietary fiber to the total dietary fiber of the whole powder (dried matter standard) in the type 2 konjac flour can be, for example, 50% by mass or more, 60% by mass or more, and less than 90% by mass.
In the production of type 2 konjac powder, the ratio (A: B) of water-soluble dietary fiber A and insoluble dietary fiber B to total dietary fiber on a mass basis is 50:50 or more or 40:60 or more and less than 10:90. , That is, A / B can be adjusted in the range of 50/50 or more or 40/60 or more and less than 10/90.
In the production of type 2 konjac powder, the amount of calcium supplied via the calcium hydroxide aqueous solution to the konjac raw material powder is 0.50 to 1.25% by mass, preferably 0.50 to 1.00% by mass. It is preferable to select from the range of%. In this case as well, the amount of calcium supplied to the konjac raw material powder via the calcium hydroxide aqueous solution differs depending on the processing state of the konjac raw material powder, and in the case of konjac refined powder (special powder), 0.50 to 1. It is in the range of 25% by mass, and in the case of konjac mannan, it is in the range of 0.50 to 0.73% by mass.
As described above, the amount of calcium supplied to the konjac raw material powder via the aqueous calcium sugar hydroxide solution may be appropriately selected according to the raw material. Further, the ratio of the konjac raw material powder and the calcium hydroxide aqueous solution is selected from the range of 1: 1 to 1: 3 (mass basis), and the calcium hydroxide concentration of the sugar hydroxide aqueous solution is 0.3 to 1.85% by mass. It is preferable to select from the range of.

目的とするグルコマンナンの不溶性食物繊維への変換が達成された段階で、こんにゃく原料粉末の糖水酸化カルシウム水溶液での処理工程を終了する。
本発明のポイントは、こんにゃく原料粉末中に水酸化カルシウムを如何に浸透させるかにあり、原料粉末に添加した糖水酸化カルシウム水溶液が、完全に吸収されて個々の粉末粒子がバラバラに離れた状態とすることが重要である。原料粉末に水酸化カルシウムを添加吸水させる時に、適度に加温することはグルコマンナンの不溶性食物繊維への変換を促進することとなる。その後、常温、または適度な加温をして数時間から数日間保持することによって、不溶性食物繊維への変換を促進させてもよい。
糖水酸化カルシウム水溶液の水酸化カルシウム濃度に関しては、目的とするグルコマンナンの不溶性食物繊維への変換率に合わせて、予め使用するこんにゃく原料粉末の加工程度に合致した糖水酸化カルシウム濃度を決めれば良い。
タイプ1及びタイプ2のこんにゃく粉の場合にも、上述した不溶性食物繊維の粉末全体に対する含有量や水溶性食物繊維と不溶性食物繊維との割合が得られるまで、こんにゃく原料粉末の糖水酸化カルシウム水溶液での処理を行う。例えば、同じ濃度の糖水酸化カルシウム水溶液を用いた場合には、処理時間、処理温度、こんにゃく原料粉末に対する糖水酸化カルシウム水溶液の配合割合等の処理条件により、タイプ1またはタイプ2を選択することができる。処理時間、処理温度、こんにゃく原料粉末に対する糖水酸化カルシウム水溶液の配合割合等の処理条件を同じとする場合には、糖水酸化カルシウム水溶液の水酸化カルシウム濃度によってタイプ1またはタイプ2を選択することができる。また、こんにゃく原料粉末の精製度に応じて、目的とするタイプの製造に必要な処理条件、例えば、処理時間、処理温度、糖水酸化カルシウム水溶液の水酸化カルシウム濃度、こんにゃく原料粉末に対する糖水酸化カルシウム水溶液の配合割合を予め予備試験によって求めておき、得られた処理条件を用いて本製造を行う方法を用いることもできる。
なお、本発明にかかる製造方法を実施する国や地域において、食品加工における水酸化カルシウムの使用量に関する法律や規則がある場合には、その法律や規則に従う。例えば、日本国における食品衛生法に基づく水酸化カルシウムの使用量は、カルシウムとして食品の1.0%以下と規定されており、日本国において本発明にかかる製造方法を実施する場合は、この規定に従って糖水酸化カルシウム水溶液の濃度や使用量を調整する。
When the desired conversion of glucomannan to insoluble dietary fiber is achieved, the treatment step of the konjac raw material powder with an aqueous solution of calcium sugar hydroxide is completed.
The point of the present invention is how to permeate calcium hydroxide into the konjac raw material powder, and the sugar hydroxide aqueous solution added to the raw material powder is completely absorbed and the individual powder particles are separated from each other. It is important to. When calcium hydroxide is added to the raw material powder to absorb water, moderate heating promotes the conversion of glucomannan into insoluble dietary fiber. Then, conversion to insoluble dietary fiber may be promoted by holding at room temperature or moderate heating for several hours to several days.
Regarding the calcium hydroxide concentration of the calcium hydroxide aqueous solution, the calcium hydroxide concentration that matches the degree of processing of the konjac raw material powder to be used in advance may be determined according to the conversion rate of the target glucomannan into insoluble dietary fiber.
In the case of type 1 and type 2 konjac flour, the above-mentioned content of the insoluble dietary fiber in the whole powder and the ratio of the water-soluble dietary fiber to the insoluble dietary fiber are obtained with the aqueous solution of calcium sugar hydroxide of the konjac raw material powder. Is processed. For example, when a calcium sugar hydroxide aqueous solution having the same concentration is used, type 1 or type 2 can be selected depending on the treatment conditions such as the treatment time, the treatment temperature, and the mixing ratio of the calcium sugar hydroxide aqueous solution to the konjac raw material powder. .. When the treatment conditions such as the treatment time, the treatment temperature, and the mixing ratio of the calcium hydroxide aqueous solution to the konjac raw material powder are the same, type 1 or type 2 can be selected depending on the calcium hydroxide concentration of the sugar hydroxide aqueous solution. .. Further, depending on the degree of purification of the konjac raw material powder, the treatment conditions necessary for the production of the target type, for example, the treatment time, the treatment temperature, the calcium hydroxide concentration of the calcium hydroxide aqueous solution, and the sugar hydroxide aqueous solution for the konjac raw material powder. It is also possible to use a method in which the compounding ratio of konjac is determined in advance by a preliminary test and the present production is carried out using the obtained treatment conditions.
If there is a law or rule regarding the amount of calcium hydroxide used in food processing in the country or region where the manufacturing method according to the present invention is implemented, the law or rule shall be followed. For example, the amount of calcium hydroxide used based on the Food Sanitation Law in Japan is stipulated as 1.0% or less of food as calcium, and this stipulation is used when the production method according to the present invention is carried out in Japan. Adjust the concentration and amount of calcium hydroxide aqueous solution according to the above.

こんにゃく原料粉末と糖水酸化カルシウム水溶液の混合物は、糖水酸化カルシウム水溶液での処理工程中及び終了時は湿潤粉末としての状態を維持する。こうして得られた湿潤粉末に対して、洗浄工程及び/または乾燥工程を必要に応じて追加してもよい。洗浄工程を糖水酸化カルシウム水溶液の作用を停止させる工程終了用の工程として利用してもよい。また、洗浄工程及び/または乾燥工程に、粉末粒子の粒径を下げる粉砕処理を追加してもよい。
こんにゃく粉末の洗浄には、グルコマンナンの不溶性食物繊維への変換に利用されなかった余りの糖水酸化カルシウムをこんにゃく粉末から洗浄除去、すなわち脱アルカリ処理できる洗浄剤であれば、制限なく利用できる。洗浄剤としては、例えば、5〜60質量%のエタノール等の揮発性アルコールを含むアルコール含有水が好ましい。
乾燥工程では、目的とするこんにゃく粉末の水分含量に応じた条件で行うことができ、公知の粉末乾燥装置を用いて行うことができる。乾燥工程後のこんにゃく粉末の水分含量は、例えば、10質量%以下、好ましくは3〜8質量%の範囲とすることができる。
The mixture of the konjac raw material powder and the aqueous calcium sugar hydroxide solution maintains the state as a wet powder during and at the end of the treatment process with the aqueous calcium sugar hydroxide solution. A washing step and / or a drying step may be added to the wet powder thus obtained as needed. The washing step may be used as a step for ending the step of stopping the action of the aqueous calcium sugar hydroxide solution. Further, a pulverization treatment for reducing the particle size of the powder particles may be added to the washing step and / or the drying step.
For cleaning konjac powder, any cleaning agent capable of cleaning and removing excess calcium hydroxide, which was not used for converting glucomannan into insoluble dietary fiber, from konjac powder, that is, dealkalising, can be used without limitation. As the cleaning agent, for example, alcohol-containing water containing 5 to 60% by mass of volatile alcohol such as ethanol is preferable.
The drying step can be carried out under conditions according to the water content of the target konjac powder, and can be carried out using a known powder drying device. The water content of the konjac powder after the drying step can be, for example, in the range of 10% by mass or less, preferably 3 to 8% by mass.

