JP6935990B2 - Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member - Google Patents

Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member Download PDF

Info

Publication number
JP6935990B2
JP6935990B2 JP2016120132A JP2016120132A JP6935990B2 JP 6935990 B2 JP6935990 B2 JP 6935990B2 JP 2016120132 A JP2016120132 A JP 2016120132A JP 2016120132 A JP2016120132 A JP 2016120132A JP 6935990 B2 JP6935990 B2 JP 6935990B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
phosphor
light
holding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120132A
Other languages
Japanese (ja)
Other versions
JP2017223869A (en
Inventor
明宏 野村
明宏 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2016120132A priority Critical patent/JP6935990B2/en
Publication of JP2017223869A publication Critical patent/JP2017223869A/en
Application granted granted Critical
Publication of JP6935990B2 publication Critical patent/JP6935990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、波長変換部材、発光装置および波長変換部材の製造方法に関し、特にレーザ光源からの一次光を波長変換して二次光を出射する波長変換部材、発光装置および波長変換部材の製造方法に関する。 The present invention relates to a method for manufacturing a wavelength conversion member, a light emitting device, and a wavelength conversion member, and more particularly, a method for manufacturing a wavelength conversion member, a light emitting device, and a wavelength conversion member that wavelength-converts primary light from a laser light source and emits secondary light. Regarding.

LED(Light Emitting Diode)や半導体レーザを光源として、蛍光体材料を含有した波長変換部材で波長変換して白色光を得る発光装置が用いられている。これらの発光装置では、光源から青色光や紫外光などの一次光を発光して波長変換部材に照射し、波長変換部材に含有された蛍光体が一次光により励起されて黄色光などの二次光を発光し、一次光と二次光が混色して白色光が外部に照射される。 A light emitting device is used in which an LED (Light Emitting Diode) or a semiconductor laser is used as a light source and a wavelength conversion member containing a phosphor material is used to convert the wavelength to obtain white light. In these light emitting devices, primary light such as blue light or ultraviolet light is emitted from a light source to irradiate the wavelength conversion member, and the phosphor contained in the wavelength conversion member is excited by the primary light to cause secondary light such as yellow light. Light is emitted, the primary light and the secondary light are mixed, and white light is irradiated to the outside.

特許文献1には、半導体レーザを光源として用いた車両用灯具が提案されている。光源として半導体レーザを用いると、大出力で波長幅の狭い一次光を得られるが、指向性が非常に強く光が照射される領域が小さいという特徴がある。したがって、光源としてLEDを用いる場合と比較すると、波長変換部材の極めて小さい領域に大出力の一次光が照射されて白色光を出射し、指向性が高い発光装置が得られる。 Patent Document 1 proposes a vehicle lamp using a semiconductor laser as a light source. When a semiconductor laser is used as a light source, primary light having a large output and a narrow wavelength width can be obtained, but it has a feature that the directivity is very strong and the region where the light is irradiated is small. Therefore, as compared with the case where an LED is used as a light source, a high-power primary light is irradiated to an extremely small region of the wavelength conversion member to emit white light, and a light emitting device having high directivity can be obtained.

一方で、発光装置の波長変換部材では一次光の波長変換と同時に熱が生じている。特に、光源として半導体レーザを用いた場合には、一次光が小さな領域に集中して照射されるため、波長変換部材の温度が上昇しやすい。波長変換部材中に含有される蛍光体は、波長変換の効率に温度特性を有しているため、温度変化が大きすぎると所望の色度からずれてしまうという問題が生じてしまう。 On the other hand, in the wavelength conversion member of the light emitting device, heat is generated at the same time as the wavelength conversion of the primary light. In particular, when a semiconductor laser is used as the light source, the temperature of the wavelength conversion member tends to rise because the primary light is concentrated in a small region and irradiated. Since the phosphor contained in the wavelength conversion member has a temperature characteristic in the efficiency of wavelength conversion, there arises a problem that the desired chromaticity is deviated if the temperature change is too large.

特開2012−221633号公報Japanese Unexamined Patent Publication No. 2012-221633

図8(a)は、従来の半導体レーザを光源とした発光装置における波長変換部材の固定方法の一例を示す模式図である。光源として半導体レーザを用いた発光装置では、一次光を透過するサファイア等で構成される光取り出し部1の表面に、蛍光体材料を含有した固体状の波長変換部材2が配置され、接着剤3で波長変換部材2を光取り出し部1に固定している。光源である半導体レーザは波長変換部材2から離れた位置に配置されており、図示を省略している。 FIG. 8A is a schematic view showing an example of a method of fixing a wavelength conversion member in a light emitting device using a conventional semiconductor laser as a light source. In a light emitting device using a semiconductor laser as a light source, a solid wavelength conversion member 2 containing a phosphor material is arranged on the surface of a light extraction unit 1 composed of sapphire or the like that transmits primary light, and an adhesive 3 is provided. The wavelength conversion member 2 is fixed to the light extraction unit 1 with. The semiconductor laser as a light source is arranged at a position away from the wavelength conversion member 2, and is not shown.

図8(b)は、半導体レーザを光源とした従来の発光装置における波長変換部材の固定方法の他の例を示す模式図である。この例では、発光装置の光取り出し部1に開口部を形成しておき、開口部内に波長変換部材2を挿入し、波長変換部材2の側面と光取り出し部1の開口部内面との間に接着剤3を注入して、波長変換部材2を光取り出し部1に固定している。この例では光取り出し部1は一次光を透過する材質である必要はなく、セラミック材料などを用いることができる。 FIG. 8B is a schematic view showing another example of a method of fixing a wavelength conversion member in a conventional light emitting device using a semiconductor laser as a light source. In this example, an opening is formed in the light extraction unit 1 of the light emitting device, the wavelength conversion member 2 is inserted into the opening, and between the side surface of the wavelength conversion member 2 and the inner surface of the opening of the light extraction unit 1. The wavelength conversion member 2 is fixed to the light extraction unit 1 by injecting the adhesive 3. In this example, the light extraction unit 1 does not have to be a material that transmits primary light, and a ceramic material or the like can be used.

図8(a)及び図8(b)に示した発光装置では、波長変換部材2を接着剤3で固定しているため、波長変換部材2で発生した熱は接着剤3を介して光取り出し部1に伝わって放熱される。一般的に、光取り出し部1はサファイアやセラミックで構成され、接着剤3はガラスやシリコーン樹脂などで構成されており、熱伝導性が比較的に低い材料であるため波長変換部材2で発生した熱の放熱に改善の余地がある。 In the light emitting device shown in FIGS. 8A and 8B, since the wavelength conversion member 2 is fixed with the adhesive 3, the heat generated by the wavelength conversion member 2 is taken out through the adhesive 3. It is transmitted to part 1 and dissipated. Generally, the light extraction unit 1 is made of sapphire or ceramic, and the adhesive 3 is made of glass, silicone resin, or the like. Since it is a material having relatively low thermal conductivity, it is generated by the wavelength conversion member 2. There is room for improvement in heat dissipation.

