JP6935357B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP6935357B2
JP6935357B2 JP2018076189A JP2018076189A JP6935357B2 JP 6935357 B2 JP6935357 B2 JP 6935357B2 JP 2018076189 A JP2018076189 A JP 2018076189A JP 2018076189 A JP2018076189 A JP 2018076189A JP 6935357 B2 JP6935357 B2 JP 6935357B2
Authority
JP
Japan
Prior art keywords
fuel
oxidation catalyst
purification device
temperature
conversion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076189A
Other languages
Japanese (ja)
Other versions
JP2019183758A (en
Inventor
壮 橋本
壮 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2018076189A priority Critical patent/JP6935357B2/en
Publication of JP2019183758A publication Critical patent/JP2019183758A/en
Application granted granted Critical
Publication of JP6935357B2 publication Critical patent/JP6935357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気浄化装置に関する。 The present invention relates to an exhaust gas purification device.

例えばディーゼルエンジン(内燃機関に相当)を搭載した車両の排気浄化装置は、排気ガス中の粒子状物質を捕集するいわゆるDPF(Diesel Particulate Filter)を有している。DPFの粒子状物質の捕集性能を維持するためには、いわゆるフィルタ再生処理を定期的に行って、捕集されたDPF内の粒子状物質を、燃焼焼却して除去する必要がある。なお、フィルタ再生処理としては、DPFの上流側に設けられた酸化触媒に未燃燃料を添加して未燃燃料を酸化触媒内で反応させて酸化触媒内で排気ガスの温度を昇温させ、粒子状物質が燃焼する燃焼温度以上に昇温させた排気ガスをDPFに流入させて、DPF内の粒子状物質を燃焼焼却する方法がある。 For example, a vehicle exhaust purification device equipped with a diesel engine (corresponding to an internal combustion engine) has a so-called DPF (Diesel Particulate Filter) that collects particulate matter in exhaust gas. In order to maintain the collection performance of the particulate matter of the DPF, it is necessary to periodically perform a so-called filter regeneration process to burn and incinerate the particulate matter in the collected DPF to remove it. In the filter regeneration process, unburned fuel is added to the oxidation catalyst provided on the upstream side of the DPF, and the unburned fuel is reacted in the oxidation catalyst to raise the temperature of the exhaust gas in the oxidation catalyst. There is a method in which exhaust gas heated to a temperature higher than the combustion temperature at which the particulate matter burns is allowed to flow into the DPF to burn and incinerate the particulate matter in the DPF.

ところが、酸化触媒内の排気ガスの温度を上記の燃焼温度以上にするために必要な未燃燃料添加量は、酸化触媒に流入する排気ガスの温度、酸化触媒に流入する排気ガスの流量、燃料性状のバラツキ等にて変動する。従来では、酸化触媒に流入する排気ガスの温度、酸化触媒に流入する排気ガスの流量、燃料性状のバラツキ等が、どのような状態であっても、酸化触媒内の排気ガスの温度を上記の燃焼温度以上にできる未燃の燃料添加量を添加しているので、無駄な燃料を消費している。 However, the amount of unburned fuel added to raise the temperature of the exhaust gas in the oxidation catalyst to the above-mentioned combustion temperature or higher is the temperature of the exhaust gas flowing into the oxidation catalyst, the flow rate of the exhaust gas flowing into the oxidation catalyst, and the fuel. It fluctuates due to variations in properties. Conventionally, the temperature of the exhaust gas in the oxidation catalyst is set to the above regardless of the temperature of the exhaust gas flowing into the oxidation catalyst, the flow rate of the exhaust gas flowing into the oxidation catalyst, the variation in fuel properties, and the like. Since the amount of unburned fuel added that can exceed the combustion temperature is added, wasteful fuel is consumed.

特許文献1に記載の排気浄化装置では、ディーゼルエンジンにおけるポスト噴射にて未燃の燃料を添加している。そして未燃の燃料添加量は、基本噴射量に調整係数Kを乗じることで求められており、調整係数Kは、排気ガスの温度により推定されたDPFの温度に応じて調整されている。つまり、DPFの温度に応じて調整係数Kを調整することで、DPFの温度に応じて未燃の燃料添加量を調整しており、無駄な燃料の消費の一部を抑制することができる。 In the exhaust gas purification device described in Patent Document 1, unburned fuel is added by post-injection in a diesel engine. The amount of unburned fuel added is obtained by multiplying the basic injection amount by the adjustment coefficient K, and the adjustment coefficient K is adjusted according to the DPF temperature estimated by the temperature of the exhaust gas. That is, by adjusting the adjustment coefficient K according to the temperature of the DPF, the amount of unburned fuel added is adjusted according to the temperature of the DPF, and a part of wasteful fuel consumption can be suppressed.

特開2008−232073号公報Japanese Unexamined Patent Publication No. 2008-23207

上述したように、酸化触媒内の排気ガスの温度を上記の燃焼温度以上にするために必要な未燃の燃料添加量は、酸化触媒に流入する排気ガスの温度、酸化触媒に流入する排気ガスの流量、燃料性状のバラツキ等にて変動するので、特許文献1に記載の方法では、未燃の燃料添加量に、まだ無駄な燃料が含まれている。近年では、燃費のさらなる向上が望まれており、無駄な燃料の消費をさらに低減することが望まれている。 As described above, the amount of unburned fuel added to make the temperature of the exhaust gas in the oxidation catalyst equal to or higher than the above combustion temperature is the temperature of the exhaust gas flowing into the oxidation catalyst and the exhaust gas flowing into the oxidation catalyst. In the method described in Patent Document 1, the amount of unburned fuel added still contains wasteful fuel because it fluctuates depending on the flow rate, the variation in fuel properties, and the like. In recent years, further improvement in fuel efficiency has been desired, and it is desired to further reduce wasteful fuel consumption.

本発明は、このような点に鑑みて創案されたものであり、DPFのフィルタ再生処理を行う際の未燃の燃料添加量を、より正確に求め、無駄な燃料の消費を、より低減させることができる排気浄化装置を提供することを課題とする。 The present invention has been devised in view of these points, and more accurately determines the amount of unburned fuel added when the DPF filter regeneration process is performed, and further reduces wasteful fuel consumption. An object of the present invention is to provide an exhaust purification device capable of providing an exhaust gas purification device.

