JP6934808B2 - Manufacturing method of packaging film - Google Patents

Manufacturing method of packaging film Download PDF

Info

Publication number
JP6934808B2
JP6934808B2 JP2017216309A JP2017216309A JP6934808B2 JP 6934808 B2 JP6934808 B2 JP 6934808B2 JP 2017216309 A JP2017216309 A JP 2017216309A JP 2017216309 A JP2017216309 A JP 2017216309A JP 6934808 B2 JP6934808 B2 JP 6934808B2
Authority
JP
Japan
Prior art keywords
film
thickness direction
measured
temperature
thermal diffusivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216309A
Other languages
Japanese (ja)
Other versions
JP2019086456A (en
Inventor
利香 松尾
利香 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2017216309A priority Critical patent/JP6934808B2/en
Publication of JP2019086456A publication Critical patent/JP2019086456A/en
Application granted granted Critical
Publication of JP6934808B2 publication Critical patent/JP6934808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、料理の保存や乾燥の防止等に使用される包装用フィルムの製造方法に関するものである。 The present invention relates to a method for producing a packaging film used for preserving food, preventing drying, and the like.

皿や保存容器1の料理2を保存等する場合には図3や図4に示すように、食品用の包装ロール体3が利用されているが、この包装ロール体3は、円筒形の巻芯4を備え、この巻芯4にラップフィルムと呼ばれる包装用のフィルム5が所定の長さ分巻回されており、この包装用のフィルム5が保存容器1を料理2ごと包装したりする。フィルム5は、所定の樹脂含有の成形材料により、柔軟で透明な薄膜の帯形に成形され、巻芯4の外周面に多層に巻回されている(特許文献1、2、3参照)。フィルム5の所定の樹脂としては、ポリエチレン(PE)樹脂に代表される結晶性樹脂と、ポリ塩化ビニル(PVC)樹脂に代表される非晶性樹脂とに分類される。 As shown in FIGS. 3 and 4, when the dish 2 of the plate or the storage container 1 is stored, the packaging roll body 3 for food is used, and the packaging roll body 3 is a cylindrical roll. A core 4 is provided, and a packaging film 5 called a wrap film is wound around the core 4 by a predetermined length, and the packaging film 5 wraps the storage container 1 together with the food 2. The film 5 is formed into a strip of a flexible and transparent thin film by a predetermined resin-containing molding material, and is wound in multiple layers on the outer peripheral surface of the winding core 4 (see Patent Documents 1, 2 and 3). The predetermined resin of the film 5 is classified into a crystalline resin represented by a polyethylene (PE) resin and an amorphous resin represented by a polyvinyl chloride (PVC) resin.

ところで、フィルム5の温度の伝わりやすさを示す熱拡散率(熱伝導率)は、フィルム5が保温機能を有する食品包装用に利用される場合、フィルム5の厚さ方向と面方向とで一律の値であるのは好ましくなく、フィルム5の厚さ方向では低く、面方向では高い値であることが好ましい。 By the way, when the film 5 is used for food packaging having a heat retaining function, the thermal diffusivity (thermal conductivity) indicating the ease of transmitting the temperature of the film 5 is uniform in the thickness direction and the surface direction of the film 5. The value of is not preferable, and it is preferable that the value is low in the thickness direction of the film 5 and high in the plane direction.

この熱拡散率について説明すると、温めた料理2の保温性を向上させたい場合には、保存容器1の熱拡散率を低下させれば良いが、保存容器1が開口しているときには、大気中に放熱するので、例え保存容器1の熱拡散率を低下させても、料理2の保温性は低下することとなる。したがって、食品包装用のフィルム5の熱拡散率は、フィルム5の厚さ方向では低い値で、面方向では局所的な過熱を防止する観点から、高い値であることが重要となる。 Explaining this thermal diffusivity, if it is desired to improve the heat retention of the warmed dish 2, the thermal diffusivity of the storage container 1 may be lowered, but when the storage container 1 is open, it is in the air. Therefore, even if the thermal diffusivity of the storage container 1 is lowered, the heat retention property of the dish 2 is lowered. Therefore, it is important that the thermal diffusivity of the film 5 for food packaging is a low value in the thickness direction of the film 5 and a high value in the plane direction from the viewpoint of preventing local overheating.

この点に関し、料理2の包装にフィルム5が使用され、このフィルム5がポリエチレン等の結晶性樹脂の場合には、熱拡散率が高いので、料理2の温度が低下しやすくなる。これに対し、フィルム5がポリ塩化ビニル等の非晶性樹脂の場合には、熱拡散率が低く、温度が下がりにくいので、料理2の温度低下を抑制することができる。さらに、フィルム5がポリ塩化ビニル等の非晶性樹脂の場合には、多層押出機や除冷・アニーリング装置等の特別な装置を省略することが可能となる。 In this regard, when the film 5 is used for packaging the dish 2 and the film 5 is a crystalline resin such as polyethylene, the heat diffusion rate is high, so that the temperature of the dish 2 tends to decrease. On the other hand, when the film 5 is an amorphous resin such as polyvinyl chloride, the thermal diffusivity is low and the temperature does not easily drop, so that the temperature drop of cooking 2 can be suppressed. Further, when the film 5 is an amorphous resin such as polyvinyl chloride, it is possible to omit special devices such as a multi-layer extruder and a cooling / annealing device.

以上から、フィルム5は、熱拡散率が低いポリ塩化ビニル等の非晶性樹脂が成形材料として多用され、熱拡散率がレーザフラッシュ法により測定される。このレーザフラッシュ法は、フィルム5の表裏面に、熱の吸収率を高める黒鉛等の黒化材を塗布した後、パルスレーザ光線をフィルム5の表面に照射して均一にパルス加熱することにより、フィルム5の厚み方向への熱の拡散を、フィルム5の裏面温度の時間変化として観測することで、フィルム5の厚さ方向の熱拡散率を求める一般的な測定方法である。 From the above, in the film 5, an amorphous resin such as polyvinyl chloride having a low thermal diffusivity is often used as a molding material, and the thermal diffusivity is measured by a laser flash method. In this laser flash method, the front and back surfaces of the film 5 are coated with a blackening material such as graphite that enhances the heat absorption rate, and then the surface of the film 5 is irradiated with a pulsed laser beam to uniformly pulse heat the film 5. This is a general measurement method for obtaining the thermal diffusivity in the thickness direction of the film 5 by observing the heat diffusion in the thickness direction of the film 5 as a time change of the back surface temperature of the film 5.

