JP2012159098A - Thermal insulating pipe cover - Google Patents

Thermal insulating pipe cover Download PDF

Info

Publication number
JP2012159098A
JP2012159098A JP2011017209A JP2011017209A JP2012159098A JP 2012159098 A JP2012159098 A JP 2012159098A JP 2011017209 A JP2011017209 A JP 2011017209A JP 2011017209 A JP2011017209 A JP 2011017209A JP 2012159098 A JP2012159098 A JP 2012159098A
Authority
JP
Japan
Prior art keywords
pipe cover
heat insulating
insulating pipe
resin
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017209A
Other languages
Japanese (ja)
Other versions
JP5449220B2 (en
Inventor
Yu Oki
裕 大来
Kojiro Inamori
康次郎 稲森
Hiroyuki Yamazaki
宏行 山崎
Yukihiro Ikura
幸広 伊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011017209A priority Critical patent/JP5449220B2/en
Publication of JP2012159098A publication Critical patent/JP2012159098A/en
Application granted granted Critical
Publication of JP5449220B2 publication Critical patent/JP5449220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal insulating pipe cover in which the number of bubble walls in the thermal insulating pipe cover are controlled to exert higher thermal insulating properties than those of conventional covers.SOLUTION: The thermal insulating pipe cover is manufactured by winding a resin foam tape 18 and joining side edges of the resin foam tape. The resin foam tape is formed by a thermoplastic resin, and the density of the thermal insulating pipe cover is 0.02-0.09 g/cm.

Description

本発明は、冷凍機や空調機の配管の周囲に被せて用いられる断熱パイプカバーに関する。更に詳しくは、断面形状が均一な円形を示し、断熱性が高い断熱パイプカバーに関するものである。   The present invention relates to a heat insulating pipe cover that is used around a pipe of a refrigerator or an air conditioner. More specifically, the present invention relates to a heat insulating pipe cover having a circular shape with a uniform cross-sectional shape and high heat insulating properties.

断熱パイプカバーは、配管(パイプ)等の管状体を外界から断熱するためにその外面に被せるようにして取り付けられる筒型の断熱体である。例えば、冷凍機器内の冷媒配管、冷凍機器間の冷媒配管を保冷するために、或いは熱流体が流れる配管を保温するために使用される。断熱パイプカバーは、良好な断熱性を得るために、厚肉の発泡材で形成されていることが多い。
従来の断熱パイプカバーとしては、特許文献1に示すように、ポリエチレン製樹脂発泡シートを短冊状に加工したのち、幅方向に丸め、突き合わされた端面を溶着してパイプ状に成型されたパイプカバーが一般的である。
また、特許文献2のように、巻回したテープの一巻きとそれに隣合うテープの一巻きとを側縁部同士突き合わせ、又は側縁部同士重ね合わせるようにして、発泡材製テープを螺旋状に巻回し、かつ突き合わせ又は重ね合わせた側縁部同士を相互に熱融着によって接合してなる発泡材製内筒層と、内筒層上に巻回したテープの一巻きとそれに隣合うテープの一巻きとを側縁部同士突き合わせ、又は側縁部同士重ね合わせるようにして、発泡材製テープを螺旋状に巻回し、かつ突き合わせ又は重ね合わせた側縁部同士を相互に熱融着によって接合してなる発泡材製外筒層との積層筒体からなることを特徴とする断熱パイプカバーも製造されている。
しかし、特許文献1の断熱パイプカバーは、肉厚や形状を均一にするのが困難な為、パイプカバーの位置によって断熱性が異なるという難点があった。
また、特許文献2では肉厚が均一な円筒状の断熱パイプカバーを得られるが、その材料となる発泡テープには、特許文献1と同じくポリエチレン製樹脂架橋発泡シートを使用していた。ポリエチレンは熱伝導率が比較的高い樹脂であるのに加え、ポリエチレン製架橋発泡シートは気泡壁間距離が長くなりやすく熱伝導率が低くなりにくい為、所望の断熱性を発揮する為には、パイプカバーの肉厚を厚くする必要があった。ここで、気泡間距離とは、厚さ方向に隣接する気泡壁の距離であり、例えば気泡が完全な球状のときは気泡径と同じ値である。しかし、パイプカバーの肉厚が厚いと、配管設置時の必要スペースが大きくなることから、例えば小型のビルや戸建住宅への設置が難しいとの難点があった。
The heat insulating pipe cover is a cylindrical heat insulating body attached so as to cover a tubular body such as a pipe (pipe) from the outside so as to cover the outer surface. For example, it is used to keep the refrigerant pipe in the refrigeration equipment, the refrigerant pipe between the refrigeration equipment cool, or to keep the pipe through which the thermal fluid flows. The heat insulating pipe cover is often formed of a thick foam material in order to obtain good heat insulating properties.
As a conventional heat insulation pipe cover, as shown in Patent Document 1, a polyethylene resin foam sheet is processed into a strip shape, then rolled in the width direction, and welded at the end face to be joined to form a pipe cover Is common.
In addition, as in Patent Document 2, the foam tape is spirally formed such that one side of the wound tape and one side of the tape adjacent thereto are abutted with each other or overlapped with each other. And a foamed inner cylinder layer formed by joining the side edges that are wound together and butted or overlapped to each other by thermal fusion, and a tape wound on the inner cylinder layer and a tape adjacent thereto. The side edges of each roll are abutted with each other, or the side edges are overlapped with each other, the foam tape is spirally wound, and the side edges that have been abutted or overlapped are heat-bonded to each other. A heat insulating pipe cover characterized by comprising a laminated cylinder with a foamed outer cylinder layer formed by bonding is also manufactured.
However, since the heat insulating pipe cover of Patent Document 1 has difficulty in making the wall thickness and shape uniform, there is a problem that the heat insulating property varies depending on the position of the pipe cover.
Further, in Patent Document 2, a cylindrical heat insulating pipe cover having a uniform wall thickness can be obtained. As in the foamed tape used as the material, a polyethylene resin cross-linked foam sheet is used as in Patent Document 1. In addition to polyethylene having a relatively high thermal conductivity, polyethylene cross-linked foam sheet tends to increase the distance between the bubble walls, making it difficult for the thermal conductivity to decrease. It was necessary to increase the thickness of the pipe cover. Here, the distance between bubbles is a distance between bubble walls adjacent in the thickness direction. For example, when the bubble is a perfect sphere, it is the same value as the bubble diameter. However, if the thickness of the pipe cover is large, the necessary space for installing the pipe becomes large, so that there is a difficulty that it is difficult to install in a small building or a detached house, for example.