そこで本発明は、放熱性に優れた波長変換部材、発光装置および波長変換部材の製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a wavelength conversion member, a light emitting device, and a method for manufacturing a wavelength conversion member having excellent heat dissipation.

上記課題を解決するために本発明の波長変換部材は、一次光を波長変換して二次光を出射する蛍光体部と、前記一次光を透過する半導体材料で構成された放熱保持部とを備え、サファイア、SiC、Siの何れか一つで構成され、前記放熱保持部を保持する保持基板を有し、前記放熱保持部は前記保持基板より熱伝導率が大きい結晶成長層であり、前記放熱保持部は、前記蛍光体部の少なくとも一部に接触して前記蛍光体部を保持することを特徴とする。
In order to solve the above problems, the wavelength conversion member of the present invention includes a phosphor portion that converts primary light into wavelength and emits secondary light, and a heat dissipation holding portion made of a semiconductor material that transmits the primary light. It is composed of any one of sapphire, SiC, and Si, has a holding substrate for holding the heat dissipation holding portion, and the heat dissipation holding portion is a crystal growth layer having a higher thermal conductivity than the holding substrate. The heat dissipation holding portion is characterized in that it comes into contact with at least a part of the phosphor portion to hold the phosphor portion.

このような本発明の波長変換部材では、半導体材料で構成された放熱保持部を蛍光体部に接触させて保持するため、蛍光体部で発生した熱は熱伝導率の良好な放熱保持部を介して効率よく放熱される。 In such a wavelength conversion member of the present invention, since the heat radiating holding portion made of a semiconductor material is brought into contact with the phosphor portion to hold the heat radiating holding portion, the heat generated in the phosphor portion can be used to provide a heat radiating holding portion having good thermal conductivity. Heat is efficiently dissipated through.

また本発明の一態様では、前記蛍光体部は、蛍光体材料を含んだ焼結体である。 Further, in one aspect of the present invention, the phosphor portion is a sintered body containing a phosphor material.

また本発明の一態様では、前記放熱保持部は、前記蛍光体部の側面全体を覆う。 Further, in one aspect of the present invention, the heat dissipation holding portion covers the entire side surface of the phosphor portion.

また本発明の一態様では、前記放熱保持部は、前記蛍光体部における前記一次光の入射面を覆う。 Further, in one aspect of the present invention, the heat dissipation holding portion covers the incident surface of the primary light in the phosphor portion.

上記課題を解決するために本発明の発光装置は、一次光を照射する光源と、前記一次光を波長変換して二次光を出射する蛍光体部と、前記一次光を透過する半導体材料で構成された放熱保持部とを備え、サファイア、SiC、Siの何れか一つで構成され、前記放熱保持部を保持する保持基板を有し、前記放熱保持部は前記保持基板より熱伝導率が大きい結晶成長層であり、前記放熱保持部は、前記蛍光体部の少なくとも一部に接触して前記蛍光体部を保持することを特徴とする。
In order to solve the above problems, the light emitting device of the present invention comprises a light source that irradiates primary light, a phosphor portion that converts the wavelength of the primary light to emit secondary light, and a semiconductor material that transmits the primary light. It is provided with a configured heat dissipation holding portion, is composed of any one of sapphire, SiC, and Si, and has a holding substrate that holds the heat dissipation holding portion, and the heat dissipation holding portion has a higher thermal conductivity than the holding substrate. It is a large crystal growth layer, and the heat radiation holding portion is characterized in that it comes into contact with at least a part of the phosphor portion to hold the phosphor portion.

上記課題を解決するために本発明の波長変換部材の製造方法は、保持基板に蛍光体部を載置する載置工程と、前記保持基板および前記蛍光体部の上に、光源からの一次光を透過する半導体材料を成長させて放熱保持部を形成する成長工程を備えることを特徴とする。 In order to solve the above problems, the method for manufacturing a wavelength conversion member of the present invention includes a mounting step of mounting a phosphor portion on a holding substrate and primary light from a light source on the holding substrate and the phosphor portion. It is characterized by including a growth step of growing a semiconductor material that transmits light to form a heat dissipation holding portion.

また本発明の一態様では、前記成長工程の後に、前記保持基板の裏面および/または前記放熱保持部の表面を研磨する研磨工程を備える。 Further, in one aspect of the present invention, after the growth step, a polishing step of polishing the back surface of the holding substrate and / or the surface of the heat dissipation holding portion is provided.

また本発明の一態様では、前記載置工程の前に前記保持基板に溝を形成する溝形成工程を備え、前記載置工程では前記溝に前記蛍光体部を載置する。 Further, in one aspect of the present invention, a groove forming step for forming a groove in the holding substrate is provided before the pre-described placement step, and the phosphor portion is placed in the groove in the pre-described placement step.

本発明では、放熱性に優れた波長変換部材、発光装置および波長変換部材の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a wavelength conversion member, a light emitting device, and a method for manufacturing a wavelength conversion member having excellent heat dissipation.

第1実施形態における発光装置10を示す模式断面図である。It is a schematic cross-sectional view which shows the light emitting device 10 in 1st Embodiment. 第1実施形態における波長変換部材14の構造を示す模式断面図である。It is a schematic cross-sectional view which shows the structure of the wavelength conversion member 14 in 1st Embodiment. 第1実施形態の波長変換部材14の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the wavelength conversion member 14 of 1st Embodiment. 波長変換部材14での熱の伝わり方を示す概念図である。It is a conceptual diagram which shows the way of heat transfer in a wavelength conversion member 14. 第2実施形態における灯具ユニット20を示す模式断面図である。It is a schematic cross-sectional view which shows the lamp unit 20 in 2nd Embodiment. 第3実施形態の波長変換部材14の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the wavelength conversion member 14 of 3rd Embodiment. 第3実施形態における波長変換部材14の構造を示す模式断面図である。It is a schematic cross-sectional view which shows the structure of the wavelength conversion member 14 in 3rd Embodiment. 半導体レーザを光源とした従来の発光装置における波長変換部材の固定方法の一例を示す模式図である。It is a schematic diagram which shows an example of the fixing method of the wavelength conversion member in the conventional light emitting device which used a semiconductor laser as a light source.

(第1実施形態)
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態における発光装置10を示す模式断面図である。発光装置10は、ステム11と、半導体レーザ12と、ケース部13と、波長変換部材14とを備える。発光装置10では、半導体レーザ12から一次光L1が波長変換部材14に照射され、波長変換部材14で波長変換された二次光と混色して白色光L2が外部に出射される。図1では発光装置10として所謂CAN型パッケージのものを示したが、CAN型パッケージに限定されず各種半導体レーザ用のパッケージを用いることができる。
(First Embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. FIG. 1 is a schematic cross-sectional view showing a light emitting device 10 according to the present embodiment. The light emitting device 10 includes a stem 11, a semiconductor laser 12, a case portion 13, and a wavelength conversion member 14. In the light emitting device 10, the primary light L1 is irradiated to the wavelength conversion member 14 from the semiconductor laser 12, and the white light L2 is emitted to the outside by mixing with the secondary light wavelength-converted by the wavelength conversion member 14. Although FIG. 1 shows a so-called CAN type package as the light emitting device 10, the light emitting device 10 is not limited to the CAN type package, and packages for various semiconductor lasers can be used.