上述した洗浄工程後に、あるいは洗浄工程とともに湿式加圧粉砕工程を追加してもよい。湿式加圧粉砕工程を有するこんにゃく粉の製造方法は、以下の工程を有することができる。
(A)こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、こんにゃく原料粉末に含まれる粉末粒子に糖水酸化カルシウム水溶液を供給する混合工程。
(B)糖水酸化カルシウム水溶液が供給された粉末粒子において糖水酸化カルシウム水溶液の作用により不溶性食物繊維を形成して湿潤粉末を得る不溶性食物繊維形成工程。
(C)湿潤粉末またはその乾燥粉末を、5質量%〜60質量%の揮発性アルコールを含有するアルコール含有水からなる洗浄液で洗浄する工程。
(D)洗浄された湿潤粉末を湿式加圧粉砕して、湿潤粉砕物を得る工程。
(E)湿潤粉砕物を乾燥してこんにゃく粉末を得る工程。
上述したこんにゃく粉を得るための湿潤粉末粒子、または、乾燥粉末粒子を、エタノール等の揮発性アルコールを5質量%〜60質量%の範囲、好ましくは20質量%〜40質量%の範囲で含むアルコール含有水を洗浄液として洗浄し、湿式タイプの加圧粉砕処理機にかけ、得られた粉砕物を洗浄液と分離する。この湿式加圧粉砕によって少なくとも一部が破断粒子となった湿潤な状態での粒子とし、乾燥処理することにより、不溶性食物繊維と水溶性食物繊維の混合物を含み、且つ、水を含む液体中での良好な分散性を有する粒子からなるこんにゃく粉体を得ることができる。
食物繊維として不溶性食物繊維を主として含むタイプ1のこんにゃく粉体の場合においても、上述した洗浄工程と湿式加圧粉砕工程により、水を含む液媒体での分散性を更に高めたこんにゃく粉末(タイプ1A)を得ることができる。こうして得られるタイプ1Aのこんにゃく粉は、水を含む液体に対する分散性が向上しており、例えば、飲料水、清涼飲料水、各種ドリンク剤、各種スープ等の飲料、または液体食品へ添加した際に、不溶性食物繊維を主として含む粒子が飲料または液体食品中に速やかに広がり、かつ分散状態を長い時間保つことができる。更に、分散した不溶性食物繊維を主として含む粒子は飲料または液体食品の喉越しを阻害せず、むしろ喉越しを改善する効果を得ることができる。従って、タイプ1Aのこんにゃく粉は飲料や液体食品による不溶性食物繊維の手軽な摂取に好適に利用でき、更には、菓子、パン、麺類等に混和させる場合にも好適である。
タイプ1Aのこんにゃく粉における水、あるいは水を含む液体への分散性が向上している理由について本発明者は以下のように推定している。
先に述べた通り、粉末粒子の粒子としての形態が維持された状態で、こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、こんにゃく粉末粒子に糖水酸化カルシウム水溶液を供給すると、糖水酸化カルシウム水溶液が吸収された粉末粒子内において糖水酸化カルシウム水溶液の作用により不溶性食物繊維が形成される。
この粉末粒子内での不溶性食物繊維の形成は、粉末粒子内への糖水酸化カルシウム水溶液の浸透により行われる。すなわち、粉末粒子内には糖水酸化カルシウム水溶液の浸透により経路が形成される。この浸透する糖水酸化カルシウム水溶液と接触したグルコマンナンは不溶性となる。不溶化したグルコマンナンを含有する粒子を含む湿潤粉末粒子を、アルコール含有水からなる洗浄液により洗浄すると、湿潤粉末を形成する粒子内で余分な糖水酸化カルシウム水溶液が洗浄液と置き換わる部分が生じる。洗浄液に含まれるアルコールは、不溶化したグルコマンナンを含む網目状構造をより強固なものとし、その領域の硬度を更に高める作用を有する。すなわち、粒子の表層部分と粒子内の洗浄液と接触した部分の硬度が更に高められる。そこで、洗浄液で洗浄した湿潤粉末粒子を湿式加圧粉砕処理にかけると、主にこのアルコールの作用によって硬度が上昇した粒子内の部分を基点として洗浄液が浸透した経路に沿って粒子が割れて砕ける、へき開に似たような破砕が生じ、半球状、薄片状、球形の一部が破壊された形状など、水や水を含む液体中に浮遊した状態での良好な分散性が得られる形状の破砕物を含むこんにゃく粉を得ることができる。
従って、湿潤粉末粒子の湿式加圧粉砕は、湿潤粉末を構成する粒子に上述したような破砕が生じるための圧力を印加できる湿式粉砕機により行うことができる。このような湿式粉砕機としては、例えば、スーパーマスコロイダー(商品名、増幸産業(株)製 型式MCK6−5)に代表される上下、或いは、左右2枚の砥石によって構成された石臼型グラインダー、または、湿式型ボールミル等を使用することができる。
A wet pressure pulverization step may be added after or in combination with the cleaning step described above. The method for producing konjac flour having a wet pressure pulverization step can have the following steps.
(A) A mixing step of mixing a konjac raw material powder and a sugar hydroxide aqueous solution and supplying the sugar hydroxide aqueous solution to powder particles contained in the konjac raw material powder.
(B) An insoluble dietary fiber forming step of forming insoluble dietary fiber by the action of the calcium sugar hydroxide aqueous solution in the powder particles supplied with the calcium sugar hydroxide aqueous solution to obtain a wet powder.
(C) A step of washing a wet powder or a dry powder thereof with a washing liquid consisting of alcohol-containing water containing 5% by mass to 60% by mass of volatile alcohol.
(D) A step of wet pressure pulverizing the washed wet powder to obtain a wet pulverized product.
(E) A step of drying a wet pulverized product to obtain konjac powder.
An alcohol containing the above-mentioned wet powder particles for obtaining konjac flour or dry powder particles containing volatile alcohol such as ethanol in the range of 5% by mass to 60% by mass, preferably in the range of 20% by mass to 40% by mass. The contained water is washed as a washing liquid and subjected to a wet type pressure crushing treatment machine, and the obtained crushed product is separated from the washing liquid. By this wet pressure pulverization, at least a part of the particles is broken into particles in a wet state, and the particles are dried to contain a mixture of insoluble dietary fiber and water-soluble dietary fiber, and in a liquid containing water. A konjac powder composed of particles having good dispersibility can be obtained.
Even in the case of type 1 konjac powder mainly containing insoluble dietary fiber as dietary fiber, the konjac powder (type 1A) whose dispersibility in a liquid medium containing water is further enhanced by the above-mentioned washing step and wet pressure pulverization step. ) Can be obtained. The type 1A konjac flour thus obtained has improved dispersibility in liquids containing water, and is used, for example, when added to beverages such as drinking water, soft drinking water, various drinking agents, various soups, or liquid foods. , Particles mainly containing insoluble dietary fiber can spread rapidly in beverages or liquid foods and can be kept dispersed for a long time. Furthermore, the particles mainly containing dispersed insoluble dietary fiber do not inhibit the throat passage of beverages or liquid foods, but rather can obtain the effect of improving the throat passage. Therefore, type 1A konjac flour can be suitably used for easy ingestion of insoluble dietary fiber by beverages and liquid foods, and is also suitable for mixing with confectionery, bread, noodles and the like.
The present inventor presumes the reason why the dispersibility of type 1A konjac flour in water or a liquid containing water is improved as follows.
As described above, when the konjac raw material powder and the calcium hydroxide aqueous solution are mixed and the sugar hydroxide aqueous solution is supplied to the konjac powder particles while the morphology of the powder particles as particles is maintained, the sugar hydroxide aqueous solution is produced. Insoluble dietary fiber is formed in the absorbed powder particles by the action of the calcium hydroxide aqueous solution.
The formation of insoluble dietary fiber in the powder particles is carried out by permeation of the calcium sugar hydroxide aqueous solution into the powder particles. That is, a pathway is formed in the powder particles by the permeation of the aqueous calcium sugar hydroxide solution. Glucomannan in contact with this penetrating calcium hydroxide aqueous solution becomes insoluble. When the wet powder particles containing the insolubilized glucomannan-containing particles are washed with a cleaning solution made of alcohol-containing water, an excess calcium hydroxide aqueous solution replaces the cleaning solution in the particles forming the wet powder. The alcohol contained in the cleaning liquid has an effect of strengthening the network structure containing insolubilized glucomannan and further increasing the hardness of the region. That is, the hardness of the surface layer portion of the particles and the portion of the particles in contact with the cleaning liquid is further increased. Therefore, when the wet powder particles washed with the cleaning liquid are subjected to a wet pressure pulverization treatment, the particles are broken and crushed along the path through which the cleaning liquid permeates, mainly from the portion inside the particles whose hardness has increased due to the action of this alcohol. A shape that provides good dispersibility when suspended in water or a liquid containing water, such as a shape in which crushing similar to a dent occurs and a hemisphere, flaky shape, or part of the sphere is destroyed. Konjac flour containing crushed material can be obtained.
Therefore, the wet pressure pulverization of the wet powder particles can be performed by a wet pulverizer capable of applying a pressure for causing crushing as described above to the particles constituting the wet powder. Examples of such a wet crusher include a millstone grinding machine composed of two grindstones, one above the other and one on the left and one on the right, represented by a super mascoroider (trade name, model MCK6-5 manufactured by Masuko Sangyo Co., Ltd.). Alternatively, a wet type ball mill or the like can be used.