特開2016‐169348号公報Japanese Unexamined Patent Publication No. 2016-169348 特開2016‐056278号公報Japanese Unexamined Patent Publication No. 2016-056278 特開2015‐229331号公報JP-A-2015-229331

従来におけるフィルム5は、以上のように熱拡散率がレーザフラッシュ法により測定されるが、このレーザフラッシュ法による測定の場合には、レーザ照射装置等を備えた専用の測定室にフィルム5を持ち込まなければ、フィルム5の厚さ方向の熱拡散率を測定することができないという問題がある。また、フィルム5の表裏面に黒化材をそれぞれ塗布する必要があるので、煩雑な測定の前処理が必要不可欠となり、しかも、黒化材の塗布に伴い、フィルム5の汚染を招くおそれがある。さらに、黒化材の塗膜の表面ムラ等により、測定値の誤差が大きくなるので、フィルム5の厚さ方向の熱拡散率を高精度に測定することは容易ではない。 As described above, the thermal diffusivity of the conventional film 5 is measured by the laser flash method, but in the case of the measurement by this laser flash method, the film 5 is brought into a dedicated measuring room equipped with a laser irradiation device or the like. Without it, there is a problem that the thermal diffusivity in the thickness direction of the film 5 cannot be measured. Further, since it is necessary to apply a blackening material to the front and back surfaces of the film 5, complicated pretreatment for measurement is indispensable, and the coating of the blackening material may cause contamination of the film 5. .. Further, since the error of the measured value becomes large due to the unevenness of the surface of the coating film of the blackening material, it is not easy to measure the heat diffusion rate in the thickness direction of the film 5 with high accuracy.

本発明は上記に鑑みなされたもので、測定箇所の制約を受けることなく、フィルムの熱拡散率を前処理なしで簡便かつ高精度に測定することができ、しかも、フィルムの汚染のおそれを排除することができる包装用フィルムの製造方法を提供することを目的としている。 The present invention has been made in view of the above, and the thermal diffusivity of the film can be measured easily and with high accuracy without any limitation of the measurement location, and the risk of film contamination is eliminated. It is an object of the present invention to provide a method for producing a packaging film which can be produced.

本発明においては上記課題を解決するため、非晶性樹脂と防曇剤含有の成形材料により、食品用のフィルムを厚さ5μm〜12μmに成形し、このフィルムの厚さ方向と面方向のうち、少なくとも厚さ方向の熱拡散率を温度波熱分析法で測定することにより、フィルムの良否を判定する包装用フィルムの製造方法であり、
非晶性樹脂を、ポリ塩化ビニル樹脂とポリ塩化ビニリデン樹脂のいずれかとし、
温度波熱分析法は、温度波を出力可能なヒータと、このヒータからの温度波を検出可能なセンサとを備え、これらヒータとセンサとの間にフィルムを挟み、このフィルムの表裏いずれか一方の面で変調周波数を変化させて交流状に加熱し、この加熱時におけるフィルムの他方の面の温度変化の位相遅れを分析することにより、フィルムの少なくとも厚さ方向の熱拡散率を測定し、
温度波熱分析法で測定されたフィルムの少なくとも厚さ方向における熱拡散率の測定値が1〜9×10 −8 /sの範囲であるか否かにより、フィルムの良否を判定することを特徴としている。
In the present invention, in order to solve the above problems , a food-grade film is molded into a thickness of 5 μm to 12 μm using a molding material containing an amorphous resin and an antifogging agent, and the film is formed in the thickness direction and the surface direction. This is a method for producing a packaging film, which determines the quality of the film by measuring at least the thermal diffusivity in the thickness direction by a temperature wave thermal analysis method.
The amorphous resin is either a polyvinyl chloride resin or a polyvinylidene chloride resin.
The temperature wave heat analysis method includes a heater capable of outputting a temperature wave and a sensor capable of detecting a temperature wave from the heater, sandwiching a film between the heater and the sensor, and either the front or the back of the film. The thermal diffusivity in at least the thickness direction of the film is measured by changing the modulation frequency on the surface of the film and heating it in an alternating manner and analyzing the phase lag of the temperature change on the other surface of the film during this heating.
The quality of the film is judged by whether or not the measured value of the thermal diffusivity in at least the thickness direction of the film measured by the temperature wave thermal analysis is in the range of 1 to 9 × 10-8 m 2 / s. It is characterized by.

ここで、特許請求の範囲における成形材料には、非晶性樹脂の他、界面活性剤である防曇剤や可塑剤等を含有することができる。フィルムは、少なくとも各種の食品、食材、料理等の包装に使用され、家庭用、営業用、業務用の用途を特に問うものではない。このフィルムの熱拡散率は、厚さ方向のみの熱拡散率でも良いが、厚さ方向と面方向の熱拡散率でも良い。また、フィルムの成形には、各種の成形法が含まれ、少なくとも押出成形法による製膜と、フィルムを膨らませるインフレーション成形法による製膜とが含まれる。温度波熱分析法は、周期加熱法ともいい、交流温度の位相遅れを試料であるフィルムの厚さ方向に計測する分析方法である。 Here, in addition to the amorphous resin, the molding material within the scope of the claims may contain a surfactant such as an anti-fog agent and a plasticizer. The film is used at least for packaging various foods, foodstuffs, dishes, etc., and is not particularly limited to household, commercial, and commercial uses. The thermal diffusivity of this film may be the thermal diffusivity only in the thickness direction, or may be the thermal diffusivity in the thickness direction and the surface direction. Further, the molding of the film includes various molding methods, and at least includes a film formation by an extrusion molding method and a film formation by an inflation molding method in which the film is inflated. The temperature wave thermal analysis method, also called a periodic heating method, is an analysis method in which the phase lag of the AC temperature is measured in the thickness direction of the film as a sample.

本発明によれば、フィルムをヒータとセンサとの間に挟み持たせ、ヒータに交流を給電して温度波を発生させ、フィルムの少なくとも厚さ方向の熱拡散率を温度波熱分析法により測定する。この際、温度波の位相は、振幅とは異なり、フィルムの状態、熱環境、ヒータの出力、センサの感度等に依存することが少ないので、フィルムの厚さ方向の熱拡散率を高精度に測定することができる。また、測定した測定値が1〜9×10 −8 /sの範囲内である場合には、少なくとも厚さ方向の熱拡散率が低く、保温性に優れる包装用のフィルムを得ることができる。 According to the present invention, a film is sandwiched between a heater and a sensor, AC is supplied to the heater to generate a temperature wave, and the thermal diffusivity in at least the thickness direction of the film is measured by a temperature wave thermal analysis method. do. At this time, unlike the amplitude, the phase of the temperature wave is less dependent on the state of the film, the thermal environment, the output of the heater, the sensitivity of the sensor, etc., so that the thermal diffusivity in the thickness direction of the film is highly accurate. Can be measured. Further, when the measured value is within the range of 1 to 9 × 10-8 m 2 / s , it is possible to obtain a packaging film having at least a low thermal diffusivity in the thickness direction and excellent heat retention. can.