ステム11は、半導体レーザ12を搭載してケース部13が固定される部材であり、図示しないリードピンやヒートシンクなどを備えて、外部から半導体レーザ12に電力が供給されるとともに、半導体レーザ12で発生した熱を外部に伝える。ステム11を構成する材料は特に限定されないが、放熱性が良好な銅などの金属が望ましい。 The stem 11 is a member on which the semiconductor laser 12 is mounted and the case portion 13 is fixed. The stem 11 is provided with a lead pin, a heat sink, and the like (not shown), and power is supplied to the semiconductor laser 12 from the outside and is generated by the semiconductor laser 12. Transfer the heat to the outside. The material constituting the stem 11 is not particularly limited, but a metal such as copper having good heat dissipation is desirable.

半導体レーザ12は、電力が供給されてレーザ光を発振する半導体素子である。半導体レーザ12を構成する材料は特に限定されないが、一次光L1として青色光や紫外光を照射する場合には窒化物系半導体が用いられる、また、半導体レーザ12の共振器構造や電極構造、電流狭窄構造などの素子構造も特に限定されず、必要な発光強度と発振波長を得るために適切な構造を採用することができる。 The semiconductor laser 12 is a semiconductor element to which electric power is supplied and oscillates a laser beam. The material constituting the semiconductor laser 12 is not particularly limited, but a nitride-based semiconductor is used when irradiating blue light or ultraviolet light as the primary light L1, and the resonator structure, electrode structure, and current of the semiconductor laser 12 are used. The element structure such as the constriction structure is not particularly limited, and an appropriate structure can be adopted in order to obtain the required emission intensity and oscillation wavelength.

ケース部13は、ステム11上で半導体レーザ12を覆うように配置される部材であり、ステム11に立設される筒状の側壁と天面とを備えている。ケース部13の天面中央には開口部が設けられて波長変換部材14が固定されている。ケース部13を構成する材料は限定されないが、波長変換部材14で発生した熱をステム11に良好に伝えるためには熱伝導性に優れた金属材料が好ましい。 The case portion 13 is a member arranged on the stem 11 so as to cover the semiconductor laser 12, and includes a cylindrical side wall and a top surface that are erected on the stem 11. An opening is provided in the center of the top surface of the case portion 13 to fix the wavelength conversion member 14. The material constituting the case portion 13 is not limited, but a metal material having excellent thermal conductivity is preferable in order to satisfactorily transfer the heat generated by the wavelength conversion member 14 to the stem 11.

波長変換部材14は、ケース部13の開口部に固定されて発光装置10からの光取り出し部として機能している。波長変換部材14は、半導体レーザ12から照射される一次光L1により励起されて二次光を発する蛍光体材料を含有する部材であり、一次光L1と二次光とが混色して白色光L2を外部に照射する。ここでは一次光L1と二次光の混色で白色光L2を照射する例を示したが、複数の蛍光体材料を備えて複数色の二次光を発光して二次光同士の混色によって白色光L2を照射するとしてもよい。また、照射する光L2として白色光の例を示したが、その他の単色光であってもよく、複数色を混色した白色以外の色であってもよい。 The wavelength conversion member 14 is fixed to the opening of the case portion 13 and functions as a light extraction portion from the light emitting device 10. The wavelength conversion member 14 is a member containing a phosphor material that is excited by the primary light L1 emitted from the semiconductor laser 12 to emit secondary light, and the primary light L1 and the secondary light are mixed to produce white light L2. To the outside. Here, an example of irradiating white light L2 with a mixture of primary light L1 and secondary light has been shown, but a plurality of phosphor materials are provided to emit secondary light of multiple colors, and the color of the secondary light is mixed to cause white light. You may irradiate light L2. Further, although an example of white light is shown as the light L2 to be irradiated, other monochromatic light may be used, or a color other than white, which is a mixture of a plurality of colors, may be used.

次に、波長変換部材14の構造および製造方法について図2〜図4を用いて説明する。図2は、本実施形態における波長変換部材14の構造を示す模式断面図である。図2に示すように本実施形態の波長変換部材14は、蛍光体部14aと、保持基板15と、放熱保持部16とを備えている。 Next, the structure and manufacturing method of the wavelength conversion member 14 will be described with reference to FIGS. 2 to 4. FIG. 2 is a schematic cross-sectional view showing the structure of the wavelength conversion member 14 in the present embodiment. As shown in FIG. 2, the wavelength conversion member 14 of the present embodiment includes a phosphor portion 14a, a holding substrate 15, and a heat radiating holding portion 16.

図2に示すように波長変換部材14は、放熱保持部16が蛍光体部14aと保持基板15の図中下方全体を覆い、図中上方に蛍光体部14aと保持基板15が露出している。蛍光体部14aの高さは保持基板15よりも高く、保持基板15の開口部内において蛍光体部14aが保持基板15と放熱保持部16に埋没した状態で保持されている。また、蛍光体部14aの側面および下面は放熱保持部16で覆われており、上面が保持基板15の開口部から露出している。保持基板15の開口部の直径は蛍光体部14aよりも大きく形成されており、蛍光体部14aの側面と開口部内面との間には放熱保持部16が入り込んでいることが好ましいが、蛍光体部14aと開口部とが接触していてもよい。 As shown in FIG. 2, in the wavelength conversion member 14, the heat dissipation holding portion 16 covers the entire lower part of the phosphor portion 14a and the holding substrate 15 in the drawing, and the phosphor portion 14a and the holding substrate 15 are exposed in the upper part of the drawing. .. The height of the phosphor portion 14a is higher than that of the holding substrate 15, and the phosphor portion 14a is held in a state of being buried in the holding substrate 15 and the heat dissipation holding portion 16 in the opening of the holding substrate 15. Further, the side surface and the lower surface of the phosphor portion 14a are covered with the heat dissipation holding portion 16, and the upper surface is exposed from the opening of the holding substrate 15. The diameter of the opening of the holding substrate 15 is formed to be larger than that of the phosphor portion 14a, and it is preferable that the heat radiation holding portion 16 is inserted between the side surface of the phosphor portion 14a and the inner surface of the opening. The body portion 14a and the opening may be in contact with each other.

