JP6937602B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6937602B2
JP6937602B2 JP2017081998A JP2017081998A JP6937602B2 JP 6937602 B2 JP6937602 B2 JP 6937602B2 JP 2017081998 A JP2017081998 A JP 2017081998A JP 2017081998 A JP2017081998 A JP 2017081998A JP 6937602 B2 JP6937602 B2 JP 6937602B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017081998A
Other languages
Japanese (ja)
Other versions
JP2018181695A (en
Inventor
栄二 關
栄二 關
尚貴 木村
尚貴 木村
祥晃 熊代
祥晃 熊代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2017081998A priority Critical patent/JP6937602B2/en
Publication of JP2018181695A publication Critical patent/JP2018181695A/en
Application granted granted Critical
Publication of JP6937602B2 publication Critical patent/JP6937602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.

近年、地球温暖化や枯渇燃料の問題から電気自動車(Electric Vehicle,EV)が各自動車メーカーで開発され、その電源として高エネルギー密度を有するリチウムイオン二次電池が求められている。 In recent years, electric vehicles (EVs) have been developed by various automobile manufacturers due to the problems of global warming and depleted fuels, and lithium ion secondary batteries having a high energy density are required as a power source for the electric vehicles.

リチウムイオン二次電池の高エネルギー密度化が期待できる負極活物質として、シリコン(Si)を含む活物質が期待されている。しかしながら、Siは充放電に伴う体積変化が大きい。このため、充放電に伴う活物質粒子間の導電ネットワークの破壊及び集電体からの負極合剤層の剥離によって、サイクル劣化が大きいという課題がある。 An active material containing silicon (Si) is expected as a negative electrode active material that can be expected to increase the energy density of a lithium ion secondary battery. However, Si has a large volume change with charging and discharging. Therefore, there is a problem that the cycle deterioration is large due to the destruction of the conductive network between the active material particles and the peeling of the negative electrode mixture layer from the current collector due to charging and discharging.

特許文献1には、負極と、正極と、セパレータと、を備え、上記負極は、ケイ素を含有するSi系負極活物質と、黒鉛と、負極バインダと、を含み、上記負極の放電容量Q(Ah/kg)と上記負極バインダ単体の破断強度A(MPa)と破断伸率B(%)とが所定の関係式を満たすリチウムイオン二次電池が開示されている。特許文献1によれば、初期容量及びサイクル特性に優れたリチウムイオン二次電池を得ることができるとされている。 Patent Document 1 includes a negative electrode, a positive electrode, and a separator, and the negative electrode includes a Si-based negative electrode active material containing silicon, graphite, and a negative electrode binder, and has a discharge capacity Q of the negative electrode. A lithium ion secondary battery is disclosed in which Ah / kg), the breaking strength A (MPa) of the negative electrode binder alone, and the breaking elongation B (%) satisfy a predetermined relational expression. According to Patent Document 1, it is possible to obtain a lithium ion secondary battery having excellent initial capacity and cycle characteristics.

特開2017−50203号公報JP-A-2017-50203

近年、リチウムイオン二次電池に対する高い性能の要求はますます高まっている。このため、上記特許文献1よりもさらに高いレベルで高容量及び高サイクル特性を両立するリチウムイオン二次電池の開発が望まれている。 In recent years, the demand for high performance of lithium-ion secondary batteries has been increasing more and more. Therefore, it is desired to develop a lithium ion secondary battery that has both high capacity and high cycle characteristics at a level higher than that of Patent Document 1.

本発明は、上記事情に鑑み、Siを含む負極活物質と、ポリイミド、ポリアミド又はポリアミドイミドをバインダとして含む負極を有するリチウムイオン二次電池において、高容量及び高サイクル特性を高いレベルで両立することができるリチウムイオン二次電池を提供することを目的とする。 In view of the above circumstances, the present invention achieves both high capacity and high cycle characteristics at a high level in a lithium ion secondary battery having a negative electrode active material containing Si and a negative electrode containing polyimide, polyamide or polyamide-imide as a binder. It is an object of the present invention to provide a lithium ion secondary battery capable of producing a lithium ion secondary battery.

本発明は、上記目的を達成するため、正極と、負極と、正極及び負極を仕切るセパレータと、を備えるリチウムイオン二次電池において、負極は、厚さが5μm以上15μm以下のCu箔からなる集電体と、集電体の表面に設けられた負極合剤層と、を有し、負極合剤層は、Siを含む負極活物質と天然黒鉛とを質量比で3:97〜40:60で混合し、ポリイミド、ポリアミド、ポリアミドイミド又はこれらの混合物を含むバインダと、を含み、Siを含む負極活物質がSi 1−X であり、MはAl、Ni、Cu、Fe、Ti、Mn、Oから選ばれる少なくとも1種であり、負極の放電容量Q(Ah/kg)と集電体の空孔率Y(%)が以下の式1を満たすように、集電体に貫通孔が設けられ、バインダの破断強度A(MPa)が、80MPa以上400MPa以下であり、貫通孔の径が、負極活物質の平均粒径(5μm)以上120μm以下であり、負極の放電容量Q(Ah/kg)が、400(Ah/kg)以上700(Ah/kg)以下であることを特徴とするリチウムイオン二次電池を提供する。
0.1Q−40≦Y≦50…式1
In order to achieve the above object, the present invention is a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode. The negative electrode is a collection of Cu foils having a thickness of 5 μm or more and 15 μm or less. It has an electric body and a negative electrode mixture layer provided on the surface of the current collector, and the negative electrode mixture layer is a mixture of a negative electrode active material containing Si and natural graphite in a mass ratio of 3: 97 to 40:60. The negative electrode active material containing Si , including a binder containing polyimide, polyamide, polyamideimide or a mixture thereof, is Si X M 1-X , where M is Al, Ni, Cu, Fe, Ti, It is at least one selected from Mn and O, and is a through hole in the current collector so that the discharge capacity Q (Ah / kg) of the negative electrode and the vacancy ratio Y (%) of the current collector satisfy the following formula 1. The breaking strength A (MPa) of the binder is 80 MPa or more and 400 MPa or less, the diameter of the through hole is the average particle size (5 μm) or more and 120 μm or less of the negative electrode active material, and the discharge capacity Q (Ah) of the negative electrode is provided. Provided is a lithium ion secondary battery characterized in that (/ kg) is 400 (Ah / kg) or more and 700 (Ah / kg) or less.
0.1 Q-40 ≤ Y ≤ 50 ... Equation 1

本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.

本発明によれば、Siを含む負極活物質及びポリイミド、ポリアミド又はポリアミドイミドをバインダとして含む負極を有するリチウムイオン二次電池において、高容量及び高サイクル特性を高いレベルで両立することができるリチウムイオン二次電池を提供することができる。 According to the present invention, in a lithium ion secondary battery having a negative electrode active material containing Si and a negative electrode containing polyimide, polyamide or polyamide-imide as a binder, lithium ions capable of achieving both high capacity and high cycle characteristics at a high level can be achieved. A secondary battery can be provided.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

従来のリチウムイオン二次電池の負極の一部を模式的に示す断面図(a)と、サイクル後の集電体の上面図(b)である。It is sectional drawing (a) which shows typically a part of the negative electrode of the conventional lithium ion secondary battery, and top view (b) of the current collector after a cycle. 本発明のリチウムイオン二次電池の負極の一部を模式的に示す断面図(a)と、サイクル後の集電体の上面図(b)である。It is sectional drawing (a) which shows typically a part of the negative electrode of the lithium ion secondary battery of this invention, and top view (b) of the current collector after a cycle. 本発明のリチウムイオン二次電池を構成する集電体の一例を模式的に示す上面図である。It is a top view which shows typically an example of the current collector which constitutes the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池を構成する集電体の他の例を模式的に示す上面図である。It is a top view schematically showing another example of the current collector which constitutes the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池(ラミネートセル)内部の積層型電極群の一例を示す分解図である。It is an exploded view which shows an example of the laminated electrode group inside the lithium ion secondary battery (laminate cell) of this invention. 本発明のリチウムイオン二次電池(ラミネートセル)の一例を示す分解図である。It is an exploded view which shows an example of the lithium ion secondary battery (laminate cell) of this invention. リチウムイオン二次電池の容量維持率と集電体の空孔率Yの関係を示すグラフである。It is a graph which shows the relationship between the capacity retention rate of a lithium ion secondary battery, and the porosity Y of a current collector. リチウムイオン二次電池の集電体の空孔率Yと負極の放電容量Qの関係を示すグラフである。It is a graph which shows the relationship between the porosity Y of the current collector of a lithium ion secondary battery, and the discharge capacity Q of a negative electrode.

