JP6934344B2 - Powder for spherical silica filler and its manufacturing method - Google Patents

Powder for spherical silica filler and its manufacturing method Download PDF

Info

Publication number
JP6934344B2
JP6934344B2 JP2017138840A JP2017138840A JP6934344B2 JP 6934344 B2 JP6934344 B2 JP 6934344B2 JP 2017138840 A JP2017138840 A JP 2017138840A JP 2017138840 A JP2017138840 A JP 2017138840A JP 6934344 B2 JP6934344 B2 JP 6934344B2
Authority
JP
Japan
Prior art keywords
powder
spherical
silica filler
cristobalite
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138840A
Other languages
Japanese (ja)
Other versions
JP2019019222A (en
Inventor
拓人 岡部
拓人 岡部
深澤 元晴
元晴 深澤
厚志 堤
厚志 堤
将太郎 田上
将太郎 田上
文弥 小林
文弥 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2017138840A priority Critical patent/JP6934344B2/en
Publication of JP2019019222A publication Critical patent/JP2019019222A/en
Application granted granted Critical
Publication of JP6934344B2 publication Critical patent/JP6934344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、球状シリカフィラー用粉末に関する。本発明は、樹脂やプラスチック等の高分子材料に配合する際の流動性や充填性を高める目的で球状化したシリカフィラー用粉末に関する。また、本発明は、球状シリカフィラー用粉末を充填した樹脂組成物に関する。 The present invention relates to a powder for spherical silica filler. The present invention relates to a spheroidized silica filler powder for the purpose of improving fluidity and filling property when blended with a polymer material such as resin or plastic. The present invention also relates to a resin composition filled with a powder for a spherical silica filler.

一般に、プラスチック、ゴム等の物性や機能等を向上させることを目的として、様々なフィラーが使用されている。シリカは、天然から珪石として産出される無機化合物であり、容易に入手可能な無機化合物である。フィラー用途として用いる場合、破砕形状では樹脂と混合した場合、樹脂組成物の流動性や充填性が悪くなるため、球状シリカが広く使用されている。球状シリカは一般に非晶質であり、熱膨張率は0.5ppm/Kであり、熱伝導率は1.4W/mKである(特許文献1)。一方、クリストバライト、α−石英、トリジマイト等の結晶質シリカは熱膨張率が高く、特にクリストバライトの熱膨張率は約17〜36ppm/Kである(特許文献2)。さらに、結晶質シリカの熱伝導率は10W/mKと高いことが知られている(特許文献3)。このため、球状クリストバライトはプラスチックやゴム等の配合したときに、流動性や充填性を損なうこと無く、熱伝導率や熱膨張率等を制御するために使用される。 Generally, various fillers are used for the purpose of improving the physical properties and functions of plastics, rubbers and the like. Silica is an inorganic compound that is naturally produced as silica stone and is an easily available inorganic compound. When used as a filler, spherical silica is widely used because the fluidity and filling property of the resin composition deteriorate when mixed with the resin in the crushed form. Spherical silica is generally amorphous, has a coefficient of thermal expansion of 0.5 ppm / K, and has a thermal conductivity of 1.4 W / mK (Patent Document 1). On the other hand, crystalline silicas such as cristobalite, α-quartz, and tridimite have a high coefficient of thermal expansion, and in particular, the coefficient of thermal expansion of cristobalite is about 17 to 36 ppm / K (Patent Document 2). Further, it is known that the thermal conductivity of crystalline silica is as high as 10 W / mK (Patent Document 3). Therefore, spherical cristobalite is used to control the thermal conductivity, the coefficient of thermal expansion, and the like without impairing the fluidity and filling property when a plastic, rubber, or the like is blended.

球状クリストバライトの合成方法としては種々の方法が開示されている。 Various methods have been disclosed as methods for synthesizing spherical cristobalite.

例えば、特許文献4では、球状の溶融シリカを1500℃で20時間放置した後、毎時100℃の割合で冷却する方法が開示されている。しかしこの方法では、結晶化に長時間を要することから生産性が悪くなる。 For example, Patent Document 4 discloses a method in which spherical fused silica is left at 1500 ° C. for 20 hours and then cooled at a rate of 100 ° C. per hour. However, this method deteriorates productivity because it takes a long time to crystallize.

特許文献5では、高純度非晶質シリカにアルミニウム、チタン又はマグネシウム化合物溶液をスプレーで塗布し、100℃で5時間乾燥させた後、1次粒子に解砕し、1400℃まで6時間かけて昇温し、1400℃で6時間維持後、1400℃から600℃まで6時間、600℃から200℃まで4時間かけて冷却する方法が開示されている。しかしこの方法では、シリカ粒子に液状の処理剤で処理した後、乾燥させるため、凝集物が生成し易く、焼成前に解砕する必要がある。 In Patent Document 5, a solution of an aluminum, titanium or magnesium compound is sprayed onto high-purity amorphous silica, dried at 100 ° C. for 5 hours, crushed into primary particles, and crushed into primary particles over 6 hours at 1400 ° C. A method of raising the temperature, maintaining the temperature at 1400 ° C. for 6 hours, and then cooling from 1400 ° C. to 600 ° C. for 6 hours and from 600 ° C. to 200 ° C. for 4 hours is disclosed. However, in this method, since the silica particles are treated with a liquid treatment agent and then dried, agglomerates are likely to be formed, and it is necessary to crush the silica particles before firing.