特許第3510364号号公報Japanese Patent No. 3510364 特許第3384948号号公報Japanese Patent No. 3384948

本発明は上記問題点に鑑みてなされたものであり、断熱パイプカバーの厚さ方向の気泡壁数を制御することにより、従来品よりも高い断熱性を示す断熱パイプカバーを提供することを課題とする。   The present invention has been made in view of the above problems, and it is an object to provide a heat insulating pipe cover that exhibits higher heat insulating properties than conventional products by controlling the number of bubble walls in the thickness direction of the heat insulating pipe cover. And

本発明の課題は、以下の手段によって達成された。
(1)巻回した樹脂発泡テープの側縁部を接合して製造された断熱パイプカバーであって、該樹脂発泡テープは熱可塑性樹脂からなり、該断熱パイプカバーの密度が、0.02〜0.09g/cmであることを特徴とする断熱パイプカバー。
(2)該断熱パイプカバーの10mm厚さ当たりの気泡壁数が、80個以上であることを特徴とする(1)項に記載の断熱パイプカバー。
(3)該断熱パイプカバーの気泡壁間距離が、厚さ方向に10μm〜100μmのものが20〜60%、100〜400μmのものが40〜80%の割合で含まれていることを特徴とする(1)又は(2)項に記載の断熱パイプカバー。
(4)該断熱パイプカバーの断面形状が、多数の条を束ねた形状になっていることを特徴とする(1)〜(3)項のいずれかに記載の断熱パイプカバー。
(5)パイプカバーの厚さ方向については、外周側から内径側に向かって気泡径のアスペクト比が傾斜をもつことを特徴とする(1)〜(4)項のいずれかに記載の断熱パイプカバー。
The object of the present invention has been achieved by the following means.
(1) A heat insulating pipe cover manufactured by joining side edges of a wound resin foam tape, wherein the resin foam tape is made of a thermoplastic resin, and the density of the heat insulating pipe cover is 0.02 to 0.02. A heat-insulating pipe cover characterized by being 0.09 g / cm 3 .
(2) The heat insulating pipe cover according to item (1), wherein the number of bubble walls per 10 mm thickness of the heat insulating pipe cover is 80 or more.
(3) The distance between the bubble walls of the heat insulating pipe cover is 20 to 60% in the thickness direction of 10 to 100 μm, and 40 to 80% in the range of 100 to 400 μm. The heat insulating pipe cover according to item (1) or (2).
(4) The heat insulating pipe cover according to any one of (1) to (3), wherein a cross-sectional shape of the heat insulating pipe cover is a shape in which a number of strips are bundled.
(5) About the thickness direction of a pipe cover, the aspect ratio of a bubble diameter inclines from an outer peripheral side toward an inner diameter side, The heat insulation pipe in any one of the (1)-(4) term | claim characterized by the above-mentioned cover.

本発明に係る断熱パイプカバーは、断熱性が高く、そのため断熱効果を高め従来のものよりも断熱材の厚さを小さくすることができる。   The heat insulating pipe cover according to the present invention has high heat insulating properties, so that the heat insulating effect can be enhanced and the thickness of the heat insulating material can be made smaller than that of the conventional one.

図1は実施例1に記載の押出システムの該略図である。FIG. 1 is a schematic representation of the extrusion system described in Example 1. 図2は実施例1に記載の多孔ダイの一部を拡大して示す説明図である。FIG. 2 is an explanatory view showing a part of the porous die described in Example 1 in an enlarged manner. 図3は実施例1に記載のマントル成形機の該略図である。FIG. 3 is a schematic view of the mantle molding machine described in the first embodiment. 図4はパイプカバーの斜視図であり、流れと厚み方向の説明図である。FIG. 4 is a perspective view of the pipe cover, illustrating the flow and the thickness direction. 図5はパイプカバーの正面図である。FIG. 5 is a front view of the pipe cover. 図6はパイプカバーのA−A断面図である。FIG. 6 is a cross-sectional view of the pipe cover taken along the line AA. 図7はパイプカバーを形成する発泡テープの縦断面を拡大して示すSEM写真像であり、気泡壁間距離と気泡壁数の算出方法に関する図解ともなる。FIG. 7 is an SEM photographic image showing an enlarged vertical section of the foam tape forming the pipe cover, and is also an illustration regarding a method for calculating the distance between the bubble walls and the number of bubble walls. 図8は発泡テープの断面形状を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing the cross-sectional shape of the foam tape.

本発明にて得られる断熱パイプカバーは、押出機に発泡性樹脂を供給し、ダイから当該樹脂を押し出すと同時に発泡させて得た発泡テープを直接マントル成形機に供給し、マントル成形機上で隣接する発泡テープの側縁部同士を熱融着させながら発泡テープを並列巻回する製法によって得られるものである。この製法を用いることによって、均一な円筒状のパイプカバーを製造することが出来る。
断熱パイプカバーの流れ、厚み方向42と断面との関係を図4に斜視図で示し、図7から後述するように気泡壁間距離71と気泡壁72の数が算出できる。
The heat insulating pipe cover obtained in the present invention supplies a foaming resin to an extruder, extrudes the resin from a die and simultaneously supplies the foamed tape obtained by foaming directly to the mantle molding machine, on the mantle molding machine It is obtained by a manufacturing method in which foamed tapes are wound in parallel while the side edges of adjacent foamed tapes are heat-sealed. By using this manufacturing method, a uniform cylindrical pipe cover can be manufactured.
The relationship between the flow of the heat insulating pipe cover, the thickness direction 42 and the cross section is shown in a perspective view in FIG. 4, and the distance 71 between the bubble walls and the number of the bubble walls 72 can be calculated from FIG.

