JP6933338B2 - Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed - Google Patents

Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed Download PDF

Info

Publication number
JP6933338B2
JP6933338B2 JP2017166682A JP2017166682A JP6933338B2 JP 6933338 B2 JP6933338 B2 JP 6933338B2 JP 2017166682 A JP2017166682 A JP 2017166682A JP 2017166682 A JP2017166682 A JP 2017166682A JP 6933338 B2 JP6933338 B2 JP 6933338B2
Authority
JP
Japan
Prior art keywords
pressure vessel
temperature
pressure
heater
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017166682A
Other languages
Japanese (ja)
Other versions
JP2019042647A (en
Inventor
晃一 中村
晃一 中村
Original Assignee
長野精工金属株式会社
アルプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長野精工金属株式会社, アルプ株式会社 filed Critical 長野精工金属株式会社
Priority to JP2017166682A priority Critical patent/JP6933338B2/en
Publication of JP2019042647A publication Critical patent/JP2019042647A/en
Application granted granted Critical
Publication of JP6933338B2 publication Critical patent/JP6933338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)
  • Seasonings (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は植物等の被処理物の熱分解処理装置および被処理物の熱分解処理方法に関する。 The present invention relates to a thermal decomposition treatment apparatus for an object to be treated such as a plant and a method for thermal decomposition treatment of the object to be treated.

発明者は先に、植物組織中の有効成分抽出方法を開発している(特許文献1:特開2012−19713号公報)。
この植物組織中の有効成分抽出方法は、植物原料を被処理物として密閉空間内で、密閉空間内の分圧として水蒸気圧を飽和水蒸気圧曲線に沿って制御しつつ植物組織の加水分解に必要な圧力と温度である温度125℃〜135℃、圧力を2気圧〜3気圧の範囲で一定時間その圧力、温度を保ち、その後、飽和水蒸気圧曲線に沿って圧力及び温度を制御しつつ密閉空間内の温度及び圧力を下降させ、密閉空間内に発生する水蒸気を植物組織内に浸透させて植物組織を加水分解するとともに、密閉空間内の水蒸気圧を被処理物の表面に作用させ、加水分解によって生成した植物組織内成分を被処理物の外部に搾り出す処理である。
The inventor has previously developed a method for extracting an active ingredient in a plant tissue (Patent Document 1: Japanese Patent Application Laid-Open No. 2012-19713).
This method for extracting the active ingredient in the plant tissue is necessary for the hydrolysis of the plant tissue while controlling the water vapor pressure along the saturated water vapor pressure curve as the partial pressure in the closed space in the closed space using the plant raw material as the object to be treated. The pressure and temperature are 125 ° C to 135 ° C, and the pressure is maintained in the range of 2 to 3 atm for a certain period of time, and then the closed space is controlled while controlling the pressure and temperature along the saturated water vapor pressure curve. The temperature and pressure inside are lowered, and the water vapor generated in the closed space permeates into the plant tissue to hydrolyze the plant tissue, and the water vapor pressure in the closed space acts on the surface of the object to be treated to hydrolyze. This is a process of squeezing the components in the plant tissue produced by the above method to the outside of the object to be treated.

主な植物組織成分を含む蒸気の温度・圧力域では、飽和水蒸気圧より少しでも温度が高いと炭化し、低いと不完全分解による不純物の液化混入の危険が生ずる。そこで、圧力容器内の雰囲気の温度と、圧力とをコンピューター制御によって、微妙な温度・圧力域を維持する。圧力容器内を飽和水蒸気圧曲線上の温度tを125℃以上、135℃以下、2〜3気圧の範囲に維持することによって、水蒸気が被処理物の組織内に深く浸透して組織の分解を促進する。 In the temperature and pressure range of steam containing the main plant tissue components, if the temperature is even slightly higher than the saturated steam pressure, it will be carbonized, and if it is lower, there is a risk of liquefaction of impurities due to incomplete decomposition. Therefore, the temperature and pressure of the atmosphere inside the pressure vessel are controlled by a computer to maintain a delicate temperature and pressure range. By maintaining the temperature t on the saturated water vapor pressure curve in the pressure vessel within the range of 125 ° C or higher, 135 ° C or lower, and 2 to 3 atm, water vapor penetrates deeply into the structure of the object to be treated and decomposes the structure. Facilitate.