特許文献1では、アルミニウムを含むシリカ粉末を溶射して球状とした後、昇温速度200℃/時で昇温し、1300℃で6時間保持した後、降温速度200℃/時で冷却する方法が開示されている。この方法では、シリカ粒子にアルミニウム化合物を添加するなどしてアルミニウム量を調整した原料シリカを溶射して球状化したシリカを原料として使用する必要があり、クリストバライトの原料が限定される。 In Patent Document 1, a method in which silica powder containing aluminum is sprayed to form a spherical shape, the temperature is raised at a temperature rising rate of 200 ° C./hour, the temperature is maintained at 1300 ° C. for 6 hours, and then the temperature is lowered at a temperature lowering rate of 200 ° C./hour. Is disclosed. In this method, it is necessary to use the spheroidized silica by spraying the raw material silica whose amount of aluminum is adjusted by adding an aluminum compound to the silica particles as a raw material, and the raw material of cristobalite is limited.

特許文献2では、球状の非晶質シリカ粒子にアルミナ微粉を混合し、1450℃で10時間焼成する製造方法が提案されている。この方法は、高温での焼成が必要であることに加え、熱膨張率がクリストバライトに比べて小さなアルミナやムライト相が生成している。また、その生成量を低減するため、アルミナ微粉の添加量を低減すると、生成したクリストバライト粒子が融着する問題がある。 Patent Document 2 proposes a production method in which alumina fine powder is mixed with spherical amorphous silica particles and fired at 1450 ° C. for 10 hours. In addition to requiring firing at high temperatures, this method produces alumina and mullite phases with a smaller coefficient of thermal expansion than cristobalite. Further, if the amount of alumina fine powder added is reduced in order to reduce the amount of the produced cristobalite particles, there is a problem that the produced cristobalite particles are fused.

従来技術では、球状クリストバライトを効率よく合成するためには、アルミニウム、チタン又はマグネシウム源等を添加することが必要で、熱膨張率が小さいアルミナやムライト相等の生成を抑えるためには、特許文献1のような方法しかなく、クリストバライトの原料が大きく制限されることに加え、アルミニウム以外の不純物量も制御する必要があった。 In the prior art, it is necessary to add an aluminum, titanium, magnesium source, etc. in order to efficiently synthesize spherical cristobalite, and in order to suppress the formation of alumina, mullite phase, etc. having a small coefficient of thermal expansion, Patent Document 1 In addition to the fact that the raw materials for cristobalite are greatly limited, it is necessary to control the amount of impurities other than aluminum.

WO2016/031823 A1WO2016 / 031823 A1 特開平10−251042号Japanese Patent Application Laid-Open No. 10-251042 特開2010−059056号JP-A-2010-059056 特開2001−172472号JP 2001-172472 特開2008−162846号Japanese Patent Application Laid-Open No. 2008-162846

本発明の目的は、樹脂に高充填した場合にも低粘度で高い充填性を有する樹脂組成物を調製できる球状シリカフィラー用粉末を提供することにある。また、生産性に優れた合成法ながら、クリストバライト相含有率が高く、樹脂に充填した際に熱膨脹率の制御の効果が大きい球状シリカフィラー用粉末を提供することにある。 An object of the present invention is to provide a powder for a spherical silica filler capable of preparing a resin composition having a low viscosity and a high filling property even when the resin is highly filled. Another object of the present invention is to provide a powder for spherical silica filler, which has a high cristobalite phase content and a large effect of controlling the coefficient of thermal expansion when filled in a resin, although it is a synthetic method having excellent productivity.

(1)平均円形度が0.90以上であり、クリストバライト相を95質量%以上含み、アルミニウムを1000ppm〜10000ppmを含み、平均粒子径が1〜50μmであることを特徴とする、球状シリカフィラー用粉末。
(2)平均円形度が0.90以上である球状非晶質シリカと、比表面積が40m/g以上、且つ、かさ密度が0.1g/cm以下であるアルミナ粉末をアルミニウム換算で1000ppm〜10000ppmになるように混合し、1200℃〜1350℃で1〜8時間加熱することを特徴とする、(1)に記載の球状シリカフィラー用粉末の製造方法。
(3)樹脂中に配合して使用されることを特徴とする(1)に記載の球状シリカフィラー用粉末。
(1) For a spherical silica filler having an average circularity of 0.90 or more, a cristobalite phase of 95% by mass or more, aluminum of 1000 ppm to 10000 ppm, and an average particle size of 1 to 50 μm. Powder.
(2) Spherical amorphous silica having an average circularity of 0.90 or more and alumina powder having a specific surface area of 40 m 2 / g or more and a bulk density of 0.1 g / cm 3 or less are 1000 ppm in terms of aluminum. The method for producing a powder for spherical silica filler according to (1), wherein the powder is mixed so as to have a concentration of 10000 ppm and heated at 1200 ° C. to 1350 ° C. for 1 to 8 hours.
(3) The powder for spherical silica filler according to (1), which is used by blending in a resin.