更には、上述した湿式加圧粉砕処理の後に脱水機により、含水アルコールを除いて乾燥粉末とすれば、微粉砕化が容易となるので必要に応じて乾式の微粉砕を行えば、熱水や水、或いは水を含む液体中での良好な分散性の微粉末が得られる。また、湿式加圧粉砕を繰り返すことによりその効果を高めることができるが、湿式加圧粉砕処理工程で微粉化し過ぎると固液分離が困難となり、ろ液中に微粉末が漏出するなど回収率が低下する等の弊害を伴う場合がある。
タイプA1のこんにゃく粉が得られたかどうかについては、湿式加圧粉砕後に脱水した湿潤な状態の粉末粒子、または水分10%程度まで乾燥した粉末粒子を実体顕微鏡で観察することにより確認できる。すなわち、粒子が割れて砕ける、へき開に似たような破砕が生じ、半球状、薄片状、球形の一部が破壊された形状などを観察する方法により、湿式加圧粉砕機による効果を確認することができる。
さらには、乾燥粉末粒子に20〜30倍の20〜30℃の水を加えた時に、水を吸収して膨潤し、体積膨張を起こすことによって確認できる。この粉末粒子の体積膨張は水温の高い程大きいが、決して水に溶解することは無い。そして、実体顕微鏡をもちいて粉末粒子(一般的に500μm以下)が水により膨潤している状態を観察する。
一方、タイプBのこんにゃく粉体の場合においても、上述した(A)〜(Z)の工程を有する製造方法、特に、洗浄工程と湿式加圧粉砕工程により、水を含む液媒体での分散性を更に高めたこんにゃく粉末(タイプ2A)を得ることができる。タイプ2Aの場合には、上述したへき開状の破砕によって、生じる粒子の外壁面に水溶性食物繊維を含む部分が露出することで、粉末粒子の吸水性や膨潤性を向上させることができる。
湿式加圧粉砕は、湿潤粉末粒子、或いは、乾燥粉末粒子と洗浄水(含水アルコール溶液)を混合するなどの方法により、湿潤粉末粒子に洗浄水を接触させて洗浄を行ってから、湿潤粉末粒子と洗浄水の混合物を湿式加圧粉砕機にかける方法や、湿潤粉末粒子と洗浄水を混合して湿式加圧粉砕機に導入して、洗浄と粉砕を同時に行う方法、或いは、最終粉末のpHが目的とする範囲内に中和される様に、洗浄水に予めクエン酸等の酸性化剤を加える方法により行うことができる。
洗浄液(含水アルコール溶液)の湿潤粉末粒子への添加量は、特に限定されず目的とする洗浄効果を得ることができるように設定すればよい。例えば、水分含量10質量%程度の乾燥粉末粒子に換算した場合に、洗浄液の割合(質量比)が、乾燥粉末粒子1に対して3〜10の範囲となるように洗浄液を添加することが好ましい。
上下グラインダー間のクリアランスや粉砕時間、繰り返し粉砕回数、温度は特に限定されず、目的とする湿式粉砕状態や効果が得られるように設定すればよいが、繰り返しの粉砕回数が多くなると液温が高くなり、アルコールが蒸発することとなるので、粉砕の極端な繰り返しは避けねばならない。粉砕の程度としての留意点は、微細化により固液分離の際に微細粉末が回収できず、ロスが増大することの無い様に、粒度分布をコントロールすることである。
湿式加圧粉砕により得られた粉砕物を、固液分離して乾燥し、好ましくは水分含量を10質量%以下として、タイプ1Aのこんにゃく粉を得ることができる。この時点での乾燥物の特徴として、湿式粉砕により割砕した粒子同士が軽く固着した大小の塊が数多く見受けられるが、これらの塊は乾燥物に軽く衝撃を加えることにより個々の粒子粉末に戻る状態であり、これらの塊を軽くほぐし、36メッシュ篩で425μm以下の粒子を回収すれば良い。
湿式加圧粉砕後の乾燥粉末粒子(水分6.5%)サイズの好ましい分布の一例を挙げれば、100μm未満が27%、100〜200μm未満が47%、200〜450μmが28%であった。因みに湿式加圧粉砕を行わずに30%アルコール洗浄のみを行った場合の乾燥粉末の粒度分布は、100μm未満が1%、100〜200μm未満が29%、200〜450μm未満が62%、450μm〜700μmが8%であった。
また、湿式加圧粉砕により得られた粉砕物を、乾式粉砕によって各粒子の粒径を更に小さくしてもよい。なお、粒子の表層や粒子内の洗浄液に含まれるアルコールと接触した部分は、アルコールとの接触前よりも高硬度化されており、乾式粉砕を行っても、分散性に必要な形状を維持し、かつ粒子サイズが減少した粒子を含む粉砕物を得ることができるので、喉越しをさらに改良することができる。
尚、湿式加圧粉砕並びに乾燥工程を経た後に乾式粉砕により微粉砕化された微粉末では、食物繊維としての性質に変化が認められる場合がある。例えば、この乾式粉砕により微粉砕化された微粉末が、全食物繊維に対して不溶性食物繊維の割合が70〜90質量%台に乾式粉砕により加工された場合であっても、微粉砕化の過程でへき開破壊が進行すると、得られる微粉末は水を吸収する性質が増強する傾向にあることが判明した。そのため、不溶性食物繊維と水溶性食物繊維を含有する本発明にかかるこんにゃく微粉末は、食物繊維としての生理的効果並びに食品添加物として、広い範囲の応用が期待できるものである。
Further, if the dry powder is obtained by removing the hydroalcohol by a dehydrator after the above-mentioned wet pressure pulverization treatment, the powder can be easily pulverized. A fine powder with good dispersibility in water or a liquid containing water can be obtained. Further, the effect can be enhanced by repeating the wet pressure pulverization, but if the powder is excessively pulverized in the wet pressure pulverization process, solid-liquid separation becomes difficult and the recovery rate is high, such as leakage of the fine powder into the filtrate. It may be accompanied by harmful effects such as reduction.
Whether or not the type A1 konjac flour is obtained can be confirmed by observing the wet powder particles dehydrated after wet pressure pulverization or the powder particles dried to about 10% moisture with a stereomicroscope. That is, the effect of the wet pressure crusher is confirmed by a method of observing a shape in which particles are broken and crushed, crushing similar to cleavage occurs, and hemispherical, flaky, and partially broken spherical shapes are observed. be able to.
Furthermore, it can be confirmed by absorbing water and swelling to cause volume expansion when water at 20 to 30 ° C., which is 20 to 30 times as much, is added to the dry powder particles. The volume expansion of these powder particles increases as the water temperature rises, but it never dissolves in water. Then, using a stereomicroscope, observe the state in which the powder particles (generally 500 μm or less) are swollen by water.
On the other hand, even in the case of type B konjac powder, dispersibility in a liquid medium containing water is obtained by the production method having the above-mentioned steps (A) to (Z), particularly the washing step and the wet pressure pulverization step. It is possible to obtain a konjac powder (type 2A) in which the amount is further increased. In the case of type 2A, the water absorption and swelling property of the powder particles can be improved by exposing the portion containing the water-soluble dietary fiber on the outer wall surface of the generated particles by the cleavage-like crushing described above.
In the wet pressure pulverization, the wet powder particles are washed by contacting the wet powder particles with the washing water by a method such as mixing the dry powder particles and the washing water (hydrous alcohol solution), and then the wet powder particles are washed. A method of applying a mixture of water and washing water to a wet pressure crusher, a method of mixing wet powder particles and washing water and introducing them into a wet pressure crusher to perform washing and crushing at the same time, or the pH of the final powder. This can be done by adding an acidifying agent such as citric acid to the washing water in advance so that the powder is neutralized within the target range.
The amount of the cleaning liquid (hydroalcohol-containing solution) added to the wet powder particles is not particularly limited and may be set so that the desired cleaning effect can be obtained. For example, it is preferable to add the cleaning liquid so that the ratio (mass ratio) of the cleaning liquid is in the range of 3 to 10 with respect to the dry powder particles 1 when converted into dry powder particles having a water content of about 10% by mass. ..
The clearance between the upper and lower grinders, the crushing time, the number of repeated crushing times, and the temperature are not particularly limited and may be set so as to obtain the desired wet crushing state and effect. As a result, the alcohol will evaporate, so extreme repetition of grinding must be avoided. The point to be noted as the degree of pulverization is to control the particle size distribution so that the fine powder cannot be recovered during solid-liquid separation due to miniaturization and the loss does not increase.
The pulverized product obtained by wet pressure pulverization is solid-liquid separated and dried to obtain a type 1A konjac flour, preferably having a water content of 10% by mass or less. As a characteristic of the dried product at this point, many large and small lumps in which the particles crushed by wet pulverization are lightly adhered to each other can be seen, but these lumps return to individual particle powders by lightly impacting the dried product. It is in a state, and these lumps may be lightly loosened, and particles having a size of 425 μm or less may be collected with a 36-mesh sieve.
To give an example of a preferable distribution of the size of dry powder particles (moisture 6.5%) after wet pressure pulverization, less than 100 μm was 27%, less than 100 to 200 μm was 47%, and 200 to 450 μm was 28%. By the way, the particle size distribution of the dry powder when only 30% alcohol washing is performed without performing wet pressure pulverization is 1% for less than 100 μm, 29% for less than 100 to 200 μm, 62% for less than 200 to 450 μm, 450 μm to 700 μm was 8%.
Further, the pulverized product obtained by wet pressure pulverization may be further reduced in particle size by dry pulverization. The surface layer of the particles and the portion of the cleaning liquid contained in the particles that came into contact with alcohol have a higher hardness than before the contact with alcohol, and even after dry pulverization, the shape required for dispersibility is maintained. In addition, since it is possible to obtain a pulverized product containing particles having a reduced particle size, it is possible to further improve the throat.
In addition, in the fine powder that has been finely pulverized by dry pulverization after undergoing the wet pressure pulverization and the drying steps, a change in the properties as dietary fiber may be observed. For example, even when the fine powder pulverized by the dry pulverization is processed by the dry pulverization to the ratio of the insoluble dietary fiber to the total dietary fiber in the range of 70 to 90% by mass, the pulverization It was found that as the explosive fracture progressed in the process, the obtained fine powder tended to enhance the property of absorbing water. Therefore, the konjac fine powder according to the present invention containing insoluble dietary fiber and water-soluble dietary fiber is expected to have a physiological effect as dietary fiber and a wide range of applications as a food additive.