断熱パイプカバーの内径は、断熱パイプカバーで覆う配管の外径に合わせて任意に設定できるが、一般的には9.52mm〜53.98mmの範囲である。肉厚は、好ましくは10mm〜80mm、さらに好ましくは20mm〜50mmの範囲である。肉厚が10mmを下回ると断熱性が低下してしまい、80mmを超えるとパイプカバーが大きくなりすぎて実用的ではない。発泡材製テープの幅及び厚さは、螺旋状に巻ける限り、特に限定はないが、幅が10mm〜70mmの範囲、厚さが4mm〜10mmの範囲のテープが巻回し易い。   The inner diameter of the heat insulating pipe cover can be arbitrarily set according to the outer diameter of the pipe covered with the heat insulating pipe cover, but is generally in the range of 9.52 mm to 53.98 mm. The wall thickness is preferably in the range of 10 mm to 80 mm, more preferably 20 mm to 50 mm. When the wall thickness is less than 10 mm, the heat insulating property is deteriorated, and when it exceeds 80 mm, the pipe cover becomes too large to be practical. The width and thickness of the foam tape are not particularly limited as long as they can be wound spirally, but a tape having a width in the range of 10 mm to 70 mm and a thickness in the range of 4 mm to 10 mm is easy to wind.

断熱パイプカバーの密度は用途に応じて決定することができるが、発泡体の柔らかさと断熱性を考慮すると0.02〜0.09g/cmであることが好ましい。密度が0.09kg/cmを上回ると断熱性に劣り、0.02g/cmを下回ると軟らかすぎる為、例えば銅管等をパイプカバー内に通した際に自重で潰れてしまう等の問題が生じる可能性がある。さらに実用性と製造安定性を考慮すると、前記密度は0.03〜0.06g/cmがさらに好ましい。
図4及び5に示した、断熱パイプカバーの肉厚10mm当たりの気泡壁数は、80個以上であることが好ましく、100個以上2000個以下がより好ましい。気泡壁数が少なすぎると赤外線を反射させる能力に劣る為に充分な断熱性能が発揮できない。また2000個を超えると赤外線を反射せずに透過してしまい、断熱性能が低下する。ここで気泡壁とは厚さ方向における隣合う気泡と気泡の間の樹脂壁のことをいう。気泡壁数とは厚さ方向の気泡壁の数である。気泡壁数の測定方法は次の通りである。断熱パイプカバーの断面に対し、顕微鏡等を用いてスクリーンまたはモニタ等に拡大投影し、図7に示すように投影画像上において厚み方向42に線分73を引き、その直線と交差する気泡壁数72を計数する。通常サンプル厚さを10mmになるように切り出して観察するが、厚さが10mm丁度ではない場合には、厚さ10mmに換算して気泡壁数を求めてもよい。気泡壁数は樹脂を押出発泡し、その際に発泡剤を適当量混合し、かつ押出温度を適正な範囲で調整する等の方法により上記範囲に調節できる。その際、気泡核剤を用いると調整が容易になる。
Although the density of a heat insulation pipe cover can be determined according to a use, it is preferable that it is 0.02-0.09 g / cm < 3 > when the softness and heat insulation of a foam are considered. When the density exceeds 0.09 kg / cm 3 , the heat insulating property is inferior, and when the density is less than 0.02 g / cm 3 , it is too soft. For example, when a copper tube is passed through the pipe cover, it is crushed by its own weight. May occur. Further, considering practicality and production stability, the density is more preferably 0.03 to 0.06 g / cm 3 .
The number of bubble walls per 10 mm thickness of the heat insulating pipe cover shown in FIGS. 4 and 5 is preferably 80 or more, and more preferably 100 or more and 2000 or less. If the number of bubble walls is too small, the ability to reflect infrared rays is inferior, so that sufficient heat insulation performance cannot be exhibited. Moreover, when it exceeds 2000 pieces, it will permeate | transmit without reflecting infrared rays, and heat insulation performance will fall. Here, the bubble wall refers to a resin wall between adjacent bubbles in the thickness direction. The number of bubble walls is the number of bubble walls in the thickness direction. The method for measuring the number of bubble walls is as follows. The number of bubble walls intersecting the straight line is enlarged and projected on a screen or monitor using a microscope or the like, and a line segment 73 is drawn in the thickness direction 42 on the projection image as shown in FIG. 72 is counted. Usually, the sample thickness is cut out and observed so as to be 10 mm. However, when the thickness is not exactly 10 mm, the number of bubble walls may be calculated in terms of the thickness of 10 mm. The number of cell walls can be adjusted to the above range by, for example, extruding and foaming a resin, mixing an appropriate amount of a foaming agent, and adjusting the extrusion temperature within an appropriate range. At this time, adjustment is facilitated by using a cell nucleating agent.

発泡テープの断面形状は、図8に記したような多数の条80を束ねた構造を示していることが好ましい。この条自体が発泡している。条は最密構造で重なることが好ましいが、この形状には限らず、例えば厚み方向42に整列したような構造をとっても構わない。このような構造をとることで、条同士の接着面に近い部分は気泡壁間距離が小さく、条の中心部は気泡壁間距離を大きくすることが容易になる。ここで気泡壁間距離とは厚さ方向における線分上での気泡の内径をいう。また、発泡テープの形状、幅、厚みに関しては特に規定は無く、巻き回して側縁部を接合することが出来ればどのようなものを用いても良い。条は最密充填しているので実際は空隙は殆んどない。
断熱パイプカバーに含まれる気泡に対しては、後述する、パイプカバー厚み方向42の気泡壁間距離について、厚さ方向に10μm〜100μmの気泡(小気泡A)が20〜60%、101〜400μmの気泡(大気泡B)が40〜80%の割合で含まれていることが好ましい。気泡Aと気泡Bが上記の割合で存在することにより広い範囲の赤外線を反射することが可能になり、断熱性が向上する。小気泡Aの割合が多すぎると長波長側の赤外線反射効果が薄れ、少なすぎると短波長側の赤外線反射効果が薄れる。
また、上記断熱パイプカバーは、厚さ方向に気泡径を見た際、気泡壁間距離のアスペクト比(幅方向の気泡壁間距離に対する厚さ方向の気泡壁間距離の比)が傾斜を持つことが好ましい。アスペクト比が内径側が小さく、外周側に向かって徐々に大きくなるような傾斜でも、外周側が小さく、内径側に向かって徐々に小さくなるような傾斜でも構わないが、特に外周側から内径側に向かってアスペクトが小さくなるような傾斜をもつことが好ましい。このような傾斜を持つ気泡を生成することで広い範囲の赤外線を反射することが可能になり、以下のような効果がある。
The cross-sectional shape of the foam tape preferably shows a structure in which a large number of strips 80 are bundled as shown in FIG. This strip itself is foamed. It is preferable that the stripes overlap in a close-packed structure. However, the shape is not limited to this shape, and for example, a structure that is aligned in the thickness direction 42 may be used. By taking such a structure, the portion near the bonding surface between the strips has a small distance between the bubble walls, and the central portion of the strip can easily increase the distance between the bubble walls. Here, the distance between the bubble walls refers to the inner diameter of the bubble on the line segment in the thickness direction. Further, the shape, width, and thickness of the foam tape are not particularly specified, and any foam tape may be used as long as it can be wound to join the side edges. Since the strips are closely packed, there are practically no voids.
For air bubbles contained in the heat insulating pipe cover, with respect to the distance between the bubble walls in the pipe cover thickness direction 42 to be described later, 10 to 100 μm bubbles (small bubbles A) in the thickness direction are 20 to 60%, 101 to 400 μm. The bubbles (large bubbles B) are preferably contained in a proportion of 40 to 80%. The presence of the bubbles A and the bubbles B in the above ratio makes it possible to reflect a wide range of infrared rays and improve the heat insulation. If the proportion of the small bubbles A is too large, the infrared reflection effect on the long wavelength side is diminished, and if it is too small, the infrared reflection effect on the short wavelength side is diminished.
Further, when the bubble diameter is viewed in the thickness direction, the above-mentioned heat insulating pipe cover has an inclined aspect ratio of the distance between the bubble walls (ratio of the distance between the bubble walls in the thickness direction to the distance between the bubble walls in the width direction). It is preferable. The aspect ratio may be inclined such that the inner diameter side is small and gradually increases toward the outer peripheral side, or the outer peripheral side is small and the inclination may be gradually decreased toward the inner diameter side, but particularly from the outer peripheral side toward the inner diameter side. It is preferable to have an inclination that reduces the aspect. By generating bubbles having such an inclination, it is possible to reflect a wide range of infrared rays, and there are the following effects.