本発明によれば、樹脂組成物に高充填した場合にも低粘度・高充填性を有する樹脂組成物を調製できる球状シリカフィラー用粉末を提供することができる。また、生産性の良い合成条件ながらクリストバライト相含有率が高いため、樹脂に充填した際に熱膨脹率の制御の効果が大きい。 According to the present invention, it is possible to provide a powder for a spherical silica filler capable of preparing a resin composition having low viscosity and high filling property even when the resin composition is highly filled. In addition, since the cristobalite phase content is high despite the synthetic conditions with good productivity, the effect of controlling the coefficient of thermal expansion is great when the resin is filled.

図1は実施例1で得られた球状シリカフィラー用粉末の走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph of the powder for spherical silica filler obtained in Example 1.

本発明の球状シリカフィラー用粉末は、平均円形度が0.90以上である。平均円形度が0.90未満であると、樹脂と混合した際の粒子の転がり抵抗が大きくなり、流動性が低下する。また、本発明の球状シリカフィラー用粉末には、クリストバライト相が95質量%以上含まれる。クリストバライト相の含有率が95質量%未満であると、熱膨張率が小さくなる。更に、本発明の球状シリカフィラー用粉末はアルミニウムを1000ppm〜10000ppmを含む。アルミニウムが1000ppm未満では、クリストバライトの結晶化速度が低下し、より長時間・高温で加熱結晶化する必要があるため、生産性が悪くなる。また、アルミニウムが10000ppmより多いと、クリストバライト以外の熱膨脹率が小さい相、例えば、ムライト相等が生成し、熱膨脹率が低下する。 The powder for spherical silica filler of the present invention has an average circularity of 0.90 or more. When the average circularity is less than 0.90, the rolling resistance of the particles when mixed with the resin increases, and the fluidity decreases. Further, the powder for spherical silica filler of the present invention contains 95% by mass or more of the cristobalite phase. When the content of the cristobalite phase is less than 95% by mass, the coefficient of thermal expansion becomes small. Further, the powder for spherical silica filler of the present invention contains 1000 ppm to 10000 ppm of aluminum. If the amount of aluminum is less than 1000 ppm, the crystallization rate of cristobalite will decrease, and it will be necessary to heat and crystallize for a longer period of time at a high temperature, resulting in poor productivity. Further, when the amount of aluminum is more than 10,000 ppm, a phase other than cristobalite having a small coefficient of thermal expansion, for example, a mullite phase, is generated, and the coefficient of thermal expansion decreases.

本発明の原料である球状非晶質シリカ粒子は、平均円形度が0.90以上であることが好ましい。球状非晶質シリカ粒子の平均円形度が0.90未満であると、得られるシリカフィラー粉末の平均円形度が0.90未満となり、樹脂と混合した際の粒子の転がり抵抗が大きくなり、流動性が低下する。 The spherical amorphous silica particles used as the raw material of the present invention preferably have an average circularity of 0.90 or more. When the average circularity of the spherical amorphous silica particles is less than 0.90, the average circularity of the obtained silica filler powder is less than 0.90, the rolling resistance of the particles when mixed with the resin is increased, and the particles flow. The sex is reduced.

本発明の球状シリカフィラー用粉末の平均粒子径は、1〜50μmが好ましい。平均粒子径が1μm未満であると、樹脂と混ぜ合わせた際の粘度の増大と樹脂組成物を金型等に注入する際の流動性が低下し、50μmより大きくなると、樹脂への充填性が悪くなる。 The average particle size of the powder for spherical silica filler of the present invention is preferably 1 to 50 μm. When the average particle size is less than 1 μm, the viscosity when mixed with the resin increases and the fluidity when the resin composition is injected into a mold or the like decreases, and when it is larger than 50 μm, the filling property into the resin becomes poor. Deteriorate.

本発明のシリカフィラー用粉末の製造方法は、加熱結晶化法が用いられる。 As a method for producing a powder for silica filler of the present invention, a heat crystallization method is used.

加熱結晶化法は、原料粉末を高温で加熱して結晶化させる方法である。高温が得られればどの様な加熱装置を使用しても良いが、例えば、電気炉、ロータリーキルン、プッシャー炉などが用いられる。加熱温度は1200〜1350℃が好ましい。加熱温度が1200℃未満であると、結晶化に時間を要するし、また、結晶化が不十分となりクリストバライト相の比率が低くなり、クリストバライト自体の物性が損なわれる。加熱温度が1350℃を超えると、熱膨脹率が小さい結晶相、例えばムライト相が生成するため、望ましくない。また、加熱により粒子の融着が強くなり、平均円形度が低下するため、樹脂と混合した際の粘度が増大する。加熱時間は1〜8時間が好ましい。加熱時間が1時間未満であると、クリストバライトへの結晶化が不十分となる。また、加熱時間が8時間を超えると、経済的では無く生産能力が低下するので好ましくない。 The heat crystallization method is a method of heating a raw material powder at a high temperature to crystallize it. Any heating device may be used as long as a high temperature can be obtained, and for example, an electric furnace, a rotary kiln, a pusher furnace, or the like is used. The heating temperature is preferably 1200 to 1350 ° C. If the heating temperature is less than 1200 ° C., crystallization takes time, crystallization is insufficient, the ratio of the cristobalite phase is low, and the physical properties of cristobalite itself are impaired. If the heating temperature exceeds 1350 ° C., a crystal phase having a small coefficient of thermal expansion, for example, a mullite phase is formed, which is not desirable. In addition, the fusion of the particles becomes stronger due to heating, and the average circularity decreases, so that the viscosity when mixed with the resin increases. The heating time is preferably 1 to 8 hours. If the heating time is less than 1 hour, crystallization into cristobalite will be insufficient. Further, if the heating time exceeds 8 hours, it is not economical and the production capacity is lowered, which is not preferable.