本発明によれば、測定箇所を制約されることなく、フィルムの熱拡散率を前処理なしで簡便、かつ高精度に測定することができるという効果がある。また、フィルムの前処理で黒化材を塗布する必要がないので、前処理に伴うフィルム汚染のおそれを有効に排除することができるという効果がある。また、黒化材の塗膜の表面ムラや測定環境等により、測定値の誤差が大きくなることがないので、フィルムの厚さ方向の熱拡散率を高精度に測定することができる。また、成形材料に、界面活性剤である防曇剤を添加するので、フィルムに水滴が付着するのを防止することができる。また、厚さ方向の熱拡散率が低いポリ塩化ビニル樹脂製のフィルムを使用する場合、食品包装用の際、フィルムが結露しにくく、フィルムから料理に水滴が落下して腐敗するのを防止することが可能となる。さらに、フィルムの厚さ方向の熱拡散率が1〜9×10 −8 /sの範囲内であれば、フィルムによる料理包装時のフィルムの厚さ方向の熱拡散率が低くなり、保温性の向上が期待できる。 According to the present invention, there is an effect that the thermal diffusivity of the film can be measured easily and with high accuracy without pretreatment without restricting the measurement location. Further, since it is not necessary to apply the blackening material in the pretreatment of the film, there is an effect that the risk of film contamination due to the pretreatment can be effectively eliminated. Further, since the error of the measured value does not become large due to the surface unevenness of the coating film of the blackening material, the measurement environment, etc., the heat diffusion rate in the thickness direction of the film can be measured with high accuracy. Further, since the anti-fog agent which is a surfactant is added to the molding material, it is possible to prevent water droplets from adhering to the film. In addition, when a film made of polyvinyl chloride resin having a low heat diffusion rate in the thickness direction is used, the film is less likely to condense when used for food packaging, and prevents water droplets from falling from the film onto the dish and causing it to rot. It becomes possible. Further, when the thermal diffusivity in the thickness direction of the film is within the range of 1 to 9 × 10-8 m 2 / s, the thermal diffusivity in the thickness direction of the film at the time of cooking and packaging with the film becomes low, and the heat retention is maintained. Expected to improve sex.

本発明に係る包装用フィルムの製造方法の一般的な実施形態を模式的に示す全体説明図である。It is an overall explanatory view which shows typically the general embodiment of the manufacturing method of the packaging film which concerns on this invention. 本発明に係る包装用フィルムの製造方法の実施形態における温度波熱分析法の測定原理を模式的に示す説明図である。It is explanatory drawing which shows typically the measurement principle of the temperature wave thermal analysis method in embodiment of the manufacturing method of the packaging film which concerns on this invention. 保存容器中の料理をフィルムで保存する状態を示す斜視説明図である。It is a perspective explanatory view which shows the state which the dish in a storage container is stored with a film. 包装ロール体を示す斜視説明図である。It is a perspective explanatory drawing which shows the packaging roll body.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における包装用フィルムの製造方法は、図1ないし図4に示すように、非晶性樹脂含有の成形材料11によりフィルム5を成形する製法であり、成形材料11を溶融押出成形機10により溶融混練し、この溶融押出成形機10のTダイス14によりフィルム5を成形して冷却ロール17で冷却した後、フィルム5の熱拡散率を温度波熱分析法で測定し、測定値が1〜9×10 −8 /sの範囲であるか否かによりフィルム5の良否を判定するようにしている。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 4, the method for producing the packaging film in the present embodiment is based on the amorphous resin-containing molding material 11. This is a manufacturing method for molding the film 5. The molding material 11 is melt-kneaded by the melt extrusion molding machine 10, the film 5 is molded by the T die 14 of the melt extrusion molding machine 10, cooled by the cooling roll 17, and then the film 5 is formed. The thermal diffusivity of the film 5 is measured by a temperature wave thermal analysis method, and the quality of the film 5 is judged by whether or not the measured value is in the range of 1 to 9 × 10-8 m 2 / s.

成形材料11の非晶性樹脂としては、通気性や透明性等に優れ、熱拡散率の低いポリ塩化ビニル(PVC)樹脂や密着性等に優れるポリ塩化ビニリデン(PVDC)樹脂が選択される。これらポリ塩化ビニル樹脂やポリ塩化ビニリデン樹脂は、ポリエチレン(PE)樹脂に比べ、分子の極性が強いため、極性分子である水分子を引き寄せやすいという特徴を有する。 As the amorphous resin of the molding material 11, a polyvinyl chloride (PVC) resin having excellent air permeability and transparency and a low thermal diffusivity and a polyvinylidene chloride (PVDC) resin having excellent adhesion and the like are selected. These polyvinyl chloride resins and polyvinylidene chloride resins have a stronger molecular polarity than polyethylene (PE) resins, and therefore have a characteristic of easily attracting water molecules, which are polar molecules.

成形材料11には、少なくともフィルム5に水滴が付着するのを防止する界面活性剤である防曇剤が添加されるのが好ましい。この防曇剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、トリエチレングリコール等があげられる。この防曇剤は、ポリ塩化ビニル樹脂やポリ塩化ビニリデン樹脂が極性分子である水分子を引き寄せやすいという特徴を有するので、加熱された料理2等から発生した水分でフィルム5の内部が曇らないようにするとともに、凝集した水分が液滴となって料理2に落下するのを防止するよう機能する。 It is preferable that at least an anti-fog agent, which is a surfactant that prevents water droplets from adhering to the film 5, is added to the molding material 11. Examples of this antifogging agent include sorbitan fatty acid ester, polyglycerin fatty acid ester, and triethylene glycol. This anti-fog agent has a characteristic that the polyvinyl chloride resin or the polyvinylidene chloride resin easily attracts water molecules which are polar molecules, so that the inside of the film 5 is not fogged by the moisture generated from the heated dish 2 or the like. At the same time, it functions to prevent the agglomerated water from falling into the dish 2 as droplets.

溶融押出成形機10は、図1に示すように、例えば単軸押出成形機や二軸押出成形機等からなり、投入された成形材料11を溶融混練するよう機能する。この溶融押出成形機10の上部後方には、成形材料11用の原料投入口12が設置され、この原料投入口12には、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、窒素ガス、二酸化炭素ガス等の不活性ガス(図1の矢印参照)を必要に応じて供給する不活性ガス供給管13が接続されており、この不活性ガス供給管13による不活性ガスの流入により、成形材料11の酸化劣化や酸素架橋が有効に防止される。不活性ガスの供給は、任意であり、供給しても良いし、供給しなくても良い。 As shown in FIG. 1, the melt extrusion molding machine 10 is composed of, for example, a single-screw extrusion molding machine or a twin-screw extrusion molding machine, and functions to melt-knead the charged molding material 11. A raw material input port 12 for the molding material 11 is installed behind the upper part of the melt extrusion molding machine 10, and the raw material input port 12 has helium gas, neon gas, argon gas, krypton gas, nitrogen gas, and carbon dioxide gas. An inert gas supply pipe 13 for supplying an inert gas such as (see the arrow in FIG. 1) as needed is connected, and the inflow of the inert gas through the inert gas supply pipe 13 causes the molding material 11 to be connected. Oxidation deterioration and oxygen cross-linking are effectively prevented. The supply of the inert gas is optional and may or may not be supplied.

溶融押出成形機10の先端部にはTダイス14が連結管を介して装着され、Tダイス14が帯形のフィルム5を連続的に下方に押出成形するよう機能する。Tダイス14の上流の連結管には、ギアポンプ15とフィルタ16とがそれぞれ装着されることが好ましい。ギアポンプ15は、溶融押出成形機10により溶融混練された成形材料11を一定の流量で、かつ高精度にTダイス14にフィルタ16を介して移送する。また、フィルタ16は、溶融状態の成形材料11のゲル等を分離し、溶融状態の成形材料11をTダイス14に移送する。 A T-die 14 is attached to the tip of the melt extrusion molding machine 10 via a connecting pipe, and the T-die 14 functions to continuously extrude the strip-shaped film 5 downward. It is preferable that the gear pump 15 and the filter 16 are respectively mounted on the connecting pipe upstream of the T die 14. The gear pump 15 transfers the molding material 11 melt-kneaded by the melt extrusion molding machine 10 to the T-die 14 at a constant flow rate and with high accuracy through the filter 16. Further, the filter 16 separates the gel or the like of the molten molding material 11 and transfers the molten molding material 11 to the T die 14.