[本発明の基本思想]
特許文献1において使用されているポリイミド、ポリアミド又はポリアミドイミド又はこれらの混合物からなるバインダ(以下、「ポリイミド系バインダ」と称する。)は、強度及び結着力が優れた樹脂であり、体積変化が大きいSiを含む負極活物質(以下、「Si系負極活物質」と称する。)を用いた場合であっても、集電体から負極合材層が剥離することを防ぐことができる。しかし、本発明者の検討の結果、ポリイミド系バインダを用いた場合に特有の課題が生じることがわかった。
[Basic Thought of the Present Invention]
The binder made of polyimide, polyamide or polyamideimide or a mixture thereof used in Patent Document 1 (hereinafter referred to as "polyimide-based binder") is a resin having excellent strength and binding force, and has a large volume change. Even when a negative electrode active material containing Si (hereinafter, referred to as “Si-based negative negative active material”) is used, it is possible to prevent the negative electrode mixture layer from peeling off from the current collector. However, as a result of the study by the present inventor, it has been found that a problem peculiar to the use of the polyimide-based binder arises.

図1は従来のリチウムイオン二次電池の負極の一部を模式的に示す断面図(a)と、サイクル後の集電体の上面図(b)である。図1の(a)に示すように、負極10´は、集電体1´と、集電体1´の表面に設けられた負極合剤層5´を有する。負極合剤層5´は、Si系負極活物質2´、黒鉛3´及びバインダ4´を含む。充放電時に膨張収縮の大きいSi系負極活物質2´を含む場合、負極活物質2´の膨張収縮に伴う負極合剤層5´の膨張収縮に伴い、集電体1´から負極合剤層5´が剥離する恐れがある。しかしながら、上述したように、バインダ4´としてポリイミド系バインダを用いた場合、その強度及び結着力が大きいことから集電体1´と負極合剤層5´との密着性が高くなるため、負極合剤層5´が膨張収縮しても、集電体1´から負極合剤層5´が剥離することを防ぐことができる。 FIG. 1 is a cross-sectional view (a) schematically showing a part of a negative electrode of a conventional lithium ion secondary battery, and a top view (b) of a current collector after a cycle. As shown in FIG. 1A, the negative electrode 10'has a current collector 1'and a negative electrode mixture layer 5'provided on the surface of the current collector 1'. The negative electrode mixture layer 5'contains Si-based negative electrode active material 2', graphite 3'and binder 4'. When a Si-based negative electrode active material 2'that has a large expansion and contraction during charging and discharging is contained, the negative electrode mixture layer 5'is expanded and contracted due to the expansion and contraction of the negative electrode active material 2', and the current collector 1'to the negative electrode mixture layer. 5'may peel off. However, as described above, when a polyimide-based binder is used as the binder 4', the adhesion between the current collector 1'and the negative electrode mixture layer 5'is high due to its high strength and binding force, so that the negative electrode is negative. Even if the mixture layer 5'expands and contracts, it is possible to prevent the negative electrode mixture layer 5'from peeling from the current collector 1'.

しかしながら、集電体1´と負極合剤層5´との密着性が高いがために、集電体1´が負極合剤層5´の膨張収縮に追従して集電体1´に応力がかかる。その結果、図1の(b)に示すように、集電体1´にシワ7が発生することがあることがわかった。このようなシワ7が多く生じると、サイクル特性低下の原因となり得る。 However, due to the high adhesion between the current collector 1'and the negative electrode mixture layer 5', the current collector 1'follows the expansion and contraction of the negative electrode mixture layer 5'and stresses the current collector 1'. It takes. As a result, as shown in FIG. 1B, it was found that wrinkles 7 may occur in the current collector 1'. If many such wrinkles 7 occur, it may cause a decrease in cycle characteristics.

本発明者は、鋭意検討の結果、負極活物質としてSi系負極活物質を用いた場合であっても、充放電後に集電体にシワがよらないリチウムイオン二次電池の構成を見出し、本発明を完成した。図2は本発明の負極の一部を模式的に示す断面図(a)と、サイクル後の集電体の上面図(b)である。図2の(a)に示すように、負極10は、集電体1と、集電体1の表面に設けられた負極合剤層5を有する。負極合剤層5は、Si系負極活物質2、黒鉛3及びバインダ4を含む。本発明は、負極の放電容量(Q)と集電体1の空孔率(%)とが、上述した式1を満たすように集電体1に貫通孔20が設けられている。このような構成とすることで、図2の(b)に示すように、Si系負極活物質2の膨張収縮に伴う集電体1のシワの発生を抑制することができるものである。 As a result of diligent studies, the present inventor has found a configuration of a lithium ion secondary battery in which the current collector does not wrinkle after charging and discharging even when a Si-based negative electrode active material is used as the negative electrode active material. The invention was completed. FIG. 2 is a cross-sectional view (a) schematically showing a part of the negative electrode of the present invention, and a top view (b) of the current collector after the cycle. As shown in FIG. 2A, the negative electrode 10 has a current collector 1 and a negative electrode mixture layer 5 provided on the surface of the current collector 1. The negative electrode mixture layer 5 contains a Si-based negative electrode active material 2, graphite 3, and a binder 4. In the present invention, the current collector 1 is provided with a through hole 20 so that the discharge capacity (Q) of the negative electrode and the porosity (%) of the current collector 1 satisfy the above-mentioned equation 1. With such a configuration, as shown in FIG. 2B, it is possible to suppress the occurrence of wrinkles in the current collector 1 due to expansion and contraction of the Si-based negative electrode active material 2.

図2の(b)に示すように、本発明のリチウムイオン二次電池においても集電体1の表面にシワ7は生じるが、図1の(b)に示す従来のリチウムイオン二次電池よりも大幅にシワが低減されていることがわかる。 As shown in FIG. 2B, the lithium ion secondary battery of the present invention also has wrinkles 7 on the surface of the current collector 1, but compared to the conventional lithium ion secondary battery shown in FIG. 1B. It can be seen that wrinkles are significantly reduced.

なお、本発明において、負極の放電容量Qの値によってはY=0の場合もあり得る。すなわち、この場合は貫通孔20を有していなくともよい。本発明は、Si系負極活物質及びポリイミド系バインダを含む負極を有するリチウムイオン二次電池において、高容量及び高サイクル特性を満たすための上記式1を見出したことに大きな意義があるものである。 In the present invention, Y = 0 may occur depending on the value of the discharge capacity Q of the negative electrode. That is, in this case, it is not necessary to have the through hole 20. It is of great significance that the present invention has found the above formula 1 for satisfying high capacity and high cycle characteristics in a lithium ion secondary battery having a negative electrode containing a Si-based negative electrode active material and a polyimide-based binder. ..

以下、本発明のリチウムイオン二次電池を構成する負極の構成について詳述する。 Hereinafter, the configuration of the negative electrode constituting the lithium ion secondary battery of the present invention will be described in detail.