蛍光体部14aは、一次光L1によって励起されて二次光を発する蛍光体材料を含有する部材である。蛍光体部14aのサイズは、半導体レーザ12からの一次光L1が照射される領域よりも大きく、一次光L1を適切に二次光に波長変換できればよく、例えば厚さ数百μm程度で直径が0.1〜数mm程度である。蛍光体部14aに含有される蛍光体材料は特に限定されないが、後述するように放熱保持部16を形成するためにはセラミック蛍光体であることが好ましい。蛍光体部14aの具体的材料としては、Y3Al512、すなわちYAG(Yttrium Alminum Garnet)粉末を用いて作成されたセラミック素地を焼結して得られるセラミック蛍光体が最も好ましい。YAG焼結体を蛍光体部14aとして用いることで、一次光L1の青色光を波長変換して二次光の黄色光を出射し、一次光と二次光の混色により白色を得られる。 The phosphor portion 14a is a member containing a phosphor material that is excited by the primary light L1 to emit secondary light. The size of the phosphor portion 14a is larger than the region irradiated with the primary light L1 from the semiconductor laser 12, and it is sufficient that the wavelength of the primary light L1 can be appropriately converted into the secondary light. For example, the thickness is about several hundred μm and the diameter is large. It is about 0.1 to several mm. The phosphor material contained in the phosphor portion 14a is not particularly limited, but a ceramic phosphor is preferable in order to form the heat dissipation holding portion 16 as described later. As a specific material of the phosphor portion 14a, a ceramic phosphor obtained by sintering a ceramic substrate prepared by using Y 3 Al 5 O 12 , that is, YAG (Yttrium Aluminum Garnet) powder is most preferable. By using the YAG sintered body as the phosphor portion 14a, the blue light of the primary light L1 is wavelength-converted to emit the yellow light of the secondary light, and white can be obtained by mixing the primary light and the secondary light.

保持基板15は、一方の表面に放熱保持部16を保持する薄板状の部材であり、開口部内に蛍光体部14aが配置されている。保持基板15を構成する材料は、一方の面に放熱保持部16を形成することが可能な材料であり、例えばサファイア、SiC、Si等が好ましい。 The holding substrate 15 is a thin plate-shaped member that holds the heat dissipation holding portion 16 on one surface, and the phosphor portion 14a is arranged in the opening. The material constituting the holding substrate 15 is a material capable of forming the heat dissipation holding portion 16 on one surface, and for example, sapphire, SiC, Si and the like are preferable.

放熱保持部16は、保持基板15の一方の面と蛍光体部14a全体を覆って形成された部材である。上述したように、保持基板15の開口部内と蛍光体部14a側面との間隙にも放熱保持部16が入り込んで形成されていることが好ましいが、蛍光体部14aと保持基板15とが接触していてもよい。放熱保持部16は、保持基板15および蛍光体部14a上に成長可能で、半導体レーザ12からの一次光L1を透過する半導体材料で構成される。具体的な半導体材料としてはIII族窒化物系半導体であるGaNやAlN等が挙げられる。 The heat dissipation holding portion 16 is a member formed so as to cover one surface of the holding substrate 15 and the entire phosphor portion 14a. As described above, it is preferable that the heat radiation holding portion 16 is also formed in the gap between the inside of the opening of the holding substrate 15 and the side surface of the phosphor portion 14a, but the phosphor portion 14a and the holding substrate 15 are in contact with each other. You may be. The heat dissipation holding portion 16 is made of a semiconductor material that can grow on the holding substrate 15 and the phosphor portion 14a and transmits the primary light L1 from the semiconductor laser 12. Specific examples of the semiconductor material include group III nitride semiconductors such as GaN and AlN.

放熱保持部16に用いられる半導体材料の熱伝導率は、GaNが約130[W/mK]でAlNが約150[W/mK]であり、従来用いられていた接着剤のガラスやシリコーン樹脂の1[W/mK]未満、サファイア基板の約40[W/mK]よりも熱伝導性が良好である。 The thermal conductivity of the semiconductor material used for the heat dissipation holding unit 16 is about 130 [W / mK] for GaN and about 150 [W / mK] for AlN, which is the same as that of the conventionally used adhesive glass or silicone resin. It has better thermal conductivity than 1 [W / mK] and about 40 [W / mK] of the sapphire substrate.

次に、図3を用いて波長変換部材14の製造方法を示す。まず初めに、図3(a)に示すように、溝形成工程を経て表面に凹部15aが形成された保持基板15を用意する。ここで用意する初期状態における保持基板15の厚みは、図2に示した保持基板15よりも厚く、数百μm以上の厚みを有して自立基板として必要な剛性を有している。ここで自立基板とは、半導体製造技術における通常の意味であり、操作時に破壊されない程度の強度を備えていることを意味している。凹部15aは、直径が蛍光体部14aの直径よりも大きく、蛍光体部14aの厚みよりも浅く形成されている。 Next, a method of manufacturing the wavelength conversion member 14 will be shown with reference to FIG. First, as shown in FIG. 3A, a holding substrate 15 having a recess 15a formed on its surface is prepared through a groove forming step. The thickness of the holding substrate 15 prepared here in the initial state is thicker than that of the holding substrate 15 shown in FIG. 2, has a thickness of several hundred μm or more, and has the rigidity required for a self-standing substrate. Here, the self-supporting substrate has a normal meaning in semiconductor manufacturing technology, and means that it has a strength that is not broken during operation. The recess 15a is formed so that the diameter is larger than the diameter of the phosphor portion 14a and shallower than the thickness of the phosphor portion 14a.

次に図3(b)に示すように、予め用意した蛍光体部14aを凹部15a内に配置する。このとき、蛍光体部14aの側面が凹部15aの内周と接触せず、所定の間隙をもって配置されることが好ましい。蛍光体部14aが凹部15a内に配置されることで、後工程である成長工程での成長ガスによって蛍光体部14aが飛ばされることを抑制し、蛍光体部14aを所定の位置に留めて放熱保持部16を成長させることができる。 Next, as shown in FIG. 3B, the phosphor portion 14a prepared in advance is arranged in the recess 15a. At this time, it is preferable that the side surface of the phosphor portion 14a does not come into contact with the inner circumference of the recess 15a and is arranged with a predetermined gap. By arranging the phosphor portion 14a in the recess 15a, it is possible to prevent the phosphor portion 14a from being blown off by the growth gas in the growth step, which is a subsequent step, and to keep the phosphor portion 14a in a predetermined position to dissipate heat. The holding portion 16 can be grown.

次に図3(c)に示すように、保持基板15上に蛍光体部14aを配置した状態で反応容器内に投入し、保持基板15および蛍光体部14a上に半導体層を成長させて放熱保持部16を形成する。半導体層の成長には、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)やハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)、スパッタ法などの各種方法を用いることができるが、結晶成長速度の点からHVPE法が好ましい。セラミック蛍光体である蛍光体部14a上に、AlNなどのIII族窒化物半導体層が成長できることは、例えば特許第5768159号公報に記載されている。 Next, as shown in FIG. 3C, the phosphor portion 14a is placed on the holding substrate 15 and put into the reaction vessel, and the semiconductor layer is grown on the holding substrate 15 and the phosphor portion 14a to dissipate heat. The holding portion 16 is formed. For the growth of the semiconductor layer, metalorganic vapor deposition (MOCVD: Metalorganic Chemical Vapor Deposition), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and molecular beam epitaxy (MBE) Although various methods such as the method can be used, the HVPE method is preferable from the viewpoint of crystal growth rate. It is described in, for example, Japanese Patent No. 5768159 that a group III nitride semiconductor layer such as AlN can grow on the phosphor portion 14a which is a ceramic phosphor.