本発明のパイプカバーの断熱効果が優れる理由は未だ定かではないが次のように推定される。パイプカバーの断熱性を向上させるには、パイプカバーを透過しようとする赤外線の反射が有効な手段である。赤外線を含む電磁波は、屈折率の異なる物体の界面で反射する性質を有しており、その屈折率差や物体の大きさによって反射される赤外線の波長が異なる。すなわち樹脂内に気泡が存在すれば、樹脂と空気の界面で赤外線が反射されることになる。しかし、例えば23℃の黒体から放射される赤外線は2〜100μmと広い範囲をとっており、気泡の大きさが均一な場合には、ある一定の波長の赤外線しか反射できない。前記のように気泡の大きさに分布があると、広い波長範囲の赤外線を反射することが可能になるためと推定される。
アスペクト比に傾斜を付ける為には、例えばテープの片側のみを延伸したり、圧縮する等の手法により行うことができる。
The reason why the heat insulating effect of the pipe cover of the present invention is excellent is not yet clear, but is estimated as follows. In order to improve the heat insulating property of the pipe cover, the reflection of infrared rays that try to pass through the pipe cover is an effective means. An electromagnetic wave including infrared rays has a property of reflecting at an interface of objects having different refractive indexes, and the wavelength of the reflected infrared rays varies depending on the difference in refractive index and the size of the object. That is, if bubbles exist in the resin, infrared rays are reflected at the interface between the resin and air. However, for example, infrared rays emitted from a black body at 23 ° C. have a wide range of 2 to 100 μm, and when bubbles are uniform in size, only infrared rays having a certain wavelength can be reflected. As described above, it is presumed that when there is a distribution in the size of bubbles, infrared rays in a wide wavelength range can be reflected.
In order to incline the aspect ratio, for example, it can be performed by a method such as stretching or compressing only one side of the tape.

押出発泡に用いる押出機は特に限定されず、単軸押出機、二軸以上の多軸押出機を単独、あるいは組み合わせた押出機を使用してよい。押出機出口付近の樹脂温度を十分に冷却して発泡倍率を向上させる観点からは、押出機を二台以上連ねたシステムの使用が好ましい。   The extruder used for extrusion foaming is not particularly limited, and a single screw extruder, an extruder in which two or more multi-screw extruders are used singly or in combination may be used. From the viewpoint of sufficiently cooling the resin temperature near the exit of the extruder and improving the expansion ratio, it is preferable to use a system in which two or more extruders are connected.

押出発泡に用いるダイは特に限定されず、ロッドダイ、Tダイ、多孔ダイ等を使用することができる。気泡壁間距離を制御する上では、多孔ダイを用いることが好ましい。
樹脂発泡体の製造方法としては、ガス発泡、化学発泡等を使用することができる。ガス発泡の場合、発泡剤としては炭酸ガス、窒素ガス、ヘリウム、アルゴン等の不活性ガスのほか、ブタン、ペンタン、テトラフルオロプロペン等の揮発性発泡剤を使用してよい。化学発泡の場合、化学発泡剤としてはアゾジカルボンアミド、炭酸水素ナトリウム、重層などを使用してよい。樹脂との親和性、安全性の観点からは炭酸ガスを用いることが好ましい。
The die used for extrusion foaming is not particularly limited, and a rod die, a T die, a porous die, or the like can be used. In order to control the distance between the bubble walls, it is preferable to use a porous die.
As a method for producing a resin foam, gas foaming, chemical foaming, or the like can be used. In the case of gas foaming, as a foaming agent, in addition to an inert gas such as carbon dioxide, nitrogen gas, helium and argon, a volatile foaming agent such as butane, pentane and tetrafluoropropene may be used. In the case of chemical foaming, azodicarbonamide, sodium hydrogen carbonate, a multilayer, or the like may be used as the chemical foaming agent. Carbon dioxide gas is preferably used from the viewpoint of affinity with the resin and safety.