本発明にかかるこんにゃく粉末の製造方法によれば、食物繊維としての水溶性食物繊維と不溶性食物繊維と、カルシウムと、糖を含む粉末粒子を含むこんにゃく紛末を得ることができる。目的とするこんにゃく粉末が得られたかどうかについては、水溶性食物繊維と不溶性食物繊維の含有量及びこれらの含有比の測定結果、後述する実験例における1質量%水分散液の粘度の測定値、水や温水での分散状態の観察等を用いて確認することができる。
本発明にかかるこんにゃく粉末の製造方法により得ることができるこんにゃく粉末としては、以下の各形態を例示することができる。
・粉末全体(乾燥物基準)に対して食物繊維を50質量%以上、100質量%未満、好ましくは、70〜99質量%、より好ましくは90質量%以上100質量%未満、あるいは90質量%以上99質量%以下で含み、食物繊維が水溶性食物繊維と不溶性食物繊維とからなり、全食物繊維に対する水溶性食物繊維と不溶性食物繊維の割合(質量基準)が50:50または40:60〜1:99の範囲にあるこんにゃく粉末。
上述のこんにゃく粉末としては、こんにゃく粉末全体に対する食物繊維の含有量(乾燥物基準)が、80質量%以上100質量%未満、好ましくは90質量%以上100質量%未満、より好ましくは90質量%以上99質量%以下であって、かつ、全食物繊維に対する水溶性食物繊維と不溶性食物繊維の割合(質量基準)が50:50または40:60〜1:99の範囲にあるこんにゃく粉末を挙げることができる。
先に挙げたタイプ1及びタイプ1A、並びにタイプ2及びタイプ2Aのこんにゃく粉末として、以下の組成のこんにゃく粉末を挙げることができる。
(タイプ1、タイプ1A)
・乾燥物基準で、食物繊維の90質量%以上が不溶性食物繊維からなるこんにゃく粉末。
このタイプ1、タイプ1Aのこんにゃく粉末としては、こんにゃく粉末全体に対する食物繊維の含有量(乾燥物基準)が、80質量%以上100質量%未満、好ましくは90質量%以上100質量%未満、より好ましくは90質量%以上99質量%以下であって、かつ、全食物繊維に対する水溶性食物繊維Aと不溶性食物繊維Bの割合A:B(質量基準)が10:90〜1:99の範囲にあるこんにゃく粉末を挙げることができる。
(タイプ2、タイプ2A)
・乾燥物基準で、食物繊維が水溶性食物繊維と不溶性食物繊維とからなり、全食物繊維に対する水溶性食物繊維Aと不溶性食物繊維Bの割合(質量基準)が、A:Bが50:50以上または40:60以上10:90未満(すなわちA/Bが50/50以上または40/60以上10/90未満)、あるいは、A:Bが50:50以上または40:60以上30:70未満(すなわちA/Bが50/50以上または40/60以上30/70未満)の範囲にあるこんにゃく粉末。
このタイプ2、タイプ3Aのこんにゃく粉末としては、こんにゃく粉末全体に対する食物繊維の含有量(乾燥物基準)が、80質量%以上100質量%未満、好ましくは90質量%以上100質量%未満、より好ましくは90質量%以上99質量%以下であって、かつ、全食物繊維に対する水溶性食物繊維Aと不溶性食物繊維Bの割合であるA:B(質量基準)が、50:50以上または40:60以上10:90未満(すなわち、A/Bが50/50以上または40/60以上30/70未満)の範囲にあるこんにゃく粉末を挙げることができる。
本発明にかかる製造方法により得られるこんにゃく粉末は、サプリメント等の食物繊維強化用食品そのものとして、あるいは飲料や食品に対する食物繊維強化用の食品添加物や補助成分として極めて有用である。
本発明にかかるこんにゃく粉末を食物繊維強化用食品として利用する場合は、こんにゃく粉末をそのまま、あるいは、食品の成分として許容される担体、賦形剤、カプセル材等によって製剤化して利用することができる。こんにゃく粉末を利用した食物繊維強化用食品には、必要に応じて更に、ビタミン、タンパク質、糖質、ミネラル成分等の栄養補助成分を配合することができる。
飲料や食品に対する食品添加物や補助成分として利用する場合も、こんにゃく粉末をそのまま、あるいは、食品の成分として許容される担体、賦形剤、カプセル材等によって製剤化して利用することができる。
According to the method for producing konjac powder according to the present invention, konjac powder containing water-soluble dietary fiber and insoluble dietary fiber as dietary fiber, calcium, and powder particles containing sugar can be obtained. Whether or not the desired konjac powder was obtained was determined by measuring the contents of water-soluble dietary fiber and insoluble dietary fiber and their content ratios, and the measured values of the viscosity of the 1% by mass aqueous dispersion in the experimental examples described later. It can be confirmed by observing the dispersed state in water or warm water.
As the konjac powder that can be obtained by the method for producing konjac powder according to the present invention, the following forms can be exemplified.
50% by mass or more and less than 100% by mass, preferably 70 to 99% by mass, more preferably 90% by mass or more and less than 100% by mass, or 90% by mass or more of dietary fiber with respect to the whole powder (based on dried product). It contains 99% by mass or less, and the dietary fiber is composed of water-soluble dietary fiber and insoluble dietary fiber, and the ratio of water-soluble dietary fiber and insoluble dietary fiber to total dietary fiber (mass basis) is 50:50 or 40:60 to 1. : Konnyaku powder in the range of 99.
As the above-mentioned konjac powder, the content of dietary fiber (based on dried food) in the whole konjac powder is 80% by mass or more and less than 100% by mass, preferably 90% by mass or more and less than 100% by mass, and more preferably 90% by mass or more. The konjac powder which is 99% by mass or less and the ratio (mass basis) of water-soluble dietary fiber and insoluble dietary fiber to total dietary fiber is in the range of 50:50 or 40:60 to 1:99 can be mentioned. can.
Examples of the type 1 and type 1A and type 2 and type 2A konjac powders mentioned above include konjac powder having the following composition.
(Type 1, Type 1A)
-Konjac powder in which 90% by mass or more of dietary fiber is insoluble dietary fiber based on dry matter.
As the type 1 and type 1A konjac powders, the content of dietary fiber (based on dried food) in the whole konjac powder is 80% by mass or more and less than 100% by mass, preferably 90% by mass or more and less than 100% by mass, more preferably. Is 90% by mass or more and 99% by mass or less, and the ratio A: B (mass basis) of water-soluble dietary fiber A and insoluble dietary fiber B to total dietary fiber is in the range of 10:90 to 1:99. Konjac powder can be mentioned.
(Type 2, Type 2A)
-On a dry matter basis, dietary fiber consists of water-soluble dietary fiber and insoluble dietary fiber, and the ratio of water-soluble dietary fiber A and insoluble dietary fiber B to total dietary fiber (mass basis) is 50:50 for A: B. Or more or 40:60 or more and less than 10:90 (that is, A / B is 50/50 or more or 40/60 or more and less than 10/90), or A: B is 50:50 or more or 40:60 or more and less than 30:70. A konjac powder in the range (ie, A / B of 50/50 or more or 40/60 or more and less than 30/70).
As the type 2 and type 3A konjac powder, the content of dietary fiber (based on dry matter) in the whole konjac powder is 80% by mass or more and less than 100% by mass, preferably 90% by mass or more and less than 100% by mass, more preferably. Is 90% by mass or more and 99% by mass or less, and A: B (mass basis), which is the ratio of water-soluble dietary fiber A and insoluble dietary fiber B to total dietary fiber, is 50:50 or more or 40:60. The konjac powder in the range of more than 10:90 (that is, A / B of 50/50 or more or 40/60 or more and less than 30/70) can be mentioned.
The konjac powder obtained by the production method according to the present invention is extremely useful as a dietary fiber-enhancing food itself such as a supplement, or as a dietary fiber-enhancing food additive or auxiliary ingredient for beverages and foods.
When the konjac powder according to the present invention is used as a dietary fiber-enhancing food, the konjac powder can be used as it is or formulated with a carrier, excipient, capsule material or the like which is acceptable as a component of the food. .. Dietary fiber-enhancing foods using konjac powder can further contain nutritional supplements such as vitamins, proteins, sugars, and minerals, if necessary.
When used as a food additive or auxiliary ingredient for beverages and foods, the konjac powder can be used as it is, or it can be formulated and used as a carrier, excipient, capsule material or the like which is acceptable as a food ingredient.