上記特許文献1に示される熱分解処理方法は、色差分解処理といわれるものであり、水分子のブラウン運動の方向と位相を色力学的に整えてやることによって、水分子の連鎖に突然ウェーブが起こり、これが強大な破壊力となって、生体高分子のグリコシド結合を物理的に分断するという仕組みを利用している。この場合に重要なことは、これら高分子の構造水となっている水分子が飽和水蒸気圧の条件下で有効に働くということであり、圧力が飽和水蒸気圧点より低くても、また温度が飽和水蒸気圧点より高くても、水分子は高分子の構造から離れ、高分子は動きを止めてしまうため、分解処理ができなくなってしまう。 The thermal decomposition treatment method shown in Patent Document 1 is called a color difference decomposition treatment, and by chromatically adjusting the direction and phase of Brownian motion of water molecules, a wave suddenly appears in the chain of water molecules. It occurs, and this becomes a powerful destructive force, using a mechanism that physically breaks the glycosidic bond of biopolymers. What is important in this case is that the water molecules that are the structural water of these polymers work effectively under the condition of saturated water vapor pressure, and even if the pressure is lower than the saturated water vapor pressure point, the temperature is also high. Even if it is higher than the saturated water vapor pressure point, the water molecules move away from the structure of the polymer and the polymer stops moving, so that the decomposition treatment cannot be performed.

特開2012−19713号公報Japanese Unexamined Patent Publication No. 2012-19713

特許文献1に示される方法によれば、上記処理を行うことによって、植物の細胞組織、特に細胞壁に含まれる抗酸化成分や各種の有用成分を容易に、効率よく取り出すことができる。
ところで、特許文献1のものでは、圧力容器内の雰囲気の温度と、圧力とをコンピューター制御によって、微妙な温度・圧力域を維持するものであるが、圧力容器内の温度、圧力を飽和水蒸気圧曲線に沿うように制御することは必ずしも容易ではない。
According to the method shown in Patent Document 1, by performing the above treatment, the antioxidant component and various useful components contained in the cell tissue of the plant, particularly the cell wall, can be easily and efficiently taken out.
By the way, in Patent Document 1, the temperature and pressure of the atmosphere in the pressure vessel are controlled by a computer to maintain a delicate temperature / pressure range, but the temperature and pressure in the pressure vessel are saturated steam pressure. It is not always easy to control the pressure along a curve.

特に、特許文献1のものでは、ヒーターによる加温開始時に、電磁弁を閉じて圧力容器内を密閉するようにしている。このため、圧力センサで検出される圧力が、飽和水蒸気分圧と空気分圧の和となり、飽和水蒸気分圧を正確に検出することが困難となり、飽和水蒸気圧曲線に沿うように圧力容器内の温度、圧力を制御することが困難となる。
また、特許文献1のものでは、圧力容器内の水の沸騰を抑えることは考慮していない。特に、特許文献1のものでは、温度下降時(冷却時)に、圧力容器内の温度が、125℃以下に低下したときに電磁弁を開けているため、圧力容器内の水が沸騰しやすい。圧力容器内の水が沸騰すると、高分子を取り巻いている水の分子(構造水)が高分子から離れ、それぞれバラバラな分子となって勝手に動きまわるため、上記大きな破壊力(ウェーブ)が形成されなくなる。
In particular, in Patent Document 1, the solenoid valve is closed to seal the inside of the pressure vessel at the start of heating by the heater. Therefore, the pressure detected by the pressure sensor is the sum of the saturated water vapor partial pressure and the air partial pressure, making it difficult to accurately detect the saturated water vapor partial pressure, and the pressure inside the pressure vessel is along the saturated water vapor pressure curve. It becomes difficult to control the temperature and pressure.
Further, in Patent Document 1, it is not considered to suppress boiling of water in the pressure vessel. In particular, in Patent Document 1, since the solenoid valve is opened when the temperature in the pressure vessel drops to 125 ° C. or lower when the temperature drops (cooling), the water in the pressure vessel tends to boil. .. When the water in the pressure vessel boils, the water molecules (structural water) surrounding the polymer separate from the polymer and move around as separate molecules, forming the above-mentioned large destructive force (wave). Will not be done.