(イ)集電体
上述したように、本発明は、集電体1に貫通孔20が設けられる場合がある。図3Aは本発明のリチウムイオン二次電池を構成する集電体の一例を模式的に示す上面図であり、図3Bは本発明のリチウムイオン二次電池を構成する集電体の他の例を模式的に示す上面図である。図3A及び3Bに示すように、集電体に設けられる貫通孔の形状は、円形でも四角形でもよい。さらに、四角形以外の多角形であってもよい。上記式1を満たしていれば、貫通孔20の形状はどのようなものであってもよい。製造の容易さ及び応力緩和の観点から、円形が最も好ましい。
(A) Current collector As described above, in the present invention, the current collector 1 may be provided with a through hole 20. FIG. 3A is a top view schematically showing an example of a current collector constituting the lithium ion secondary battery of the present invention, and FIG. 3B is another example of the current collector constituting the lithium ion secondary battery of the present invention. Is a top view schematically showing. As shown in FIGS. 3A and 3B, the shape of the through hole provided in the current collector may be circular or quadrangular. Further, it may be a polygon other than a quadrangle. The shape of the through hole 20 may be any shape as long as the above formula 1 is satisfied. From the viewpoint of ease of manufacture and stress relaxation, a circular shape is most preferable.

貫通孔20の径(図3Aではr、図3Bのような多角形の貫通孔であれば、内接円の径r´)は、後述するSi系負極活物質2の平均粒径以上120μm以下であることが好ましい。貫通孔20の径がSi系負極活物質2の平均粒径以上であると、貫通孔20を通じて、集電体1の表と裏の負極活物質2の粒子が接触することができ、導電ネットワークを保持できて好ましい。また、120μmより大きいと、後述する負極スラリーの塗工性が低下し、電池の製作性が低下する。また、集電体の厚さは5μm以上15μm以下が好ましい。5μm未満であると、集電体の強度を十分に保つことができず、サイクル特性が低下する。また、15μmより大きいと、本発明のシワ抑制効果が低減する。 The diameter of the through hole 20 (r in FIG. 3A, the diameter r'of the inscribed circle in the case of a polygonal through hole as shown in FIG. 3B) is 120 μm or more, which is equal to or more than the average particle size of the Si-based negative electrode active material 2 described later. Is preferable. When the diameter of the through hole 20 is equal to or larger than the average particle size of the Si-based negative electrode active material 2, the particles of the negative electrode active material 2 on the front and back surfaces of the current collector 1 can come into contact with each other through the through hole 20, and the conductive network. Can be retained, which is preferable. On the other hand, if it is larger than 120 μm, the coatability of the negative electrode slurry described later is lowered, and the manufacturability of the battery is lowered. The thickness of the current collector is preferably 5 μm or more and 15 μm or less. If it is less than 5 μm, the strength of the current collector cannot be sufficiently maintained, and the cycle characteristics are deteriorated. Further, when it is larger than 15 μm, the wrinkle suppressing effect of the present invention is reduced.

上述したように、本発明において、負極の放電容量Qと集電体1の空孔率Yは、式1の関係を満たす。空孔率Yが0.1Q−40よりも小さいと、集電体1にシワが発生し、サイクル特性が低下する。また、空孔率Yが0.1Q−40よりも大きいと、集電体1の強度が低下し、サイクル特性が低下する。 As described above, in the present invention, the discharge capacity Q of the negative electrode and the porosity Y of the current collector 1 satisfy the relationship of the formula 1. If the porosity Y is smaller than 0.1Q-40, wrinkles are generated in the current collector 1 and the cycle characteristics are deteriorated. Further, when the porosity Y is larger than 0.1Q-40, the strength of the current collector 1 is lowered and the cycle characteristics are lowered.

(ロ)負極活物質
本発明のリチウムイオン二次電池は、Si系負極活物質2を用いる。具体的には、Si合金及びSi酸化物等の材料を用いることができる。Si合金は、通常、金属ケイ素(Si)の微細な粒子が他の金属元素の各粒子中に分散された状態となっているか、または、他の金属元素がSiの各粒子中に分散された状態となっている。他の金属元素は、アルミニウム(Al)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、チタン(Ti)、マンガン(Mn)のいずれか1種類以上を含むものであれば、構わない。
(B) Negative electrode active material The lithium ion secondary battery of the present invention uses the Si-based negative electrode active material 2. Specifically, materials such as Si alloy and Si oxide can be used. Si alloys are usually in a state where fine particles of metallic silicon (Si) are dispersed in each particle of other metal elements, or other metal elements are dispersed in each particle of Si. It is in a state. The other metal element may contain any one or more of aluminum (Al), nickel (Ni), copper (Cu), iron (Fe), titanium (Ti), and manganese (Mn). ..

Si合金の作製方法は、メカニカルアロイ法により機械的に合成するか、または、Si粒子と他の金属元素との混合物を加熱し、冷却することで行うことができる。Si合金の組成は、Si:他の金属元素の原子比率が50:50〜90:10が望ましく、60:40〜80:20がより望ましい。Si合金としては、Si70Ti10Fe10Al10、Si70Al30、Si70Ni30、Si70Cu30、Si70Fe30、Si70Ti30、Si70Mn30、Si70Ti15Fe15、Si70Al10Ni20等を用いることもできる。 The method for producing a Si alloy can be carried out by mechanically synthesizing it by a mechanical alloy method or by heating and cooling a mixture of Si particles and other metal elements. The composition of the Si alloy preferably has an atomic ratio of Si: other metal elements of 50:50 to 90:10, more preferably 60:40 to 80:20. As Si alloys, Si 70 Ti 10 Fe 10 Al 10 , Si 70 Al 30 , Si 70 Ni 30 , Si 70 Cu 30 , Si 70 Fe 30 , Si 70 Ti 30 , Si 70 Mn 30 , Si 70 Ti 15 Fe 15 , Si 70 Al 10 Ni 20 and the like can also be used.

(ハ)黒鉛
導電助剤として用いる黒鉛3は、天然黒鉛及び人造黒鉛等の黒鉛質の材料を用いることができる。コストの観点からは天然黒鉛が望ましいが、表面を難黒鉛化炭素で被覆していてもかまわない。
(C) Graphite As the graphite 3 used as the conductive auxiliary agent, a graphite material such as natural graphite or artificial graphite can be used. Natural graphite is preferable from the viewpoint of cost, but the surface may be coated with non-graphitized carbon.

(ニ)バインダ
バインダ4としては、ポリイミド、ポリアミド、ポリアミドイミド又はこれらの混合物を用いる。さらに、ポリイミド系バインダに加えて、ポリフッ化ビニリデン(PVDF)やスチレンブタジエン共重合体(SBR)等の他のバインダを混合したバインダであってもよい。
(D) Binder As the binder 4, polyimide, polyamide, polyamideimide, or a mixture thereof is used. Further, in addition to the polyimide-based binder, the binder may be a mixture of other binders such as polyvinylidene fluoride (PVDF) and styrene-butadiene copolymer (SBR).

なお、ポリアミドイミドの厳密な定義は特に決まっておらず、ポリイミドとポリアミドイミドの混合物もポリアミドイミドと呼ばれている。以下の構造式1にポリアミドイミドの構造例を示す。 The strict definition of polyamide-imide has not been particularly determined, and a mixture of polyimide and polyamide-imide is also called polyamide-imide. A structural example of polyamide-imide is shown in Structural Formula 1 below.

Figure 0006937602
Figure 0006937602

上記構造式1のRは炭素数1〜18のアルキレン基、アリーレン基、ベンゼン等であり、窒素酸素、硫黄、ハロゲンを含んでも構わない。また、構造式1のR〜R10は水素、アルキル基又はアリール基である。R〜Rの炭素数を増やすことや、構造式1のnを増やしてポリマー量を変えること、つまり、イミド基を増やすことで、バインダの物性値(破断強度、破断伸率、靭性及び弾性率)を変化させることができる。なお、構造式(1)において中央部の環構造は、ベンゼン環その他の不飽和環でもよい。 R 1 of the above structural formula 1 is an alkylene group having 1 to 18 carbon atoms, an arylene group, benzene or the like, and may contain nitrogen oxygen, sulfur, halogen and the like. Further, R 2 to R 10 of the structural formula 1 are hydrogen, alkyl group or aryl group. By increasing the number of carbon atoms of R 1 to R 3 and increasing the n of structural formula 1 to change the amount of polymer, that is, by increasing the number of imide groups, the physical property values of the binder (break strength, break elongation, toughness and Elastic modulus) can be changed. In the structural formula (1), the ring structure at the center may be a benzene ring or another unsaturated ring.