(実験例1)
こんにゃく精粉としては、オリヒロ(株)製、ティマックマンナン(商品名)(水分7.5質量%、食物繊維85.9質量%)を使用した。
ショ糖水酸化カルシウム水溶液として、水酸化カルシウム濃度(質量%)がA:0.5%(pH12.51)、B:0.9%(pH12.53)、C:1.1%(pH12.54)、D:1.2%(pH12.53)、E:1.3%(pH12.54)、F:1.5%(pH12.60)、である6種類を用意した。尚、ショ糖濃度6.0質量%で1.5%水酸化カルシウム水溶液を調製して基準液とし、0.5〜1.3%水酸化カルシウム濃度の溶液は、この基準液を適宜水道水で希釈して用いたが、全ての溶液濃度において水酸化カルシウムが沈殿することはなかった。
ティマックマンナン100gに対してショ糖水酸化カルシウム水溶液100gを添加、撹拌混合することで、カルシウム量の異なる6種類の試験サンプルA〜Fをそれぞれ調製し、密封した状態で室温3日間放置後、夫々原料に対して8倍量の30質量%のアルコールで洗浄、脱水し、60℃で乾燥して粉末とした。
乾燥粉末について水分と水溶性食物繊維、不溶性食物繊維を測定した。原料並びに試験サンプルA〜Fの夫々の不溶性食物繊維と水溶性食物繊維の含有量を乾物換算(質量基準)で比較した。更に、これらのサンプルのカルシウム濃度(乾物質量当たり)を測定した。以下に得られた結果を示す。
(1)試験原料としたティマックマンナン
不溶性食物繊維3.4%に対し、水溶性食物繊維87.5%であった。
(2)水酸化カルシウム濃度0.5質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルA
不溶性食物繊維5.8%に対し、水溶性食物繊維93.1%であった。
また、カルシウム量は、0.34%であった。
(3)水酸化カルシウム濃度0.9質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルB
不溶性食物繊維34.9%に対し、水溶性食物繊維56.0%であった。
また、カルシウム量は、0.48%であった。
(4)水酸化カルシウム濃度1.1質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルC
不溶性食物繊維65.8%に対し、水溶性食物繊維32.8%であった。
また、カルシウム量は、0.59%であった。
(5)水酸化カルシウム濃度1.2質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルD
不溶性食物繊維74.4%に対し、水溶性食物繊維23.2%であった。
また、カルシウム量は、0.61%であった。
(6)水酸化カルシウム濃度1.3質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルE
不溶性食物繊維83.6%に対し、水溶性食物繊維14.0%であった。
また、カルシウム量は、0.63%であった。
(7)水酸化カルシウム濃度1.5質量%のショ糖水酸化カルシウム水溶液を使用した試験サンプルF
不溶性食物繊維97.0%に対し、水溶性食物繊維2.0%であった。
また、カルシウム量は、0.75%であった。
以上の結果を表1に示す。
(Experimental Example 1)
As the konjac fine powder, Timac Mannan (trade name) (water content 7.5% by mass, dietary fiber 85.9% by mass) manufactured by Orihiro Co., Ltd. was used.
As an aqueous solution of sucrose calcium hydroxide, the calcium hydroxide concentration (mass%) is A: 0.5% (pH 12.51), B: 0.9% (pH 12.53), C: 1.1% (pH 12.54). ), D: 1.2% (pH 12.53), E: 1.3% (pH 12.54), F: 1.5% (pH 12.60). A 1.5% calcium hydroxide aqueous solution was prepared at a sucrose concentration of 6.0% by mass and used as a reference solution, and for a solution having a 0.5 to 1.3% calcium hydroxide concentration, this reference solution was appropriately used as tap water. However, calcium hydroxide did not precipitate at all solution concentrations.
Six types of test samples A to F having different amounts of calcium were prepared by adding 100 g of a calcium hydroxide aqueous solution of sucrose to 100 g of Timac mannan and stirring and mixing, and left in a sealed state at room temperature for 3 days, respectively. The raw material was washed with 8 times the amount of 30% by mass of alcohol, dehydrated, and dried at 60 ° C. to obtain a powder.
Moisture, water-soluble dietary fiber, and insoluble dietary fiber were measured for the dry powder. The contents of the insoluble dietary fiber and the water-soluble dietary fiber of the raw materials and the test samples A to F were compared in terms of dry matter (mass basis). In addition, the calcium concentration (per dry matter amount) of these samples was measured. The results obtained are shown below.
(1) Timac Mannan used as a test raw material was 3.4% of insoluble dietary fiber and 87.5% of water-soluble dietary fiber.
(2) Test sample A using a calcium hydroxide aqueous solution of sucrose having a calcium hydroxide concentration of 0.5% by mass.
It was 93.1% of water-soluble dietary fiber as opposed to 5.8% of insoluble dietary fiber.
The amount of calcium was 0.34%.
(3) Test sample B using an aqueous solution of sucrose calcium hydroxide having a calcium hydroxide concentration of 0.9% by mass.
It was 56.0% of water-soluble dietary fiber with respect to 34.9% of insoluble dietary fiber.
The amount of calcium was 0.48%.
(4) Test sample C using a calcium hydroxide aqueous solution of sucrose having a calcium hydroxide concentration of 1.1% by mass.
It was 32.8% of water-soluble dietary fiber as opposed to 65.8% of insoluble dietary fiber.
The amount of calcium was 0.59%.
(5) Test sample D using a calcium hydroxide aqueous solution of sucrose having a calcium hydroxide concentration of 1.2% by mass.
It was 23.2% of water-soluble dietary fiber as opposed to 74.4% of insoluble dietary fiber.
The amount of calcium was 0.61%.
(6) Test sample E using an aqueous solution of sucrose calcium hydroxide having a calcium hydroxide concentration of 1.3% by mass.
It was 14.0% of water-soluble dietary fiber with respect to 83.6% of insoluble dietary fiber.
The amount of calcium was 0.63%.
(7) Test sample F using an aqueous solution of sucrose calcium hydroxide having a calcium hydroxide concentration of 1.5% by mass.
It was 2.0% of water-soluble dietary fiber with respect to 97.0% of insoluble dietary fiber.
The amount of calcium was 0.75%.
The above results are shown in Table 1.

Figure 0006938238
Figure 0006938238

以上の結果から試験原料としたティマックマンナンであれば、原料粉末とショ糖水酸化カルシウム水溶液の割合が1:1の場合、水酸化カルシウム濃度1.0%以上とすれば最終粉末の不溶性食物繊維含量を乾燥物換算で60%以上とすることができるとの結論を得た。
尚、食物繊維の測定は酵素・重量法の一つであるプロスキー変法により、不溶性食物繊維と水溶性食物繊維をそれぞれ定量した。
また、カルシウムの測定は、サンプルを灰化し、原子吸光分光分析法により定量した。
From the above results, in the case of Timac Mannan used as a test raw material, when the ratio of the raw material powder to the sucrose calcium hydroxide aqueous solution is 1: 1 and the calcium hydroxide concentration is 1.0% or more, the final powder of insoluble dietary fiber It was concluded that the content can be 60% or more in terms of dry matter.
The dietary fiber was measured by quantifying insoluble dietary fiber and water-soluble dietary fiber by the modified Proski method, which is one of the enzyme / gravimetric methods.
For the measurement of calcium, the sample was incinerated and quantified by atomic absorption spectroscopy.

(実験例2)
実験例1と同様に、こんにゃく精粉としてティマックマンナン(オリヒロ(株)製)(水分7.5質量%、食物繊維85.9質量%)を使用し、ショ糖水酸化カルシウム水溶液として、水酸化カルシウム濃度(質量%)が1.0%(pH12.53)を調製し、ティマックマンナン100gに対してショ糖水酸化カルシウム水溶液100gを添加、撹拌混合した後、密封した状態で室温3日間放置後、夫々原料に対して8倍量の30質量%のアルコールで洗浄、脱水し、60℃で乾燥して粉末とした。
こうして得られた乾燥粉末について、水分、水溶性食物繊維、不溶性食物繊維を測定し、不溶性食物繊維と水溶性食物繊維の含有量を乾物換算(質量基準)で、不溶性食物繊維54.0%に対し、水溶性食物繊維42.8%であり、全食物繊維に対する不溶性食物繊維の割合は55.8質量%であった。また、カルシウム量は、0.54%であった。
原料としたこんにゃく製粉(ティマックマンナン)に、実験例1のサンプル6種類(A〜F)、さらに本実験例2のサンプルを加えた8種類のサンプルについて、夫々1質量%の濃度なるように水に混合して混合物を調製し、各混合物の粘度を測定した。
なお、サンプルが水溶性である場合は、混合物は水溶液となり、サンプルに水溶性物質と不溶性物質が含まれている場合は、混合物には溶解した成分と分散する成分が含まれる。サンプルが不溶性の場合には、混合物は不溶性物質の分散液となる。
上述した粘度測定法は、こんにゃく粉(水溶性こんにゃく粉)の品質規格を定める為に一般的に採用されており、35℃の温浴中で撹拌しながら2,3,4時間毎の粘度(東機産業株式会社製、B型粘度計)を測定し、このうちの最高値をもって判定する検査方法で、粘度が高い程良質のこんにゃく粉とするもので、本測定法でのこんにゃく原料粉末の品質の格付けが広く普及している。
この粘度によるこんにゃく原料粉末の品質の分類の一例では、本測定法での粘度が15,000mPa・s以上のものを特等粉、13,000mPa・s以上のものを1等粉として分類している。ティマックマンナンはこんにゃく臭であるトリメチルアミンを除くためのアルコール処理により、精製純度が高くなっており、本測定法での粘度の規格値は16,000mPa・s以上としている。尚、一般的にこんにゃく製造に使用されるこんにゃく原料としては、数千mPa・s以上の粘度が必要とされている。
表2には粘度測定の結果を示したが、同時に不溶性食物繊維と水溶性食物繊維の含有量を乾物換算(質量基準)で表記した。
(Experimental Example 2)
Similar to Experimental Example 1, Timak Mannan (manufactured by Orihiro Co., Ltd.) (7.5% by mass of water content, 85.9% by mass of dietary fiber) was used as konjac fine powder, and hydroxylated as an aqueous solution of sucrose calcium hydroxide. After preparing a calcium concentration (mass%) of 1.0% (pH 12.53), adding 100 g of calcium hydroxide aqueous solution of sucrose to 100 g of konjac mannan, stirring and mixing, and leaving in a sealed state at room temperature for 3 days. Each of the raw materials was washed with 8 times the amount of 30% by mass of alcohol, dehydrated, and dried at 60 ° C. to obtain a powder.
With respect to the dry powder thus obtained, water content, water-soluble dietary fiber, and insoluble dietary fiber were measured, and the contents of the insoluble dietary fiber and the water-soluble dietary fiber were converted into dry matter equivalent (mass basis) to 54.0% of the insoluble dietary fiber. On the other hand, the ratio of the water-soluble dietary fiber was 42.8% and the ratio of the insoluble dietary fiber to the total dietary fiber was 55.8% by mass. The amount of calcium was 0.54%.
The concentration of each of the 8 types of samples obtained by adding the 6 types (A to F) of the sample of Experimental Example 1 and the sample of this Experimental Example 2 to the konjac flour (Timac Mannan) used as a raw material is 1% by mass. Mixtures were prepared by mixing with water and the viscosity of each mixture was measured.
When the sample is water-soluble, the mixture becomes an aqueous solution, and when the sample contains a water-soluble substance and an insoluble substance, the mixture contains a dissolved component and a dispersed component. If the sample is insoluble, the mixture will be a dispersion of insoluble material.
The above-mentioned viscosity measuring method is generally adopted to determine the quality standard of konjac flour (water-soluble konjac flour), and the viscosity is every 2, 3 or 4 hours while stirring in a warm bath at 35 ° C. (East). This is an inspection method that measures the B-type viscous meter manufactured by Kisangyo Co., Ltd. and determines the highest value among them. The higher the viscosity, the better the quality of konjac flour. Ratings are widespread.
In an example of quality classification of konjac raw material powder based on this viscosity, those having a viscosity of 15,000 mPa · s or more in this measurement method are classified as special powder, and those having a viscosity of 13,000 mPa · s or more are classified as first grade powder. .. Timac mannan has a high purification purity due to alcohol treatment to remove trimethylamine, which is a konjac odor, and the standard value of viscosity in this measurement method is 16,000 mPa · s or more. The konjac raw material generally used for producing konjac is required to have a viscosity of several thousand mPa · s or more.
Table 2 shows the results of viscosity measurement, and at the same time, the contents of insoluble dietary fiber and water-soluble dietary fiber are shown in terms of dry matter (mass basis).