図3(c)に示したように、放熱保持部16の成長は蛍光体部14aよりも放熱保持部16が厚くなるまで継続され、蛍光体部14aの側面および上面を覆って蛍光体部14aに対応する位置が凸状となっている。このとき、蛍光体部14a側面と凹部15a内周面との間隙にも成長ガスが供給されることで、間隙にも放熱保持部16が形成されている。 As shown in FIG. 3C, the growth of the heat radiating holding portion 16 is continued until the heat radiating holding portion 16 is thicker than the phosphor portion 14a, and covers the side surface and the upper surface of the phosphor portion 14a to cover the phosphor portion 14a. The position corresponding to is convex. At this time, the growth gas is also supplied to the gap between the side surface of the phosphor portion 14a and the inner peripheral surface of the recess 15a, so that the heat dissipation holding portion 16 is also formed in the gap.

最後に図3(d)に示すように、保持基板15の裏面側および放熱保持部16の表面側を研磨する。研磨の方法としては、保持基板15および放熱保持部16の材料に応じてラッピングや化学機械研磨(CMP:Chemical Mechanical Polishing)など好ましい方法を採用できる。この研磨工程によって、保持基板15の厚さは凹部15aの深さ程度まで薄板化され、同時に蛍光体部14aの裏面が露出される。また、放熱保持部16は表面が平坦になる程度まで研磨されるが、蛍光体部14aの上面は露出されず放熱保持部16が残留して覆った状態とされる。 Finally, as shown in FIG. 3D, the back surface side of the holding substrate 15 and the front surface side of the heat dissipation holding portion 16 are polished. As a polishing method, a preferable method such as wrapping or chemical mechanical polishing (CMP) can be adopted depending on the materials of the holding substrate 15 and the heat radiating holding portion 16. By this polishing step, the thickness of the holding substrate 15 is thinned to about the depth of the recess 15a, and at the same time, the back surface of the phosphor portion 14a is exposed. Further, the heat dissipation holding portion 16 is polished to the extent that the surface becomes flat, but the upper surface of the phosphor portion 14a is not exposed and the heat dissipation holding portion 16 remains and is covered.

上述した製造方法で得られた波長変換部材14をダイシングで個別に分割し、ケース部13の開口部に取り付け、半導体レーザ12を覆うようにステム11上にケース部13を取り付けることで、本実施形態の発光装置10が構成される。 The wavelength conversion member 14 obtained by the above-mentioned manufacturing method is individually divided by dicing, attached to the opening of the case portion 13, and the case portion 13 is attached on the stem 11 so as to cover the semiconductor laser 12. The light emitting device 10 of the form is configured.

図4は、波長変換部材14での熱の伝わり方を示す概念図である。図3(d)で完成した波長変換部材14の上下方向は逆に描かれており、下方から一次光L1が照射される。図4中の黒い矢印は、蛍光体部14aからの熱の経路を模式的に示している。上述したように、GaNやAlNなどの半導体材料で構成される放熱保持部16は、ガラスやシリコーン樹脂、サファイア基板よりも熱伝導性が良好であり、蛍光体部14aの側面及び下面に接触した放熱保持部16を介して熱が良好に伝わって放熱される。 FIG. 4 is a conceptual diagram showing how heat is transferred in the wavelength conversion member 14. The vertical direction of the wavelength conversion member 14 completed in FIG. 3D is drawn upside down, and the primary light L1 is irradiated from below. The black arrow in FIG. 4 schematically shows the heat path from the phosphor portion 14a. As described above, the heat dissipation holding portion 16 made of a semiconductor material such as GaN or AlN has better thermal conductivity than glass, silicone resin, or a sapphire substrate, and is in contact with the side surface and the lower surface of the phosphor portion 14a. Heat is satisfactorily transferred through the heat radiating holding portion 16 and radiated.

本実施形態の波長変換部材14では、一次光L1の入射側にも蛍光体部14aを覆って放熱保持部16が形成されている。放熱保持部16は一次光L1を透過する材料で構成されているため、蛍光体部14aの入射面を放熱保持部16が覆っていても一次光L1が放熱保持部16に吸収されず、十分に蛍光体部14aに一次光L1が照射される。蛍光体部14aの入射面近傍にも放熱保持部16が接触しているため、一次光L1の照射によって最も波長変換と発熱が行われる入射面の領域からも良好に放熱保持部16から放熱をすることが可能となる。 In the wavelength conversion member 14 of the present embodiment, the heat dissipation holding portion 16 is also formed on the incident side of the primary light L1 so as to cover the phosphor portion 14a. Since the heat radiating holding portion 16 is made of a material that transmits the primary light L1, even if the heat radiating holding portion 16 covers the incident surface of the phosphor portion 14a, the primary light L1 is not absorbed by the heat radiating holding portion 16 and is sufficient. The phosphor portion 14a is irradiated with the primary light L1. Since the heat radiating holding portion 16 is also in contact with the incident surface of the phosphor portion 14a, heat is satisfactorily dissipated from the heat radiating holding portion 16 even from the region of the incident surface where the wavelength conversion and heat generation are most performed by the irradiation of the primary light L1. It becomes possible to do.

また、保持基板15の凹部15aに相当する開口部内周と蛍光体部14a側面との間にも放熱保持部16が形成されているため、蛍光体部14aの側面全体を放熱保持部16が覆い、蛍光体部14aからの放熱経路が確保される。 Further, since the heat dissipation holding portion 16 is also formed between the inner circumference of the opening corresponding to the recess 15a of the holding substrate 15 and the side surface of the phosphor portion 14a, the heat radiation holding portion 16 covers the entire side surface of the phosphor portion 14a. , A heat dissipation path from the phosphor portion 14a is secured.