そこで本実施の形態は、上記課題を解決すべくなされたものであり、その目的とするところは、熱分解処理中に水の沸騰するのを回避し、圧力容器内の温度、圧力を飽和水蒸気圧曲線に沿って上昇、下降するよう制御することのできる被処理物の熱分解処理装置および被処理物の熱分解処理方法を提供することにある。
上記の目的を達成するため、本実施の形態は次の構成を備える。
すなわち、本実施の形態に係る被処理物の熱分解処理装置は、圧力容器と、該圧力容器を開閉する蓋体と、前記圧力容器内の温度を検出する温度センサと、前記圧力容器内の圧力を検出する圧力センサと、前記圧力容器を大気に開放可能な電磁弁と、前記圧力容器内を加温するヒーターと、前記温度センサにより検出される温度データおよび前記圧力センサにより検出される圧力データが入力され、該データに基づいて、前記ヒーターの出力を制御すると共に、前記電磁弁を開閉制御して、前記圧力容器内温度を125℃〜149℃にまで上昇させて、前記圧力容器内に収容した植物原料を被処理物として熱分解処理する制御部を有する被処理物の熱分解処理装置において、前記制御部は、前記ヒーターをオンして前記圧力容器内を加温する際、および前記ヒーターをオフして前記圧力容器内を冷却する際、前記圧力容器内の水を沸騰させることなく、かつ飽和水蒸気圧曲線に沿うように加温および冷却するように前記ヒーターのオンオフ制御および前記電磁弁の開閉制御をし、前記ヒーターにより前記圧力容器内を加温する際、前記電磁弁を開いて加温を開始すると共に、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度に到達する前に、前記電磁弁を閉じて、引き続いて前記圧力容器内が前記所要温度になるまで加温するように前記ヒーターおよび前記電磁弁を制御することを特徴とする。
Therefore, this embodiment is designed to solve the above problems, and the purpose of the present embodiment is to avoid boiling water during the pyrolysis treatment and to saturate the temperature and pressure in the pressure vessel. It is an object of the present invention to provide a thermal decomposition treatment apparatus for an object to be treated and a method for thermal decomposition treatment of the object to be processed, which can be controlled to rise and fall along a pressure curve.
In order to achieve the above object, the present embodiment includes the following configurations.
That is, the thermal decomposition treatment apparatus for the object to be processed according to the present embodiment includes a pressure vessel, a lid for opening and closing the pressure vessel, a temperature sensor for detecting the temperature inside the pressure vessel, and the pressure vessel. A pressure sensor that detects pressure, an electromagnetic valve that can open the pressure vessel to the atmosphere, a heater that heats the inside of the pressure vessel, temperature data detected by the temperature sensor, and pressure detected by the pressure sensor. Data is input, and based on the data, the output of the heater is controlled and the electromagnetic valve is opened and closed to raise the temperature inside the pressure vessel to 125 ° C. to 149 ° C. In the thermal decomposition treatment apparatus for the object to be processed, which has a control unit for thermally decomposing the plant raw material contained in the object to be processed , the control unit is used when the heater is turned on to heat the inside of the pressure vessel. When the heater is turned off to cool the inside of the pressure vessel, the on / off control of the heater and the on / off control of the heater so as to heat and cool the water in the pressure vessel without boiling and along the saturated water vapor pressure curve. When the opening and closing of the electromagnetic valve is controlled and the inside of the pressure vessel is heated by the heater, the electromagnetic valve is opened to start heating, and the temperature inside the pressure vessel detected by the temperature sensor is the pressure vessel. The heater and the electromagnetic valve are controlled so as to close the electromagnetic valve and subsequently heat the inside of the pressure vessel to the required temperature before the water in the pressure vessel reaches a boiling temperature. And.

前記制御部は、前記圧力センサにより検出される圧力が、前記温度センサにより検出される温度と、予め入力されている飽和水蒸気圧曲線の近似式とから演算される演算圧力値に近接するように、前記ヒーターの出力を制御すると好適である。 In the control unit, the pressure detected by the pressure sensor is close to the calculated pressure value calculated from the temperature detected by the temperature sensor and the approximate expression of the saturated water vapor pressure curve input in advance. , It is preferable to control the output of the heater.

また、前記制御部は、前記ヒーターをオフし、前記圧力容器内を冷却する際、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度よりも低い温度にまで達したときに前記電磁弁を開くように制御すると好適である。 Further, when the control unit turns off the heater and cools the inside of the pressure vessel, the temperature inside the pressure vessel detected by the temperature sensor becomes a temperature lower than the temperature at which the water in the pressure vessel boils. It is preferable to control the electromagnetic valve to open when the temperature reaches the limit.

また、本実施の形態に係る被処理物の熱分解処理方法は、圧力容器と、該圧力容器を開閉する蓋体と、前記圧力容器内の温度を検出する温度センサと、前記圧力容器内の圧力を検出する圧力センサと、前記圧力容器を大気に開放可能な電磁弁と、前記圧力容器内を加温するヒーターとを具備する熱分解処理装置を用いる被処理物の熱分解処理方法において、前記圧力容器内に植物原料を被処理物として収容する工程と、前記圧力容器を前記蓋体で密閉する工程と、前記電磁弁を開くと共に、前記ヒーターにより前記圧力容器内を加温する工程と、前記ヒーターによる加温時、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度に到達する前に、前記電磁弁を閉じる工程と、引き続いて、前記圧力容器内温度が125℃〜149℃の温度に上昇するまで、前記ヒーターにより前記圧力容器を加温し、前記植物原料を熱分解する工程と、前記ヒーターによる加温を停止し、前記圧力容器内を冷却する工程と、前記圧力容器内を冷却する際、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度よりも低い温度にまで達したときに前記電磁弁を開いて、前記圧力容器を大気に開放して前記圧力容器を所要温度にまで冷却する工程を具備し、前記加温時および前記冷却時、前記圧力容器内を、飽和水蒸気圧曲線に沿うように加温および冷却することを特徴とする。 Further, the method for thermally decomposing the object to be treated according to the present embodiment includes a pressure vessel, a lid for opening and closing the pressure vessel, a temperature sensor for detecting the temperature inside the pressure vessel, and a pressure vessel. In a thermal decomposition treatment method for an object to be processed, which uses a thermal decomposition treatment apparatus including a pressure sensor for detecting pressure, an electromagnetic valve capable of opening the pressure vessel to the atmosphere, and a heater for heating the inside of the pressure vessel. A step of accommodating a plant material in the pressure vessel as an object to be processed, a step of sealing the pressure vessel with the lid, and a step of opening the electromagnetic valve and heating the inside of the pressure vessel with the heater. During heating by the heater, the step of closing the electromagnetic valve before the temperature inside the pressure vessel detected by the temperature sensor reaches the temperature at which the water in the pressure vessel boils, followed by the pressure. The pressure vessel is heated by the heater until the temperature inside the vessel rises to a temperature of 125 ° C. to 149 ° C., the step of thermally decomposing the plant raw material , and the heating by the heater are stopped, and the inside of the pressure vessel is stopped. And when the inside of the pressure vessel is cooled, the electromagnetic wave is detected when the temperature inside the pressure vessel reaches a temperature lower than the temperature at which the water in the pressure vessel boils. A step of opening a valve, opening the pressure vessel to the atmosphere, and cooling the pressure vessel to a required temperature is provided, and the inside of the pressure vessel is followed by a saturated water vapor pressure curve during heating and cooling. It is characterized by heating and cooling as described above.