バインダの破断強度Aは、80〜400MPaであることが好ましい。バインダの破断強度が80MPa未満であると、Si負極活物質の体積変化による負極合剤層の剥離が生じてサイクル特性低下が大きくなる。また、バインダの破断強度Aが400MPaを超えると、バインダ中のイミド基の量を増やすことになるため、負極バインダ中のイミド基にリチウム(Li)がトラップされて負極の不可逆容量となり、負極の放電容量Qが低くなる。 The breaking strength A of the binder is preferably 80 to 400 MPa. If the breaking strength of the binder is less than 80 MPa, the negative electrode mixture layer is peeled off due to the volume change of the Si negative electrode active material, and the cycle characteristics are greatly deteriorated. Further, when the breaking strength A of the binder exceeds 400 MPa, the amount of imide groups in the binder is increased, so that lithium (Li) is trapped in the imide groups in the negative electrode binder, resulting in an irreversible capacity of the negative electrode, and the negative electrode becomes irreversible. The discharge capacity Q becomes low.

また、負極の放電容量Qと、負極合剤層5を構成するバインダ4の破断強度A(MPa)と破断伸度B(%)が、以下の式2の関係を満たすことが好ましい。
Q≦A×B÷10≦3×Q…式2
式2中、バインダの靭性を示す「A×B÷10」の値がQよりも小さいと、バインダによる負極合剤層5の剥離抑制効果が低くなる。また、「A×B÷10」の値が3×Qよりも大きいと、バインダ中のバインダ中のイミド基の量を増やすことになるため、負極バインダ中のイミド基にLiがトラップされ、負極の不可逆容量となり、負極の放電容量が低くなる。
Further, it is preferable that the discharge capacity Q of the negative electrode, the breaking strength A (MPa) and the breaking elongation B (%) of the binder 4 constituting the negative electrode mixture layer 5 satisfy the relationship of the following formula 2.
Q ≦ A × B ÷ 10 ≦ 3 × Q ... Equation 2
In Equation 2, when the value of “A × B ÷ 10” indicating the toughness of the binder is smaller than Q, the effect of the binder on suppressing the peeling of the negative electrode mixture layer 5 is low. Further, if the value of "A × B ÷ 10" is larger than 3 × Q, the amount of imide groups in the binder in the binder is increased, so Li is trapped in the imide groups in the negative electrode binder and the negative electrode is negative. The irreversible capacity of the negative electrode becomes low, and the discharge capacity of the negative electrode becomes low.

(ホ)負極合剤層
負極合剤層5の膨張率は、110%超150%未満であることが好ましい。膨張率が110%以下であると、集電体1のシワ抑制効果が低下する。また、膨張率が150%以上であると、集電体1の空孔率Yを50%以上にする必要があり、集電体1の強度が低下してサイクル特性が低下する。
(E) Negative electrode mixture layer The expansion coefficient of the negative electrode mixture layer 5 is preferably more than 110% and less than 150%. When the expansion coefficient is 110% or less, the wrinkle suppressing effect of the current collector 1 is reduced. Further, when the expansion coefficient is 150% or more, the porosity Y of the current collector 1 needs to be 50% or more, the strength of the current collector 1 is lowered, and the cycle characteristics are lowered.

次に、実際にリチウムイオン二次電池を作製する手順について説明しながら、リチウムイオン二次電池の負極以外の構成についても詳述する。 Next, while explaining the procedure for actually manufacturing the lithium ion secondary battery, the configuration of the lithium ion secondary battery other than the negative electrode will be described in detail.

1.実施例1〜20、参考例1〜3及び比較例1〜17のリチウムイオン二次電池の作製
(1.1)負極の構成
集電体の空孔率Y(%)及び貫通孔径r(μm)を変えたCu箔(厚さ10μm)からなる集電体1を用意した。実施例1〜20、参考例1〜3及び比較例1〜17のリチウムイオン二次電池を構成する集電体の構成を後述する表1に記載する。集電体の空孔率Yは、Cuの比重と集電体の体積の積から、実際の集電体の重量を引いて、それを比重と集電体の体積の積で商して算出した。
1. 1. Preparation of Lithium Ion Secondary Batteries of Examples 1 to 20, Reference Examples 1 to 3 and Comparative Examples 1 to 17 (1.1) Negative electrode configuration Pore ratio Y (%) and through hole diameter r (μm) of the current collector ) Was changed, and a current collector 1 made of Cu foil (thickness 10 μm) was prepared. The configurations of the current collectors constituting the lithium ion secondary batteries of Examples 1 to 20, Reference Examples 1 to 3 and Comparative Examples 1 to 17 are shown in Table 1 described later. The porosity Y of the current collector is calculated by subtracting the actual weight of the current collector from the product of the specific gravity of Cu and the volume of the current collector, and quoting it by the product of the specific gravity and the volume of the current collector. bottom.

負極合剤層を構成するSi系負極活物として、メカニカルアロイ法を用いて合成したSi合金(Si70Ti30)と、黒鉛として、天然黒鉛を用い、これらを質量比で3:97〜40:60で混合した。具体的には、実施例1〜6は3:97、実施例7〜11及び比較例1〜2は20:80、実施例12〜15、比較例3〜5及び比較例17〜19は30:70、実施例16〜18及び比較例6〜9は40:60、比較例10〜16は50:50で作製した。この黒鉛の結晶性は、d002が3.356Å以下、Lc(002)が1000Å以上、La(110)が1000Å以上である。なお、ここで「d002」とは、黒鉛の結晶の(002)面の面間隔距離(X線回折装置で測定)を意味し、「Lc(002)」は、黒鉛の002回折線(X線回折装置で測定)から求めた結晶子径(結晶子のc軸方向の厚み)を意味し、「La(110)」は黒鉛の110回折線(X線回折装置で測定)から求めた結晶子径(結晶子のa軸方向の幅)を意味するものとする。Si合金及び天然黒鉛のレーザー回折法に測定された平均粒径D50は、それぞれ5μmである。 Si alloy (Si 70 Ti 30 ) synthesized by the mechanical alloy method and natural graphite as graphite are used as the Si-based negative electrode active material constituting the negative electrode mixture layer, and these are used in a mass ratio of 3: 97 to 40. It was mixed at 60. Specifically, Examples 1 to 6 are 3:97, Examples 7 to 11 and Comparative Examples 1 and 2 are 20:80, Examples 12 to 15, Comparative Examples 3 to 5 and Comparative Examples 17 to 19 are 30. : 70, Examples 16 to 18 and Comparative Examples 6 to 9 were prepared at 40:60, and Comparative Examples 10 to 16 were prepared at 50:50. The crystallinity of this graphite is 3.356 Å or less for d002, 1000 Å or more for Lc (002), and 1000 Å or more for La (110). Here, "d002" means the interplanar spacing distance (measured by an X-ray diffractometer) of the (002) plane of the graphite crystal, and "Lc (002)" is the 002 diffraction line (X-ray) of graphite. It means the crystallite diameter (thickness of the crystallite in the c-axis direction) obtained from (measured by a diffractometer), and "La (110)" is a crystallite obtained from 110 diffraction lines of graphite (measured by an X-ray diffractometer). It shall mean the diameter (width of the crystallite in the a-axis direction). The average particle size D 50 measured by the laser diffraction method of Si alloy and natural graphite is 5 μm, respectively.