さらに、図3(d)で示した研磨工程により、放熱保持部16の表面は平坦化されている。これにより、一次光L1が放熱保持部16を透過して蛍光体部14aに入射する際に、放熱保持部16表面の凹凸による屈折や散乱で蛍光体部14aへの入射光量が減少することを抑制することができる。また、研磨工程で保持基板15の裏面が研磨されて蛍光体部14aが露出しているため、蛍光体部14aと保持基板15の界面で白色光が反射することや、保持基板15を透過する際に減衰することを抑制でき、白色光の取り出し効率が向上する。 Further, the surface of the heat dissipation holding portion 16 is flattened by the polishing step shown in FIG. 3D. As a result, when the primary light L1 passes through the heat dissipation holding portion 16 and is incident on the phosphor portion 14a, the amount of incident light on the phosphor portion 14a is reduced due to refraction or scattering due to the unevenness of the surface of the heat dissipation holding portion 16. It can be suppressed. Further, since the back surface of the holding substrate 15 is polished in the polishing step to expose the phosphor portion 14a, white light is reflected at the interface between the phosphor portion 14a and the holding substrate 15 and is transmitted through the holding substrate 15. It is possible to suppress the attenuation at the time, and the efficiency of extracting white light is improved.

上述したように本実施形態では、波長変換部材14が、一次光L1を波長変換して二次光を出射する蛍光体部14aと、一次光を透過する半導体材料で構成された放熱保持部16を備え、放熱保持部16が蛍光体部14aの少なくとも一部に接触して保持している。これにより、放熱性に優れた波長変換部材、発光装置および波長変換部材の製造方法を提供することができる。 As described above, in the present embodiment, the wavelength conversion member 14 is a heat radiation holding unit 16 composed of a phosphor unit 14a that converts the wavelength of the primary light L1 to emit secondary light and a semiconductor material that transmits the primary light. The heat radiation holding portion 16 is in contact with and holds at least a part of the phosphor portion 14a. This makes it possible to provide a wavelength conversion member, a light emitting device, and a method for manufacturing the wavelength conversion member having excellent heat dissipation.

(第2実施形態)
次に本発明の第2実施形態について図5を用いて説明する。第1実施形態と重複する部分についての説明は省略する。図5は、第2実施形態における灯具ユニット20を示す模式断面図である。本実施形態は、第1実施形態で示した発光装置10を光源として車両用の灯具ユニットを構成したものである。
(Second Embodiment)
Next, the second embodiment of the present invention will be described with reference to FIG. The description of the portion overlapping with the first embodiment will be omitted. FIG. 5 is a schematic cross-sectional view showing the lamp unit 20 according to the second embodiment. In this embodiment, a lamp unit for a vehicle is configured by using the light emitting device 10 shown in the first embodiment as a light source.

図5に示す灯具ユニット20は、ハイビーム用配光パターンを形成するように構成されている。灯具ユニット20は、発光装置10と、カバー21と、ランプボディ22と、投影レンズ23と、出射した光を投影レンズ23に向けて反射する楕円反射面を有するリフレクタ24と、ベース部26を介して発光装置10が発する熱を外部へ放熱する放熱フィン25と、発光装置10が載置されているベース部26と、スイブルアクチュエータ27と、スクリュー29と、レベリングアクチュエータ30と、スクリュー31とを備える。 The lamp unit 20 shown in FIG. 5 is configured to form a high beam light distribution pattern. The lamp unit 20 is via a light emitting device 10, a cover 21, a lamp body 22, a projection lens 23, a reflector 24 having an elliptical reflection surface that reflects emitted light toward the projection lens 23, and a base portion 26. A heat radiating fin 25 that radiates heat generated by the light emitting device 10 to the outside, a base portion 26 on which the light emitting device 10 is mounted, a swivel actuator 27, a screw 29, a leveling actuator 30, and a screw 31 are provided. ..

ベース部26は、水平方向にスイブルできるようにスイブルアクチュエータ27によって支持されている。また、ベース部26の上部は、スクリュー31等を介してランプボディ22と連結されている。スイブルアクチュエータ27は、レベリングアクチュエータ30と接続されている。レベリングアクチュエータ30は、スクリュー29を回転させることで、連結部材28を移動させ、ベース部26の上下方向の傾きを変えることができる。このように、レベリングアクチュエータ30は、灯具ユニット20の光軸や灯具ユニット20により形成される配光パターンを上下方向に変化させるためのものである。 The base portion 26 is supported by a swivel actuator 27 so that it can swivel in the horizontal direction. Further, the upper portion of the base portion 26 is connected to the lamp body 22 via a screw 31 or the like. The swivel actuator 27 is connected to the leveling actuator 30. By rotating the screw 29, the leveling actuator 30 can move the connecting member 28 and change the inclination of the base portion 26 in the vertical direction. As described above, the leveling actuator 30 is for changing the optical axis of the lamp unit 20 and the light distribution pattern formed by the lamp unit 20 in the vertical direction.

図1に示したように、半導体レーザ12が発光した一次光L1は波長変換部材14で二次光に波長変換され、一次光L1と二次光の混色による白色光L2が発光装置10から出射される。図5に示したように、発光装置10から上方に出射された白色光は、リフレクタ24で前方に反射され、投影レンズ23およびカバー21を透過して車両前方に投影される。 As shown in FIG. 1, the primary light L1 emitted by the semiconductor laser 12 is wavelength-converted into secondary light by the wavelength conversion member 14, and white light L2 due to a mixture of the primary light L1 and the secondary light is emitted from the light emitting device 10. Will be done. As shown in FIG. 5, the white light emitted upward from the light emitting device 10 is reflected forward by the reflector 24, passes through the projection lens 23 and the cover 21, and is projected to the front of the vehicle.

本実施形態の灯具ユニット20では、図4で示したように蛍光体部14aで発生した熱は放熱保持部16を介してケース部13及びステム11を経由し、ベース部26から放熱フィン25に伝わり放熱される。したがって、本実施形態の灯具ユニット20でも、蛍光体部14aで発生した熱を良好に放熱して安定した白色光照射を実現できる。 In the lamp unit 20 of the present embodiment, as shown in FIG. 4, the heat generated in the phosphor portion 14a passes through the heat dissipation holding portion 16 and the case portion 13 and the stem 11, and is transferred from the base portion 26 to the heat radiation fin 25. It is transmitted and dissipated. Therefore, even in the lamp unit 20 of the present embodiment, the heat generated in the phosphor unit 14a can be satisfactorily dissipated to realize stable white light irradiation.

(第3実施形態)
次に本発明の第3実施形態について図6,7を用いて説明する。第1実施形態と重複する部分についての説明は省略する。図6は、本実施形態の波長変換部材14の製造方法を示す工程図である。図7は、本実施形態における波長変換部材14の構造を示す模式断面図である。
(Third Embodiment)
Next, the third embodiment of the present invention will be described with reference to FIGS. 6 and 7. The description of the portion overlapping with the first embodiment will be omitted. FIG. 6 is a process diagram showing a method of manufacturing the wavelength conversion member 14 of the present embodiment. FIG. 7 is a schematic cross-sectional view showing the structure of the wavelength conversion member 14 in the present embodiment.

初めに、図6(a)に示すように、溝形成工程を経て表面に凹部15aが形成された保持基板15を用意する。本実施形態では、凹部15aの側壁が表面と底面に対して所定の角度で傾斜したテーパ形状とされている。凹部15aの底面は蛍光体部14aと同程度の面積とする。 First, as shown in FIG. 6A, a holding substrate 15 having a recess 15a formed on its surface is prepared through a groove forming step. In the present embodiment, the side wall of the recess 15a has a tapered shape that is inclined at a predetermined angle with respect to the front surface and the bottom surface. The bottom surface of the recess 15a has the same area as the phosphor portion 14a.