前記圧力センサにより検出される圧力が、前記温度センサにより検出される温度と、飽和水蒸気圧曲線の近似式とから演算される演算圧力値に近接するように、前記ヒーターの出力を制御すると好適である。 It is preferable to control the output of the heater so that the pressure detected by the pressure sensor is close to the calculated pressure value calculated from the temperature detected by the temperature sensor and the approximate expression of the saturated water vapor pressure curve. be.

本発明によれば、熱分解処理中に水の沸騰するのを回避し、圧力容器内の温度、圧力を飽和水蒸気圧曲線に沿って上昇、下降するよう制御することのできる被処理物の熱分解処理装置および被処理物の熱分解処理方法を提供できる。 According to the present invention, it is possible to avoid boiling water during the pyrolysis treatment and control the temperature and pressure in the pressure vessel to rise and fall along the saturated water vapor pressure curve. A decomposition processing apparatus and a method for thermally decomposing an object to be processed can be provided.

図1Aは熱分解処理装置の縦断面図、図1Bはその平面図である。FIG. 1A is a vertical sectional view of the thermal decomposition processing apparatus, and FIG. 1B is a plan view thereof. 本発明を実施するシステムの構成図である。It is a block diagram of the system which carries out this invention. 本発明のフローを示す図である。It is a figure which shows the flow of this invention. 本発明のフローを示す図である。It is a figure which shows the flow of this invention.

以下本発明の実施の形態を添付図面を参照して詳細に説明する。
図1Aは、熱分解処理装置の縦断面図、図1Bはその平面図である。
熱分解処理装置は、ハッチを開閉する蓋体1を備えた円筒状の圧力容器2をなす。圧力容器2の下底および外周面にはヒーター3が装着され、圧力容器2内の温度は温度センサ4によって検知される。なお、圧力容器2の底部の温度及び周面の温度は別個に制御される。圧力容器2内の温度検知信号は制御装置(制御部)5に伝送される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1A is a vertical sectional view of the thermal decomposition processing apparatus, and FIG. 1B is a plan view thereof.
The pyrolysis treatment device forms a cylindrical pressure vessel 2 provided with a lid 1 for opening and closing the hatch. Heaters 3 are mounted on the lower bottom and the outer peripheral surface of the pressure vessel 2, and the temperature inside the pressure vessel 2 is detected by the temperature sensor 4. The temperature at the bottom of the pressure vessel 2 and the temperature at the peripheral surface are controlled separately. The temperature detection signal in the pressure vessel 2 is transmitted to the control device (control unit) 5.

蓋体1には圧力容器2内の圧力を検出する圧力センサ6と、圧力コントロール用の電磁弁7が取り付けられている。電磁弁7は、制御装置5からの指示によって開弁し、圧力容器2内に発生させた水蒸気を外部に排出して圧力容器2内の圧力をコントロールするものである。 A pressure sensor 6 for detecting the pressure in the pressure vessel 2 and an electromagnetic valve 7 for pressure control are attached to the lid 1. The solenoid valve 7 opens according to an instruction from the control device 5, discharges water vapor generated in the pressure vessel 2 to the outside, and controls the pressure in the pressure vessel 2.

被処理物は、かご8内に収容して圧力容器2内のほぼ中央領域に差し入れられる。また、圧力容器2の底には、被処理物から搾り出された抽出液及び容器の壁面を伝わって落ちる可溶性成分の凝縮液を受け入れるトレー11を格納しておく。 The object to be processed is housed in the car 8 and inserted into a substantially central region in the pressure vessel 2. Further, in the bottom of the pressure vessel 2, a tray 11 for receiving the extract squeezed from the object to be treated and the condensate of the soluble component that falls down the wall surface of the container is stored.