発泡テープに用いられる熱可塑性樹脂は、押出発泡が可能である樹脂であれば特に限定はなく、例えば、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、オレフィン系エラストマー、スチレン系エラストマー等のポリオレフィン系樹脂、ポリアクリル酸エステル系樹脂、ポリカーボネート系樹脂を押出発泡したものを単独、あるいは2種類以上を混ぜ合わせて用いてよい。発泡性と断熱性を両立させる上では、ポリプロピレン系樹脂を用いるのが好ましい。
また熱可塑性樹脂には増核作用を有する気泡核剤を含有させても良い。具体的にはタルク、金属石鹸などであり、その量は通常10質量%以下である。
The thermoplastic resin used for the foam tape is not particularly limited as long as it is a resin that can be extruded and foamed. For example, polyolefin resins such as polypropylene, polystyrene, polyvinyl chloride, olefin elastomer, styrene elastomer, and polyacryl A product obtained by extrusion foaming an acid ester resin or a polycarbonate resin may be used alone or in combination of two or more. In order to achieve both foamability and heat insulation, it is preferable to use a polypropylene resin.
The thermoplastic resin may contain a cell nucleating agent having a nucleating action. Specific examples include talc and metal soap, and the amount is usually 10% by mass or less.

発泡テープの材料には断熱性を高める目的で赤外線遮蔽性物質を加えてよい。この物質としては、ポリスチレン、ポリアクリル酸エステル系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリ乳酸や、それらの共重合体といった有機化合物の他、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化マグネシウム、炭酸リチウム、酸化チタン、ハイドロタルサイト、ワラストナイト、ゼオライト、三酸化アンチモン、五酸化アンチモン、窒化チタン、チタン酸カリウム、黒鉛等の無機化合物を使用することができるが、この限りではない。   An infrared shielding material may be added to the material of the foamed tape for the purpose of improving heat insulation. This material includes polystyrene, polyacrylate resin, polycarbonate, polyethylene terephthalate, polylactic acid, and organic compounds such as copolymers thereof, as well as aluminum hydroxide, magnesium hydroxide, aluminum oxide, magnesium oxide, lithium carbonate. Inorganic compounds such as titanium oxide, hydrotalcite, wollastonite, zeolite, antimony trioxide, antimony pentoxide, titanium nitride, potassium titanate, and graphite can be used, but are not limited thereto.

本発明において、特性に影響を及ぼさない範囲で、発泡前の熱可塑性樹脂に、結晶化促進剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤などの各種添加剤を配合しても良い。また、得られた熱可塑性樹脂発泡体に上記添加剤を含有する樹脂を積層しても良いし、上記添加剤を含有する塗料をコーティングしても良い。防火の観点からは、発泡体は難燃化されていることが好ましい。   In the present invention, the crystallization accelerator, antioxidant, antistatic agent, anti-UV agent, light stabilizer, fluorescent whitening agent, pigment, and dye are added to the thermoplastic resin before foaming as long as it does not affect the properties. Various additives such as a compatibilizer, a lubricant, a reinforcing agent, a flame retardant, a cross-linking agent, a cross-linking aid, a plasticizer, a thickener, and a thinning agent may be blended. Moreover, the resin containing the said additive may be laminated | stacked on the obtained thermoplastic resin foam, and the coating material containing the said additive may be coated. From the viewpoint of fire prevention, the foam is preferably flame retardant.

断熱パイプカバーの積層筒体の外側に発泡材とは異なる材料、例えばアルミニウム・フィルム、ポリ塩化ビニール・フィルム、ポリエチレン・フィルム等からなる外装用のテープ、好適には例えば片面に粘着面を有する粘着テープを巻回又は長手方向に縦添え等して貼り付け、防水性及び一体性を向上させると共に外観を良くするようにしても良い。貼り付けは、全面に行っても良いし、部分的に行っても良い。また、このようなテープを積層筒体の内部の筒層に使用しても良い。貼り付け方法は、接着剤による接着でも、また熱融着による接着でも良い。また、断熱パイプカバーの内側中空部の断面形状は、任意であって、例えば、円形でも、三角形でも、楕円でも良い。   An exterior tape made of a material different from the foam material, such as an aluminum film, a polyvinyl chloride film, or a polyethylene film, on the outside of the laminated cylindrical body of the heat insulating pipe cover, preferably an adhesive having an adhesive surface on one side, for example. A tape may be wound or attached in a longitudinal direction so as to improve waterproofness and integrity and improve the appearance. Pasting may be performed on the entire surface or may be performed partially. Moreover, you may use such a tape for the cylinder layer inside a laminated cylinder. The affixing method may be adhesion by an adhesive or adhesion by heat fusion. The cross-sectional shape of the inner hollow portion of the heat insulating pipe cover is arbitrary, and may be, for example, a circle, a triangle, or an ellipse.

次に本発明の巻回した樹脂発泡テープの端部を接合する断熱パイプカバーの製造方法を説明すると、押出機に樹脂とともに発泡剤を供給し、ダイから当該樹脂を押し出すと同時に発泡させ発泡テープを得る。すなわち、いわゆる押出発泡により発泡テープを得るものである。
ダイ(多孔ダイ)から樹脂を押し出すと同時に発泡させて得た発泡テープを直接(切断せずそのまま)マントル成形機に供給し、当該発泡テープの側縁部を熱で融着させながら発泡テープを並列巻回する。この巻回は螺旋状に行う。
Next, the manufacturing method of the heat insulation pipe cover which joins the end of the wound resin foam tape of the present invention is explained. The foaming agent is supplied to the extruder together with the resin, and the resin is foamed at the same time as the resin is extruded from the die. Get. That is, a foamed tape is obtained by so-called extrusion foaming.
The foamed tape obtained by extruding the resin from the die (porous die) and foamed at the same time is supplied directly (without cutting) to the mantle molding machine, and the foamed tape is melted while fusing the side edges of the foamed tape with heat. Wind in parallel. This winding is performed spirally.

以下、本発明の断熱パイプカバーの製造方法の好ましい具体例を、添付図面を参照して説明する。図1は製造プロセスの一例を示す概略図である。   Hereinafter, a preferred specific example of a method for producing a heat insulating pipe cover according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view showing an example of a manufacturing process.

図1において、押出機は樹脂の加熱溶融・混練用の第一押出機11とその冷却用の第二押出機12を連ねたタンデムシステムとなっている。第一押出機11はホッパー13を備え、当該ホッパー13には材料となる樹脂を供給し、加熱・溶融する。また、発泡剤であるガスについては、第一押出機11のガスポート16から、ガスボンベ14を源とし昇圧機15で昇圧されたガスを供給し、押出機内で溶融樹脂と十分に混合(混練)させて、樹脂中にガス気泡を分散させる。溶融樹脂とガスの混合物は第二押出機12へ搬送され、流路を進むにつれて十分に冷却される。   In FIG. 1, the extruder is a tandem system in which a first extruder 11 for heating and melting and kneading resin and a second extruder 12 for cooling the resin are connected. The first extruder 11 includes a hopper 13, and a resin as a material is supplied to the hopper 13 and heated and melted. As for the gas which is a foaming agent, the gas pressurized from the gas cylinder 14 as a source is supplied from the gas port 16 of the first extruder 11 and is sufficiently mixed (kneaded) with the molten resin in the extruder. Gas bubbles are dispersed in the resin. The molten resin and gas mixture is conveyed to the second extruder 12 and is sufficiently cooled as it travels through the flow path.