Tダイス14の下方には、フィルム5用の冷却ロール17が回転可能に軸支され、この冷却ロール17が回転可能な一対の圧着ロール18に摺接可能に挟持されており、これら冷却ロール17と圧着ロール18との間に、下方に押出成形されたフィルム5が挿通される。冷却ロール17は、例えば圧着ロール18よりも拡径の金属ロールからなり、押し出されたフィルム5を圧着ロール18との間に挟持し、圧着ロール18と共にフィルム5を冷却しながらその厚さを所定の範囲内に制御する。 Below the T-die 14, a cooling roll 17 for the film 5 is rotatably supported, and the cooling roll 17 is slidably sandwiched between a pair of rotatable crimping rolls 18, and these cooling rolls 17 are slidably sandwiched. A film 5 extruded downward is inserted between the crimping roll 18 and the crimping roll 18. The cooling roll 17 is made of, for example, a metal roll having a diameter larger than that of the crimping roll 18, sandwiches the extruded film 5 between the crimping roll 18 and the crimping roll 18, and determines the thickness of the film 5 while cooling the film 5 together with the crimping roll 18. Control within the range of.

一対の圧着ロール18は、下流の圧着ロール18のさらに下流に、フィルム5を巻き取る巻取機19の巻取管20が回転可能に軸支され、圧着ロール18と巻取機19の巻取管20との間には、フィルム5の側部にスリットを形成するスリット刃21が昇降可能に配置されており、このスリット刃21と巻取機19の巻取管20との間には、フィルム5にテンションを作用させて円滑に巻き取るための回転可能なテンションロール22が必要数軸支される。 In the pair of crimping rolls 18, the take-up pipe 20 of the take-up machine 19 for winding the film 5 is rotatably supported downstream of the crimp roll 18 downstream, and the crimp roll 18 and the take-up machine 19 are taken up. A slit blade 21 forming a slit on the side of the film 5 is arranged so as to be able to move up and down between the tube 20 and the film 5, and between the slit blade 21 and the winding tube 20 of the winding machine 19. A required number of rotatable tension rolls 22 are provided to apply tension to the film 5 to smoothly wind the film 5.

フィルム5は、ポリ塩化ビニル含有の成形材料11により、柔軟な透明の薄膜に押出成形され、5〜12μm程度の厚さとされる。このフィルム5は、最終的には過剰に伸びない45cm×50m、45cm×55m、45cm×100m、30cm×30m、30cm×100m、30cm×110m、22cm×100mの大きさとされ、巻芯4の外周面に平巻方式で多層に巻回されて食品の包装等に利用される。 The film 5 is extruded into a flexible transparent thin film by a molding material 11 containing polyvinyl chloride, and has a thickness of about 5 to 12 μm. The film 5 has a size of 45 cm × 50 m, 45 cm × 55 m, 45 cm × 100 m, 30 cm × 30 m, 30 cm × 100 m, 30 cm × 110 m, 22 cm × 100 m, which does not stretch excessively in the end, and is the outer circumference of the winding core 4. It is used for food packaging, etc. by being wound in multiple layers on the surface in a flat winding method.

温度波熱分析法(TWA)は、フィルム5の表面でジュール熱を発生させ、全方位に拡散していく温度波のうち、フィルム5の厚み方向に伝搬する成分のみに着目し、温度波の位相遅れを観測する分析方法である。この温度波熱分析法は、温度の絶対値測定では、接触抵抗等、測定上の外乱に強く影響を受けるが、位相は殆ど影響を受けない点に注目して分析する。 The temperature wave thermal analysis method (TWA) focuses on only the component of the temperature wave that generates Joule heat on the surface of the film 5 and diffuses in all directions, and propagates in the thickness direction of the film 5. This is an analysis method for observing the phase delay. In this temperature wave thermal analysis method, in the absolute value measurement of temperature, it is strongly affected by measurement disturbances such as contact resistance, but the phase is hardly affected.

温度波熱分析法は、図2に示すように、交流の温度波(図2の矢印参照)を出力して伝播可能なヒータ基板30と、このヒータ基板30からの拡散された温度波を検出可能なセンサ基板32とを上下方向に備え、これらヒータ基板30とセンサ基板32との間にフィルム5を挟持させた後、フィルム5の表面で変調周波数を変化させて交流状に加熱し、この加熱時におけるフィルム5の裏面の温度変化の位相遅れを分析することにより、フィルム5の厚さ方向の熱拡散率を測定する。 As shown in FIG. 2, the temperature wave thermal analysis method detects a heater substrate 30 capable of outputting an AC temperature wave (see the arrow in FIG. 2) and propagating, and a temperature wave diffused from the heater substrate 30. A possible sensor substrate 32 is provided in the vertical direction, and after the film 5 is sandwiched between the heater substrate 30 and the sensor substrate 32, the modulation frequency is changed on the surface of the film 5 to heat the film 5 in an alternating phase. The heat diffusivity in the thickness direction of the film 5 is measured by analyzing the phase lag of the temperature change on the back surface of the film 5 during heating.

ヒータ基板30のヒータ31としては、例えばペルチェ素子製のマイクロヒータ等が使用され、微弱な正弦波電力が供給されることにより、フィルム5の表面に温度波を発生させる。また、センサ基板32のセンサ33としては、微小な温度波を検出するため、例えばスパッタリングによる金属薄膜(例えば、AuやPt等)やアクリル板等の温度センサが採用される。 As the heater 31 of the heater substrate 30, for example, a microheater made of a Perche element or the like is used, and a temperature wave is generated on the surface of the film 5 by supplying a weak sine wave power. Further, as the sensor 33 of the sensor substrate 32, a temperature sensor such as a metal thin film (for example, Au or Pt) or an acrylic plate by sputtering is adopted in order to detect a minute temperature wave.

温度波熱分析法の分析原理について詳しく説明すると、ヒータ基板30とセンサ基板32とに挟持された厚さdのフィルム5の表面(x=0)において、角周波数ωの周期発熱j(t)を発生させた場合、フィルム5が熱的に充分に厚いとき、フィルム5裏面(x=d)での温度変調は、フィルム5表面での温度変調と比較して位相が遅れ、振幅強度が減衰する。 Explaining in detail the analysis principle of the temperature wave thermal analysis method, the periodic heat generation j (t) having an angular frequency ω on the surface (x = 0) of the film 5 having a thickness d sandwiched between the heater substrate 30 and the sensor substrate 32. When the film 5 is thermally thick enough, the temperature modulation on the back surface (x = d) of the film 5 is delayed in phase and the amplitude intensity is attenuated as compared with the temperature modulation on the front surface of the film 5. do.