図2に、圧力容器2内で進行させる水蒸気分解反応の進行を監視するためのシステムの構成を示す。制御装置5は、監視室9内に設置されたコンピューターであり、ヒーターの電源投入(ON、OFF)、処理時間の設定、電磁弁7の開閉制御などの制御を行う。さらに制御装置5は、成分抽出処理に必要な一切の制御並びに設定情報の管理を行う機能、分解反応の進行状況の監視機能を実行し、植物組織から抽出される物質の抽出進行状態は、モニター10によって監視するほか、これらのデータをオートサンプラ12に収集してサンプリングを行う機能を有している。 FIG. 2 shows the configuration of a system for monitoring the progress of the steam decomposition reaction that proceeds in the pressure vessel 2. The control device 5 is a computer installed in the monitoring room 9 and controls the power on (ON, OFF) of the heater, the setting of the processing time, the opening / closing control of the solenoid valve 7, and the like. Further, the control device 5 executes a function of performing all control necessary for the component extraction process, managing setting information, and a function of monitoring the progress of the decomposition reaction, and monitors the extraction progress state of the substance extracted from the plant tissue. In addition to monitoring by 10, it has a function of collecting these data in the auto sampler 12 and performing sampling.

制御装置5は、植物原料Aを洗浄し、必要により適当な大きさに裁断あるいは不要部分を除去した被処理物Bを圧力容器2内に収容して成分抽出処理Cを施し、成分抽出処理Cによって得られた抽出液Dを圧力容器2から取り出し、これに精製処理Eを施すことによって、高純度の植物組織成分を得るまでの処理を管理する。 The control device 5 cleans the plant raw material A, cuts the plant raw material A to an appropriate size if necessary, or accommodates the object to be processed B from which unnecessary portions have been removed in the pressure vessel 2 and performs the component extraction process C to perform the component extraction process C. The extract D obtained in the above method is taken out from the pressure vessel 2 and subjected to a purification treatment E to control the treatment until a high-purity plant tissue component is obtained.

成分抽出処理(熱分解処理)Cに先立って、圧力容器2のハッチを開き、圧力容器2内に少量の水を注入する。
次に成分抽出処理Cを施すべき被処理物Bをかご8の中に入れ、これを圧力容器2内に格納してハッチを閉じ、圧力容器2内で被処理物Bの成分抽出処理Cを開始する。処理の手順を図3〜図5に従って説明する。
Prior to the component extraction treatment (pyrolysis treatment) C, the hatch of the pressure vessel 2 is opened, and a small amount of water is injected into the pressure vessel 2.
Next, the object B to be subjected to the component extraction process C is placed in the basket 8, stored in the pressure vessel 2, the hatch is closed, and the component extraction process C of the object B to be processed is performed in the pressure vessel 2. Start. The processing procedure will be described with reference to FIGS. 3 to 5.

図3、図4は、熱分解処理を実行する手順を示すフロー図である。
図3、図4に示すように、まず、内外をつなぐ管路に設けられた電磁弁7を開いて圧力容器2を大気に開放すると共に、ヒーター3の電源を投入(ON)する(ステップS1、ステップS2)。
ヒーター3による圧力容器2の加温中、適宜時間間隔をおいて、圧力容器2内の温度(t)、圧力(p)を温度センサ4、圧力センサ6によってそれぞれ検出する(ステップS3)。
3 and 4 are flow charts showing a procedure for executing the thermal decomposition treatment.
As shown in FIGS. 3 and 4, first, the solenoid valve 7 provided in the conduit connecting the inside and the outside is opened to open the pressure vessel 2 to the atmosphere, and the heater 3 is turned on (ON) (step S1). , Step S2).
While the pressure vessel 2 is being heated by the heater 3, the temperature (t) and the pressure (p) in the pressure vessel 2 are detected by the temperature sensor 4 and the pressure sensor 6 at appropriate time intervals (step S3).

検出温度データおよび検出圧力データはその都度制御部5に伝送され、制御部5では、検出された温度が、設定温度範囲(例えば70℃〜80℃)内であるか否か判定する。
この設定温度範囲は、圧力容器2内の水が沸騰に至らない温度とし、安全のため、70℃〜80℃の温度範囲とするのがよい(70℃〜90℃程度でもよい)。
The detected temperature data and the detected pressure data are transmitted to the control unit 5 each time, and the control unit 5 determines whether or not the detected temperature is within the set temperature range (for example, 70 ° C. to 80 ° C.).
This set temperature range is set to a temperature at which the water in the pressure vessel 2 does not reach boiling, and for safety, it is preferably set to a temperature range of 70 ° C. to 80 ° C. (may be about 70 ° C. to 90 ° C.).