原料である球状非晶質シリカとアルミナの混合方法は、粉末同士による乾式混合が好ましい。球状非晶質シリカ表面にアルミナゾルやアルミ系カップリング剤を被覆する方法では、シリカ粒子が凝集しやすいため、加熱結晶化後に平均円形度が低下することに加え、結晶化速度も低下する。処理する混合方法として、例えば、メノウ乳鉢やボールミル、振動ミル等の粉砕機、各種ミキサー類が挙げられる。 As a method for mixing spherical amorphous silica and alumina, which are raw materials, dry mixing of powders is preferable. In the method of coating the surface of spherical amorphous silica with alumina sol or an aluminum-based coupling agent, the silica particles tend to aggregate, so that the average circularity decreases after heat crystallization and the crystallization rate also decreases. Examples of the mixing method for processing include crushers such as agate mortars, ball mills and vibration mills, and various mixers.

加熱結晶化の際に、クリストバライトへの結晶化を促す助剤として、アルミナ粉末を添加する。アルミナ粉末としては、比表面積が40m/g以上、かつかさ密度が0.1g/cm以下のものが好ましい。比表面積が40m/gが未満であると、原料の球状非晶質シリカ粒子表面への接触及び反応が不十分となり、クリストバライトへの結晶化速度が低下する。また、加熱後の粒子同士の融着が激しくなるため、平均円形度が低下し、樹脂と混合した際に粘度が上昇する。かさ密度が0.1g/cmを超えると、シリカ粒子が接触しやすくなり、シリカ粒子同士が融着しやすくなることに加え、結晶化速度も低下するので好ましくない。 During heat crystallization, alumina powder is added as an auxiliary agent to promote crystallization into cristobalite. The alumina powder preferably has a specific surface area of 40 m 2 / g or more and a bulk density of 0.1 g / cm 3 or less. If the specific surface area is less than 40 m 2 / g, the contact and reaction of the raw material with the surface of the spherical amorphous silica particles will be insufficient, and the crystallization rate to cristobalite will decrease. In addition, since the particles are fused to each other after heating, the average circularity is lowered and the viscosity is increased when mixed with the resin. If the bulk density exceeds 0.1 g / cm 3 , the silica particles tend to come into contact with each other, the silica particles tend to fuse with each other, and the crystallization rate also decreases, which is not preferable.

アルミナの添加量は、金属アルミニウム換算で1000ppmから10000ppmが好ましい。1000ppm未満であると、クリストバライトへの結晶化速度が遅く、結晶化に長時間を要し、また、クリストバライトの割合が低下する。さらに、シリカ粒子が融着するため、平均円形度が低下して、樹脂と混合した際の粘度が上昇する。10000ppmを超えると、クリストバライト以外の熱膨脹率が小さい相、例えば、ムライト相が生成するため、熱膨脹率が低下する。 The amount of alumina added is preferably 1000 ppm to 10000 ppm in terms of metallic aluminum. If it is less than 1000 ppm, the crystallization rate to cristobalite is slow, crystallization takes a long time, and the proportion of cristobalite decreases. Further, since the silica particles are fused, the average circularity is lowered and the viscosity when mixed with the resin is increased. If it exceeds 10000 ppm, a phase other than cristobalite having a small coefficient of thermal expansion, for example, a mullite phase is formed, so that the coefficient of thermal expansion decreases.

原料粉末である球状非晶質シリカは特に規定しない。例えば、ゾルゲル法や水ガラスから製造されるシリカや、溶融法によって製造されるシリカが使用できる。 Spherical amorphous silica, which is a raw material powder, is not particularly specified. For example, silica produced by the sol-gel method or water glass, or silica produced by the melting method can be used.

本発明で得られたシリカフィラー粉末は、平均円形度が高いため、粘度が低く、樹脂に充填する際に極めて良好な成形性を示し、又、充填率を高めることができる。得られた球状粒子は、必要に応じて、所望の充填率が得られるよう分級された後、表面処理が施され、更に充填率を上げることができる。表面処理剤としては、一般にシランカップリング剤が用いられるが、他にチタネートカップリング剤及びアルミネート系カップリング剤も用いることができる。 Since the silica filler powder obtained in the present invention has a high average circularity, it has a low viscosity, exhibits extremely good moldability when filled in a resin, and can increase the filling rate. If necessary, the obtained spherical particles are classified so as to obtain a desired filling rate, and then surface-treated to further increase the filling rate. As the surface treatment agent, a silane coupling agent is generally used, but a titanate coupling agent and an aluminate-based coupling agent can also be used.

本発明のシリカフィラー粉末は、例えば、樹脂中に配合して使用される。本発明で使用される樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。 The silica filler powder of the present invention is used, for example, by blending it in a resin. Examples of the resin used in the present invention include polyamide resins such as epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, and polyetherimides, and polybutylene terephthalates. Polyester such as polyethylene terephthalate, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene) -Diene rubber-styrene) resin and the like can be mentioned.