ここで、温度の位相差にのみ着目すると、位相差Δθは、x=0の面とx=dの面での位相の差分で以下のように表される。
位相差Δθ=√ω/2α・d−π/4
ここで、αは熱拡散率(m/s)である。
Here, focusing only on the phase difference of temperature, the phase difference Δθ is expressed as follows by the phase difference between the plane of x = 0 and the plane of x = d.
Phase difference Δθ = √ω / 2α ・ d−π / 4
Here, α is the thermal diffusivity (m 2 / s).

この式より、厚さdが既知のフィルム5について、表面で角周波数ωを変化させて交流状に加熱し、そのときの裏面における温度変化の位相遅れΔθを測定すれば、フィルム5の厚さ方向の熱拡散率αを求めることができる。この測定においては、フィルム5の加熱面である表面と裏面における温度変化の位相差により、熱拡散率を求めるので、温度の絶対値を何ら必要とせず、高精度な測定が可能になる。 From this equation, if the film 5 having a known thickness d is heated in an alternating current manner by changing the angular frequency ω on the front surface and the phase delay Δθ of the temperature change on the back surface at that time is measured, the thickness of the film 5 is obtained. The thermal diffusivity α in the direction can be obtained. In this measurement, since the thermal diffusivity is obtained from the phase difference of the temperature change between the front surface and the back surface, which are the heating surfaces of the film 5, no absolute value of the temperature is required, and high-precision measurement becomes possible.

なお、フィルム5の厚さ方向の熱拡散率を温度波熱分析法により測定する測定装置としては、アドバンス理工株式会社製や株式会社日立ハイテクサイエンス社製の携帯可能な小型の測定装置があげられる。また、フィルム5の面方向の熱拡散率については、フィルム5をロール形に巻装して径方向に裁断し、この裁断したロール形のフィルム5を測定装置のヒータ基板30とセンサ基板32とに挟持させれば、フィルム5の面方向の熱拡散率を温度波熱分析法により測定することができる。このフィルム5の面方向の熱拡散率については、光交流法の測定装置等で測定することも可能である。 Examples of the measuring device for measuring the heat diffusivity in the thickness direction of the film 5 by the temperature wave thermal analysis method include a portable small measuring device manufactured by Advance Riko Co., Ltd. and Hitachi High-Tech Science Corporation. .. Regarding the thermal diffusivity in the surface direction of the film 5, the film 5 is wound in a roll shape and cut in the radial direction, and the cut roll-shaped film 5 is used with the heater substrate 30 and the sensor substrate 32 of the measuring device. If it is sandwiched between the films, the thermal diffusivity of the film 5 in the plane direction can be measured by a temperature wave thermal analysis method. The thermal diffusivity in the plane direction of the film 5 can also be measured by a measuring device of the optical alternating current method or the like.

フィルム5の良否は、測定されたフィルム5の厚さ方向の熱拡散率が1〜9×10 −8 /s、好ましくは3〜8.5×10 −8 /s、より好ましくは5〜8×10 −8 /sの範囲であるか否かにより判定される。これは、フィルム5の厚さ方向の熱拡散率が1〜9×10 −8 /sの範囲内であれば、実験結果から、フィルム5による料理2包装時のフィルム5の厚さ方向の熱拡散率が低くなり、保温性の向上が期待できるからである。 Regarding the quality of the film 5, the measured thermal diffusivity of the film 5 in the thickness direction is 1 to 9 × 10-8 m 2 / s , preferably 3 to 8.5 × 10-8 m 2 / s , more preferably. Is determined by whether or not it is in the range of 5 to 8 × 10-8 m 2 / s. This is because if the thermal diffusivity in the thickness direction of the film 5 is within the range of 1 to 9 × 10-8 m 2 / s , from the experimental results, the thickness direction of the film 5 when packaging the dish 2 with the film 5 This is because the thermal diffusivity of the film is lowered and the heat retention can be expected to be improved.

上記において、食品包装用のフィルム5を製造する場合には、先ず、溶融押出成形機10の原料投入口12に成形材料11を投入して溶融混練し、Tダイス14からポリ塩化ビニル樹脂製のフィルム5を連続的に帯形に押出成形する。こうしてフィルム5を押し出したら、冷却ロール17、一対の圧着ロール18、テンションロール22、及び巻取機19の巻取管20に順次巻架するとともに、フィルム5を冷却ロール17により冷却し、フィルム5の両側部をスリット刃21でそれぞれカットした後、巻取管20に順次巻き取る。 In the above, when producing the film 5 for food packaging, first, the molding material 11 is put into the raw material input port 12 of the melt extrusion molding machine 10 and melt-kneaded, and the T-die 14 is made of polyvinyl chloride resin. The film 5 is continuously extruded into a strip shape. After extruding the film 5 in this way, the film 5 is sequentially wound on the cooling roll 17, the pair of crimping rolls 18, the tension roll 22, and the take-up pipe 20 of the take-up machine 19, and the film 5 is cooled by the cooling roll 17 to cool the film 5. After cutting each of both side portions with the slit blade 21, the film is sequentially wound on the take-up tube 20.

フィルム5を冷却ロール17に密着させる方法としては、ハンドリング性や設備の簡略化の観点から、圧着ロール18により、冷却ロール17の周面にフィルム5を押し付けて密着させるタッチロール法の採用が好ましい。フィルム5と冷却ロール17との密着時間は、特に限定されるものでないが、0.1秒以上120秒以下、好ましく0.5秒以上60秒以下、より好ましくは1秒以上30秒以下が良い。 As a method of bringing the film 5 into close contact with the cooling roll 17, it is preferable to adopt a touch roll method in which the film 5 is pressed against the peripheral surface of the cooling roll 17 by a crimping roll 18 to bring the film 5 into close contact with the cooling roll 17. .. The adhesion time between the film 5 and the cooling roll 17 is not particularly limited, but is preferably 0.1 seconds or more and 120 seconds or less, preferably 0.5 seconds or more and 60 seconds or less, and more preferably 1 second or more and 30 seconds or less. ..

フィルム5を巻取管20に巻き取ったら、製品出荷前の検査工程等でフィルム5を、測定装置のヒータ基板30とセンサ基板32とに挟持させ、ヒータ31に交流を給電して温度波を発生させ、フィルム5の厚さ方向の熱拡散率を温度波熱分析法により測定する。この際、温度波の位相は、振幅とは異なり、フィルム5の状態、熱環境、ヒータ31の出力、センサ33の感度等に依存することがないので、フィルム5の厚さ方向の熱拡散率を高精度、かつ高速で測定することができる。 After the film 5 is wound around the take-up tube 20, the film 5 is sandwiched between the heater substrate 30 and the sensor substrate 32 of the measuring device in an inspection process or the like before shipping the product, and AC is supplied to the heater 31 to generate a temperature wave. The film 5 is generated and the thermal diffusivity in the thickness direction of the film 5 is measured by a temperature wave thermal analysis method. At this time, unlike the amplitude, the phase of the temperature wave does not depend on the state of the film 5, the thermal environment, the output of the heater 31, the sensitivity of the sensor 33, etc., and therefore the heat diffusion rate in the thickness direction of the film 5. Can be measured with high accuracy and high speed.