本実施の形態では、上記のように電磁弁7を開いて、圧力容器2内を大気に開放した状態でヒーター3にて加温する。これにより、水蒸気圧が増すにしたがって、圧力容器2内の空気は排除される。したがって、圧力容器2内の温度が、80℃程度であれば、圧力容器2内の空気はほとんど排除され、検出される圧力(実測圧力値)は、ほとんど飽和水蒸気圧に近いものとなる。 In the present embodiment, the solenoid valve 7 is opened as described above, and the pressure vessel 2 is heated by the heater 3 in a state of being open to the atmosphere. As a result, the air in the pressure vessel 2 is eliminated as the water vapor pressure increases. Therefore, when the temperature in the pressure vessel 2 is about 80 ° C., the air in the pressure vessel 2 is almost eliminated, and the detected pressure (measured pressure value) is almost close to the saturated water vapor pressure.

検出温度が、温度設定温度範囲に至っていない場合にはステップS3および上記判定を繰り返す。
温度計測は、できるだけ狭い温度上昇幅(例えば5℃程度)ごとになるように行うのが、沸騰回避上、安全でよい。
検出温度が上記設定温度に至った場合、電磁弁7を閉じる(ステップS4)。ヒーター3による加温は継続する。
If the detected temperature does not reach the temperature set temperature range, step S3 and the above determination are repeated.
It is safe to measure the temperature so that the temperature rises as narrowly as possible (for example, about 5 ° C.) in order to avoid boiling.
When the detected temperature reaches the above set temperature, the solenoid valve 7 is closed (step S4). Heating by the heater 3 continues.

電磁弁7を閉じて後、適宜な段階でタイマー(図示せず)により、熱分解処理時間を例えば3時間にセットする(ステップS5)。
また、適宜な時間間隔(あるいは適宜な温度上昇幅ごと)で圧力容器2内の温度(t)と圧力(p)を検出する(ステップS6)。
検出温度データ、検出圧力データはその都度制御装置5に伝送され、制御装置5では、予め入力されている飽和水蒸気圧曲線の近似式に、温度センサ4で検出された温度数値を代入して、当該近似式に基づく飽和水蒸気圧(演算圧力値)を演算する(ステップS7)。近似式としては、Tetensの式などを用いることができるが、これに限定されるものではない。
After closing the solenoid valve 7, the thermal decomposition processing time is set to, for example, 3 hours by a timer (not shown) at an appropriate stage (step S5).
Further, the temperature (t) and the pressure (p) in the pressure vessel 2 are detected at appropriate time intervals (or at appropriate temperature rise widths) (step S6).
The detected temperature data and the detected pressure data are transmitted to the control device 5 each time, and the control device 5 substitutes the temperature value detected by the temperature sensor 4 into the approximate expression of the saturated water vapor pressure curve input in advance. The saturated water vapor pressure (calculated pressure value) based on the approximate expression is calculated (step S7). As the approximate expression, a Tetens expression or the like can be used, but the approximation expression is not limited to this.

また制御装置5では、この演算圧力値と圧力センサ6で検出される圧力値(実測圧力値)とを比較し、実測圧力値の演算圧力値に対するずれが所要設定範囲内であるか否か判定する(ステップS8)。
実測圧力値が演算圧力値に対して設定範囲以上にずれている場合には、ヒーター3の出力を調整し(ステップ9)、実測圧力値が演算圧力値にできるだけ近接するように制御する。
なお、ステップS4に至る段階でも、ステップS6〜ステップS9と同様の制御をし、実測圧力値が演算圧力値に近接するようにヒーター3のON、OFF制御をするようにしてもよい。
Further, the control device 5 compares the calculated pressure value with the pressure value (measured pressure value) detected by the pressure sensor 6 and determines whether or not the deviation of the measured pressure value with respect to the calculated pressure value is within the required setting range. (Step S8).
When the measured pressure value deviates from the calculated pressure value by a set range or more, the output of the heater 3 is adjusted (step 9), and the measured pressure value is controlled so as to be as close as possible to the calculated pressure value.
Even at the stage leading to step S4, the same control as in steps S6 to S9 may be performed, and the heater 3 may be ON / OFF controlled so that the measured pressure value is close to the calculated pressure value.

ステップ6〜ステップ9の制御を行いつつ、ステップS6における検出温度が、125℃〜149℃内の設定温度まで上昇したら(ステップS11)、ヒーター3の出力を調整(あるいはOFF)して(ステップ10)、タイマーでセットした時間だけ上記設定温度に維持し、必要な、熱分解処理を行う。 While controlling steps 6 to 9, when the detection temperature in step S6 rises to a set temperature within 125 ° C. to 149 ° C. (step S11), the output of the heater 3 is adjusted (or turned off) (step 10). ), Maintain the above set temperature for the time set by the timer, and perform the necessary thermal decomposition treatment.