樹脂中におけるに球状シリカフィラー用粉末の割合は、目標とする熱膨脹率等の物性に応じて適宜選択される。例えば、樹脂の使用量は、シリカフィラー粉末100質量部に対して、好ましくは1〜100質量部、より好ましくは10〜50質量部の範囲で適宜選択される。 The ratio of the powder for the spherical silica filler in the resin is appropriately selected according to the physical properties such as the target coefficient of thermal expansion. For example, the amount of the resin used is appropriately selected in the range of preferably 1 to 100 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the silica filler powder.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.

[実施例1]
出発原料として、球状の非晶質シリカ粒子(デンカ社製「FB−5SDX」、平均粒子径5μm、平均円形度0.95)を用いた。また、アルミナ粒子(日本アエロジル社製「AEROXIDE AluC」、比表面積100m/g、かさ密度0.05g/cm)を用いた。次にシリカ原料を98.5質量部、アルミナ原料を1.5質量部、混合機(日本アイリッヒ社製「EL−1」)で十分に混合した後、1300℃で2時間加熱した。得られた焼成物は粉末状であった。
[Example 1]
As a starting material, spherical amorphous silica particles (“FB-5SDX” manufactured by Denka Co., Ltd., average particle diameter 5 μm, average circularity 0.95) were used. In addition, alumina particles (“AEROXIDE AluC” manufactured by Nippon Aerosil Co., Ltd., specific surface area 100 m 2 / g, bulk density 0.05 g / cm 3 ) were used. Next, 98.5 parts by mass of the silica raw material and 1.5 parts by mass of the alumina raw material were sufficiently mixed with a mixer (“EL-1” manufactured by Nippon Eirich Co., Ltd.), and then heated at 1300 ° C. for 2 hours. The obtained fired product was in powder form.

実施例1にて作製した粒子組成物の特性を、以下の方法で評価した。評価結果を表1に示す。 The characteristics of the particle composition prepared in Example 1 were evaluated by the following method. The evaluation results are shown in Table 1.

[結晶相の同定及び定量]
結晶相の同定及び定量は、粉末X線回折測定およびリートベルト法によりおこなった。使用装置は、リガク社製 RINT−UltimaIV、X線源はCuKα、管電圧40kV、管電流40mA、スキャン速度5.0/min、2θスキャン範囲10°〜80°の条件で測定した。定量分析は、リートベルト法ソフトウェア(リガク社製、統合粉末X線ソフトウェアPDXL)を使用した。結晶相の含有率は、内標準物質として アメリカ国立標準技術研究所(NIST)製X線回折用標準試料α−アルミナ50質量%を実施例1で得られた粉末に添加し、クリストバライト相の含有率を測定した。
[Identification and quantification of crystal phase]
The crystal phase was identified and quantified by powder X-ray diffraction measurement and Rietveld method. The equipment used was RINT-Ultima IV manufactured by Rigaku Co., Ltd., the X-ray source was CuKα, the tube voltage was 40 kV, the tube current was 40 mA, the scan speed was 5.0 / min, and the 2θ scan range was 10 ° to 80 °. For the quantitative analysis, Rietveld software (manufactured by Rigaku, integrated powder X-ray software PDXL) was used. As for the content of the crystal phase, 50% by mass of the standard sample α-alumina for X-ray diffraction manufactured by the National Institute of Standards and Technology (NIST) was added to the powder obtained in Example 1 as an internal standard substance, and the cristobalite phase was contained. The rate was measured.

[平均円形度]
セイシン企業社製粉体画像解析装置(PITA−1)を用いて測定を行った。試料を純水に分散させて、この液体を平面伸張流動セル内に流し、セル内を移動するクリストバライト粒子の200個を、対物レンズにて画像として記録し、この記録画像及び次の式(1)から平均円形度を算出した。式(1)中、Sは撮影した記録画像の粒子投影図における面積、Lは粒子投影図の周囲長を表す。このようにして算出された粒子200個の平均値を実施例1で得られた粒子の平均円形度とした。
円形度=4πS/L (1)
[Average circularity]
The measurement was performed using a powder image analyzer (PITA-1) manufactured by Seishin Enterprise Co., Ltd. The sample was dispersed in pure water, this liquid was flowed into a planar stretch flow cell, and 200 Christobalite particles moving in the cell were recorded as an image with an objective lens, and this recorded image and the following equation (1) were recorded. ), The average circularity was calculated. In the formula (1), S represents the area of the captured recorded image in the particle projection drawing, and L represents the perimeter of the particle projection drawing. The average value of 200 particles calculated in this way was taken as the average circularity of the particles obtained in Example 1.
Circularity = 4πS / L 2 (1)

[金属アルミニウム含有量分析]
実施例1で得られた粉末0.5gに硝酸2mL、フッ酸10mL加え、140℃のホットプレート上で乾固し、残渣に硝酸10mLを加え溶解後、20mLに定容しICP発光分光分析法にてアルミニウム含有量を分析した。
[Metallic aluminum content analysis]
To 0.5 g of the powder obtained in Example 1, 2 mL of nitric acid and 10 mL of hydrofluoric acid were added, dried on a hot plate at 140 ° C., 10 mL of nitric acid was added to the residue to dissolve it, and the volume was adjusted to 20 mL. The aluminum content was analyzed in.

[密度]
実施例1で得られた粉末5gを測定用試料セルに入れ、乾式密度計(島津製作所社製「アキュピックII1340」)を用い、気体置換法により測定した。
[density]
5 g of the powder obtained in Example 1 was placed in a sample cell for measurement, and measured by a gas substitution method using a dry densitometer (“Accupic II 1340” manufactured by Shimadzu Corporation).