バインダは、ポリアミドイミドを用いた。上述した構造式1のR1〜3の炭素数又はnの数を調整して、物性値(破断強度A及び破断伸率B)を変えたバインダを用意した。バインダの破断強度は、引張試験機(株式会社島津製作所製、オートグラフAG−Xplus)を用いて、速度0.2m/分で引張り、バインダ4が破断したときの強度として、以下の式3から算出した。
A=(引張荷重)÷(負極バインダ片の断面積)…式3
また、バインダの破断伸率(%)は、上述した引張試験機を用いて、速度0.2m/分で引張り、負極バインダが破断したときの伸率として、以下の式4から算出した。
B=100×{(引張後の負極バインダ片の長さ−引張前の負極バインダ片の長さ)}÷(引張前の負極バインダ片の長さ)…式4
なお、試験片の寸法は3cm×3cmで、測定温度は25℃である。
Polyamideimide was used as the binder. A binder having different physical property values (break strength A and break elongation B) was prepared by adjusting the number of carbon atoms or the number of n of R 1 to 3 of the above-mentioned structural formula 1. The breaking strength of the binder is calculated from the following formula 3 as the strength when the binder 4 is broken by pulling at a speed of 0.2 m / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AG-Xplus). Calculated.
A = (tensile load) ÷ (cross-sectional area of negative electrode binder piece) ... Equation 3
The breaking elongation (%) of the binder was calculated from the following formula 4 as the elongation at break when the negative electrode binder was pulled by pulling at a speed of 0.2 m / min using the above-mentioned tensile tester.
B = 100 × {(length of negative electrode binder piece after tension-length of negative electrode binder piece before tension)} ÷ (length of negative electrode binder piece before tension) ... Equation 4
The dimensions of the test piece are 3 cm × 3 cm, and the measurement temperature is 25 ° C.

実施例1〜20、参考例1〜3及び比較例1〜17の負極のバインダの物性値(破断強度A、破断伸率B及び靭性「A×B÷10」)を表1に併記する。 Table 1 also shows the physical property values (breaking strength A, breaking elongation B and toughness “A × B ÷ 10”) of the negative electrode binders of Examples 1 to 20, Reference Examples 1 to 3 and Comparative Examples 1 to 17.

Figure 0006937602
Figure 0006937602

負極は、上述した負極活物質及びバインダを含む負極合剤層のスラリー(負極スラリー)を作製後、集電体の上に塗工し、プレスすることで作製した。負極スラリーは、上述した負極活物質とバインダ以外に、アセチレンブラックを導電材として添加した。その質量比率が、順に92:5:3となるように配合し、粘度が6000〜8000mPaとなるようにNMP(N−methylpyrrolidone)溶媒を混合しながら、スラリーを作製した。今回溶媒にNMPを用いたが、水や2−ブトキシエタノール、ブチルセロソルブ、N,N−ジメチルアセトアミド、ジエチレングリコールジエチルエーテル等であっても構わないし、これらの混合物であってもかまわない。スラリー作製は、プラネタリミキサを用いた。 The negative electrode was prepared by preparing a slurry (negative electrode slurry) of the negative electrode mixture layer containing the above-mentioned negative electrode active material and binder, coating the slurry on the current collector, and pressing the slurry. In the negative electrode slurry, acetylene black was added as a conductive material in addition to the negative electrode active material and the binder described above. The slurry was prepared so that the mass ratio was 92: 5: 3 in order, and the NMP (N-methylpyrrolidone) solvent was mixed so that the viscosity was 6000 to 8000 mPa. Although NMP was used as the solvent this time, water, 2-butoxyethanol, butyl cellosolve, N, N-dimethylacetamide, diethylene glycol diethyl ether and the like may be used, or a mixture thereof may be used. A planetary mixer was used to prepare the slurry.

得られた負極スラリーを用いて、集電体1上に卓上コンマコータで塗工した。塗工量は11g/mとなるように作製した。乾燥炉を通して90℃1次乾燥した。そして、塗工した負極をロールプレスで密度を調整した。なお、密度は、電極の空孔が20〜40%程度となるように、プレスし、負極は密度1.9g/cmで作製した。その後、300℃でポリアミドイミドを1時間、真空で熱硬化させた。なお、窒素中であってもかまわないし、樹脂の硬化時間は問われない。 Using the obtained negative electrode slurry, the current collector 1 was coated with a desktop comma coater. The coating amount was 11 g / m 2 . It was first dried at 90 ° C. through a drying oven. Then, the density of the coated negative electrode was adjusted by a roll press. The density was pressed so that the pores of the electrodes were about 20 to 40%, and the negative electrode was prepared at a density of 1.9 g / cm 3. Then, the polyamide-imide was heat-cured in vacuum at 300 ° C. for 1 hour. It does not matter whether it is in nitrogen or the curing time of the resin.

(1.2)セパレータ及び電解液の構成
セパレータとしては、熱収縮によりリチウムイオンを通さなくなる材料であれば、問わない。例えば、ポリオレフィン等が用いられる。ポリオレフィンは、主にポリエチレン、ポリプロピレン等を少なくとも1種類を含むことを特徴とするが、ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリアクリロニトリル等の耐熱性樹脂を含んでもかまわない。
(1.2) Composition of Separator and Electrolyte The separator may be a material that does not allow lithium ions to pass through due to heat shrinkage. For example, polyolefin and the like are used. The polyolefin is characterized by containing at least one kind mainly of polyethylene, polypropylene and the like, but may also contain a heat-resistant resin such as polyamide, polyamideimide, polyimide, polysulfone, polyethersulfone, polyphenylsulfone and polyacrylonitrile. No.

また、無機フィラー層を片面もしくは両面に塗っていてもかまわない。無機フィラー層は、SiO、Al、モンモリロナイト、雲母、ZnO、TiO、BaTiO及びZrOの少なくとも1種類を含むもの等が好ましいが、コストや性能の観点から、SiOまたはAlが最も好ましい。本実施例ではポリプロピレンの間にポリエチレンを有する3層膜(厚さ25μm)のものを用いた。 Further, the inorganic filler layer may be applied to one side or both sides. The inorganic filler layer preferably contains at least one of SiO 2 , Al 2 O 3 , montmorillonite, mica, ZnO, TiO 2 , BaTiO 3 and ZrO 2 , but from the viewpoint of cost and performance, SiO 2 or Al 2 O 3 is most preferable. In this example, a three-layer film (thickness 25 μm) having polyethylene between polypropylene was used.

電解液には1MLiPFの電解質を用い、EC:EMC=1:3vol%の溶媒に溶かしたものを用いた。この他、電解液としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、メチルアセテート、エチルアセテート、メチルプロピオネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、3−メチルテトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン、2−メチル−1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等より少なくとも1種以上選ばれた非水溶媒に、LiPF、LiBF、LiClO、LiN(CSO等より少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液、リチウムイオンの伝導性を有する固体電解質、ゲル状電解質又は溶融塩電池等で使用される既知の電解質を用いることができる。 An electrolyte of 1MLiPF 6 was used as the electrolytic solution, and one dissolved in a solvent of EC: EMC = 1: 3 vol% was used. Other electrolytes include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, 2-Methyltetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 2) are added to a non-aqueous solvent selected from at least one of 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane and the like. ) It is possible to use an organic electrolyte solution in which at least one or more lithium salts selected from the second grade are dissolved, a solid electrolyte having lithium ion conductivity, a gel electrolyte, a known electrolyte used in a molten salt battery, or the like. can.