Figure 0006938238
Figure 0006938238

表2の結果では、ティマックマンナン(不溶性食物繊維が3.4%)の1質量%溶液での粘度は19,0000mPa・sであり、実験例1−A(不溶性食物繊維5.8%)の粘度は15,000mPa・sであったが、実験例1−B(不溶性食物繊維34.9%)ではその粘度は1,000mPa・sと低下した。さらに、実験例―2(不溶性食物繊維54.0%)ではその粘度は300mPa・sで、実験例1−C(不溶性食物繊維65.8%)の粘度は200mPa・sと、こんにゃく製造原料としての最低値の10分の1以下となった。
そして、実験例1−D(不溶性食物繊維74.4%)、実験例1−E(不溶性食物繊維83.6%)、実験例1−F(不溶性食物繊維97.0%)では粘度はゼロとなった。以上のことから、乾物換算での不溶性食物繊維の含有量(質量基準)が50%を超えると、こんにゃく粉本来の性質を失うということが明らかとなった。
表2に示すように、上記の粘度測定条件において1,000(mPa・s)を閾値として、この値未満に粘度が低下した場合を、こんにゃく原料の特性を持たない本発明にかかるこんにゃく粉末が製造されたことの指標として利用することができる。
According to the results in Table 2, the viscosity of Timac mannan (3.4% insoluble dietary fiber) in a 1% by mass solution was 19,0000 mPa · s, and Experimental Example 1-A (5.8% insoluble dietary fiber). The viscosity of was 15,000 mPa · s, but in Experimental Example 1-B (34.9% of insoluble dietary fiber), the viscosity decreased to 1,000 mPa · s. Further, in Experimental Example-2 (insoluble dietary fiber 54.0%), the viscosity is 300 mPa · s, and in Experimental Example 1-C (insoluble dietary fiber 65.8%), the viscosity is 200 mPa · s, which is used as a raw material for producing konjac. It was less than 1/10 of the lowest value of.
The viscosity is zero in Experimental Example 1-D (insoluble dietary fiber 74.4%), Experimental Example 1-E (insoluble dietary fiber 83.6%), and Experimental Example 1-F (insoluble dietary fiber 97.0%). It became. From the above, it was clarified that when the content (mass basis) of insoluble dietary fiber in terms of dry matter exceeds 50%, the original properties of konjac flour are lost.
As shown in Table 2, when the viscosity drops below this value with 1,000 (mPa · s) as the threshold value under the above viscosity measurement conditions, the konjac powder according to the present invention having no characteristics of the konjac raw material is obtained. It can be used as an indicator of the fact that it was manufactured.

(実施例1)
こんにゃく精粉(平成27年産特等粉、水分8.0%、水溶性食物繊維75.6%、不溶性食物繊維2.1%)40kgに対し、ショ糖(グラニュー糖)水酸化カルシウム水溶液(ショ糖濃度7質量%の溶液に溶解させた水酸化カルシウム濃度1.8質量%溶液、pH12.6)40kgを添加混合した。混合は撹拌混合装置((株)パウレック製、型式VG−100F)を使用し、20分間を掛けて40kgのショ糖水酸化カルシウム水溶液を添加、撹拌混合した。混合時の品温は50〜60℃であり、79kgを回収した。直ちに3〜4gを50mlのビーカーに秤量し、蒸留水で洗浄を繰り返し、冷水を加えて2時間放置し、十分に膨潤させた後に実体顕微鏡((株)モリテックス製。MSX−500Di)で粒子を拡大(100倍)観察したところ、吸水をしているが一粒、一粒がバラバラに離れていることを確認した。糖水酸化カルシウム水溶液を吸収させたこんにゃく製粉を,70℃で乾燥して38.5kg(水分6.9%)の乾燥粉末を得た。
この乾燥粉末5kgを、4倍量の30質量%のアルコール溶液で撹拌洗浄、脱水した後に70℃で乾燥(水分6.5%)した。本粉末の食物繊維を測定したところ、乾燥物換算(質量基準)で不溶性食物繊維が83.5%、水溶性食物繊維が12.0%であり、カルシウムが0.99%であった。
脱アルカリした後に乾燥した本粉末を、乾式微粉砕機(ラボネクト(株)製、スピードミル、型式HS−20)で粉砕して粒径100μm以下の紛体を回収した。
(Example 1)
Sucrose (granule sugar) calcium hydroxide aqueous solution (sucrose) for 40 kg of konjac refined powder (special powder produced in 2015, water content 8.0%, water-soluble dietary fiber 75.6%, insoluble dietary fiber 2.1%) A solution having a concentration of 1.8% by mass of calcium hydroxide dissolved in a solution having a concentration of 7% by mass and 40 kg of pH 12.6) were added and mixed. For mixing, a stirring and mixing device (manufactured by Paulek Co., Ltd., model VG-100F) was used, and 40 kg of a calcium hydroxide aqueous solution of sucrose was added over 20 minutes, and the mixture was stirred and mixed. The product temperature at the time of mixing was 50 to 60 ° C., and 79 kg was recovered. Immediately weigh 3 to 4 g in a 50 ml beaker, repeat washing with distilled water, add cold water and leave for 2 hours to fully swell, and then use a stereomicroscope (manufactured by Moritex Co., Ltd. MSX-500Di) to remove the particles. When magnified (100 times) observation was performed, it was confirmed that although water was absorbed, each grain was separated from each other. The konjac mill that had absorbed the calcium sugar hydroxide aqueous solution was dried at 70 ° C. to obtain 38.5 kg (water content 6.9%) of dry powder.
5 kg of this dry powder was stirred and washed with 4 times the amount of 30 mass% alcohol solution, dehydrated, and then dried at 70 ° C. (water content 6.5%). When the dietary fiber of this powder was measured, the insoluble dietary fiber was 83.5%, the water-soluble dietary fiber was 12.0%, and the calcium was 0.99% in terms of dry matter (mass basis).
This powder, which had been dealkalis and then dried, was pulverized with a dry pulverizer (Labonect Co., Ltd., speed mill, model HS-20) to recover a powder having a particle size of 100 μm or less.

(実施例2)
こんにゃく精粉としてオリヒロ(株)製、ティマックマンナン(商品名)(水分7.5質量%、水溶性食物繊維80.9質量%、不溶性食物繊維3.2質量%)40kgに対して、ショ糖(グラニュー糖)水酸化カルシウム水溶液(ショ糖濃度6質量%の溶液に溶解させた水酸化カルシウム濃度1.56質量%溶液、pH12.4)40kgを、撹拌混合装置((株)パウレック製、型式VG−100F)を使用して50分間を掛けて添加、混合(最終品温60℃)した後に、水分7.8%まで乾燥した。この乾燥粉末10kgに対して、クエン酸110gを加えた30質量%アルコール溶液80kgを加え、スーパーマスコロイダー(増幸産業(株)製,型式MKZA−15−40J)を用いて湿式加圧粉砕処理を行った。5回の繰り返し処理の後に脱水、乾燥し、乾燥物(水分6.7質量%)を得た。本乾燥粉末を家庭用クッキングカッター((株)日立ホームテック製、型式FV−F3)を用いて軽くほぐした後に、36メッシュ篩(基準寸法425μm)を通過した区分を回収した。
本乾燥粉末中の不溶性食物繊維は88.8質量%、水溶性食物繊維は8.2質量%であった。本乾燥粉末5kgを、乾式粉砕機(細川ミクロン(株)製、ACMパルベライザ−15H)で微粉砕処理を行った。乾式粉砕後の粉末粒子(水分6.4%)の粒度分布をレーザー解析式粒度分布測定装置(マルバーン社製、マスターサイザー3000)を用いて測定したところ、50μm未満が75%、50〜75μm未満が17%、75〜100μm未満が4%、100〜450μmが4%であった。
この微粉末を、市販オニオンコンソメスープ粉末(11.5g)に対し、3gを添加して混合後、熱湯150mlを注ぎ、かきまぜてから1分後に試飲したところ、こんにゃくファイバーが膨潤してスープ内に浮遊し、軟らかく、舌触り、喉越し共に滑らかで、コンソメスープ本来の塩味が和らぎ、まろやかな美味さに感じられた。
(Example 2)
As konnyaku refined powder, manufactured by Orihiro Co., Ltd., Timac Mannan (trade name) (7.5% by mass of water content, 80.9% by mass of water-soluble dietary fiber, 3.2% by mass of insoluble dietary fiber) with respect to 40 kg of slaked 40 kg of an aqueous solution of sugar (granule sugar) calcium hydroxide (solution of 1.56% by mass of calcium hydroxide dissolved in a solution of 6% by mass of sucrose, pH 12.4) was added to a stirring and mixing device (manufactured by Paulek Co., Ltd.). It was added and mixed (final product temperature 60 ° C.) over 50 minutes using model VG-100F), and then dried to a moisture content of 7.8%. To 10 kg of this dry powder, 80 kg of a 30 mass% alcohol solution containing 110 g of citric acid was added, and a wet pressure pulverization treatment was performed using a super mascoroider (manufactured by Masuko Sangyo Co., Ltd., model MKZA-15-40J). went. After 5 times of repeated treatment, it was dehydrated and dried to obtain a dried product (moisture 6.7% by mass). The dried powder was lightly loosened using a household cooking cutter (Hitachi Home Tech Co., Ltd., model FV-F3), and then the sections that passed through a 36-mesh sieve (standard size 425 μm) were collected.
The insoluble dietary fiber in the dry powder was 88.8% by mass, and the water-soluble dietary fiber was 8.2% by mass. 5 kg of this dry powder was finely pulverized with a dry pulverizer (ACM Parvelizer-15H manufactured by Hosokawa Micron Co., Ltd.). When the particle size distribution of the powder particles (moisture 6.4%) after dry pulverization was measured using a laser analysis type particle size distribution measuring device (Mastersizer 3000 manufactured by Malvern), less than 50 μm was 75% and less than 50 to 75 μm. Was 17%, 75 to less than 100 μm was 4%, and 100 to 450 μm was 4%.
When 3 g of this fine powder was added to commercially available onion consomme soup powder (11.5 g) and mixed, 150 ml of boiling water was poured, and 1 minute after stirring, the konjac fiber swelled into the soup. It floated, was soft, had a smooth texture, and was smooth through the throat, and the original saltiness of the consomme soup was softened, and it was felt to be mellow.