なお、本実施形態における熱分解処理は、圧力容器2内温度が125℃〜149℃の範囲で行うのがよいが、被処理物の種類に応じて、この温度範囲内で設定温度を決定するとよい。温度150℃以上に上昇すると、被処理物が炭化してしまう。
タイマーがOFFとなったら(ステップS11)、ヒーターをOFFにする(ステップS12)。
上記のようにすることで、ステップS12に至るまで、圧力容器2内の温度、圧力をほぼ飽和水蒸気圧曲線に沿って上昇するように制御することができる。
The thermal decomposition treatment in the present embodiment is preferably performed in the temperature range of 125 ° C. to 149 ° C. in the pressure vessel 2, but if the set temperature is determined within this temperature range according to the type of the object to be treated. good. If the temperature rises above 150 ° C, the object to be treated will be carbonized.
When the timer is turned off (step S11), the heater is turned off (step S12).
By doing so, it is possible to control the temperature and pressure in the pressure vessel 2 so as to rise substantially along the saturated water vapor pressure curve until step S12.

本実施の形態では、ヒーター3をOFFしたまま、圧力容器2を自然冷却する(ステップS13)。
この自然冷却することによって、圧力容器2内は、温度、圧力がほぼ飽和水蒸気圧曲線に沿ったまま降下することになる。
この間、適宜時間間隔ごとに温度センサ4により圧力容器2内の温度を検出する(ステップS14)。検出温度が、例えば、90℃程度の、水の沸騰を回避できる程度の温度にまで降下したら、電磁弁7を開き(ステップS15)、このまま圧力容器2内を自然冷却して(ステップS16)処理を終了する。
In the present embodiment, the pressure vessel 2 is naturally cooled while the heater 3 is turned off (step S13).
By this natural cooling, the temperature and pressure inside the pressure vessel 2 will drop while substantially following the saturated water vapor pressure curve.
During this time, the temperature inside the pressure vessel 2 is detected by the temperature sensor 4 at appropriate time intervals (step S14). When the detection temperature drops to, for example, about 90 ° C., a temperature at which boiling of water can be avoided, the solenoid valve 7 is opened (step S15), and the inside of the pressure vessel 2 is naturally cooled as it is (step S16). To finish.

このようにして、ステップS12以降も、圧力容器2内の温度、圧力をほぼ飽和水蒸気圧曲線に沿って下降するように制御することができる。ステップS15に示すように、圧力容器2内温度が90℃以下に低下した際に電磁弁7を開くようにしているので、圧力容器2内の水の沸騰を確実に防止できる。 In this way, even after step S12, the temperature and pressure in the pressure vessel 2 can be controlled so as to decrease substantially along the saturated water vapor pressure curve. As shown in step S15, since the solenoid valve 7 is opened when the temperature inside the pressure vessel 2 drops to 90 ° C. or lower, boiling of water in the pressure vessel 2 can be reliably prevented.

なお、圧力容器2が大型で、ステップS13における自然冷却するのに長時間を要する場合には、ステップS12でヒーターをOFFした後、電磁弁7を所定時間間隔ごとに短時間開いて水蒸気を逃がすことにより、圧力容器2内の冷却速度を大きくして冷却するようにしてもよい。 If the pressure vessel 2 is large and it takes a long time to cool naturally in step S13, after turning off the heater in step S12, the electromagnetic valve 7 is opened for a short time at predetermined time intervals to release water vapor. As a result, the cooling rate inside the pressure vessel 2 may be increased for cooling.

この場合、圧力容器2内の温度と圧力をそれぞれ温度センサ4、圧力センサ6で検出し、上記と同様にして、飽和水蒸気圧曲線の近似式により、検出温度における演算圧力を算出し、実測圧力が演算圧力に近接するように、電磁弁7の開放間隔、開放時間を制御するようにするとよい。これにより、冷却時においても、圧力容器2内の水を沸騰させることなく、圧力容器2内の温度、圧力を飽和水蒸気圧曲線に沿って降下させるように制御できる。 In this case, the temperature and pressure in the pressure vessel 2 are detected by the temperature sensor 4 and the pressure sensor 6, respectively, and the calculated pressure at the detected temperature is calculated by the approximate expression of the saturated water vapor pressure curve in the same manner as described above, and the measured pressure is measured. It is preferable to control the opening interval and opening time of the electromagnetic valve 7 so that the pressure is close to the calculated pressure. Thereby, even at the time of cooling, the temperature and pressure in the pressure vessel 2 can be controlled to be lowered along the saturated water vapor pressure curve without boiling the water in the pressure vessel 2.