(1.3)正極の構成
正極は、アルミニウム箔からなる正極集電箔の表面に、正極合剤層が形成されている。正極合剤層には、正極活物質としてLiNi1/3Mn1/3Co1/3、導電助剤として炭素材料及びバインダとしてPVDFを用いた。その質量比率は、順に、90:5:5で作製し、合剤塗工量は240g/mで作製した。アルミニウム箔への正極活物質合剤の塗工時には、NMPの分散溶媒で粘度調整した。塗工後の正極は、120℃で乾燥した後、ロールプレスで密度を調整し、本実施例において密度は3.0g/cmで作製した。
(1.3) Structure of Positive Electrode The positive electrode has a positive electrode mixture layer formed on the surface of a positive electrode current collector foil made of aluminum foil. For the positive electrode mixture layer, LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as the positive electrode active material, carbon material was used as the conductive auxiliary agent, and PVDF was used as the binder. The mass ratio was sequentially prepared at 90: 5: 5, and the mixture coating amount was 240 g / m 2 . When the positive electrode active material mixture was applied to the aluminum foil, the viscosity was adjusted with a dispersion solvent of NMP. The positive electrode after coating was dried at 120 ° C., and then the density was adjusted by a roll press to prepare the positive electrode at a density of 3.0 g / cm 3 in this example.

(1.4)リチウムイオン二次電池の構成
上述した負極、セパレータ、電解液及び正極を用いて、積層型のラミネートセルを構成する積層型電極群を作製した。図4は本発明のリチウムイオン二次電池(ラミネートセル)内部の積層型電極群の一例を示す分解図である。図4に示すように、積層型電極群40は、板状の正極45と、帯状の負極46とが、セパレータ47に挟まれて積層されている。なお、作製した正極と負極は、加工の際に、箔の一部に活物質合剤の塗工されない未塗工部をそれぞれ形成した。正極未塗工部43および負極未塗工部44は、それぞれ束ねて、電池内外を電気的に接続する正極端子41,負極端子42に超音波溶接されている。溶接方法は、抵抗溶接等他の溶接手法であってもかまわない。なお、正極端子41、負極端子42は電池内外の封止性をより高めるために、あらかじめ熱溶着樹脂を端子の封止箇所に塗布し、又は取付けていてもかまわない。
(1.4) Configuration of Lithium Ion Secondary Battery Using the negative electrode, separator, electrolytic solution and positive electrode described above, a laminated electrode group constituting a laminated laminated cell was produced. FIG. 4 is an exploded view showing an example of a laminated electrode group inside the lithium ion secondary battery (laminated cell) of the present invention. As shown in FIG. 4, in the laminated electrode group 40, a plate-shaped positive electrode 45 and a band-shaped negative electrode 46 are laminated with the separator 47 sandwiched between them. In the prepared positive electrode and negative electrode, an uncoated portion in which the active material mixture was not applied was formed on a part of the foil during processing. The positive electrode uncoated portion 43 and the negative electrode uncoated portion 44 are bundled and ultrasonically welded to the positive electrode terminal 41 and the negative electrode terminal 42 that electrically connect the inside and outside of the battery, respectively. The welding method may be another welding method such as resistance welding. The positive electrode terminal 41 and the negative electrode terminal 42 may be previously coated with a heat-welded resin or attached to the sealing portion of the terminal in order to further improve the sealing performance inside and outside the battery.

図5は本発明のリチウムイオン二次電池(ラミネートセル)の一例を示す分解図である。ラミネートセル50は、電極群52をラミネートフィルム51,53の周縁部を175℃で10秒間熱溶着封止させ電気的に絶縁した状態とし、正極端子41と負極端子42を貫通させることにより作製した。封止は、注液口を設けるために、一辺以外をはじめに熱溶着させ、電解液を注液した後に、残りの一辺を真空加圧しながら、熱溶着封止させた。 FIG. 5 is an exploded view showing an example of the lithium ion secondary battery (laminated cell) of the present invention. The laminate cell 50 was produced by heat-welding and sealing the peripheral portions of the laminate films 51 and 53 at 175 ° C. for 10 seconds to electrically insulate the electrode group 52, and penetrating the positive electrode terminal 41 and the negative electrode terminal 42. .. For sealing, in order to provide a liquid injection port, heat welding was performed first on all sides except one side, and after the electrolytic solution was injected, the remaining side was heat welded and sealed while vacuum pressurizing the remaining side.

2.実施例1〜20、参考例1〜3及び比較例1〜17の負極及びリチウムイオン二次電池の評価
(2.1)放電容量評価
作製した負極について、φ16mmのサイズに加工し、セパレータを挟み、対極をLiとした単極式小型セル(単極式電池)を作製し、負極の放電容量Qを測定した。充放電条件は、下限電圧5mVまで0.2CAで定電流充電と2hの定電圧充電を行い、上限電圧2.0Vまで、0.2CAで定電流放電させた際の放電容量を負極の放電容量とした。
2. Evaluation of Negative Electrodes and Lithium Ion Secondary Batteries of Examples 1 to 20, Reference Examples 1 to 3 and Comparative Examples 1 to 17 (2.1) Discharge Capacity Evaluation The produced negative electrode is processed to a size of φ16 mm, and a separator is sandwiched between them. , A single-pole small cell (single-pole battery) having a counter electrode of Li was prepared, and the discharge capacity Q of the negative electrode was measured. The charge / discharge conditions are the discharge capacity of the negative electrode when constant current charging and 2h constant voltage charging are performed at 0.2 CA up to the lower limit voltage of 5 mV and constant current discharge is performed at 0.2 CA up to the upper limit voltage of 2.0 V. And said.

ここで、1CAは、1時間で電池容量の充電又は放電が終了する電流値であり、0.2CAは、5時間で電池容量の充電又は放電が終了する電流値である。0.2CAの場合、負極の厚さの影響を無視することができる。 Here, 1CA is a current value at which charging or discharging of the battery capacity is completed in 1 hour, and 0.2CA is a current value at which charging or discharging of the battery capacity is completed in 5 hours. In the case of 0.2CA, the influence of the thickness of the negative electrode can be ignored.

実施例1〜20、参考例1〜3及び比較例1〜17の負極の設計容量(Ah/kg)と、測定した負極の放電容量Q(Ah/kg)の値を後述する表2に記載する。 The design capacity (Ah / kg) of the negative electrodes of Examples 1 to 20, Reference Examples 1 to 3 and Comparative Examples 1 to 17 and the measured discharge capacity Q (Ah / kg) of the negative electrode are shown in Table 2 described later. do.

また、実施例1〜20、参考例1〜3及び比較例1〜17について、式1,式2を満たすものをそれぞれ「〇」と評価し、式1,式2を満たさないものをそれぞれ「×」と評価した。評価結果を表2に併記する。 Further, regarding Examples 1 to 20, Reference Examples 1 to 3, and Comparative Examples 1 to 17, those satisfying Equations 1 and 2 are evaluated as "○", and those satisfying Equations 1 and 2 are evaluated as "○", respectively. × ”was evaluated. The evaluation results are also shown in Table 2.

(2.2)サイクル特性評価
作製したラミネートセルを用いて、電圧4.2V、電流0.5CAの定電流充電を行った後、2時間の定電圧充電を行った。放電は、電圧2V、電流0.5CAで定電流放電を行い、これらを100回繰り返し、1回目の放電容量に対する100回目の放電容量の比率をラミネートセルの100サイクル後の容量維持率とした。実施例1〜20、参考例1〜3及び比較例1〜17の容量維持率を表2に併記する。
(2.2) Evaluation of Cycle Characteristics Using the produced laminated cell, constant current charging with a voltage of 4.2 V and a current of 0.5 CA was performed, and then constant voltage charging was performed for 2 hours. For discharge, constant current discharge was performed at a voltage of 2 V and a current of 0.5 CA, and these were repeated 100 times, and the ratio of the 100th discharge capacity to the 1st discharge capacity was defined as the capacity retention rate after 100 cycles of the laminated cell. Table 2 also shows the capacity retention rates of Examples 1 to 20, Reference Examples 1 to 3, and Comparative Examples 1 to 17.