次に樹脂とガスの混合物を、多孔ダイ17から押し出すと同時に発泡させる。多孔ダイ17から押し出された棒状の発泡樹脂は、発泡により互いに融着することにより、発泡テープ18となるが、当該発泡テープ18の表面を、多孔ダイ17から出た直後に、例えば当該発泡テープ18の近傍に設置したヒーター19で軽く溶融させ、マントル成形機110に発泡テープ18として送る。   Next, the resin and gas mixture is extruded from the perforated die 17 and foamed simultaneously. The rod-like foamed resin extruded from the perforated die 17 is fused to each other by foaming to become a foamed tape 18. The surface of the foamed tape 18 is immediately after coming out of the perforated die 17, for example It is melted lightly by a heater 19 installed in the vicinity of 18 and sent as a foamed tape 18 to a mantle molding machine 110.

当該加熱され軽く溶融された発泡テープ18は、マントル成形機110と押さえローラー111の間に供給されるとともに、自動で巻回しが始まり、当該発泡テープの溶融された端部を融着させながら巻回することにより、連続して断熱パイプカバー112が得られる。   The heated and lightly melted foam tape 18 is supplied between the mantle molding machine 110 and the pressure roller 111, and is automatically wound, and is wound while fusing the melted end of the foam tape. By rotating, the heat insulation pipe cover 112 is obtained continuously.

図2に多孔22を形成した多孔ダイ17の一部21を拡大して示す説明図を示す。
前記のマントル成形機110としては、図3に示したようにそれ自体公知のものが使用でき、特にマントルシャフト31の周囲に、フレキシブルシャフト32が螺旋状に巻回された構造のものが好ましく用いられる。すなわち、ギアボックス33に接続されたフレキシブルシャフト32が軸を中心に回転することにより、マントルシャフト31の周囲に沿って、多孔ダイ17の一部21から供給された樹脂発泡テープ18を捲回すことができる。なお、111は押さえローラーであり、供給された発泡テープ18をその回転により、確実にマントルシャフト31に巻きつけるように作用する。
FIG. 2 is an explanatory view showing an enlarged part 21 of the porous die 17 in which the porous 22 is formed.
As the mantle molding machine 110, a machine known per se can be used as shown in FIG. 3, and in particular, a machine having a structure in which a flexible shaft 32 is spirally wound around a mantle shaft 31 is preferably used. It is done. That is, when the flexible shaft 32 connected to the gear box 33 rotates around the axis, the resin foam tape 18 supplied from the part 21 of the perforated die 17 is wound around the mantle shaft 31. Can do. Reference numeral 111 denotes a pressure roller, which acts to reliably wind the supplied foam tape 18 around the mantle shaft 31 by its rotation.

次に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこの実施例に限定されるものでない。
実施例及び比較例において得られたパイプカバーサンプルの各物性の測定、評価は以下の方法にて行った。その結果を表1に示した。
(気泡壁数、気泡壁間距離の測定)
図4に示すように、得られたパイプカバー112より一部を切り出し図5に示すサンプルを得る。前記の方法により走査型電子顕微鏡(SEM)を用いてサンプルの気泡膜部断面の倍率30倍の顕微鏡写真を撮影し、前述の方法で厚さ10mm当りの気泡壁72の数と気泡壁間距離71を求めた(図7参照)。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
Measurement and evaluation of each physical property of the pipe cover samples obtained in Examples and Comparative Examples were performed by the following methods. The results are shown in Table 1.
(Measurement of number of bubble walls and distance between bubble walls)
As shown in FIG. 4, a part is cut out from the obtained pipe cover 112 to obtain the sample shown in FIG. Using the scanning electron microscope (SEM) according to the above method, a microphotograph of the cross section of the bubble film part of the sample at a magnification of 30 times was taken, and the number of bubble walls 72 per 10 mm thickness and the distance between the bubble walls were measured by the above method. 71 was obtained (see FIG. 7).

(断熱性の評価)
本発明において断熱性の評価方法としては、以下のような手法を使用した。製造直後の発泡パイプカバーから図4の流れ方向41に長さ500mmの試験体を切り出し、該試験片を23℃、湿度50%の雰囲気下に保存した。製造後10日後に、該試験体に適合する銅管を挿入し、内側に0℃の冷媒を流せる装置に導入した。この装置を30℃、湿度50%の雰囲気下に24時間以上保持し、試験体の端から250mm付近の表面温度を測定し、雰囲気温度と表面温度の温度差を断熱性評価の指標とした。評価基準は、温度差が2℃未満であれば判定は良好(○)であり、2℃以上2.5以下は実用し得る範囲(△)であり、2.5℃を越えるものは不良(×)である。
(Evaluation of thermal insulation)
In the present invention, the following method was used as a method for evaluating heat insulation. A test specimen having a length of 500 mm was cut out in the flow direction 41 of FIG. 4 from the foamed pipe cover immediately after production, and the test piece was stored in an atmosphere of 23 ° C. and 50% humidity. Ten days after production, a copper tube suitable for the test specimen was inserted and introduced into a device in which a 0 ° C. refrigerant could flow inside. This apparatus was kept for 24 hours or more in an atmosphere of 30 ° C. and 50% humidity, the surface temperature near 250 mm from the end of the test specimen was measured, and the temperature difference between the ambient temperature and the surface temperature was used as an index for evaluating heat insulation. The evaluation criteria are good (◯) if the temperature difference is less than 2 ° C., 2 ° C. or more and 2.5 or less is a practical range (Δ), and those exceeding 2.5 ° C. are defective ( X).