上記課題を解決するため、第1の発明は、内燃機関から排出される排気ガスに含まれる粒子状物質を捕集するフィルタと、前記フィルタの上流側に配置される酸化触媒と、を有する、前記排気ガスを浄化する排気浄化装置において、前記酸化触媒に流入するガスの流入量である流入ガス量を取得する流入ガス量取得手段と、前記酸化触媒に流入するガスの温度である流入ガス温度を取得する流入ガス温度取得手段と、前記酸化触媒から流出するガスの温度である流出ガス温度を取得する流出ガス温度取得手段と、制御手段と、を備え、前記制御手段は、前記フィルタに所定量以上の粒子状物質が捕集されたと判定した場合に、前記酸化触媒にフィルタ再生用燃料を添加して前記フィルタ内の粒子状物質を燃焼焼却するフィルタ再生処理を行い、前記フィルタ再生処理に先立って、前記酸化触媒に添加する前記フィルタ再生用燃料の量に対する排気ガスの昇温温度の関係を示す発熱量換算係数を求め、前記発熱量換算係数を求める際は、燃料添加量と、前記燃料添加量の燃料を前記酸化触媒に添加している間における前記流入ガス量、前記流入ガス温度、及び前記流出ガス温度と、に基づいて発熱量換算係数を求め、前記発熱量換算係数に基づいて前記フィルタ再生処理時に前記酸化触媒に添加する前記フィルタ再生用燃料を調整する、排気浄化装置である。 In order to solve the above problems, the first invention includes a filter that collects particulate matter contained in exhaust gas discharged from an internal combustion engine, and an oxidation catalyst arranged on the upstream side of the filter. In the exhaust gas purification device for purifying the exhaust gas, the inflow gas amount acquisition means for acquiring the inflow gas amount which is the inflow amount of the gas flowing into the oxidation catalyst and the inflow gas temperature which is the temperature of the gas flowing into the oxidation catalyst. The inflow gas temperature acquisition means for acquiring the above, the outflow gas temperature acquisition means for acquiring the outflow gas temperature which is the temperature of the gas flowing out from the oxidation catalyst, and the control means are provided, and the control means is located on the filter. When it is determined that a certain amount or more of the particulate matter has been collected, a filter regeneration treatment is performed by adding a fuel for filter regeneration to the oxidation catalyst to burn and incinerate the particulate matter in the filter, and the filter regeneration treatment is performed. Prior to obtaining the calorific value conversion coefficient indicating the relationship between the temperature rise temperature of the exhaust gas with respect to the amount of the filter regeneration fuel added to the oxidation catalyst, when obtaining the calorific value conversion coefficient, the fuel addition amount and the said The calorific value conversion coefficient is obtained based on the inflow gas amount, the inflow gas temperature, and the outflow gas temperature while the fuel of the fuel addition amount is being added to the oxidation catalyst, and is based on the calorific value conversion coefficient. This is an exhaust gas purification device that adjusts the filter regeneration fuel to be added to the oxidation catalyst during the filter regeneration process.

本発明の第2の発明は、上記第1の発明に係る排気浄化装置であって、前記制御手段は、前記内燃機関のアイドリング運転時又は減速運転時において、前記発熱量換算係数を求める、排気浄化装置である。 A second invention of the present invention is an exhaust gas purification device according to the first invention, wherein the control means obtains the calorific value conversion coefficient during idling operation or deceleration operation of the internal combustion engine. It is a purification device.

本発明の第3の発明は、上記第1又は第2の発明に係る排気浄化装置であって、前記制御手段は、前記内燃機関における燃料の給油後、給油後の燃料に基づいて、前記発熱量換算係数を給油後1回のみ求め更新するまでは、予め設定された初期発熱量換算係数を前記発熱量換算係数とする、排気浄化装置である。 A third invention of the present invention is the exhaust gas purification device according to the first or second invention, wherein the control means generates heat after refueling the fuel in the internal combustion engine and based on the fuel after refueling. This is an exhaust gas purification device that uses a preset initial calorific value conversion coefficient as the calorific value conversion coefficient until the quantity conversion coefficient is obtained and updated only once after refueling.

本発明の第4の発明は、上記第1の発明〜第3の発明のいずれか1つに係る排気浄化装置であって、前記制御手段は、前記発熱量換算係数を求める場合、前記燃料添加量と、前記燃料添加量の燃料を前記酸化触媒に添加している間における前記流出ガス温度と前記流入ガス温度との差分を積算した差分温度積算値、及び前記流入ガス量と、に基づいて前記発熱量換算係数を求める、排気浄化装置である。 A fourth invention of the present invention is an exhaust gas purification device according to any one of the first to third inventions, wherein the control means adds the fuel when obtaining the calorific value conversion coefficient. Based on the amount, the differential temperature integrated value obtained by integrating the difference between the exhaust gas temperature and the inflow gas temperature while the fuel of the fuel addition amount is being added to the oxidation catalyst, and the inflow gas amount. This is an exhaust gas purification device for obtaining the calorific value conversion coefficient.

本発明の第5の発明は、上記第1の発明〜第4の発明のいずれか1つに係る排気浄化装置であって、前記酸化触媒への燃料は、前記酸化触媒の上流側の排気通路に配置された燃料添加弁により添加され、又は、前記内燃機関のシリンダ内におけるインジェクタによるポスト噴射により添加される、排気浄化装置である。 A fifth invention of the present invention is an exhaust purification device according to any one of the first to fourth inventions, wherein the fuel for the oxidation catalyst is an exhaust passage on the upstream side of the oxidation catalyst. It is an exhaust gas purification device added by a fuel addition valve arranged in the above, or added by post injection by an injector in the cylinder of the internal combustion engine.

本発明の第6の発明は、上記第1の発明〜第5の発明のいずれか1つに係る排気浄化装置であって、前記発熱量換算係数を求める際、前記内燃機関の運転状態が所定の運転状態である場合に、前記酸化触媒に添加する係数算出用燃料が、前記酸化触媒内ですべて消費されように予め設定された一定量を、所定時間の間、添加する、排気浄化装置である。 A sixth invention of the present invention is an exhaust gas purification device according to any one of the first to fifth inventions, and when the calorific value conversion coefficient is obtained, the operating state of the internal combustion engine is predetermined. In the exhaust gas purification device, the fuel for calculating the coefficient to be added to the oxidation catalyst is added in a preset fixed amount for a predetermined time so as to be completely consumed in the oxidation catalyst. be.

第1の発明によれば、発熱量換算係数を求め、求めた発熱量換算係数に基づいて、フィルタ再生処理の未燃の燃料添加量を調整することで、必要な燃料添加量を、より正確に求めることができる。従って、無駄な燃料の消費を、より抑制することができる。 According to the first invention, the calorific value conversion coefficient is obtained, and the required fuel addition amount is made more accurate by adjusting the unburned fuel addition amount of the filter regeneration treatment based on the calorific value conversion coefficient. Can be asked for. Therefore, wasteful fuel consumption can be further suppressed.

第2の発明によれば、酸化触媒への流入ガス温度の変動が少ない運転状態にて発熱量換算係数を求めることで、より正確に発熱量換算係数を求めることができる。 According to the second invention, the calorific value conversion coefficient can be obtained more accurately by obtaining the calorific value conversion coefficient in an operating state where the fluctuation of the inflow gas temperature to the oxidation catalyst is small.

第3の発明によれば、燃料の給油により燃料性状が変わった場合であっても、変わった燃料性状において最適な発熱量換算係数を求めるため、最適な燃料添加量でDPFにおけるフィルタ再生処理を行うことができる。また、給油後の燃料性状において最適な発熱量換算係数を求める前にフィルタ再生処理を開始する場合でも、初期発熱量換算係数を用いることでDPFにおけるフィルタ再生処理を適切に行うことができる。 According to the third invention, even when the fuel properties are changed due to refueling of the fuel, the filter regeneration process in the DPF is performed with the optimum fuel addition amount in order to obtain the optimum calorific value conversion coefficient in the changed fuel properties. It can be carried out. Further, even when the filter regeneration process is started before the optimum calorific value conversion coefficient is obtained for the fuel properties after refueling, the filter regeneration process in the DPF can be appropriately performed by using the initial calorific value conversion coefficient.

第4の発明によれば、流出ガス温度と流入ガス温度との差分を積算した差分温度積算値を用いて求めることで、温度の計測誤差の影響を低減でき、より精度よく発熱量換算係数を求めることができる。 According to the fourth invention, the influence of the temperature measurement error can be reduced by obtaining the difference temperature integrated value obtained by integrating the difference between the outflow gas temperature and the inflow gas temperature, and the calorific value conversion coefficient can be obtained more accurately. Can be sought.