Figure 0006937602
Figure 0006937602

図6はリチウムイオン二次電池の容量維持率と集電体の空孔率Yの関係を示すグラフである。図6は、実施例1〜6(負極の放電容量Q:400Ah/kg)、実施例7〜11及び比較例1〜2(負極の放電容量Q:500Ah/kg)、実施例12〜15及び比較例3〜5(負極の放電容量Q:600Ah/kg)、実施例16〜18及び比較例6〜9(負極の放電容量Q:700Ah/kg)及び比較例10〜16(負極の放電容量Q:800Ah/kg)の放電容量Qと空孔率Yをプロットしたグラフである。 FIG. 6 is a graph showing the relationship between the capacity retention rate of the lithium ion secondary battery and the porosity Y of the current collector. 6 shows Examples 1 to 6 (negative electrode discharge capacity Q: 400 Ah / kg), Examples 7 to 11 and Comparative Examples 1 to 2 (negative electrode discharge capacity Q: 500 Ah / kg), Examples 12 to 15 and. Comparative Examples 3 to 5 (negative electrode discharge capacity Q: 600 Ah / kg), Examples 16 to 18 and Comparative Examples 6 to 9 (negative electrode discharge capacity Q: 700 Ah / kg) and Comparative Examples 10 to 16 (negative electrode discharge capacity). It is the graph which plotted the discharge capacity Q and the vacancy ratio Y of Q: 800Ah / kg).

図6に示すように、容量維持率と空孔率Yの関係は、負極の放電容量Qによって変わることがわかる。負極の放電容量Qが400Ah/kgの場合、空孔率Yが0〜50%の間で、90%程度の高い容量維持率を示している。負極の放電容量Qが500Ah/kgの場合、空孔率Yが10〜50%のときに(図6の領域(I))90%程度の高い容量維持率となる。負極の放電容量Qが600Ah/kgの場合、空孔率Yが20〜50%のときに(図6の領域(II))80%以上の高い容量維持率となる。負極の放電容量Qが700Ah/kgの場合、空孔率Yが30〜50%のときに(図6の領域(III))76%以上の高い容量維持率となる。
As shown in FIG. 6, it can be seen that the relationship between the capacity retention rate and the porosity Y changes depending on the discharge capacity Q of the negative electrode. When the discharge capacity Q of the negative electrode is 400 Ah / kg, the porosity Y shows a high capacity retention rate of about 90% between 0 and 50%. When the discharge capacity Q of the negative electrode is 500 Ah / kg, when the porosity Y is 10 to 50% (region (I) in FIG. 6), a high capacity retention rate of about 90% is obtained. When the discharge capacity Q of the negative electrode is 600 Ah / kg, when the porosity Y is 20 to 50% (region (II) in FIG. 6), a high capacity retention rate of 80% or more is obtained. When the discharge capacity Q of the negative electrode is 700 Ah / kg, when the porosity Y is 30 to 50% (region (III) in FIG. 6), a high capacity retention rate of 76% or more is obtained.

図7はリチウムイオン二次電池の集電体の空孔率Yと負極の容量Qの関係を示すグラフである。図7は、高いサイクル特性を有する実施例1〜18のデータをプロットしている。このグラフから、高サイクル特性を実現するためのYとQの関係を示す式1(0.1Q−40≦Y≦50)を求めることができる。すなわち、式1を満たす実施例1〜18は、高容量及び高サイクル特性を両立することができることがわかる。 FIG. 7 is a graph showing the relationship between the porosity Y of the current collector of the lithium ion secondary battery and the capacity Q of the negative electrode. FIG. 7 plots the data of Examples 1-18 with high cycle characteristics. From this graph, Equation 1 (0.1Q-40 ≦ Y ≦ 50) showing the relationship between Y and Q for realizing high cycle characteristics can be obtained. That is, it can be seen that Examples 1 to 18 satisfying the formula 1 can achieve both high capacity and high cycle characteristics.

実施例14、実施例19及び実施例20の比較から、貫通孔径rがSi系負極活物質の平均粒径(5μm)以上120μm以下であれば、高容量及び高サイクル特性を両立することができることがわかった。 From the comparison of Example 14, Example 19 and Example 20, if the through-hole diameter r is equal to or more than the average particle size (5 μm) of the Si-based negative electrode active material and 120 μm or less, both high capacity and high cycle characteristics can be achieved. I understood.

一方、比較例1〜17は、放電容量Qについては設計容量通りとなっているが、式1を満たしていないため、同じ放電容量Qの実施例と比較してサイクル特性が低くなっている。Y<0.1Q−40の集電体はシワを抑制できず、一方、Yが50%より大きい場合は集電体の強度が低下し、サイクル特性が低下しているものと考察される。 On the other hand, in Comparative Examples 1 to 17, the discharge capacity Q is the same as the design capacity, but since the equation 1 is not satisfied, the cycle characteristics are lower than those of the examples having the same discharge capacity Q. It is considered that the current collector with Y <0.1Q-40 cannot suppress wrinkles, while when Y is larger than 50%, the strength of the current collector is lowered and the cycle characteristics are lowered.

比較例17は集電体1の貫通孔の径が130μmであり、塗工時にスラリーが落ちてしまい、塗工することができなかった。 In Comparative Example 17, the diameter of the through hole of the current collector 1 was 130 μm, and the slurry fell off during coating, so that coating could not be performed.

参考例1は、式1を満たしているが、バインダの破断強度Aが好ましい範囲である80〜400MPaの範囲外(80MPa未満)であり、かつ、式2を満たしていない。このため、サイクル特性が低下している。 Reference Example 1 satisfies the formula 1, but the breaking strength A of the binder is outside the preferable range of 80 to 400 MPa (less than 80 MPa) and does not satisfy the formula 2. Therefore, the cycle characteristics are deteriorated.

参考例2は、式1を満たし、高いサイクル特性を示しているが、放電容量Qが設計容量より低下している。これは、バインダの破断強度Aが好ましい範囲である80〜400MPaの範囲外(400MPaより大きい)であり、かつ、式2を満たさないために、つまりバインダ中のイミド基の量が多いために、負極バインダ中のイミド基にLiがトラップされ、負極の不可逆容量となり、負極の放電容量が低くなっているものと考えられる。 Reference Example 2 satisfies Equation 1 and shows high cycle characteristics, but the discharge capacity Q is lower than the design capacity. This is because the breaking strength A of the binder is outside the preferable range of 80 to 400 MPa (greater than 400 MPa) and the formula 2 is not satisfied, that is, because the amount of imide groups in the binder is large. It is considered that Li is trapped in the imide group in the negative electrode binder, the negative electrode has an irreversible capacity, and the discharge capacity of the negative electrode is low.

参考例3は、式1及び式2ともに満たしているが、サイクル特性が低い。これは、参考例3は貫通孔の径が負極活物質の平均粒径5μmより小さく、集電体への応力を緩和できず、サイクル特性が低下したものと考えられる。 Reference Example 3 satisfies both Equation 1 and Equation 2, but has low cycle characteristics. It is considered that in Reference Example 3, the diameter of the through hole was smaller than the average particle size of the negative electrode active material of 5 μm, the stress on the current collector could not be relaxed, and the cycle characteristics were deteriorated.

以上、説明したように、本発明によれば、Siを含む負極活物質と、ポリイミド、ポリアミド又はポリアミドイミドをバインダとして備えるリチウムイオン二次電池において、高容量及び高サイクル特性を高いレベルで両立することができるリチウムイオン二次電池を提供することができることが実証された。 As described above, according to the present invention, in a lithium ion secondary battery including a negative electrode active material containing Si and a polyimide, polyamide or polyamide-imide as a binder, both high capacity and high cycle characteristics are compatible at a high level. It has been demonstrated that a lithium ion secondary battery capable of being capable of being provided can be provided.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

例えば、本実施例では。リチウムイオン二次電池として積層型のラミネートセルを作製しているが、他捲回構造であっても金属缶に封入されたものであっても同様の効果が得られる。 For example, in this embodiment. Although a laminated type laminated cell is manufactured as a lithium ion secondary battery, the same effect can be obtained regardless of whether the battery has a wound structure or is enclosed in a metal can.