測定の結果、測定値が1〜9×10 −8 /sの範囲内である場合には、フィルム5の厚さ方向の熱拡散率が適切であると判断し、フィルム5を良品と判定して出荷する。これに対し、測定値が1〜9×10 −8 /sの範囲外である場合には、フィルム5の厚さ方向の熱拡散率が不適切であると判断し、フィルム5を不良品と判定して出荷を中断する。このようなフィルム5の良否の判定により、厚さ方向の熱拡散率が低く、保温性に優れる食品包装用のフィルム5を製造することができる。 As a result of the measurement, when the measured value is within the range of 1 to 9 × 10-8 m 2 / s , it is judged that the thermal diffusivity in the thickness direction of the film 5 is appropriate, and the film 5 is regarded as a good product. Judge and ship. On the other hand, when the measured value is out of the range of 1 to 9 × 10-8 m 2 / s , it is judged that the thermal diffusivity in the thickness direction of the film 5 is inappropriate, and the film 5 is rejected. Judge as a non-defective product and suspend shipping. By judging the quality of the film 5 as described above, it is possible to produce a film 5 for food packaging having a low thermal diffusivity in the thickness direction and excellent heat retention.

上記によれば、フィルム5の製造現場等でフィルム5の熱拡散率を携帯可能な測定装置で温度波熱分析法により測定することができるので、製造現場から離れた専用の測定室にフィルム5を持ち込まなくても、フィルム5の厚さ方向の熱拡散率を比較試料なしに簡便、高精度、迅速に測定することができる。また、フィルム5の表裏面に黒化処理を施す必要がないので、煩雑な測定の前処理を省くことができ、しかも、黒化材の塗布に伴うフィルム5の汚染のおそれを有効に排除することができる。 According to the above, since the thermal diffusivity of the film 5 can be measured by the temperature wave thermal analysis method with a portable measuring device at the manufacturing site of the film 5, the film 5 can be placed in a dedicated measuring room away from the manufacturing site. The heat diffusivity in the thickness direction of the film 5 can be measured easily, with high accuracy, and quickly without a comparative sample. Further, since it is not necessary to blacken the front and back surfaces of the film 5, complicated pretreatment for measurement can be omitted, and the risk of contamination of the film 5 due to the application of the blackening material can be effectively eliminated. be able to.

また、黒化材の塗膜の表面ムラや測定環境等により、測定値の誤差が大きくなることがないので、フィルム5の厚さ方向の熱拡散率を高精度に測定することができる。さらに、厚さ方向の熱拡散率が低いポリ塩化ビニル樹脂製のフィルム5を使用すれば、食品包装用の際、フィルム5が結露しにくく、フィルム5から料理2に水滴が落下して腐敗するのを防止することが可能となる。 Further, since the error of the measured value does not become large due to the surface unevenness of the coating film of the blackening material, the measurement environment, etc., the heat diffusion rate in the thickness direction of the film 5 can be measured with high accuracy. Further, if the film 5 made of polyvinyl chloride resin having a low heat diffusion rate in the thickness direction is used, the film 5 is less likely to condense during food packaging, and water droplets fall from the film 5 to the dish 2 and rot. It becomes possible to prevent.

なお、上記実施形態では非晶性樹脂として、ポリ塩化ビニル樹脂を主に用いたが、何らこれに限定されるものではない。例えば、非晶性樹脂として、密着性等に優れるポリ塩化ビニリデン(PVDC)樹脂を用い、ポリ塩化ビニリデン樹脂製のフィルム5の熱拡散率を温度波熱分析法で測定し、測定値が1〜9×10 −8 /sの範囲であるか否かにより、フィルム5の良否を判定するようにしても良い。 In the above embodiment, the polyvinyl chloride resin is mainly used as the amorphous resin, but the present invention is not limited to this. For example, a polyvinylidene chloride (PVDC) resin having excellent adhesion and the like is used as the amorphous resin, and the thermal diffusivity of the film 5 made of polyvinylidene chloride resin is measured by a temperature wave thermal analysis method, and the measured values are 1 to 1. The quality of the film 5 may be determined based on whether or not it is in the range of 9 × 10-8 m 2 / s.

また、上記実施形態では製品出荷前の検査工程でフィルム5の厚さ方向の熱拡散率を温度波熱分析法で測定したが、冷却ロール17により冷却した直後にフィルム5の厚さ方向の熱拡散率を測定しても良い。さらに、フィルム5を巻取管20に巻き取った直後にフィルム5の厚さ方向の熱拡散率を測定しても良い。 Further, in the above embodiment, the thermal diffusivity in the thickness direction of the film 5 was measured by the thermal wave thermal analysis method in the inspection step before shipping the product, but the heat in the thickness direction of the film 5 immediately after being cooled by the cooling roll 17. The diffusivity may be measured. Further, the thermal diffusivity in the thickness direction of the film 5 may be measured immediately after the film 5 is wound around the take-up tube 20.

以下、本発明に係る包装用フィルムの製造方法の実施例を比較例と共に説明する。
〔実施例1〕
非晶性樹脂であるポリ塩化ビニル樹脂(PVC)製のフィルム〔信越ポリマー株式会社製:製品名ポリマラップ(登録商標、以下同じ)〕を5枚用意し、この5枚のフィルムを測定装置のヒータとセンサとに順次挟持させた後、ヒータに交流を給電して温度波を発生させ、フィルムの厚さ方向の熱拡散率を温度波熱分析法により測定した。
Hereinafter, examples of the method for producing a packaging film according to the present invention will be described together with comparative examples.
[Example 1]
Prepare five films made of polyvinyl chloride resin (PVC), which is an amorphous resin [manufactured by Shin-Etsu Polymer Co., Ltd .: product name Polymarap (registered trademark, the same applies hereinafter)], and use these five films as heaters for measuring devices. The film was sandwiched between the film and the sensor in sequence, and then AC was supplied to the heater to generate a temperature wave, and the thermal diffusivity in the thickness direction of the film was measured by a temperature wave thermal analysis method.

5枚のフィルムは、厚さが7.4μm、7.3μm、7.8μm、6.7μm、6.8μmであり、平均厚さが7.2μmであった。また、フィルムの厚さ方向の熱拡散は、23℃の室温で測定したが、室温が測定中に1〜2℃上昇した。測定装置は、アイフェイズ株式会社製の装置〔製品名ai‐Phase Mobile 1ustandard‐alone mode〕を使用した。 The five films had thicknesses of 7.4 μm, 7.3 μm, 7.8 μm, 6.7 μm, and 6.8 μm, and had an average thickness of 7.2 μm. The heat diffusion in the thickness direction of the film was measured at room temperature of 23 ° C., but the room temperature increased by 1 to 2 ° C. during the measurement. As the measuring device, a device manufactured by iPhase Co., Ltd. [product name ai-Phase Mobile 1 standard-alone mode] was used.

5枚のフィルムの厚さ方向の熱拡散率を順次測定したら、各フィルムの測定値とこの測定値の平均値を表1に記載し、フィルムの保温性を試験・評価した。フィルムの保温性の試験法については、JISに規定がないので、80℃に温めた料理をポリプロピレン樹脂製の保存容器に収容するとともに、この保存容器の開口をフィルムで被覆して1時間放置し、1時間経過後に保存容器の開口からフィルムを取り外し、保存容器内の料理の表面温度を測定することとした。 After sequentially measuring the heat diffusivity in the thickness direction of the five films, the measured values of each film and the average value of the measured values are shown in Table 1, and the heat retention of the films was tested and evaluated. Since there is no regulation in JIS about the test method of the heat retention of the film, the dish warmed to 80 ° C. is stored in a polypropylene resin storage container, and the opening of this storage container is covered with a film and left for 1 hour. After 1 hour, the film was removed from the opening of the storage container, and the surface temperature of the food in the storage container was measured.