第5の発明によれば、燃料添加弁により燃料を添加する場合、酸化触媒の直前で添加できる。また、ポスト噴射により燃料を添加する場合、構造がよりシンプルになる。 According to the fifth invention, when fuel is added by the fuel addition valve, it can be added immediately before the oxidation catalyst. Also, when fuel is added by post-injection, the structure becomes simpler.

第6の発明によれば、酸化触媒において燃料がすべて消費されるため、無駄な消費を抑制し、より正確に発熱量換算係数を求めることができる。 According to the sixth invention, since all the fuel is consumed in the oxidation catalyst, wasteful consumption can be suppressed and the calorific value conversion coefficient can be obtained more accurately.

第1の実施形態の排気浄化装置が適用される内燃機関における全体構成を説明するブロック図である。It is a block diagram explaining the whole structure in the internal combustion engine to which the exhaust gas purification apparatus of 1st Embodiment is applied. 第1の実施形態の排気浄化装置における制御の処理を説明するフローチャートである。It is a flowchart explaining the control process in the exhaust gas purification apparatus of 1st Embodiment. 第2の実施形態の排気浄化装置が適用される内燃機関における全体構成を説明するブロック図である。It is a block diagram explaining the whole structure in the internal combustion engine to which the exhaust gas purification apparatus of 2nd Embodiment is applied. 第2の実施形態における制御の処理を説明するフローチャートである。It is a flowchart explaining the control process in 2nd Embodiment.

●[第1の実施形態の排気浄化装置20の全体構成と動作の説明(図1、図2)]
図1と図2を用いて、本発明を実施するための第1の実施形態を説明する。図1は、第1の実施形態の排気浄化装置20が適用される内燃機関10における全体構成を説明するブロック図である。図2は、第1の実施形態の排気浄化装置20における制御の処理を説明するフローチャートである。
● [Explanation of the overall configuration and operation of the exhaust gas purification device 20 of the first embodiment (FIGS. 1 and 2)]
A first embodiment for carrying out the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram illustrating an overall configuration of an internal combustion engine 10 to which the exhaust gas purification device 20 of the first embodiment is applied. FIG. 2 is a flowchart illustrating a control process in the exhaust gas purification device 20 of the first embodiment.

●[排気浄化装置20における全体構成の説明(図1)]
図1に示すように、排気浄化装置20は、制御手段25と、流入ガス量取得手段31と、酸化触媒41と、フィルタ42と、流入ガス温度取得手段50と、流出ガス温度取得手段52と、燃料添加弁54と、を有している。内燃機関10(この場合、ディーゼルエンジン)の排気通路12には、排気浄化装置20として、上流から、酸化触媒41、フィルタ42、が順次設けられている。酸化触媒41は、炭化水素(HC)と一酸化炭素(CO)を無害化する触媒であり、フィルタ42は、排気ガス中の粒子状物質を捕集するいわゆるDPF(Diesel Particulate Filter)である。
● [Explanation of the overall configuration of the exhaust gas purification device 20 (Fig. 1)]
As shown in FIG. 1, the exhaust gas purification device 20 includes a control means 25, an inflow gas amount acquisition means 31, an oxidation catalyst 41, a filter 42, an inflow gas temperature acquisition means 50, and an outflow gas temperature acquisition means 52. , And a fuel addition valve 54. In the exhaust passage 12 of the internal combustion engine 10 (in this case, a diesel engine), an oxidation catalyst 41 and a filter 42 are sequentially provided as an exhaust purification device 20 from the upstream. The oxidation catalyst 41 is a catalyst that detoxifies hydrocarbons (HC) and carbon monoxide (CO), and the filter 42 is a so-called DPF (Diesel Particulate Filter) that collects particulate matter in the exhaust gas.

内燃機関10には、燃料タンク22から供給される燃料をシリンダ内へ噴射するインジェクタ56が設けられて、運転状態を検出する回転検出手段34が設けられている。吸気通路11には、内燃機関10に吸気されるガス(空気)の流入量を取得する流入ガス量取得手段31が設けられている。燃料添加弁54は、排気通路12内における酸化触媒41よりも上流側に配置され、排気通路12内に燃料を噴射し酸化触媒41に添加する。なお、燃料タンク22からインジェクタ56と燃料タンク22から燃料添加弁54への燃料供給用配管等の図示は、説明の都合上省略する。 The internal combustion engine 10 is provided with an injector 56 for injecting fuel supplied from the fuel tank 22 into a cylinder, and is provided with a rotation detecting means 34 for detecting an operating state. The intake passage 11 is provided with an inflow gas amount acquisition means 31 for acquiring an inflow amount of gas (air) taken into the internal combustion engine 10. The fuel addition valve 54 is arranged on the upstream side of the oxidation catalyst 41 in the exhaust passage 12, and injects fuel into the exhaust passage 12 to add the fuel to the oxidation catalyst 41. The illustration of the fuel supply piping from the fuel tank 22 to the injector 56 and the fuel tank 22 to the fuel addition valve 54 is omitted for convenience of explanation.

制御手段25は、燃料計24、流入ガス量取得手段31、アクセル開度検出手段33、回転検出手段34、流入ガス温度取得手段50、流出ガス温度取得手段52、燃料添加弁54、インジェクタ56、のそれぞれが接続されている。 The control means 25 includes a fuel gauge 24, an inflow gas amount acquisition means 31, an accelerator opening degree detection means 33, a rotation detection means 34, an inflow gas temperature acquisition means 50, an outflow gas temperature acquisition means 52, a fuel addition valve 54, an injector 56, and the like. Each of them is connected.

制御手段25は、燃料添加弁54、インジェクタ56のそれぞれに制御信号を出力して制御する。制御手段25は、燃料添加弁54の開度や通電時間等を制御することで、燃料の供給量を調整する。また、制御手段25は、内燃機関10に燃料を噴射するインジェクタ56へ駆動信号を出力し、シリンダ内へ噴射するタイミングと噴射する燃料の量を制御する。 The control means 25 outputs a control signal to each of the fuel addition valve 54 and the injector 56 for control. The control means 25 adjusts the fuel supply amount by controlling the opening degree of the fuel addition valve 54, the energization time, and the like. Further, the control means 25 outputs a drive signal to the injector 56 that injects fuel into the internal combustion engine 10 to control the timing of injecting fuel into the cylinder and the amount of fuel to be injected.

燃料計24は、燃料タンク22に設けられて、検出した燃料タンク22内の燃料の量に応じた信号を制御手段25に出力する。流入ガス量取得手段31は、例えばエアフロセンサであり、吸気通路11に設けられて内燃機関10に吸入されたガスの流入量[g/s](=酸化触媒41に流入するガスの流量に相当)に応じた検出信号を制御手段25に出力する。 The fuel gauge 24 is provided in the fuel tank 22 and outputs a signal corresponding to the detected amount of fuel in the fuel tank 22 to the control means 25. The inflow gas amount acquisition means 31 is, for example, an air flow sensor, which corresponds to the inflow amount [g / s] of the gas provided in the intake passage 11 and sucked into the internal combustion engine 10 (= the flow rate of the gas flowing into the oxidation catalyst 41). ) Is output to the control means 25.