[平均粒子径]
レーザー回折式粒度分布測定装置(ベックマンコールター製「LS 13 320」)を用いて測定を行った。試料はガラスビーカーに50ccの純水と、実施例1で得られた粉末0.1g添加して、超音波ホモジナイザー(BRANSON社製「SFX250」)で1分間、分散処理を行った。分散処理を行った球状シリカフィラー用粉末の分散液をスポイトでレーザー回折式粒度分布測定装置に一滴ずつ添加し、所定量添加してから30秒後に測定を行った。レーザー回折式粒度分布測定装置内のセンサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。ここでの%は体積%である。
[Average particle size]
The measurement was performed using a laser diffraction type particle size distribution measuring device (“LS 13 320” manufactured by Beckman Coulter). As a sample, 50 cc of pure water and 0.1 g of the powder obtained in Example 1 were added to a glass beaker, and the sample was dispersed with an ultrasonic homogenizer (“SFX250” manufactured by BRANSON) for 1 minute. The dispersion liquid of the powder for spherical silica filler that had been subjected to the dispersion treatment was added drop by drop to the laser diffraction type particle size distribution measuring device with a dropper, and the measurement was performed 30 seconds after the predetermined amount was added. The particle size distribution was calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor in the laser diffraction type particle size distribution measuring device. The average particle size was obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The% here is the volume%.

[粘度]
実施例1で得られた粉末が全体の50体積%になるように、ビスフェノールA型液状エポキシ樹脂(三菱化学社製「JER828」)と混合し、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混練し、樹脂組成物を作製した。得られた樹脂組成物を、レオメーター(日本シイベルヘグナー社製「MCR−300」)を用い下記条件にて粘度を測定した。
プレート形状:円形平板25mmφ
試料厚み:1mm
温度:25±1℃
剪断速度:1s−1
[viscosity]
Mix with bisphenol A type liquid epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) so that the powder obtained in Example 1 accounts for 50% by volume of the whole, and use a planetary stirrer (Shinky Co., Ltd. “Awatori Rentaro”). AR-250 ”, rotation speed 2000 rpm) was kneaded to prepare a resin composition. The viscosity of the obtained resin composition was measured under the following conditions using a rheometer (“MCR-300” manufactured by Nihon Shibel Hegner Co., Ltd.).
Plate shape: Circular flat plate 25 mmφ
Sample thickness: 1 mm
Temperature: 25 ± 1 ° C
Shear rate: 1s -1

[熱膨張係数]
ビスフェノールF型液状エポキシ樹脂(三菱化学社製「JER807」)25.6質量部、4、4’−ジアミノフェニルメタン(東京化成社製)6.4質量部を95℃で溶融させながら混合し、実施例1で得られた粉末を体積%換算で50%になるように加え、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混合した。予め加熱しておいたシリコーン製の型枠(3cm角×5mm厚)に上記混合物を流し込み、80℃で20分間静置し、真空加熱プレス機(井元製作所社製「IMC−1674−A型」)で、80℃/1時間/1.5MPa、150℃/1時間/2.5MPa、200℃/0.5時間/5MPaの順でプレス加熱硬化した。硬化後のサンプルを測定用サンプルサイズに加工(4×4×15mm)し、TMA(ブルカー社製「TMA4000SA」)にて熱膨張率を評価した。昇温条件は、5℃/min、測定温度は−10℃〜250℃、雰囲気は、窒素雰囲気で測定し、得られたTMA測定チャートから0℃〜100℃(α1)及び150℃〜200℃(α2)の熱膨張係数を算出した。
[Coefficient of thermal expansion]
Bisphenol F type liquid epoxy resin (“JER807” manufactured by Mitsubishi Chemical Corporation) 25.6 parts by mass, 4,4'-diaminophenylmethane (manufactured by Tokyo Kasei Co., Ltd.) 6.4 parts by mass were mixed while being melted at 95 ° C. The powder obtained in Example 1 was added so as to be 50% in terms of volume%, and mixed with a planetary stirrer (Shinky's "Awatori Rentaro AR-250", rotation speed 2000 rpm). The above mixture was poured into a preheated silicone mold (3 cm square x 5 mm thick), allowed to stand at 80 ° C. for 20 minutes, and vacuum-heated press machine ("IMC-1674-A type" manufactured by Imoto Seisakusho Co., Ltd.). ), Press-heat-cured in the order of 80 ° C./1 hour / 1.5 MPa, 150 ° C./1 hour / 2.5 MPa, and 200 ° C./0.5 hour / 5 MPa. The cured sample was processed to a sample size for measurement (4 × 4 × 15 mm), and the coefficient of thermal expansion was evaluated by TMA (“TMA4000SA” manufactured by Bruker). The temperature rise conditions were 5 ° C./min, the measurement temperature was -10 ° C to 250 ° C, and the atmosphere was a nitrogen atmosphere. From the obtained TMA measurement chart, 0 ° C to 100 ° C (α1) and 150 ° C to 200 ° C. The coefficient of thermal expansion of (α2) was calculated.