(実施例3)
実施例2で使用したティマックマンナン(水分7.5質量%、水溶性食物繊維80.9質量%、不溶性食物繊維3.2質量%)40kgを撹拌混合装置((株)パウレック製、型式VG−100F)に入れ、ショ糖(グラニュー糖)水酸化カルシウム水溶液(ショ糖濃度4質量%の溶液に溶解させた水酸化カルシウム濃度1.10質量%溶液、pH12.3)40kgを40分間かけて添加混合し、その後最終品温が65℃となるまで10分間撹拌を続け、密閉容器に移して一晩保管後、乾燥した(水分含量10.4%)。この乾燥粉末は一部の粉末粒子が塊を作っており、これを軽くほぐして32メッシュ篩(呼び寸法425μm)を通過する区分を回収した(回収率99%)。この乾燥粉末中の不溶性食物繊維は60.2%、水溶性食物繊維は30.0%であった。この粉末粒子のサイズについてレーザー解析式粒度分布測定装置を用いて測定したところ、100μm〜250μm未満が37%、250μm〜450μmが63%という割合であった。本乾燥粉末は、水溶液中で決して水に溶解することは無く、粉末粒子が水を吸って素早く膨潤する性質が認められた。例えば、35℃の温水150mlに2.0gの乾燥粉末を添加、緩やかに撹拌し、1質量%クエン酸溶液2.5mlを加えて溶液を中和(pH7.0)、その後32℃前後にキープ、20分経過後の状態を実体顕微鏡((株)モリテックス製。MSX−500Di)で観察したところ、すべての粒子が水を吸収していたが、最大のものは長径が980μm、短径が670μmの楕円形で、水を吸って元の粒子の2倍程度にまで膨張していた。この様に、本乾燥粉末粒子には良く水を吸収して膨潤するという特徴が備わっていた。
(Example 3)
40 kg of Timac mannan (water content 7.5% by mass, water-soluble dietary fiber 80.9% by mass, insoluble dietary fiber 3.2% by mass) used in Example 2 was mixed with a stirring mixer (manufactured by Paulek Co., Ltd., model VG). Put in -100F) and add 40 kg of sucrose (granule sugar) calcium hydroxide aqueous solution (calcium hydroxide concentration 1.10 mass% solution dissolved in a solution of sucrose concentration 4 mass%, pH 12.3) over 40 minutes. The mixture was added and mixed, and then stirring was continued for 10 minutes until the final product temperature reached 65 ° C., transferred to a closed container, stored overnight, and then dried (water content 10.4%). In this dry powder, some powder particles formed a mass, which was lightly loosened to recover a section passing through a 32 mesh sieve (nominal size 425 μm) (recovery rate 99%). The insoluble dietary fiber in this dry powder was 60.2%, and the water-soluble dietary fiber was 30.0%. When the size of the powder particles was measured using a laser analysis type particle size distribution measuring device, the ratio was 37% for 100 μm to less than 250 μm and 63% for 250 μm to 450 μm. It was confirmed that this dry powder never dissolves in water in an aqueous solution, and that the powder particles absorb water and swell quickly. For example, add 2.0 g of dry powder to 150 ml of warm water at 35 ° C, gently stir, add 2.5 ml of 1% by mass citric acid solution to neutralize the solution (pH 7.0), and then keep it around 32 ° C. When the state after 20 minutes was observed with a stereomicroscope (manufactured by Moritex Co., Ltd. MSX-500Di), all the particles absorbed water, but the largest one had a major axis of 980 μm and a minor axis of 670 μm. It had an elliptical shape and absorbed water and expanded to about twice the original particles. In this way, the dry powder particles had the characteristic of absorbing water well and swelling.

Claims (18)