アクセル開度検出手段33は、運転者が操作するアクセルの開度(すなわち、運転者の要求負荷)に応じた検出信号を制御手段25に出力する。回転検出手段34は、例えば内燃機関10のクランクシャフトの回転に応じた検出信号を制御手段25に出力する。 The accelerator opening degree detecting means 33 outputs a detection signal corresponding to the opening degree of the accelerator operated by the driver (that is, the load requested by the driver) to the control means 25. The rotation detecting means 34 outputs, for example, a detection signal corresponding to the rotation of the crankshaft of the internal combustion engine 10 to the control means 25.

流入ガス温度取得手段50は、排気通路12内における酸化触媒41よりも上流側に配置され、酸化触媒41へ流入するガスの温度に応じた信号を制御手段25に出力する。流出ガス温度取得手段52は、排気通路12内における酸化触媒41よりも下流側に配置され、酸化触媒41から流出するガスの温度に応じた信号を制御手段25に出力する。 The inflow gas temperature acquisition means 50 is arranged on the upstream side of the oxidation catalyst 41 in the exhaust passage 12, and outputs a signal corresponding to the temperature of the gas flowing into the oxidation catalyst 41 to the control means 25. The outflow gas temperature acquisition means 52 is arranged on the downstream side of the oxidation catalyst 41 in the exhaust passage 12, and outputs a signal according to the temperature of the gas flowing out from the oxidation catalyst 41 to the control means 25.

制御手段25は、アクセル開度検出手段33と回転検出手段34のそれぞれからの信号に基づいて、内燃機関10の運転状態(例えば、アイドリング運転、減速運転)を判定する。 The control means 25 determines the operating state (for example, idling operation, deceleration operation) of the internal combustion engine 10 based on the signals from each of the accelerator opening degree detecting means 33 and the rotation detecting means 34.

●[フィルタ再生処理の説明]
フィルタ再生処理は、制御手段25が酸化触媒41に発熱量換算係数kに基づいて調整された量のフィルタ再生用燃料を添加してフィルタ42内の粒子状物質を燃焼焼却して行う。発熱量換算係数kは、単位ガス流量(1g/s)を1℃上昇させるのに必要な燃料添加量[g/s]である。
● [Explanation of filter playback processing]
The filter regeneration process is performed by the control means 25 adding an amount of filter regeneration fuel adjusted based on the calorific value conversion coefficient k to the oxidation catalyst 41 and burning and incinerating the particulate matter in the filter 42. The calorific value conversion coefficient k is the fuel addition amount [g / s] required to raise the unit gas flow rate (1 g / s) by 1 ° C.

発熱量換算係数kは、総燃料添加量[g]と、酸化触媒41に流入するガスの総流量(流入ガス量)[g]と、酸化触媒41に流入した燃料による発熱量(=酸化触媒流出時のガス温度−酸化触媒流入時のガス温度)[℃]に基づいて求められる。なお、フィルタ再生用燃料の調整された添加量[g]は、発熱量換算係数k[1/℃]×(酸化触媒41の目標流出ガス温度−酸化触媒41の流入ガス温度)[℃]×(酸化触媒41への総流入ガス量)[g]に基づいて求められる。酸化触媒41の目標流出ガス温度は、フィルタ42において粒子状物質を燃焼焼却できる温度であり、600℃〜650℃の範囲の温度である。また、発熱量換算係数kは、より確実にフィルタ再生処理を行うため、求めた発熱量換算係数kに例えば、1.1を乗じたものを用いても良い。 The calorific value conversion coefficient k is the total fuel addition amount [g], the total flow rate of the gas flowing into the oxidation catalyst 41 (inflow gas amount) [g], and the calorific value due to the fuel flowing into the oxidation catalyst 41 (= oxidation catalyst). It is obtained based on the gas temperature at the time of outflow-gas temperature at the time of inflow of the oxidation catalyst) [° C]. The adjusted addition amount [g] of the fuel for filter regeneration is a calorific value conversion coefficient k [1 / ° C.] × (target outflow gas temperature of the oxidation catalyst 41 −inflow gas temperature of the oxidation catalyst 41) [° C.] ×. It is obtained based on (total amount of gas flowing into the oxidation catalyst 41) [g]. The target outflow gas temperature of the oxidation catalyst 41 is a temperature at which the particulate matter can be burned and incinerated in the filter 42, and is a temperature in the range of 600 ° C. to 650 ° C. Further, the calorific value conversion coefficient k may be obtained by multiplying the obtained calorific value conversion coefficient k by, for example, 1.1 in order to perform the filter regeneration processing more reliably.

●[排気浄化装置20における動作の説明(図2)]
排気浄化装置20における制御手段25(図1参照)の制御の処理手順について、図2のフローチャートを用いて説明する。なお、制御手段25は、起動された場合、所定時間間隔(例えば数[ms]間隔)にて、全体処理を実行する。以下、各ステップについて詳細に説明する。
● [Explanation of operation in the exhaust gas purification device 20 (Fig. 2)]
The control processing procedure of the control means 25 (see FIG. 1) in the exhaust gas purification device 20 will be described with reference to the flowchart of FIG. When the control means 25 is activated, the control means 25 executes the entire process at predetermined time intervals (for example, several [ms] intervals). Hereinafter, each step will be described in detail.

●[全体処理の説明]
ステップS100において、制御手段25は、燃料の給油有りと判定した場合(Yes)は、ステップS110に処理を進め、燃料の給油有りと判定しない場合(No)は、ステップS130に処理を進める。なお、制御手段25は、燃料計24(図1参照)の検出信号に基づいて、例えば、計測した燃料の量が前回計測した燃料の量と比較して増加した場合に、燃料の給油有りと判定する。
● [Explanation of overall processing]
In step S100, if the control means 25 determines that the fuel is refueled (Yes), the process proceeds to step S110, and if it is not determined that the fuel is refueled (No), the process proceeds to step S130. Based on the detection signal of the fuel gauge 24 (see FIG. 1), the control means 25 determines that the fuel is refueled, for example, when the measured amount of fuel increases as compared with the previously measured amount of fuel. judge.

ステップS110において、制御手段25は、発熱量換算係数kを初期発熱量換算係数kiに設定し、ステップS120へ処理を進める。これにより、制御手段25は、給油後の燃料に基づいて、発熱量換算係数kを給油後1回のみ求め更新するまでは、初期発熱量換算係数kiを発熱量換算係数kとする。従って、制御手段25は、給油後の燃料性状において最適な発熱量換算係数kを求め更新する前に、フィルタ再生処理を開始する場合でも、フィルタ42(図1参照)におけるフィルタ再生処理を適切に行う。初期発熱量換算係数kiは、酸化触媒41の経時劣化と燃料性状のバラツキを考慮し、予め設定され制御手段25に記憶されている発熱量換算係数である。 In step S110, the control means 25 sets the calorific value conversion coefficient k to the initial calorific value conversion coefficient ki, and proceeds to step S120. As a result, the control means 25 sets the initial calorific value conversion coefficient ki as the calorific value conversion coefficient k until the calorific value conversion coefficient k is obtained and updated only once after refueling based on the fuel after refueling. Therefore, the control means 25 appropriately performs the filter regeneration process in the filter 42 (see FIG. 1) even when the filter regeneration process is started before the optimum calorific value conversion coefficient k is obtained and updated in the fuel properties after refueling. conduct. The initial calorific value conversion coefficient ki is a calorific value conversion coefficient that is preset and stored in the control means 25 in consideration of the deterioration over time of the oxidation catalyst 41 and the variation in fuel properties.