実施例2−5、比較例1−5
表1、表2のようにアルミナ粉末の添加量、加熱時間、加熱温度を変更した以外は、実施例1と同様に試験・評価を行った。実施例の結果を表1、比較例の結果を表2に示す。
Example 2-5, Comparative Example 1-5
Tests and evaluations were carried out in the same manner as in Example 1 except that the amount of alumina powder added, the heating time, and the heating temperature were changed as shown in Tables 1 and 2. The results of the examples are shown in Table 1, and the results of the comparative examples are shown in Table 2.

実施例6
アルミナ粉末(日本アエロジル社製「Alu 65」、比表面積65m/g、かさ密度0.05g/cm)を用いた以外は、実施例1と同様に試験・評価を行った。結果を表2に示す。
Example 6
Tests and evaluations were carried out in the same manner as in Example 1 except that alumina powder (“Alu 65” manufactured by Nippon Aerosil Co., Ltd., specific surface area 65 m 2 / g, bulk density 0.05 g / cm 3) was used. The results are shown in Table 2.

実施例7
アルミナ粉末(日本アエロジル社製「Alu 130」、比表面積130m/g、かさ密度0.04g/cm)を用いた以外は、実施例1と同様に試験・評価を行った。結果を表2に示す。
Example 7
Tests and evaluations were carried out in the same manner as in Example 1 except that alumina powder (“Alu 130” manufactured by Nippon Aerosil Co., Ltd., specific surface area 130 m 2 / g, bulk density 0.04 g / cm 3) was used. The results are shown in Table 2.

比較例6
アルミナ粉末(住友化学社製「AA−05」、比表面積10m/g、かさ密度0.6g/cm)を用いた以外は、実施例1と同様に試験・評価を行った。結果を表2に示す。
Comparative Example 6
Tests and evaluations were carried out in the same manner as in Example 1 except that alumina powder (“AA-05” manufactured by Sumitomo Chemical Co., Ltd., specific surface area 10 m 2 / g, bulk density 0.6 g / cm 3) was used. The results are shown in Table 2.

比較例7
アルミナ粉末(住友化学社製「AKP−G15」、比表面積156m/g、かさ密度0.2g/cm)を用いた以外は、実施例1と同様に試験・評価を行った。結果を表2に示す。
Comparative Example 7
Tests and evaluations were carried out in the same manner as in Example 1 except that alumina powder (“AKP-G15” manufactured by Sumitomo Chemical Co., Ltd., specific surface area 156 m 2 / g, bulk density 0.2 g / cm 3) was used. The results are shown in Table 2.

比較例8
Al(C)(C(マツモトファインケミカル社製「AL−3200」)14.9質量部をイソプロピルアルコール50質量部に溶解させ、噴霧液とした。次に、球状の非晶質シリカ粒子(デンカ社製「FB−5SDX」、平均粒子径5μm、平均円形度0.95)98.5質量部を、混合機(日本アイリッヒ社製、EL−1)で撹拌させた。上記噴霧液を撹拌中のシリカ粒子に対し噴霧し、1時間撹拌後、粉末を回収し、120℃で5時間乾燥した後、実施例1と同様に加熱及び評価を行った。
Comparative Example 8
Al (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 (“AL-3200” manufactured by Matsumoto Fine Chemicals Co., Ltd.) 14.9 parts by mass was dissolved in 50 parts by mass of isopropyl alcohol to prepare a spray liquid. Next, 98.5 parts by mass of spherical amorphous silica particles (“FB-5SDX” manufactured by Denka Co., Ltd., average particle diameter 5 μm, average circularity 0.95) were added to a mixer (manufactured by Nippon Eirich Co., Ltd., EL-1). ) Was stirred. The spray liquid was sprayed onto the silica particles being stirred, stirred for 1 hour, the powder was recovered, dried at 120 ° C. for 5 hours, and then heated and evaluated in the same manner as in Example 1.

Figure 0006934344
Figure 0006934344

Figure 0006934344
Figure 0006934344

本発明の球状シリカフィラー用粉末を含有する樹脂組成物は、平均円形度が小さいクリストバライトを含有する樹脂組成物と比較して、粘度が低く抑えられ、高充填できるという結果になった。また、生産性の良い合成条件ながらクリストバライト相含有率も高いため、熱膨脹率の制御効果が大きいという結果になった。 As a result, the resin composition containing the powder for spherical silica filler of the present invention has a lower viscosity and can be filled more highly than the resin composition containing cristobalite having a small average circularity. In addition, since the cristobalite phase content is high in spite of the synthetic conditions with good productivity, the result is that the effect of controlling the coefficient of thermal expansion is large.

本発明の球状シリカフィラー用粉末を用いた樹脂組成物は、平均円形度が高く、粘度が低いので高充填できるため、本発明の球状シリカフィラー用粉末は、プラスチックやゴム等の熱膨張率等を制御するフィラーとして利用可能である。
Since the resin composition using the powder for spherical silica filler of the present invention has a high average circularity and low viscosity, it can be highly filled. Therefore, the powder for spherical silica filler of the present invention has a thermal expansion rate of plastic, rubber, etc. It can be used as a filler to control.