次に図6(b)に示すように、予め用意した蛍光体部14aを凹部15a内に配置する。凹部15aの側壁がテーパ形状であり、蛍光体部14aを載置することでテーパ形状によって蛍光体部14aが凹部底面に位置決めされるため、作業効率が向上する。また、テーパ形状の凹部15aの側面と蛍光体部14aの側面との間に隙間が確保される。 Next, as shown in FIG. 6B, the phosphor portion 14a prepared in advance is arranged in the recess 15a. The side wall of the recess 15a has a tapered shape, and by placing the phosphor portion 14a on the recess 15a, the phosphor portion 14a is positioned on the bottom surface of the recess by the tapered shape, so that the work efficiency is improved. Further, a gap is secured between the side surface of the tapered recess 15a and the side surface of the phosphor portion 14a.

次に図6(c)に示すように、保持基板15上に蛍光体部14aを配置した状態で反応容器内に投入し、保持基板15および蛍光体部14a上に半導体層を成長させて放熱保持部16を形成する。凹部15aの側面と蛍光体部14aの側面は、上述したように凹部15aのテーパ形状に起因して隙間が確保されているため、成長させる半導体層を蛍光体部14aの側面に接触させることが容易となる。 Next, as shown in FIG. 6C, the phosphor portion 14a is placed on the holding substrate 15 and put into the reaction vessel, and the semiconductor layer is grown on the holding substrate 15 and the phosphor portion 14a to dissipate heat. The holding portion 16 is formed. Since a gap is secured between the side surface of the recess 15a and the side surface of the phosphor portion 14a due to the tapered shape of the recess 15a as described above, the semiconductor layer to be grown can be brought into contact with the side surface of the phosphor portion 14a. It will be easy.

最後に図6(d)に示すように、保持基板15の裏面側および放熱保持部16の表面側を研磨する。これにより図7に示す波長変換部材14が得られる。 Finally, as shown in FIG. 6D, the back surface side of the holding substrate 15 and the front surface side of the heat dissipation holding portion 16 are polished. As a result, the wavelength conversion member 14 shown in FIG. 7 is obtained.

本実施形態でも、波長変換部材14が、一次光L1を波長変換して二次光を出射する蛍光体部14aと、一次光を透過する半導体材料で構成された放熱保持部16を備え、放熱保持部16が蛍光体部14aの少なくとも一部に接触して保持している。これにより、放熱性に優れた波長変換部材、発光装置および波長変換部材の製造方法を提供することができる。 Also in the present embodiment, the wavelength conversion member 14 includes a phosphor unit 14a that converts the wavelength of the primary light L1 to emit secondary light, and a heat dissipation holding unit 16 made of a semiconductor material that transmits the primary light, and dissipates heat. The holding portion 16 is in contact with and holds at least a part of the phosphor portion 14a. This makes it possible to provide a wavelength conversion member, a light emitting device, and a method for manufacturing the wavelength conversion member having excellent heat dissipation.

(第4実施形態)
次に本発明の第4実施形態について説明する。本実施形態の波長変換部材では、第1実施形態の研磨工程を省略し、図3(c)で示した放熱保持部16の成長終了時点でダイシングしてケース部13の開口部に取り付ける。
(Fourth Embodiment)
Next, a fourth embodiment of the present invention will be described. In the wavelength conversion member of the present embodiment, the polishing step of the first embodiment is omitted, and the heat radiation holding portion 16 shown in FIG. 3C is diced at the end of growth and attached to the opening of the case portion 13.

ここでは保持基板15裏面と放熱保持部16表面の両面ともに研磨しない例を示したが、保持基板15裏面と放熱保持部16表面のどちらか一方のみを研磨するとしてもよい。 Here, an example is shown in which both the back surface of the holding substrate 15 and the front surface of the heat radiating holding portion 16 are not polished, but only one of the back surface of the holding substrate 15 and the front surface of the heat radiating holding portion 16 may be polished.

本実施形態でも、波長変換部材14が、一次光L1を波長変換して二次光を出射する蛍光体部14aと、一次光を透過する半導体材料で構成された放熱保持部16を備え、放熱保持部16が蛍光体部14aの少なくとも一部に接触して保持している。これにより、放熱性に優れた波長変換部材、発光装置および波長変換部材の製造方法を提供することができる。 Also in the present embodiment, the wavelength conversion member 14 includes a phosphor unit 14a that converts the wavelength of the primary light L1 to emit secondary light, and a heat dissipation holding unit 16 made of a semiconductor material that transmits the primary light, and dissipates heat. The holding portion 16 is in contact with and holds at least a part of the phosphor portion 14a. This makes it possible to provide a wavelength conversion member, a light emitting device, and a method for manufacturing the wavelength conversion member having excellent heat dissipation.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

L1…一次光
L2…白色光
1…光取り出し部
3…接着剤
2…波長変換部材
10…発光装置
11…ステム
12…半導体レーザ
13…ケース部
14…波長変換部材
14a…蛍光体部
15…保持基板
15a…凹部
16…放熱保持部
20…灯具ユニット
21…カバー
22…ランプボディ
23…投影レンズ
24…リフレクタ
25…放熱フィン
26…ベース部
27…スイブルアクチュエータ
28…連結部材
29…スクリュー
30…レベリングアクチュエータ
31…スクリュー
L1 ... Primary light L2 ... White light 1 ... Light extraction unit 3 ... Adhesive 2 ... Wavelength conversion member 10 ... Light emitting device 11 ... Stem 12 ... Semiconductor laser 13 ... Case unit 14 ... Wavelength conversion member 14a ... Fluorescent material unit 15 ... Holding Substrate 15a ... Recess 16 ... Heat dissipation holding part 20 ... Lighting equipment unit 21 ... Cover 22 ... Lamp body 23 ... Projection lens 24 ... Reflector 25 ... Heat dissipation fin 26 ... Base part 27 ... Swible actuator 28 ... Connecting member 29 ... Screw 30 ... Leveling actuator 31 ... Screw

Claims (7)