ステップS120において、制御手段25は、係数更新フラグ=0に設定し、ステップS130へ処理を進める。なお、係数更新フラグは、発熱量換算係数kの更新を示すフラグであり、燃料の給油有りと判定された場合に0に設定され、係数更新フラグ=0の状態において、給油後の燃料により発熱量換算係数kが求められ更新された場合に1に設定される。これにより、給油後における発熱量換算係数kの取得は、1回に限定される。 In step S120, the control means 25 sets the coefficient update flag = 0 and proceeds to step S130. The coefficient update flag is a flag indicating the update of the calorific value conversion coefficient k, and is set to 0 when it is determined that the fuel is refueled. In the state where the coefficient update flag = 0, heat is generated by the fuel after refueling. It is set to 1 when the quantity conversion coefficient k is obtained and updated. As a result, the acquisition of the calorific value conversion coefficient k after refueling is limited to one time.

ステップS130において、制御手段25は、フィルタ42に所定量以上の粒子状物質が捕集されたと判定した場合(Yes)は、ステップS140に処理を進め、フィルタ42に所定量以上の粒子状物質が捕集されたと判定しない場合(No)は、ステップS150に処理を進める。なお、制御手段25は、例えば、前回フィルタ再生処理を行った時から経過時間に基づいてフィルタ42に所定量以上の粒子状物質が捕集されたと判定しても良い。 In step S130, when the control means 25 determines that the filter 42 has collected a predetermined amount or more of the particulate matter (Yes), the process proceeds to step S140, and the filter 42 contains the predetermined amount or more of the particulate matter. If it is not determined that the particles have been collected (No), the process proceeds to step S150. The control means 25 may determine, for example, that a predetermined amount or more of particulate matter has been collected by the filter 42 based on the elapsed time from the time when the filter regeneration process was performed last time.

ステップS140において、制御手段25は、フィルタ再生処理をして、全体処理を終了する。 In step S140, the control means 25 performs a filter regeneration process and ends the entire process.

ステップS150において、制御手段25は、係数更新フラグ=0と判定した場合(Yes)は、ステップS200(発熱量換算係数の取得、更新)に処理を進め、係数更新フラグ=0と判定しない場合(No)は、全体処理を終了する。 In step S150, when the control means 25 determines that the coefficient update flag = 0 (Yes), the process proceeds to step S200 (acquisition and update of the calorific value conversion coefficient), and when the coefficient update flag = 0 is not determined (Yes). No) ends the whole process.

●[発熱量換算係数の取得、更新の説明(ステップS200)]
以下、ステップS200における発熱量換算係数kの取得、更新についての処理手順について説明する。なお、制御手段25は、発熱量換算係数の取得、更新の開始時において、燃料添加量と、差分温度積算値と、総流入ガス量と、を0に初期化する処理を行う。
● [Explanation of acquisition and update of calorific value conversion coefficient (step S200)]
Hereinafter, the processing procedure for acquiring and updating the calorific value conversion coefficient k in step S200 will be described. The control means 25 performs a process of initializing the fuel addition amount, the differential temperature integrated value, and the total inflow gas amount to 0 at the start of acquisition and update of the calorific value conversion coefficient.

ステップS205において、制御手段25は、流入ガス温度が発熱量換算係数kの取得可能温度以上と判定した場合(Yes)は、ステップS210に処理を進め、流入ガス温度が発熱量換算係数の取得可能温度以上と判定しない場合(No)は、ステップS265に処理を進める。なお、制御手段25は、流入ガス温度取得手段50(図1参照)の取得信号に基づいて、予め制御手段25に記憶されている値と比較することで、流入ガス温度が発熱量換算係数の取得可能温度以上であるか否かを判定する。取得可能温度は、酸化触媒41に使用する酸化触媒の材料に応じた値であり、予め制御手段25に記憶されている。 In step S205, when the control means 25 determines that the inflow gas temperature is equal to or higher than the obtainable temperature of the calorific value conversion coefficient k (Yes), the process proceeds to step S210, and the inflow gas temperature can acquire the calorific value conversion coefficient. If it is not determined that the temperature is higher than the temperature (No), the process proceeds to step S265. The control means 25 determines the inflow gas temperature as a calorific value conversion coefficient by comparing it with a value stored in advance in the control means 25 based on the acquisition signal of the inflow gas temperature acquisition means 50 (see FIG. 1). Determine if the temperature is above the retrievable temperature. The obtainable temperature is a value corresponding to the material of the oxidation catalyst used for the oxidation catalyst 41, and is stored in the control means 25 in advance.

ステップS210において、制御手段25は、内燃機関10(図1参照)がアイドリング運転時であると判定した場合(Yes)は、ステップS215に処理を進め、内燃機関10がアイドリング運転時であると判定しない場合(No)は、ステップS220に処理を進める。なお、制御手段25は、アクセル開度検出手段33(図1参照)と回転検出手段34(図1参照)からの情報に基づいて、アイドリング運転時であるか否かを判定する。 In step S210, when the control means 25 determines that the internal combustion engine 10 (see FIG. 1) is in idling operation (Yes), the process proceeds to step S215 and determines that the internal combustion engine 10 is in idling operation. If not (No), the process proceeds to step S220. The control means 25 determines whether or not the engine is idling based on the information from the accelerator opening degree detecting means 33 (see FIG. 1) and the rotation detecting means 34 (see FIG. 1).

ステップS220において、制御手段25は、内燃機関10が減速運転時であると判定した場合(Yes)は、ステップS215に処理を進め、内燃機関10が減速運転時であると判定しない場合(No)は、ステップS265に処理を進める。なお、制御手段25は、アクセル開度検出手段33と回転検出手段34からの情報に基づいて、減速運転時であるか否かを判定する。 In step S220, if the control means 25 determines that the internal combustion engine 10 is in deceleration operation (Yes), the process proceeds to step S215, and if the internal combustion engine 10 does not determine that it is in deceleration operation (No). Proceeds with the process in step S265. The control means 25 determines whether or not the vehicle is in deceleration operation based on the information from the accelerator opening degree detecting means 33 and the rotation detecting means 34.

ステップS215において、制御手段25は、燃料添加弁54(図1参照)を制御して、燃料の排気通路12への燃料(係数算出用燃料)を添加して、ステップS225に処理を進める。なお、係数算出用燃料は、発熱量換算係数kを求める際、内燃機関10の運転状態が所定の運転状態(本実施形態の場合、アイドリング運転、減速運転)である場合に、酸化触媒41に添加する燃料である。制御手段25は、係数算出用燃料が酸化触媒41内ですべて消費されように予め設定された一定量を、所定時間の間(この場合、添加の開始から終了までの時間)、添加する。燃料添加量は、発熱量換算係数kを求める際に添加された係数算出用燃料の総量である。 In step S215, the control means 25 controls the fuel addition valve 54 (see FIG. 1) to add fuel (fuel for coefficient calculation) to the exhaust passage 12 of the fuel, and proceeds to the process in step S225. The coefficient calculation fuel is used in the oxidation catalyst 41 when the calorific value conversion coefficient k is obtained and the operating state of the internal combustion engine 10 is a predetermined operating state (idling operation, deceleration operation in the case of this embodiment). It is a fuel to be added. The control means 25 adds a predetermined fixed amount so that all the coefficient calculation fuel is consumed in the oxidation catalyst 41 for a predetermined time (in this case, the time from the start to the end of the addition). The fuel addition amount is the total amount of the coefficient calculation fuel added when the calorific value conversion coefficient k is obtained.