Claims (3)

平均円形度が0.90以上であり、クリストバライト相を95質量%以上含み、アルミニウムを6100ppm〜9500ppm含み、平均粒子径が1〜50μmであることを特徴とする、球状シリカフィラー用粉末。 And an average circularity of 0.90 or more, cristobalite phase comprises 95 wt% or more, aluminum 6100 ppm to 9500 pp m seen including, wherein the average particle size of 1 to 50 [mu] m, for spherical silica filler Powder. 平均円形度が0.90以上である球状非晶質シリカと、比表面積が40m/g以上、且つ、かさ密度が0.1g/cm以下であるアルミナ粉末をアルミニウム換算で6100ppm〜9500ppmになるように混合し、1200℃〜1350℃で1〜8時間加熱することを特徴とする、請求項1に記載の球状シリカフィラー用粉末の製造方法。 Spherical amorphous silica with an average circularity of 0.90 or more and alumina powder with a specific surface area of 40 m 2 / g or more and a bulk density of 0.1 g / cm 3 or less are 6100 ppm to 9500 in terms of aluminum. The method for producing a powder for a spherical silica filler according to claim 1, wherein the powder is mixed so as to be ppm and heated at 1200 ° C to 1350 ° C for 1 to 8 hours. 樹脂中に配合して使用されることを特徴とする請求項1に記載の球状シリカフィラー用粉末。 The powder for spherical silica filler according to claim 1, wherein the powder is blended in a resin and used.
JP2017138840A 2017-07-18 2017-07-18 Powder for spherical silica filler and its manufacturing method Active JP6934344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138840A JP6934344B2 (en) 2017-07-18 2017-07-18 Powder for spherical silica filler and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138840A JP6934344B2 (en) 2017-07-18 2017-07-18 Powder for spherical silica filler and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019019222A JP2019019222A (en) 2019-02-07
JP6934344B2 true JP6934344B2 (en) 2021-09-15

Family

ID=65355005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138840A Active JP6934344B2 (en) 2017-07-18 2017-07-18 Powder for spherical silica filler and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6934344B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566048B (en) * 2018-01-26 2023-05-09 电化株式会社 Amorphous silica powder, process for producing the same, and use thereof
CN113614036A (en) * 2019-03-26 2021-11-05 电化株式会社 Spherical silica powder
JP7446814B2 (en) * 2019-12-27 2024-03-11 日鉄ケミカル&マテリアル株式会社 Resin compositions, resin films, and metal-clad laminates
JPWO2021153502A1 (en) * 2020-01-28 2021-08-05
TW202200499A (en) * 2020-05-20 2022-01-01 日商日鐵化學材料股份有限公司 Spherical crystalline silica particles and method for producing same
US20230332032A1 (en) * 2020-09-25 2023-10-19 Denka Company Limited Oxide powder and method for producing same, and resin composition
WO2022137949A1 (en) * 2020-12-24 2022-06-30 デンカ株式会社 Oxide composite particles, method for producing same and resin composition
WO2023286566A1 (en) * 2021-07-14 2023-01-19 デンカ株式会社 Oxide composite particles, method for producing same, and resin composition
CN117651694A (en) * 2021-07-14 2024-03-05 电化株式会社 Oxide composite particle, method for producing same, and resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251042A (en) * 1997-03-10 1998-09-22 Nippon Electric Glass Co Ltd Silica filler powder and glass-ceramic composition
JP5062396B2 (en) * 2006-12-28 2012-10-31 信越化学工業株式会社 High purity cristobalite particles and production method thereof
US10253219B2 (en) * 2014-08-25 2019-04-09 Nippon Steel & Sumikin Materials Co., Ltd. Spherical crystalline silica particles and method for producing same

Also Published As

Publication number Publication date
JP2019019222A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6934344B2 (en) Powder for spherical silica filler and its manufacturing method
JP6447202B2 (en) Boron nitride aggregated particle-containing composition and molded body using the boron nitride aggregated particle-containing resin composition
JP5903136B2 (en) Alumina powder, method for producing the same, and resin composition using the same
TWI698409B (en) Thermally conductive resin composition
TWI724259B (en) Hexagonal boron nitride powder and its manufacturing method
KR101590138B1 (en) Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
JPWO2020049817A1 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and heat radiating materials using it.
JP7431417B2 (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
JP7194167B2 (en) Powders and mixed powders
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
KR20060088553A (en) Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
WO2021200490A1 (en) Alumina powder, resin composition, and heat dissipation component
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
WO2017169987A1 (en) Spherical eucryptite particles and method for producing same
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JP6739669B2 (en) Glass-coated aluminum nitride particles, method for producing the same, and heat-releasing resin composition containing the same
JP2022059896A (en) Heat-conductive resin composition, heat dissipation member, electronic apparatus, and method for producing heat-conductive resin composition
JP6980467B2 (en) Powder for spherical silica filler and its manufacturing method
JP6745521B2 (en) Magnesium oxide particles, manufacturing method thereof, and heat dissipation material
JP2009263637A (en) Production method of coated inorganic filler, and production method of composite material using the inorganic filler
WO2022065349A1 (en) Oxide powder and method for producing same, and resin composition
JPWO2020145342A1 (en) Spinel particles and their manufacturing methods, resin compositions, molded products, compositions, green sheets, fired products, and glass-ceramic substrates.
WO2022137949A1 (en) Oxide composite particles, method for producing same and resin composition
WO2024071431A1 (en) Spherical alumina particles, production method of same, and resin composite composition comprising same
JP2023146761A (en) Spherical alumina particle, method for producing the same, surface treatment method for spherical alumina particle raw material, resin composite composition including spherical alumina particle, and resin composite composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6934344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250