(実施例1)
ここでは図1に示すシステムを用いた。第一押出機11にはΦ40mmの単軸押出機、第二押出機12にはΦ65mmの単軸押出機を用いた。材料にはポリプロピレン(MFR=2)を用い、ガスには純度99%の炭酸ガスを使用した。ダイには図2に示す面を有する多孔ダイ17を使用した。多孔ダイ17の孔径(22の径)は1mm、面積20mm当たりの孔数は15個とした。
まず、ポリプロピレンを図1のホッパー13に供給し、170〜210℃に設定された第一押出機11内で樹脂を溶融させた。一方、ガスポート16からは昇圧機15で10MPaの圧力に昇圧された炭酸ガスを供給し、第一押出機11内で樹脂とガスを混錬させた。樹脂とガスの混合物は165〜200℃に設定された第二押出機12に搬送され、押出機内を進むにつれて均一に冷却された。
最終的に図1の多孔ダイ17から発泡テープ18が押し出された。多孔ダイ17の圧力は12MPaであった。押し出された発泡テープ18は底辺が20mm、高さが15mmの平行四辺形をしていた。発泡テープ18の表面をライスターで軽く溶融させ、外径30mm、ピッチ13mmに調整されたマントル成形機110と押さえローラー111の間に供給した。マントル成形機110のフレキシブルシャフト32の回転速度は押し出される発泡テープ18の線速度よりもやや速く設定し、発泡テープに若干テンションがかかるようにした。巻回された発泡テープ18は端部同士で熱融着し、最終的に内径30mm、厚さ15mmの断熱パイプカバー112が得られた。
Example 1
Here, the system shown in FIG. 1 was used. The first extruder 11 was a Φ40 mm single screw extruder, and the second extruder 12 was a Φ65 mm single screw extruder. Polypropylene (MFR = 2) was used as the material, and carbon dioxide gas with a purity of 99% was used as the gas. As the die, a porous die 17 having the surface shown in FIG. 2 was used. The hole diameter (22 diameter) of the porous die 17 was 1 mm, and the number of holes per area of 20 mm 2 was 15.
First, polypropylene was supplied to the hopper 13 of FIG. 1, and the resin was melted in the first extruder 11 set to 170 to 210 ° C. On the other hand, carbon dioxide gas whose pressure was increased to 10 MPa by the booster 15 was supplied from the gas port 16, and the resin and gas were kneaded in the first extruder 11. The mixture of resin and gas was conveyed to the second extruder 12 set to 165 to 200 ° C., and cooled uniformly as it proceeded through the extruder.
Finally, the foam tape 18 was extruded from the perforated die 17 of FIG. The pressure of the porous die 17 was 12 MPa. The extruded foam tape 18 had a parallelogram shape with a base of 20 mm and a height of 15 mm. The surface of the foamed tape 18 was lightly melted with a lyster and supplied between a mantle molding machine 110 adjusted to an outer diameter of 30 mm and a pitch of 13 mm and a pressing roller 111. The rotational speed of the flexible shaft 32 of the mantle molding machine 110 was set slightly higher than the linear speed of the foamed tape 18 to be extruded so that the foamed tape was slightly tensioned. The wound foam tape 18 was heat-sealed at the ends, and finally, a heat insulating pipe cover 112 having an inner diameter of 30 mm and a thickness of 15 mm was obtained.

(実施例2)
材料としてポリプロピレン(MFR=2)99%に対して気泡核剤(ポリスレンEE207E(永和化成製)を1%混合した以外は、実施例1と同様に実験を行った。
(Example 2)
The experiment was conducted in the same manner as in Example 1 except that 99% of polypropylene (MFR = 2) was mixed with 1% of a cell nucleating agent (Polyslen EE207E (manufactured by Eiwa Kasei)).

(実施例3)
材料としてポリプロピレン(MFR=2)98%に対して気泡核剤(ポリスレンEE207E(永和化成製)を2%混合した以外は、実施例1と同様に実験を行った。
(Example 3)
An experiment was conducted in the same manner as in Example 1 except that 2% of a cell nucleating agent (Polyslen EE207E (manufactured by Eiwa Kasei)) was mixed with 98% of polypropylene (MFR = 2) as a material.

実施例1〜3では、密度や気泡壁数、割合について前記に示す範囲内にあり、評価値が合格範囲内となった。
実施例4及び5においては発泡体の密度を0.06g/cmにしたこと以外は、実施例1と同様にしてマントル成形機に発泡体を供給した。また、実施例6においては発泡体の密度を0.07g/cmにしたこと以外は、実施例1と同様にしてマントル成形機に発泡体を供給した。実施例4〜6の結果は下記表1に示すとおりであった。
比較例1においては、発泡体の密度を0.1g/cmにしたこと以外は、実施例1と同様にしてマントル成形機に発泡体を供給した。しかし、この場合には密度が0.09g/cmより大きい為、下記表1に示すとおり不合格となった。
In Examples 1 to 3, the density, the number of bubble walls, and the ratio were within the ranges shown above, and the evaluation values were within the acceptable range.
In Examples 4 and 5, the foam was supplied to the mantle molding machine in the same manner as in Example 1 except that the density of the foam was 0.06 g / cm 3 . Moreover, in Example 6, the foam was supplied to the mantle molding machine in the same manner as in Example 1 except that the density of the foam was 0.07 g / cm 3 . The results of Examples 4 to 6 were as shown in Table 1 below.
In Comparative Example 1, the foam was supplied to the mantle molding machine in the same manner as in Example 1 except that the density of the foam was 0.1 g / cm 3 . However, in this case, since the density was larger than 0.09 g / cm 3 , it was rejected as shown in Table 1 below.