ステップS225において、制御手段25は、流入ガス量取得手段31(図1参照)の情報に基づいて、酸化触媒41へ流入する流入ガス量を取得し記憶して、ステップS230に処理を進める。なお、制御手段25は、取得した流入ガス量を積算し、総流入ガス量を求める。 In step S225, the control means 25 acquires and stores the amount of inflow gas flowing into the oxidation catalyst 41 based on the information of the inflow gas amount acquisition means 31 (see FIG. 1), and proceeds to the process in step S230. The control means 25 integrates the acquired inflow gas amount to obtain the total inflow gas amount.

ステップS230において、制御手段25は、流入ガス温度取得手段50(図1参照)の情報に基づいて、酸化触媒41へ流入する流入ガス温度を取得し記憶して、ステップS235に処理を進める。 In step S230, the control means 25 acquires and stores the inflow gas temperature flowing into the oxidation catalyst 41 based on the information of the inflow gas temperature acquisition means 50 (see FIG. 1), and proceeds to the process in step S235.

ステップS235において、制御手段25は、流出ガス温度取得手段52(図1参照)の情報に基づいて、酸化触媒41から流出する流出ガス温度を取得し記憶して、ステップS240に処理を進める。 In step S235, the control means 25 acquires and stores the outflow gas temperature flowing out from the oxidation catalyst 41 based on the information of the outflow gas temperature acquisition means 52 (see FIG. 1), and proceeds to the process in step S240.

ステップS240において、制御手段25は、燃料を酸化触媒41に添加している間の流出ガス温度(ステップS235)と流入ガス温度(ステップS230)との差分を積算した差分温度積算値を求め記憶し、ステップS245に処理を進める。 In step S240, the control means 25 obtains and stores the difference temperature integrated value obtained by integrating the difference between the outflow gas temperature (step S235) and the inflow gas temperature (step S230) while the fuel is being added to the oxidation catalyst 41. , Step S245 proceeds with the process.

ステップS245において、制御手段25は、燃料の添加の開始から所定添加時間を経過したと判定した場合(Yes)は、ステップS250に処理を進め、燃料の添加の開始から所定添加時間を経過したと判定しない場合(No)は、ステップS200(発熱量換算係数の取得、更新)を終了し、全体処理へ戻る。なお、所定添加時間は、例えば、10s〜20s程度である。 In step S245, when the control means 25 determines that the predetermined addition time has elapsed from the start of fuel addition (Yes), the process proceeds to step S250, and the predetermined addition time has elapsed from the start of fuel addition. If no determination is made, step S200 (acquisition and update of calorific value conversion coefficient) is terminated, and the process returns to the overall process. The predetermined addition time is, for example, about 10 s to 20 s.

ステップS250において、制御手段25は、燃料添加弁54を制御して、燃料の排気通路12への添加を終了して、ステップS255に処理を進める。 In step S250, the control means 25 controls the fuel addition valve 54 to finish the addition of the fuel to the exhaust passage 12, and proceeds to the process in step S255.

ステップS255において、制御手段25は、発熱量換算係数kを求めて、ステップS260に処理を進める。なお、制御手段25は、添加の開始から添加の終了までの間における、燃料添加量と、流入ガス量と、流入ガス温度と、流出ガス温度と、により発熱量換算係数を求める。制御手段25は、発熱量換算係数k=燃料添加量/差分温度積算値/総流入ガス量の式に基づいて、発熱量換算係数kを求め、記憶し更新する。 In step S255, the control means 25 obtains the calorific value conversion coefficient k and proceeds to the process in step S260. The control means 25 obtains a calorific value conversion coefficient from the fuel addition amount, the inflow gas amount, the inflow gas temperature, and the outflow gas temperature from the start of the addition to the end of the addition. The control means 25 obtains, stores, and updates the calorific value conversion coefficient k based on the formula of calorific value conversion coefficient k = fuel addition amount / differential temperature integrated value / total inflow gas amount.

ステップS260において、制御手段25は、係数更新フラグ=1に設定し、ステップS200(発熱量換算係数の取得、更新)を終了し、全体処理へ戻る。 In step S260, the control means 25 sets the coefficient update flag = 1, ends step S200 (acquisition and update of calorific value conversion coefficient), and returns to the overall process.

ステップS265において、制御手段25は、燃料の添加中であると判定した場合(Yes)は、ステップS270に処理を進め、燃料の添加中であると判定しない場合(No)は、ステップS200(発熱量換算係数の取得、更新)を終了し、全体処理へ戻る。 In step S265, if the control means 25 determines that fuel is being added (Yes), the process proceeds to step S270, and if it is not determined that fuel is being added (No), step S200 (heat generation). (Acquisition and update of quantity conversion coefficient) is completed, and the process returns to the overall processing.

ステップS270において、制御手段25は、燃料添加弁54を制御して、燃料の排気通路12への添加を終了して、ステップS200(発熱量換算係数の取得、更新)を終了し、全体処理へ戻る。 In step S270, the control means 25 controls the fuel addition valve 54, ends the addition of fuel to the exhaust passage 12, ends step S200 (acquisition and update of calorific value conversion coefficient), and proceeds to the overall processing. return.

●[第2の実施形態の排気浄化装置20Aの全体構成と動作の説明(図3、図4)]
図3と図4を用いて、本発明を実施するための第2の実施形態を説明する。図3は、第2の実施形態の排気浄化装置20Aが適用される内燃機関10における全体構成を説明するブロック図である。図4は、第2の実施形態の排気浄化装置20Aにおける制御の処理を説明するフローチャートである。
● [Explanation of the overall configuration and operation of the exhaust gas purification device 20A of the second embodiment (FIGS. 3 and 4)]
A second embodiment for carrying out the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a block diagram illustrating an overall configuration of the internal combustion engine 10 to which the exhaust gas purification device 20A of the second embodiment is applied. FIG. 4 is a flowchart illustrating a control process in the exhaust gas purification device 20A of the second embodiment.

●[排気浄化装置20Aにおける全体構成の説明(図3)]
図3を用いて、本発明の排気浄化装置20Aを適用した内燃機関10の全体構成について説明する。排気浄化装置20Aは、第1の実施形態の排気浄化装置20に対して、燃料添加弁54の代わりにインジェクタ56を有している点で相違する。従って、排気浄化装置20Aの全体構成の詳細な説明は省略する。
● [Explanation of the overall configuration of the exhaust gas purification device 20A (Fig. 3)]
The overall configuration of the internal combustion engine 10 to which the exhaust gas purification device 20A of the present invention is applied will be described with reference to FIG. The exhaust gas purification device 20A differs from the exhaust gas purification device 20 of the first embodiment in that it has an injector 56 instead of the fuel addition valve 54. Therefore, a detailed description of the overall configuration of the exhaust gas purification device 20A will be omitted.