〔実施例2〕
ポリ塩化ビニル樹脂(PVC)製の別のフィルム〔信越ポリマー株式会社製:製品名ポリマラップR〕を5枚用意し、その他は実施例1と同様にして各フィルムの厚さ方向の熱拡散率を温度波熱分析法により測定した。5枚のフィルムは、厚さが8.8μm、8.5μm、8.3μm、9.5μm、9.4μmであり、平均厚さが8.9μmであった。
5枚のフィルムの厚さ方向の熱拡散率を順次測定したら、各フィルムの測定値とこの測定値の平均値を表1に記載し、実施例1と同様にしてフィルムの保温性を試験・評価した。
[Example 2]
Prepare 5 other films made of polyvinyl chloride resin (PVC) [manufactured by Shin-Etsu Polymer Co., Ltd .: product name Polymalap R], and set the thermal diffusion rate in the thickness direction of each film in the same manner as in Example 1. It was measured by the temperature wave thermal analysis method. The five films had thicknesses of 8.8 μm, 8.5 μm, 8.3 μm, 9.5 μm, and 9.4 μm, and an average thickness of 8.9 μm.
After sequentially measuring the heat diffusivity in the thickness direction of the five films, the measured values of each film and the average value of these measured values are shown in Table 1, and the heat retention of the films was tested in the same manner as in Example 1. evaluated.

〔実施例3〕
ポリ塩化ビニル樹脂(PVC)製の別のフィルム〔信越ポリマー株式会社製:製品名抗菌ポリマラップ〕を5枚用意し、その他は実施例1と同様にして各フィルムの厚さ方向の熱拡散率を温度波熱分析法により測定した。5枚のフィルムは、厚さが6.8μm、6.8μm、7.0μm、6.9μm、7.1μmであり、平均厚さが6.9μmであった。
5枚のフィルムの厚さ方向の熱拡散率を順次測定したら、各フィルムの測定値とこの測定値の平均値を表1に記載し、実施例1と同様にしてフィルムの保温性を試験・評価した。
[Example 3]
Prepare 5 other films made of polyvinyl chloride resin (PVC) [manufactured by Shin-Etsu Polymer Co., Ltd .: product name: antibacterial polymer wrap], and set the thermal diffusion rate in the thickness direction of each film in the same manner as in Example 1. It was measured by temperature wave thermal analysis. The five films had thicknesses of 6.8 μm, 6.8 μm, 7.0 μm, 6.9 μm, and 7.1 μm, and had an average thickness of 6.9 μm.
After sequentially measuring the heat diffusivity in the thickness direction of the five films, the measured values of each film and the average value of these measured values are shown in Table 1, and the heat retention of the films was tested in the same manner as in Example 1. evaluated.

〔実施例4〕
非晶性樹脂であるポリ塩化ビニリデン樹脂(PVDC)製のフィルム〔株式会社クレハ製:製品名クレラップ(登録商標、以下同じ)〕を5枚用意し、その他は実施例1と同様にして各フィルムの厚さ方向の熱拡散率を温度波熱分析法により測定した。5枚のフィルムは、厚さが10.2μm、10.0μm、9.7μm、9.8μm、9.6μmであり、平均厚さが9.9μmであった。
5枚のフィルムの厚さ方向の熱拡散率を順次測定後、各フィルムの測定値とこの測定値の平均値を表2に記載し、実施例1と同様にしてフィルムの保温性を試験・評価した。
[Example 4]
Prepare five films made of polyvinylidene chloride resin (PVDC), which is an amorphous resin [manufactured by Kureha Corporation: product name Kureha (registered trademark, the same applies hereinafter)], and the other films are the same as in Example 1. The thermal diffusivity in the thickness direction of was measured by the temperature wave thermal analysis method. The five films had a thickness of 10.2 μm, 10.0 μm, 9.7 μm, 9.8 μm, 9.6 μm and an average thickness of 9.9 μm.
After sequentially measuring the heat diffusivity in the thickness direction of the five films, the measured values of each film and the average value of these measured values are shown in Table 2, and the heat retention of the films was tested in the same manner as in Example 1. evaluated.

〔比較例〕
結晶性樹脂であるポリエチレン樹脂(PE)製のフィルム〔日本生活協同組合連合会製:製品名ポリエチレンラップミニ〕を5枚用意し、この5枚のフィルムを測定装置のヒータとセンサとに順次挟持させた後、ヒータに交流を給電して温度波を発生させ、フィルムの厚さ方向の熱拡散率を温度波熱分析法により測定した。
[Comparative example]
Prepare five films made of polyethylene resin (PE), which is a crystalline resin [manufactured by the Japan Life Cooperative Association: product name polyethylene wrap mini], and sandwich these five films in sequence between the heater and sensor of the measuring device. After that, AC was supplied to the heater to generate a temperature wave, and the thermal diffusivity in the thickness direction of the film was measured by the temperature wave thermal analysis method.

5枚のフィルムは、厚さが9.6μm、8.1μm、9.7μm、8.1μm、12.0μmであり、平均厚さが9.5μmであった。また、フィルムの厚さ方向の熱拡散は、23℃の室温で測定したが、室温が測定中に1〜2℃上昇した。また、測定装置は、アイフェイズ株式会社製の装置〔製品名ai‐Phase Mobile 1ustandard‐alone mode〕を使用した。
5枚のフィルムの厚さ方向の熱拡散率を順次測定後、各フィルムの測定値とこの測定値の平均値を表2に記載し、実施例1と同様にしてフィルムの保温性を試験・評価した。
The five films had thicknesses of 9.6 μm, 8.1 μm, 9.7 μm, 8.1 μm and 12.0 μm, and had an average thickness of 9.5 μm. The heat diffusion in the thickness direction of the film was measured at room temperature of 23 ° C., but the room temperature increased by 1 to 2 ° C. during the measurement. Further, as the measuring device, a device manufactured by iPhase Co., Ltd. [product name ai-Phase Mobile 1 standard-alone mode] was used.
After sequentially measuring the heat diffusivity in the thickness direction of the five films, the measured values of each film and the average value of these measured values are shown in Table 2, and the heat retention of the films was tested in the same manner as in Example 1. evaluated.

Figure 0006934808
Figure 0006934808

Figure 0006934808
Figure 0006934808

各実施例の場合には、フィルムの厚さ方向の熱拡散率が1〜9×10 −8 /sの範囲内にあり、フィルムの保温性の試験でも、料理の表面温度があまり低下しておらず、優れた保温性を示した。
これに対し、比較例の場合には、フィルムの厚さ方向の熱拡散率が1〜9×10 −8 /sの範囲外にあり、フィルムの保温性の試験でも、料理の表面温度が実施例に比べ、低下していた。
In the case of each example, the thermal diffusivity in the thickness direction of the film is in the range of 1 to 9 × 10-8 m 2 / s , and the surface temperature of the dish is significantly lowered even in the heat retention test of the film. It did not, and showed excellent heat retention.
On the other hand, in the case of the comparative example, the thermal diffusivity in the thickness direction of the film is outside the range of 1 to 9 × 10-8 m 2 / s , and even in the test of the heat retention of the film, the surface temperature of the dish Was lower than that of the examples.