一次光を波長変換して二次光を出射する蛍光体部と、
前記一次光を透過する半導体材料で構成された放熱保持部とを備え、
サファイア、SiC、Siの何れか一つで構成され、前記放熱保持部を保持する保持基板を有し、
前記放熱保持部は前記保持基板より熱伝導率が大きい結晶成長層であり、
前記放熱保持部は、前記蛍光体部の少なくとも一部に接触して前記蛍光体部を保持することを特徴とする波長変換部材。
A phosphor part that converts the wavelength of the primary light and emits the secondary light,
It is provided with a heat dissipation holding portion made of a semiconductor material that transmits the primary light.
It is composed of any one of sapphire, SiC, and Si, and has a holding substrate that holds the heat dissipation holding portion.
The heat dissipation holding portion is a crystal growth layer having a higher thermal conductivity than the holding substrate.
The heat radiation holding portion is a wavelength conversion member characterized in that the heat radiation holding portion is in contact with at least a part of the phosphor portion to hold the phosphor portion.
請求項1に記載の波長変換部材であって、
前記蛍光体部は、蛍光体材料を含んだ焼結体であることを特徴とする波長変換部材。
The wavelength conversion member according to claim 1.
The wavelength conversion member is characterized in that the phosphor portion is a sintered body containing a phosphor material.
請求項1または2に記載の波長変換部材であって、
前記放熱保持部は、前記蛍光体部の側面全体を覆うことを特徴とする波長変換部材。
The wavelength conversion member according to claim 1 or 2.
The heat dissipation holding portion is a wavelength conversion member characterized by covering the entire side surface of the phosphor portion.
請求項1乃至3の何れか一つに記載の波長変換部材であって、
前記放熱保持部は、前記蛍光体部における前記一次光の入射面を覆うことを特徴とする波長変換部材。
The wavelength conversion member according to any one of claims 1 to 3.
The heat dissipation holding portion is a wavelength conversion member characterized by covering an incident surface of the primary light in the phosphor portion.
一次光を照射する光源と、
前記一次光を波長変換して二次光を出射する蛍光体部と、
前記一次光を透過する半導体材料で構成された放熱保持部とを備え、
サファイア、SiC、Siの何れか一つで構成され、前記放熱保持部を保持する保持基板を有し、
前記放熱保持部は前記保持基板より熱伝導率が大きい結晶成長層であり、
前記放熱保持部は、前記蛍光体部の少なくとも一部に接触して前記蛍光体部を保持することを特徴とする発光装置。
A light source that irradiates primary light and
A phosphor unit that converts the wavelength of the primary light to emit secondary light,
It is provided with a heat dissipation holding portion made of a semiconductor material that transmits the primary light.
It is composed of any one of sapphire, SiC, and Si, and has a holding substrate that holds the heat dissipation holding portion.
The heat dissipation holding portion is a crystal growth layer having a higher thermal conductivity than the holding substrate.
The heat radiation holding portion is a light emitting device characterized in that the heat radiation holding portion is in contact with at least a part of the phosphor portion to hold the phosphor portion.
保持基板に蛍光体部を載置する載置工程と、
前記保持基板および前記蛍光体部の上に、光源からの一次光を透過する半導体材料を成長させて放熱保持部を形成する成長工程を備え
前記成長工程の後に、前記保持基板の裏面および/または前記放熱保持部の表面を研磨する研磨工程を備えることを特徴とする波長変換部材の製造方法。
The mounting process of mounting the phosphor on the holding substrate, and
A growth step of growing a semiconductor material that transmits primary light from a light source to form a heat dissipation holding portion is provided on the holding substrate and the phosphor portion .
A method for manufacturing a wavelength conversion member, which comprises a polishing step of polishing the back surface of the holding substrate and / or the surface of the heat radiation holding portion after the growth step.
請求項6に記載の波長変換部材の製造方法であって、
前記載置工程の前に前記保持基板に溝を形成する溝形成工程を備え、
前記載置工程では前記溝に前記蛍光体部を載置することを特徴とする波長変換部材の製造方法。

The method for manufacturing a wavelength conversion member according to claim 6.
A groove forming step for forming a groove on the holding substrate is provided before the above-described setting step.
A method for manufacturing a wavelength conversion member, which comprises placing the phosphor portion in the groove in the above-described placement step.

JP2016120132A 2016-06-16 2016-06-16 Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member Active JP6935990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120132A JP6935990B2 (en) 2016-06-16 2016-06-16 Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120132A JP6935990B2 (en) 2016-06-16 2016-06-16 Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2017223869A JP2017223869A (en) 2017-12-21
JP6935990B2 true JP6935990B2 (en) 2021-09-15

Family

ID=60686355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120132A Active JP6935990B2 (en) 2016-06-16 2016-06-16 Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member

Country Status (1)

Country Link
JP (1) JP6935990B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158627A1 (en) * 2019-01-31 2020-08-06 京セラ株式会社 Optical component, image display device using same, and head-up display
CN113424082B (en) * 2019-02-13 2024-02-23 京瓷株式会社 Optical member, image display device using the same, and head-up display
JP7111989B2 (en) 2019-04-22 2022-08-03 日亜化学工業株式会社 Wavelength conversion component, method for manufacturing wavelength conversion component, and light emitting device
JP2022190310A (en) 2021-06-14 2022-12-26 セイコーエプソン株式会社 Wavelength conversion member and light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124978B2 (en) * 2005-06-13 2013-01-23 日亜化学工業株式会社 Light emitting device
JP5966501B2 (en) * 2012-03-28 2016-08-10 日亜化学工業株式会社 Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
JP2016027613A (en) * 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same

Also Published As

Publication number Publication date
JP2017223869A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US9472729B2 (en) Method of manufacturing semiconductor light emitting device package including light transmissive substrate having wavelength conversion regions
JP6935990B2 (en) Manufacturing method of wavelength conversion member, light emitting device and wavelength conversion member
EP3142200B1 (en) Semiconductor laser device
US9997669B2 (en) High power light emitting device and method of making the same
US11294267B1 (en) Structured phosphors for dynamic lighting
JP2007035802A (en) Light-emitting device
JP2012533902A (en) Light emitting diode with molded reflective sidewall coating
JP6862110B2 (en) Sintered body and light emitting device
JP2018014500A (en) Laser component and method for manufacturing laser component
KR20090026196A (en) Efficient emitting led package and method for efficiently emitting light
US20120299463A1 (en) Light emitting device and illumination apparatus using same
JP2009289976A (en) Light emitting device
JP2016092364A (en) Light emission device and lamp equipment
KR102227774B1 (en) Method for manufacturing light emitting diode package
JP2007095807A (en) Manufacturing method of light emitting device
KR20150138479A (en) A method of manufacturing light emitting device package
TWI741339B (en) Light emitting device and method of manufacturing the same
JP6288115B2 (en) Wavelength conversion member and light source device using the same
JP2015225910A (en) Light-emitting module and illumination device
KR20130095321A (en) Semiconductor chip, display comprising a plurality of semiconductor chips, and method for the production thereof
TWI581467B (en) Flip-chip light-emitting diode package and fabricating method thereof
JP2007080867A (en) Light emitting device
JP2004095969A (en) Wavelength conversion element
WO2021060519A1 (en) Light-emitting device, wavelength conversion unit, and headlight or display device
US10777713B2 (en) Method of producing an optoelectronic lighting device and optoelectronic lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200803

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200804

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201002

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201006

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201124

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210511

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210706

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210803

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210824

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6935990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150