●[排気浄化装置20Aにおける動作の説明(図4)]
排気浄化装置20A(図3参照)における制御手段25(図3参照)の制御の処理手順について、図4のフローチャートを用いて説明する。第2の実施形態における制御手段25の制御の処理手順は、第1の実施形態における制御の処理手順に対して、ステップS200(発熱量換算係数の取得、更新)の代わりに、ステップS200A(発熱量換算係数の取得、更新)を有している点で相違する。なお、制御手段25は、起動された場合、所定時間間隔(例えば数[ms]間隔)にて、全体処理を実行する。以下、各ステップについて詳細に説明する。また、相違する処理については、明確にするため太線で表されている。
● [Explanation of operation in exhaust gas purification device 20A (Fig. 4)]
The control processing procedure of the control means 25 (see FIG. 3) in the exhaust gas purification device 20A (see FIG. 3) will be described with reference to the flowchart of FIG. The control processing procedure of the control means 25 in the second embodiment is different from the control processing procedure in the first embodiment in step S200A (heat generation) instead of step S200 (acquisition and update of calorific value conversion coefficient). It differs in that it has (acquisition and update of quantity conversion coefficient). When the control means 25 is activated, the control means 25 executes the entire process at predetermined time intervals (for example, several [ms] intervals). Hereinafter, each step will be described in detail. In addition, different processes are indicated by thick lines for clarity.

●[発熱量換算係数の取得、更新の説明(ステップS200A)]
図4で示すように、全体処理において、制御手段25は、ステップS200の代わりに、ステップS200Aの処理を行う。以下、ステップS200AにおけるステップS200と相違する点について詳細に説明する。
● [Explanation of acquisition and update of calorific value conversion coefficient (step S200A)]
As shown in FIG. 4, in the overall processing, the control means 25 performs the processing of step S200A instead of step S200. Hereinafter, the differences from step S200 in step S200A will be described in detail.

ステップS215Aにおいて、制御手段25は、インジェクタ56(図3参照)を制御して、内燃機関10(図3参照)のシリンダ内にポスト噴射し、燃料(係数算出用燃料)を酸化触媒41(図3参照)に添加して、ステップS225に処理を進める。 In step S215A, the control means 25 controls the injector 56 (see FIG. 3) and post-injects it into the cylinder of the internal combustion engine 10 (see FIG. 3) to inject fuel (fuel for coefficient calculation) into the oxidation catalyst 41 (see FIG. 3). 3), and the process proceeds to step S225.

ステップS250Aにおいて、制御手段25は、インジェクタ56を制御して、内燃機関10のシリンダ内への燃料の添加を終了して、ステップS255に処理を進める。 In step S250A, the control means 25 controls the injector 56 to finish adding fuel to the cylinder of the internal combustion engine 10, and proceeds to step S255.

図3で示すように、インジェクタ56でポスト噴射により添加された燃料は、排気通路12を経由して、酸化触媒41に到達する。従って、酸化触媒41における流入ガス量、流入ガス温度、流出ガス温度をより正確に取得するためには、添加された燃料が酸化触媒41に到達してから流入ガス量、流入ガス温度、流出ガス温度を取得する。具体的には、インジェクタ56でポスト噴射により添加された燃料が酸化触媒41に到達する時間である燃料到達時間を予め測定しておき、制御手段25に記憶する。制御手段25は、ステップS255において、ポスト噴射の開始から燃料到達時間までの間における流入ガス量、流入ガス温度、流出ガス温度を積算せず、燃料到達時間経過後に積算を開始し総流入ガス量、差分温度積算値を求める。また、制御手段25は、流出ガス温度と流入ガス温度との差分が予め記憶されている所定の値以上になった場合に、積算を開始し総流入ガス量、差分温度積算値を求めても良い。
●[本願の効果]
As shown in FIG. 3, the fuel added by the post injection in the injector 56 reaches the oxidation catalyst 41 via the exhaust passage 12. Therefore, in order to more accurately obtain the inflow gas amount, the inflow gas temperature, and the outflow gas temperature in the oxidation catalyst 41, the inflow gas amount, the inflow gas temperature, and the outflow gas after the added fuel reaches the oxidation catalyst 41. Get the temperature. Specifically, the fuel arrival time, which is the time for the fuel added by the post-injection in the injector 56 to reach the oxidation catalyst 41, is measured in advance and stored in the control means 25. In step S255, the control means 25 does not integrate the inflow gas amount, the inflow gas temperature, and the outflow gas temperature from the start of the post injection to the fuel arrival time, and starts the integration after the fuel arrival time elapses, and the total inflow gas amount. , Obtain the differential temperature integrated value. Further, the control means 25 may start the integration and obtain the total inflow gas amount and the differential temperature integrated value when the difference between the outflow gas temperature and the inflow gas temperature becomes equal to or more than a predetermined value stored in advance. good.
● [Effect of the present application]

以上に説明したように、排気浄化装置は、酸化触媒の劣化の程度や燃料性状によらず、DPFにおけるフィルタ再生処理を最適な燃料で行い、燃費を向上させるとともに、DPFの性能を維持することができる。 As described above, the exhaust purification device shall perform the filter regeneration treatment in the DPF with the optimum fuel regardless of the degree of deterioration of the oxidation catalyst and the fuel properties, improve the fuel efficiency, and maintain the performance of the DPF. Can be done.

本発明の、排気浄化装置は、本実施の形態で説明した構成、構造、形状等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。 The exhaust gas purification device of the present invention is not limited to the configuration, structure, shape, etc. described in the present embodiment, and various changes, additions, and deletions can be made without changing the gist of the present invention.

10 内燃機関
11 吸気通路
12 排気通路
20 排気浄化装置
20A 排気浄化装置
22 燃料タンク
24 燃料計
25 制御手段
31 流入ガス量取得手段
33 アクセル開度検出手段
34 回転検出手段
41 酸化触媒
42 フィルタ
50 流入ガス温度取得手段
52 流出ガス温度取得手段
54 燃料添加弁
56 インジェクタ
10 Internal combustion engine 11 Intake passage 12 Exhaust passage 20 Exhaust purification device 20A Exhaust purification device 22 Fuel tank 24 Fuel meter 25 Control means 31 Inflow gas amount acquisition means 33 Accelerator opening detection means 34 Rotation detection means 41 Oxidation catalyst 42 Filter 50 Inflow gas Temperature acquisition means 52 Outflow gas temperature acquisition means 54 Fuel addition valve 56 Injector

Claims (6)