なお、フィルムの保温性については、JIS L 1096のA法(恒温法)に準拠して試験することが可能である。また、サーモラボII試験機を用いて試験することも可能である。 The heat retention of the film can be tested in accordance with JIS L 1096 Method A (constant temperature method). It is also possible to test using a Thermolab II testing machine.

本発明に係る包装用フィルムの製造方法は、フィルムの製造分野や検査分野等で使用される。 The method for producing a packaging film according to the present invention is used in a film manufacturing field, an inspection field, or the like.

1 保存容器
2 料理
3 包装ロール体
5 フィルム
10 溶融押出成形機
11 成形材料
14 Tダイス
17 冷却ロール
18 圧着ロール
19 巻取機
20 巻取管
30 ヒータ基板
31 ヒータ
32 センサ基板
33 センサ
1 Storage container 2 Cooking 3 Packaging roll 5 Film 10 Melt extrusion molding machine 11 Molding material 14 T die 17 Cooling roll 18 Crimping roll 19 Winding machine 20 Winding pipe 30 Heater substrate 31 Heater 32 Sensor substrate 33 Sensor

Claims (1)

非晶性樹脂と防曇剤含有の成形材料により、食品用のフィルムを厚さ5μm〜12μmに成形し、このフィルムの厚さ方向と面方向のうち、少なくとも厚さ方向の熱拡散率を温度波熱分析法で測定することにより、フィルムの良否を判定する包装用フィルムの製造方法であり、
非晶性樹脂を、ポリ塩化ビニル樹脂とポリ塩化ビニリデン樹脂のいずれかとし、
温度波熱分析法は、温度波を出力可能なヒータと、このヒータからの温度波を検出可能なセンサとを備え、これらヒータとセンサとの間にフィルムを挟み、このフィルムの表裏いずれか一方の面で変調周波数を変化させて交流状に加熱し、この加熱時におけるフィルムの他方の面の温度変化の位相遅れを分析することにより、フィルムの少なくとも厚さ方向の熱拡散率を測定し、
温度波熱分析法で測定されたフィルムの少なくとも厚さ方向における熱拡散率の測定値が1〜9×10 −8 /sの範囲であるか否かにより、フィルムの良否を判定することを特徴とする包装用フィルムの製造方法。
A film for food is molded into a thickness of 5 μm to 12 μm using a molding material containing an amorphous resin and an antifogging agent, and the heat diffusion rate in at least the thickness direction of the thickness direction and the surface direction of the film is set to temperature. It is a method for manufacturing a packaging film that judges the quality of the film by measuring it by a wave thermal analysis method.
The amorphous resin is either a polyvinyl chloride resin or a polyvinylidene chloride resin.
The temperature wave heat analysis method includes a heater capable of outputting a temperature wave and a sensor capable of detecting a temperature wave from the heater, sandwiching a film between the heater and the sensor, and either the front or the back of the film. The thermal diffusivity in at least the thickness direction of the film is measured by changing the modulation frequency on the surface of the film and heating it in an alternating manner and analyzing the phase lag of the temperature change on the other surface of the film during this heating.
The quality of the film is judged by whether or not the measured value of the thermal diffusivity in at least the thickness direction of the film measured by the temperature wave thermal analysis is in the range of 1 to 9 × 10-8 m 2 / s. A method for producing a packaging film.
JP2017216309A 2017-11-09 2017-11-09 Manufacturing method of packaging film Active JP6934808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216309A JP6934808B2 (en) 2017-11-09 2017-11-09 Manufacturing method of packaging film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216309A JP6934808B2 (en) 2017-11-09 2017-11-09 Manufacturing method of packaging film

Publications (2)

Publication Number Publication Date
JP2019086456A JP2019086456A (en) 2019-06-06
JP6934808B2 true JP6934808B2 (en) 2021-09-15

Family

ID=66762847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216309A Active JP6934808B2 (en) 2017-11-09 2017-11-09 Manufacturing method of packaging film

Country Status (1)

Country Link
JP (1) JP6934808B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis
JP2005345385A (en) * 2004-06-04 2005-12-15 Rikogaku Shinkokai Characteristic measuring instrument and characteristic measuring method
JP2011005706A (en) * 2009-06-24 2011-01-13 Beru Sakama:Kk Extrusion molding method of non-foamed molding
US9316604B1 (en) * 2014-01-23 2016-04-19 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for non-destructively determining features in a planar specimen

Also Published As

Publication number Publication date
JP2019086456A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP5751486B2 (en) Light scattering sheet and manufacturing method thereof
JP6934808B2 (en) Manufacturing method of packaging film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
FR2555749A1 (en) METHOD AND APPARATUS FOR PRE-EVALUATION FOR A RESISTANCE TEST OF THE INTEMPERIES
WO2019054271A1 (en) Polarizing plate, polarizing plate roll, and method for manufacturing polarizing film
BRPI0924295B1 (en) food film and process for the production of one or more layers food film in tubular, smokable, air-drying form, especially sausage wrap for sausages or meat products smoked and / or air-dried
TWI821519B (en) Polarizing film, polarizing plate and manufacturing method of the polarizing film
JP2003176374A (en) Method and equipment for producing polytetrafluoroethylene porous membrane
JP7203994B2 (en) Liquid crystal polymer film and manufacturing method thereof, flexible copper-clad laminate, and flexible printed circuit board
WO2019054272A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
FR3086761A1 (en) PORTABLE APPARATUS FOR MEASURING THE CONCENTRATION OF AT LEAST ONE COMPONENT IN A GAS EXHALED BY A BREATH FLUID.
JP6599792B2 (en) Manufacturing method of resin film for film capacitor
JP6513269B1 (en) Polarizing film, polarizing plate, polarizing plate roll, and method of manufacturing polarizing film
JP6292935B2 (en) Coating film manufacturing method and manufacturing method monitoring system
JP2009090541A (en) Manufacturing method of thermoplastic resin film
WO2008000939A1 (en) Installation for measuring the temperature of the ribbon in a flat glass annealing lehr, and method for operating a lehr
JP2020104303A (en) Method of producing film
JP2004255274A (en) Method and apparatus for manufacturing polytetrafluoroethylene porous membrane
WO2019054269A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
JP6513271B1 (en) Polarizing film, polarizing plate, polarizing plate roll, and method of manufacturing polarizing film
JP2006187886A (en) Polyester having dead holding properties and its use
JP2012159098A (en) Thermal insulating pipe cover
JP2018159880A (en) Circularly polarized film and method for producing the same
JP2004231756A (en) Polytetrafluoroethylene sheet, porous film of polytetrafluoroethylene and method for producing the same
JP6535406B1 (en) Method for producing stretched resin film, method for producing polarizer, method for measuring moisture content of stretched resin film, and device for producing stretched resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6934808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250