11 第一押出機
12 第二押出機
13 ホッパー
14 ガスボンベ
15 昇圧機
16 ガスポート
17 多孔ダイ
18 発泡テープ
19 ヒーター
22 孔
31 マントルシャフト
32 フレキシブルシャフト
33 ギアボックス
110 マントル成形機
111 押さえロール
112 断熱パイプカバー
11 First Extruder 12 Second Extruder 13 Hopper 14 Gas Cylinder 15 Booster 16 Gas Port 17 Porous Die 18 Foam Tape 19 Heater 22 Hole 31 Mantle Shaft 32 Flexible Shaft 33 Gear Box 110 Mantle Molding Machine 111 Pressing Roll 112 Heat Insulating Pipe Cover

Claims (5)

巻回した樹脂発泡テープの側縁部を接合して製造された断熱パイプカバーであって、該樹脂発泡テープは熱可塑性樹脂からなり、該断熱パイプカバーの密度が、0.02〜0.09g/cmであることを特徴とする断熱パイプカバー。 A heat insulating pipe cover manufactured by joining side edges of a wound resin foam tape, wherein the resin foam tape is made of a thermoplastic resin, and the density of the heat insulating pipe cover is 0.02 to 0.09 g. A heat insulating pipe cover characterized by being / cm 3 . 該断熱パイプカバーの10mm厚さ当たりの気泡壁数が、80個以上であることを特徴とする請求項1に記載の断熱パイプカバー。   2. The insulated pipe cover according to claim 1, wherein the number of bubble walls per 10 mm thickness of the insulated pipe cover is 80 or more. 該断熱パイプカバーの気泡壁間距離が、厚さ方向に10μm〜100μmのものが20〜60%、100〜400μmのものが40〜80%の割合で含まれていることを特徴とする請求項1又は2に記載の断熱パイプカバー。   The distance between the bubble walls of the heat insulation pipe cover is 20 to 60% in the thickness direction of 10 to 100 μm, and 40 to 80% in the range of 100 to 400 μm. The heat insulation pipe cover of 1 or 2. 該断熱パイプカバーの断面形状が、多数の条を束ねた形状になっていることを特徴とする請求項1〜3のいずれか1項に記載の断熱パイプカバー。   The heat insulating pipe cover according to any one of claims 1 to 3, wherein a cross-sectional shape of the heat insulating pipe cover is a shape in which a number of strips are bundled. パイプカバーの厚さ方向については、外周側から内径側に向かって気泡径のアスペクト比が傾斜をもつことを特徴とする請求項1〜4のいずれか1項に記載の断熱パイプカバー。   The heat insulating pipe cover according to any one of claims 1 to 4, wherein the aspect ratio of the bubble diameter is inclined from the outer peripheral side toward the inner diameter side in the thickness direction of the pipe cover.
JP2011017209A 2011-01-28 2011-01-28 Insulation pipe cover Active JP5449220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017209A JP5449220B2 (en) 2011-01-28 2011-01-28 Insulation pipe cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017209A JP5449220B2 (en) 2011-01-28 2011-01-28 Insulation pipe cover

Publications (2)

Publication Number Publication Date
JP2012159098A true JP2012159098A (en) 2012-08-23
JP5449220B2 JP5449220B2 (en) 2014-03-19

Family

ID=46839815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017209A Active JP5449220B2 (en) 2011-01-28 2011-01-28 Insulation pipe cover

Country Status (1)

Country Link
JP (1) JP5449220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211632A (en) * 2015-05-01 2016-12-15 エバック株式会社 Heat insulation hose and process of manufacture the same
WO2018062541A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08156001A (en) * 1994-11-29 1996-06-18 Sekisui Plastics Co Ltd Pipe-like foam
JPH08159378A (en) * 1994-12-12 1996-06-21 Sekisui Chem Co Ltd Air duct
JP2001329094A (en) * 2000-05-24 2001-11-27 Sekisui Chem Co Ltd Tubular foam
JP2006308087A (en) * 2005-03-31 2006-11-09 Furukawa Electric Co Ltd:The Composite pipe
JP2010173263A (en) * 2009-01-30 2010-08-12 Sekisui Plastics Co Ltd Heat insulative sheet and method for manufacturing heat insulative sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08156001A (en) * 1994-11-29 1996-06-18 Sekisui Plastics Co Ltd Pipe-like foam
JPH08159378A (en) * 1994-12-12 1996-06-21 Sekisui Chem Co Ltd Air duct
JP2001329094A (en) * 2000-05-24 2001-11-27 Sekisui Chem Co Ltd Tubular foam
JP2006308087A (en) * 2005-03-31 2006-11-09 Furukawa Electric Co Ltd:The Composite pipe
JP2010173263A (en) * 2009-01-30 2010-08-12 Sekisui Plastics Co Ltd Heat insulative sheet and method for manufacturing heat insulative sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211632A (en) * 2015-05-01 2016-12-15 エバック株式会社 Heat insulation hose and process of manufacture the same
WO2018062541A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate structure
JPWO2018062541A1 (en) * 2016-09-30 2019-02-21 富士フイルム株式会社 Laminated structure
CN109716009A (en) * 2016-09-30 2019-05-03 富士胶片株式会社 Stepped construction

Also Published As

Publication number Publication date
JP5449220B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5572364B2 (en) Resin foam sheet
KR101161599B1 (en) Method of producing composite sheet having polyolefin foam layer
EP0520473B1 (en) Multi-layered foam heat-shrinkable tube
JP6078091B2 (en) Method for producing polyethylene-based resin laminated foam sheet, polyethylene-based resin laminated foam sheet, and interleaf paper for glass plate using the same
JP5642957B2 (en) Resin foam sheet
JP5555525B2 (en) Method for producing resin foam sheet and reflection sheet
US20050202213A1 (en) Insulation structures
US6492015B1 (en) Composite sheet having foamed polycarbonate resin layer and non-foamed polycarbonate resin layer
JP4878154B2 (en) Co-extrusion laminated foam and molded product thereof
TWI552875B (en) Foamed resin sheet and method of manufacturing foamed resin sheet
JP5449220B2 (en) Insulation pipe cover
JP6627010B2 (en) Extruded polyethylene resin foam sheet
JP5512331B2 (en) Foamed sheet and foamed resin container
JP4540101B2 (en) Antistatic polypropylene-based resin laminated foam sheet
JP2022117418A (en) Method for producing polyethylene resin extrusion-foamed sheet
JP7020979B2 (en) Manufacturing method of polyethylene resin foam sheet and polyethylene resin foam sheet and its roll
JP2011174545A (en) Method of manufacturing heat insulating pipe cover
JP2000154267A (en) Production apparatus for foamed sheet
JP3927044B2 (en) Resin sheet manufacturing equipment
JP6995600B2 (en) A method for manufacturing a paper sheet for a glass plate made of a thermoplastic resin foam.
JP2004044733A (en) Composite tube and its manufacturing method
JP3568655B2 (en) Extruded polycarbonate resin laminated sheet
JP6869690B2 (en) Polyethylene resin extruded foam sheet
JP6310832B2 (en) Plate-like foam and method for producing the same
WO2006106755A1 (en) Composite tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R151 Written notification of patent or utility model registration

Ref document number: 5449220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350