こんにゃく粉末の製造方法であって、
こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、該こんにゃく原料粉末に含まれる粉末粒子に該糖水酸化カルシウム水溶液を供給する混合工程と、
前記糖水酸化カルシウム水溶液が供給された粉末粒子において該糖水酸化カルシウム水溶液の作用により不溶性食物繊維を形成してこんにゃく粉末を得る不溶性食物繊維形成工程と、を有し、
前記混合工程及び前記不溶性食物繊維形成工程が、前記粉末粒子の粒子としての形態が維持された状態で行われる
ことを特徴とするこんにゃく粉末の製造方法。
It ’s a method of manufacturing konjac powder.
A mixing step of mixing the konjac raw material powder and the calcium sugar hydroxide aqueous solution and supplying the sugar hydroxide aqueous solution to the powder particles contained in the konjac raw material powder.
It has an insoluble dietary fiber forming step of forming insoluble dietary fiber by the action of the calcium hydroxide aqueous solution in the powder particles supplied with the calcium sugar hydroxide aqueous solution to obtain konjac powder.
A method for producing konjac powder, wherein the mixing step and the insoluble dietary fiber forming step are carried out in a state where the morphology of the powder particles as particles is maintained.
前記混合工程と前記不溶性食物繊維形成工程が同時に行われる請求項1に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 1, wherein the mixing step and the insoluble dietary fiber forming step are performed at the same time. 前記こんにゃく原料粉末に対する前記水酸化カルシウムの配合割合を変化させることにより、前記こんにゃく粉末に含まれる不溶性食物繊維の割合を制御する、請求項1または2に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 1 or 2, wherein the ratio of insoluble dietary fiber contained in the konjac powder is controlled by changing the mixing ratio of the calcium hydroxide with respect to the konjac raw material powder. 前記こんにゃく粉末が、全食物繊維に対して不溶性食物繊維を90質量%(乾物換算)以上含む、請求項3に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 3, wherein the konjac powder contains 90% by mass (dry matter equivalent) or more of insoluble dietary fiber with respect to total dietary fiber. 前記水溶性食物繊維と前記不溶性食物繊維との質量基準における割合が、10:90〜1:99の範囲にある請求項4に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 4, wherein the ratio of the water-soluble dietary fiber to the insoluble dietary fiber on a mass basis is in the range of 10:90 to 1:99. 前記こんにゃく原料粉末に対して前記糖水酸化カルシウム水溶液を介して供給されるカルシウムの量が0.75〜4.00質量%の範囲から選択される請求項4または5に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 4 or 5, wherein the amount of calcium supplied via the aqueous calcium sugar hydroxide solution to the konjac raw material powder is selected from the range of 0.75 to 4.00% by mass. .. 前記こんにゃく粉末が、全食物繊維に対して不溶性食物繊維を50質量%以上、90質量%未満(乾物換算)含む、請求項3に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 3, wherein the konjac powder contains 50% by mass or more and less than 90% by mass (dry matter equivalent) of insoluble dietary fiber with respect to the total dietary fiber. 前記水溶性食物繊維と前記不溶性食物繊維との質量基準における割合が、50:50以上10:90未満の範囲にある請求項7に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 7, wherein the ratio of the water-soluble dietary fiber to the insoluble dietary fiber on a mass basis is in the range of 50:50 or more and less than 10:90. 前記こんにゃく原料粉末に対して前記糖水酸化カルシウム水溶液を介して供給されるカルシウムの量が0.50〜1.00質量%の範囲から選択される請求項7に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 7, wherein the amount of calcium supplied via the aqueous calcium sugar hydroxide solution to the konjac raw material powder is selected from the range of 0.50 to 1.00% by mass. 前記こんにゃく粉末の洗浄工程及び乾燥工程の少なくとも一方を更に有する請求項1乃至9のいずれかに記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to any one of claims 1 to 9, further comprising at least one of a washing step and a drying step of the konjac powder. 粉末全体(乾燥物基準)に対して食物繊維を80質量%以上、100質量%未満含み、食物繊維が水溶性食物繊維と不溶性食物繊維とからなり、全食物繊維に対する水溶性食物繊維と不溶性食物繊維の割合(質量基準)が50:50以上10:90未満の範囲にあることを特徴とするこんにゃく粉末。 Contains 80 % by mass or more and less than 100% by mass of dietary fiber with respect to the whole powder (based on dry matter), and the dietary fiber consists of water-soluble dietary fiber and insoluble dietary fiber. A konjac powder characterized in that the ratio of fibers (based on mass) is in the range of 50:50 or more and less than 10:90. 全食物繊維に対する水溶性食物繊維と不溶性食物繊維の割合(質量基準)が40:60以上10:90未満の範囲にあることを特徴とする請求項11に記載のこんにゃく粉末。 The konjac powder according to claim 11, wherein the ratio (mass basis) of the water-soluble dietary fiber and the insoluble dietary fiber to the total dietary fiber is in the range of 40:60 or more and less than 10:90. 粉末全体(乾燥物基準)に対して食物繊維を90質量%以上含む請求項11または12に記載のこんにゃく粉末。 The konjac powder according to claim 11 or 12, which contains 90% by mass or more of dietary fiber with respect to the whole powder (based on dry matter). こんにゃく粉末の製造方法であって、
こんにゃく原料粉末と糖水酸化カルシウム水溶液を混合して、該こんにゃく原料粉末に含まれる粉末粒子に該糖水酸化カルシウム水溶液を供給する混合工程と、
前記糖水酸化カルシウム水溶液が供給された粉末粒子において該糖水酸化カルシウム水溶液の作用により不溶性食物繊維を形成して湿潤粉末を得る不溶性食物繊維形成工程と、
前記湿潤粉末またはその乾燥粉末を、5質量%〜60質量%の揮発性アルコールを含有するアルコール含有水からなる洗浄液で洗浄する工程と、
前記洗浄された湿潤粉末を湿式加圧粉砕して、湿潤粉砕物を得る工程と、
前記湿潤粉砕物を乾燥してこんにゃく粉末を得る工程と、
を有し、
前記混合工程及び前記不溶性食物繊維形成工程が、前記粉末粒子の粒子としての形態が維持された状態で行われる
ことを特徴とするこんにゃく粉末の製造方法。
It ’s a method of manufacturing konjac powder.
A mixing step of mixing the konjac raw material powder and the calcium sugar hydroxide aqueous solution and supplying the sugar hydroxide aqueous solution to the powder particles contained in the konjac raw material powder.
An insoluble dietary fiber forming step of forming an insoluble dietary fiber by the action of the calcium hydroxide aqueous solution in the powder particles supplied with the calcium sugar hydroxide aqueous solution to obtain a wet powder.
A step of washing the wet powder or a dry powder thereof with a washing liquid consisting of alcohol-containing water containing 5% by mass to 60% by mass of volatile alcohol.
The step of wet pressure pulverizing the washed wet powder to obtain a wet pulverized product, and
The step of drying the wet pulverized product to obtain konjac powder and
Have,
A method for producing konjac powder, wherein the mixing step and the insoluble dietary fiber forming step are carried out in a state where the morphology of the powder particles as particles is maintained.
前記こんにゃく粉末が、該こんにゃく粉末全体(乾燥物基準)に対して食物繊維を90質量%以上、100質量%未満含み、かつ不溶性食物繊維を全食物繊維に対して80質量%以上含む請求項14に記載のこんにゃく粉末の製造方法。 Claim 14 that the konjac powder contains 90% by mass or more and less than 100% by mass of dietary fiber with respect to the whole konjac powder (based on dry matter) and 80% by mass or more of insoluble dietary fiber with respect to the total dietary fiber. The method for producing konjac powder described in. 前記こんにゃく原料粉末に対して前記糖水酸化カルシウム水溶液を介して供給されるカルシウムの量が0.5〜1.0質量%の範囲から選択される請求項15に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to claim 15, wherein the amount of calcium supplied via the aqueous calcium sugar hydroxide solution to the konjac raw material powder is selected from the range of 0.5 to 1.0% by mass. 前記混合工程と前記不溶性食物繊維形成工程が同時に行われる請求項14乃至16のいずれか1項に記載のこんにゃく粉末の製造方法。 The method for producing konjac powder according to any one of claims 14 to 16, wherein the mixing step and the insoluble dietary fiber forming step are performed at the same time. 前記こんにゃく原料粉末に対する前記水酸化カルシウムの配合割合を変化させることにより、前記こんにゃく粉末に含まれる不溶性食物繊維の割合を制御する、請求項14乃至17のいずれか1項に記載のこんにゃく粉末の製造方法。 The production of the konjac powder according to any one of claims 14 to 17, wherein the ratio of the insoluble dietary fiber contained in the konjac powder is controlled by changing the mixing ratio of the calcium hydroxide with respect to the konjac raw material powder. Method.
JP2017121438A 2016-10-11 2017-06-21 Konjac powder and its manufacturing method Active JP6938238B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780061538.5A CN109788790B (en) 2016-10-11 2017-10-10 Konjak powder and its production method
PCT/JP2017/036680 WO2018070382A1 (en) 2016-10-11 2017-10-10 Konjac powder and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016200324 2016-10-11
JP2016200324 2016-10-11
JP2017080785 2017-04-14
JP2017080785 2017-04-14

Publications (2)

Publication Number Publication Date
JP2018164450A JP2018164450A (en) 2018-10-25
JP6938238B2 true JP6938238B2 (en) 2021-09-22

Family

ID=63921813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121438A Active JP6938238B2 (en) 2016-10-11 2017-06-21 Konjac powder and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6938238B2 (en)
CN (1) CN109788790B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025022A1 (en) * 2019-08-05 2021-02-11 オリヒロプランデュ株式会社 Modified konjac flour-containing physiologically active agent for oral administration

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499453A (en) * 1990-08-15 1992-03-31 Hitachi Kinzoku Estate:Kk Production of crush, paste and powder made from starch of devil's-tongue
JP2665655B2 (en) * 1994-10-03 1997-10-22 正直 舟木 Manufacturing method of konjac eliminating odor
JPH1075723A (en) * 1996-09-05 1998-03-24 Nakaki Shokuhin Kk Production of colored devil's tongue
JP3395966B2 (en) * 1999-08-06 2003-04-14 有限会社園工作所 Manufacturing method of granular or powdered dried konjac
JP2002101839A (en) * 2000-09-28 2002-04-09 Tsuruta Shokuhin Kogyo Kk Coagulant for devil's-tongue, material of devil's-tongue and method for producing devil's-tongue
US20030138545A1 (en) * 2002-01-22 2003-07-24 Guanggu Sun Glucomannan high fiber beverage
JP4457303B2 (en) * 2004-12-14 2010-04-28 清水化学株式会社 Method for producing glucomannan gel particles
JP2007104906A (en) * 2005-10-11 2007-04-26 Fuji Care Corporation:Kk Health food
JP2008118993A (en) * 2006-10-17 2008-05-29 Biitein Kenkyusho:Kk Method for producing bean curd konnyaku and bean curd refuse konnyaku enriched in protein
CN101854812B (en) * 2007-09-14 2014-04-23 Tic树胶公司 Super dispersible gums and powders and process for making the same
JP2010104307A (en) * 2008-10-31 2010-05-13 House Foods Corp Viscose fluid food
JP5669127B2 (en) * 2009-09-02 2015-02-12 伊那食品工業株式会社 Modified konjac flour, gelled product and food using the same
CN101869277B (en) * 2010-06-08 2012-09-05 福建农林大学 Konjac composite paste and preparation method thereof
JP6490361B2 (en) * 2014-08-01 2019-03-27 蒟蒻屋本舗株式会社 Applications of konjac fluid materials
JP6506551B2 (en) * 2014-12-26 2019-04-24 オリヒロプランデュ株式会社 Method of producing insoluble dietary fiber content
CN105341597B (en) * 2015-09-28 2017-12-22 武汉千汇德科技有限公司 A kind of beverage and preparation method rich in grain dietary fiber

Also Published As

Publication number Publication date
CN109788790B (en) 2023-03-28
JP2018164450A (en) 2018-10-25
CN109788790A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP4808960B2 (en) Microcrystalline cellulose composition
JP5192139B2 (en) Method for producing soybean super finely pulverized product
JP4896802B2 (en) Fucoidan manufacturing method
RU2242901C2 (en) Dry product to be reduced by aqueous liquids and method for producing the same
CN114025619A (en) Natural composite material derived from seaweed and method for producing the same
WO2018070382A1 (en) Konjac powder and production method therefor
JP6938238B2 (en) Konjac powder and its manufacturing method
JP4908434B2 (en) Granular granule and method for producing the same
JP2006230274A (en) Method for producing bean-curd refuse paste
CN105146503B (en) Enzymolysisization mushroom stems Ultramicro-powder and preparation method
JP7235498B2 (en) Method for producing konjac powder
JP2005073695A (en) Highly dispersible whey calcium composition and method for producing the same
WO2023231292A1 (en) Beet pulp all-component emulsifying thickener, preparation method therefor, and application thereof
JP2023098030A (en) Composition for promoting proliferation of akkermansia muciniphila comprising dietary fiber
JP2016123286A (en) Production method of insoluble dietary fiber-containing product
CN105725126B (en) Instant areca taro powder with health-care effect and preparation method thereof
JP7170143B2 (en) Thickening composition
WO2019168171A1 (en) Amorphophallus konjac powder and manufacturing method for same
JP3231276B2 (en) Chitosan composition and method for producing the same
JPS62295978A (en) Manufacture of water-soluble gelatin powder
JP6243374B2 (en) Alkaline coagulant for konjac production, konjac production method and konjac product
JP2004097147A (en) Method for producing rapidly soluble modified glucomannan
WO2018042630A1 (en) Alkaline coagulant for producing konjac, method for producing konjac and konjac product
JPH10212227A (en) Water-based pasty composition and its production
CN115399457A (en) Lotus root whole flour and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150