1,1a、1b,1´…集電体、2,2´…負極活物質。3,3´…黒鉛、4,4´…バインダ、5,5´…負極合剤層、7,7´…集電体のシワ、10,10´…負極、20,20a,20b…貫通孔、40…積層型電極群、41…正極端子、42…負極端子、43…正極未塗工部、44…負極未塗工部、45…正極、46…負極、47…セパレータ、50…ラミネートセル、51…ラミネートフィルム(ケース側)、52…電極群、53…ラミネートフィルム(ふた側)。 1,1a, 1b, 1'... current collector, 2,2' ... negative electrode active material. 3,3'... Graphite, 4,4' ... Binder, 5,5' ... Negative electrode mixture layer, 7,7' ... Current collector wrinkles, 10,10' ... Negative electrode, 20, 20a, 20b ... Through holes , 40 ... Laminated electrode group, 41 ... Positive electrode terminal, 42 ... Negative electrode terminal, 43 ... Positive electrode uncoated part, 44 ... Negative electrode uncoated part, 45 ... Positive electrode, 46 ... Negative electrode, 47 ... Separator, 50 ... Laminate cell , 51 ... Laminated film (case side), 52 ... Electrode group, 53 ... Laminated film (lid side).

Claims (5)

正極と、負極と、前記正極及び前記負極を仕切るセパレータと、を備えるリチウムイオ
ン二次電池において、
前記負極は、厚さが5μm以上15μm以下のCu箔からなる集電体と、前記集電体の
表面に設けられた負極合剤層と、を有し、
前記負極合剤層は、Siを含む負極活物質と天然黒鉛とを質量比で3:97〜40:6
0で混合し、ポリイミド、ポリアミド、ポリアミドイミド又はこれらの混合物を含むバイ
ンダと、を含み、
前記Siを含む負極活物質がSi1−Xであり、MはAl、Ni、Cu、Fe、T
i、Mn、Oから選ばれる少なくとも1種であり、0.5≦x≦0.9であり、
前記負極の放電容量Q(Ah/kg)と前記集電体の空孔率Y(%)が以下の式1を満
たすように、前記集電体に貫通孔が設けられ、
前記バインダの破断強度A(MPa)が、80MPa以上400MPa以下であり、
前記貫通孔の径が、負極活物質の平均粒径以上120μm以下であり、
前記負極の放電容量Q(Ah/kg)が、400(Ah/kg)以上700(Ah/k
g)以下であることを特徴とするリチウムイオン二次電池。
0.1Q−40≦Y≦50…式1
In a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode.
The negative electrode has a current collector made of Cu foil having a thickness of 5 μm or more and 15 μm or less, and a negative electrode mixture layer provided on the surface of the current collector.
The negative electrode mixture layer is a mixture of a negative electrode active material containing Si and natural graphite in a mass ratio of 3: 97 to 40: 6.
Mixing at 0 and containing a binder containing polyimide, polyamide, polyamideimide or a mixture thereof,
The negative electrode active material containing Si is Si X M 1-X , where M is Al, Ni, Cu, Fe, T.
It is at least one selected from i, Mn, and O, and 0.5 ≦ x ≦ 0.9.
A through hole is provided in the current collector so that the discharge capacity Q (Ah / kg) of the negative electrode and the porosity Y (%) of the current collector satisfy the following equation 1.
The breaking strength A (MPa) of the binder is 80 MPa or more and 400 MPa or less.
Diameter of the through hole is not more than 120μm average particle size than the negative electrode active material,
The discharge capacity Q (Ah / kg) of the negative electrode is 400 (Ah / kg) or more and 700 (Ah / k).
g) A lithium ion secondary battery characterized by being less than or equal to.
0.1 Q-40 ≤ Y ≤ 50 ... Equation 1
請求項1記載のリチウムイオン二次電池において、前記負極の放電容量Qが500Ah
/kg以上700Ah/kg以下であることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1, the discharge capacity Q of the negative electrode is 500 Ah.
A lithium ion secondary battery characterized by being / kg or more and 700 Ah / kg or less.
請求項1記載のリチウムイオン二次電池において、前記負極合剤層の膨張率が11
0%超150%未満であることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1 wherein, the expansion rate of the negative electrode mixture layer 11
A lithium ion secondary battery characterized by being more than 0% and less than 150%.
請求項1記載のリチウムイオン二次電池において、
前記負極の放電容量Q(Ah/kg)、前記バインダの破断強度A(MPa)及び前記
バインダの破断伸度B(%)が、以下の式2を満たすことを特徴とするリチウムイオン二
次電池。
Q≦A×B÷10≦3×Q…式2
In the lithium ion secondary battery according to claim 1,
A lithium ion secondary battery characterized in that the discharge capacity Q (Ah / kg) of the negative electrode, the breaking strength A (MPa) of the binder, and the breaking elongation B (%) of the binder satisfy the following formula 2. ..
Q ≦ A × B ÷ 10 ≦ 3 × Q ... Equation 2
請求項1記載のリチウムイオン二次電池において、In the lithium ion secondary battery according to claim 1,
Mは、Al、Ni、Cu、Fe、Ti、Mnから選ばれる少なくとも1種であり、 M is at least one selected from Al, Ni, Cu, Fe, Ti, and Mn.
0.6≦x≦0.8であることを特徴とするリチウムイオン二次電池。A lithium ion secondary battery characterized in that 0.6 ≦ x ≦ 0.8.
JP2017081998A 2017-04-18 2017-04-18 Lithium ion secondary battery Active JP6937602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081998A JP6937602B2 (en) 2017-04-18 2017-04-18 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081998A JP6937602B2 (en) 2017-04-18 2017-04-18 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018181695A JP2018181695A (en) 2018-11-15
JP6937602B2 true JP6937602B2 (en) 2021-09-22

Family

ID=64276973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081998A Active JP6937602B2 (en) 2017-04-18 2017-04-18 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6937602B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086448A (en) * 2009-10-14 2011-04-28 Nec Energy Devices Ltd Lithium ion secondary battery
JP6517007B2 (en) * 2014-11-27 2019-05-22 株式会社日立製作所 Method of manufacturing lithium ion secondary battery
JP6476094B2 (en) * 2015-09-03 2019-02-27 株式会社日立製作所 Lithium ion secondary battery
JP6601951B2 (en) * 2015-11-16 2019-11-06 マクセルホールディングス株式会社 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2018181695A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
KR102633418B1 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
KR102309192B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
KR102256230B1 (en) Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6253411B2 (en) Lithium secondary battery
KR20180114061A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
KR20150114902A (en) Negative electrode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP6109603B2 (en) battery
JP2010034024A (en) Lithium-ion secondary battery
JP6466161B2 (en) Anode material for lithium ion batteries
WO2015041167A1 (en) Non-aqueous secondary battery
KR102075280B1 (en) Lithium ion secondary battery
WO2016076014A1 (en) Lithium ion secondary battery and battery system
JPWO2017073585A1 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
KR20180080240A (en) A negative electrode active material, a mixed negative electrode active material, a nonaqueous electrolyte secondary battery negative electrode, a lithium ion secondary battery, a manufacturing method of a negative electrode active material, and a manufacturing method of a lithium ion secondary battery
JP2016119154A (en) Lithium secondary battery
WO2017082153A1 (en) Lithium-ion secondary battery
JP5566825B2 (en) Lithium secondary battery
CN114730921A (en) Nonaqueous electrolyte storage element
JP2018147752A (en) Energy storage device and method for producing the same
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
JP5013508B2 (en) Non-aqueous electrolyte secondary battery
JP6208584B2 (en) Nonaqueous electrolyte secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP6937602B2 (en) Lithium ion secondary battery
JP2018060605A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6937602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150