内燃機関から排出される排気ガスに含まれる粒子状物質を捕集するフィルタと、
前記フィルタの上流側に配置される酸化触媒と、を有する、
前記排気ガスを浄化する排気浄化装置において、
前記酸化触媒に流入するガスの流入量である流入ガス量を取得する流入ガス量取得手段と、
前記酸化触媒に流入するガスの温度である流入ガス温度を取得する流入ガス温度取得手段と、
前記酸化触媒から流出するガスの温度である流出ガス温度を取得する流出ガス温度取得手段と、
制御手段と、を備え、
前記制御手段は、
前記フィルタに所定量以上の粒子状物質が捕集されたと判定した場合に、前記酸化触媒にフィルタ再生用燃料を添加して前記フィルタ内の粒子状物質を燃焼焼却するフィルタ再生処理を行い、
前記フィルタ再生処理に先立って、前記酸化触媒に添加する前記フィルタ再生用燃料の量に対する排気ガスの昇温温度の関係を示す発熱量換算係数を求め、
前記発熱量換算係数を求める際は、
燃料添加量と、
前記燃料添加量の燃料を前記酸化触媒に添加している間における前記流入ガス量、前記流入ガス温度、及び前記流出ガス温度と、
に基づいて発熱量換算係数を求め、
前記発熱量換算係数に基づいて前記フィルタ再生処理時に前記酸化触媒に添加する前記フィルタ再生用燃料を調整する、
排気浄化装置。
A filter that collects particulate matter contained in the exhaust gas discharged from the internal combustion engine,
It has an oxidation catalyst arranged on the upstream side of the filter.
In the exhaust purification device that purifies the exhaust gas,
An inflow gas amount acquisition means for acquiring the inflow gas amount, which is the inflow amount of the gas flowing into the oxidation catalyst,
An inflow gas temperature acquisition means for acquiring the inflow gas temperature, which is the temperature of the gas flowing into the oxidation catalyst,
An outflow gas temperature acquisition means for acquiring an outflow gas temperature, which is the temperature of the gas outflow from the oxidation catalyst,
With control means,
The control means
When it is determined that a predetermined amount or more of particulate matter has been collected in the filter, a filter regeneration treatment is performed in which fuel for filter regeneration is added to the oxidation catalyst to burn and incinerate the particulate matter in the filter.
Prior to the filter regeneration treatment, a calorific value conversion coefficient indicating the relationship between the temperature rise temperature of the exhaust gas and the amount of the filter regeneration fuel added to the oxidation catalyst was obtained.
When calculating the calorific value conversion coefficient,
The amount of fuel added and
The amount of the inflow gas, the temperature of the inflow gas, and the temperature of the outflow gas while the fuel of the fuel addition amount is being added to the oxidation catalyst.
Calculate the calorific value conversion coefficient based on
The filter regeneration fuel to be added to the oxidation catalyst during the filter regeneration treatment is adjusted based on the calorific value conversion coefficient.
Exhaust purification device.
請求項1に記載の排気浄化装置であって、
前記制御手段は、
前記内燃機関のアイドリング運転時又は減速運転時において、前記発熱量換算係数を求める、
排気浄化装置。
The exhaust gas purification device according to claim 1.
The control means
The calorific value conversion coefficient is obtained during idling operation or deceleration operation of the internal combustion engine.
Exhaust purification device.
請求項1又は2に記載の排気浄化装置であって、
前記制御手段は、
前記内燃機関における燃料の給油後、給油後の燃料に基づいて、前記発熱量換算係数を給油後1回のみ求め更新するまでは、予め設定された初期発熱量換算係数を前記発熱量換算係数とする、
排気浄化装置。
The exhaust gas purification device according to claim 1 or 2.
The control means
After refueling the fuel in the internal combustion engine, the preset initial calorific value conversion coefficient is referred to as the calorific value conversion coefficient until the calorific value conversion coefficient is obtained and updated only once after refueling based on the fuel after refueling. do,
Exhaust purification device.
請求項1〜3のいずれか一項に記載の排気浄化装置であって、
前記制御手段は、
前記発熱量換算係数を求める場合、
前記燃料添加量と、
前記燃料添加量の燃料を前記酸化触媒に添加している間における前記流出ガス温度と前記流入ガス温度との差分を積算した差分温度積算値、及び前記流入ガス量と、
に基づいて前記発熱量換算係数を求める、
排気浄化装置。
The exhaust gas purification device according to any one of claims 1 to 3.
The control means
When calculating the calorific value conversion coefficient,
The amount of fuel added and
The differential temperature integrated value obtained by integrating the difference between the outflow gas temperature and the inflow gas temperature while the fuel of the fuel addition amount is being added to the oxidation catalyst, and the inflow gas amount.
To obtain the calorific value conversion coefficient based on
Exhaust purification device.
請求項1〜4のいずれか一項に記載の排気浄化装置であって、
前記酸化触媒への燃料は、
前記酸化触媒の上流側の排気通路に配置された燃料添加弁により添加され、
又は、
前記内燃機関のシリンダ内におけるインジェクタによるポスト噴射により添加される、
排気浄化装置。
The exhaust gas purification device according to any one of claims 1 to 4.
The fuel for the oxidation catalyst is
It is added by a fuel addition valve arranged in the exhaust passage on the upstream side of the oxidation catalyst.
Or
Added by post-injection by an injector in the cylinder of the internal combustion engine.
Exhaust purification device.
請求項1〜5のいずれか一項に記載の排気浄化装置であって、
前記発熱量換算係数を求める際、
前記内燃機関の運転状態が所定の運転状態である場合に、前記酸化触媒に添加する係数算出用燃料が、前記酸化触媒内ですべて消費されように予め設定された一定量を、所定時間の間、添加する、
排気浄化装置。
The exhaust gas purification device according to any one of claims 1 to 5.
When calculating the calorific value conversion coefficient
When the operating state of the internal combustion engine is a predetermined operating state, a predetermined fixed amount of fuel for calculating a coefficient to be added to the oxidation catalyst is consumed in the oxidation catalyst for a predetermined time. ,Added,
Exhaust purification device.
JP2018076189A 2018-04-11 2018-04-11 Exhaust purification device Active JP6935357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076189A JP6935357B2 (en) 2018-04-11 2018-04-11 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076189A JP6935357B2 (en) 2018-04-11 2018-04-11 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2019183758A JP2019183758A (en) 2019-10-24
JP6935357B2 true JP6935357B2 (en) 2021-09-15

Family

ID=68340347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076189A Active JP6935357B2 (en) 2018-04-11 2018-04-11 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP6935357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863885B (en) * 2019-12-04 2021-02-26 宁波楷世环保科技有限公司 Ignition unit and low-energy-consumption diesel engine tail gas treatment system based on ignition unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986667B2 (en) * 2007-03-22 2012-07-25 Udトラックス株式会社 Exhaust purification device
JP2011231619A (en) * 2010-04-23 2011-11-17 Toyota Motor Corp Control device for internal combustion engine
JP5720229B2 (en) * 2010-12-16 2015-05-20 いすゞ自動車株式会社 DPF system

Also Published As

Publication number Publication date
JP2019183758A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP3969196B2 (en) Fuel injection control device for internal combustion engine
JP4798508B2 (en) Catalyst deterioration diagnosis device
US8087234B2 (en) Exhaust emission purification control device for internal combustion engine
US7730718B2 (en) Control system for internal combustion engine
JP4877610B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP6582409B2 (en) Exhaust purification system
JP5402903B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
US7497078B2 (en) Exhaust emission control device of internal combustion engine
US8327621B2 (en) Oxidation catalyst outlet temperature correction systems and methods
JP2020023901A (en) Control device for internal combustion engine
JP2009197735A (en) Device for diagnosing deterioration of catalyst
JP2015183607A (en) Internal combustion engine control device
US8156736B2 (en) Exhaust hydrocarbon injection control system and method
US10309285B2 (en) Exhaust gas control system for internal combustion engine
JP2008261820A (en) Exhaust fine particle measuring device of internal combustion engine
CN107407182B (en) Exhaust gas purification device and control method thereof
JP4247843B2 (en) Temperature detection device abnormality determination device
JP6935357B2 (en) Exhaust purification device
JP2009085079A (en) Catalyst deterioration detecting device of internal combustion engine
FR2907162A3 (en) Particle filter regeneration controlling method for motor vehicle, involves regulating temperature of lower wall to recommended set value of evaporation of fuel injected by injector by controlling delayed injection of fuel in chamber
JP7302541B2 (en) exhaust treatment system
JP7244214B2 (en) Exhaust purification system controller
JPH07317530A (en) Exhaust emission control device of diesel engine
JP2009191789A (en) Device for diagnosing deterioration of catalyst
JP2016125374A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R150 Certificate of patent or registration of utility model

Ref document number: 6935357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150