図1、図2に示す熱分解処理装置を用いて、図3、図4に示す処理手順により、柿実および柿皮の少なくとも一方の柿材料の熱分解処理を行った。
本実施例においては、柿実および柿皮の少なくとも一方の柿材料を圧力容器2内に収容する工程と、該圧力容器2内に必要量の水を供給し、圧力容器2内をヒーター3により2時間〜5時間の間加熱して、柿材料の細胞や細胞壁が破壊すると共に、酵素の作用によりタンニンの生成を促進し、柿材料中に含まれるタンニン量が、生柿のタンニン量よりも多くなるようにする加熱工程と、圧力容器2内を冷却する冷却工程と、冷却後圧力容器2内から産出物を回収する回収工程とを行い、柿加工品を得た。
Using the thermal decomposition treatment apparatus shown in FIGS. 1 and 2, at least one of the persimmon material of the persimmon fruit and the persimmon skin was thermally decomposed by the treatment procedure shown in FIGS. 3 and 4.
In this embodiment, a step of accommodating at least one persimmon material of persimmon fruit and persimmon skin in the pressure vessel 2 and supplying a required amount of water into the pressure vessel 2 and using a heater 3 in the pressure vessel 2 Heating for 2 to 5 hours destroys the cells and cell walls of the persimmon material and promotes the production of tannin by the action of enzymes, and the amount of tannin contained in the persimmon material is larger than the amount of tannin in raw persimmon. A persimmon processed product was obtained by performing a heating step for increasing the number of persimmons, a cooling step for cooling the inside of the pressure vessel 2, and a recovery step for recovering the product from the pressure vessel 2 after cooling.

圧力容器2内の加熱、および冷却は、上記手順にしたがって、温度、圧力が飽和水蒸気圧曲線に沿って上昇、下降するように制御した。
その結果、後記するように、生柿におけるタンニン量は、タンニン酸として、100g中、約0.13gであるが、得られた柿加工品のタンニン含有量は、タンニン酸として、100g中、約0.37g〜約0.63gとなり、生柿の約3〜5倍に増量していた。
The heating and cooling in the pressure vessel 2 were controlled so that the temperature and pressure increased and decreased along the saturated water vapor pressure curve according to the above procedure.
As a result, as will be described later, the amount of tannin in the raw persimmon is about 0.13 g in 100 g of tannic acid, but the tannin content of the obtained processed persimmon product is about 0.13 g in 100 g of tannic acid. The amount was 0.37 g to about 0.63 g, which was about 3 to 5 times as much as that of raw persimmon.

なお、上記水蒸気熱分解処理を行う場合、圧力容器2内を120℃〜134℃(134℃以下)の温度で加熱するとさらに好適である。タンニン生成を促進する酵素は、134℃位までその酵素活性が維持あるいは向上し、135℃以上になるとその酵素活性が次第に低下するからである。例えば、後記するように、柿皮を132℃で4時間水蒸気分解処理をして得られたエキス中のタンニン量は、タンニン酸として、100g中、約0.48gであったが、柿皮を137℃で4時間水蒸気分解処理をして得られたエキス中のタンニン量は、タンニン酸として、100g中、約0.37gとなって、132℃での処理の場合よりも少なくなっている。 When the steam pyrolysis treatment is performed, it is more preferable to heat the inside of the pressure vessel 2 at a temperature of 120 ° C. to 134 ° C. (134 ° C. or lower). This is because the enzyme activity that promotes tannin production is maintained or improved up to about 134 ° C., and the enzyme activity gradually decreases at 135 ° C. or higher. For example, as described later, the amount of tannin in the extract obtained by subjecting the persimmon bark to steam decomposition treatment at 132 ° C. for 4 hours was about 0.48 g in 100 g of tannic acid, but the persimmon bark was used. The amount of tannin in the extract obtained by steam decomposition treatment at 137 ° C. for 4 hours was about 0.37 g in 100 g of tannic acid, which was less than that in the case of treatment at 132 ° C.

産出物の回収に際しては、図示しないドレインバルブを開いて圧力容器2内部に冷却コイルより冷却水を送り込み、圧力容器2内の水蒸気を冷却して結露させることによって生じた蒸留液(エキス)をドレインタンクに回収する。
次いで、圧力容器2の蓋体を開き、水蒸気熱分解処理によって圧力容器2内のトレー11に生成された溶出液(エキス)を回収し、さらに、処理物かご8を圧力容器2内から搬出して、処理物かご8から固形物を回収する。固形物は、乾燥して粉末化するとよい。
When recovering the product, the drain valve (not shown) is opened, cooling water is sent from the cooling coil into the pressure vessel 2, and the water vapor in the pressure vessel 2 is cooled to cause dew condensation, thereby draining the distilled liquid (extract). Collect in a tank.
Next, the lid of the pressure vessel 2 is opened, the eluate (extract) generated in the tray 11 in the pressure vessel 2 by the steam pyrolysis treatment is collected, and the processed product basket 8 is further carried out from the pressure vessel 2. Then, the solid matter is collected from the processed product basket 8. The solid material may be dried and pulverized.

[具体的実施例1]
冷凍保存された喬木村産の市田柿(登録商標)の実および皮を水蒸気分解処 理をし、そのエキスおよび固形分と、冷凍保存された原料柿(生柿)とに含ま れるタンニン酸をイオン交換法により分析した(分析試験は、一般財団法人日 本食品分析センターに依頼)。
<サンプル製造方法>
柿実および柿皮を、図1に示す熱分解処理装置を用いて132℃、約3.0 気圧の飽和水蒸気中に4.0時間曝したサンプル(エキスおよび固形分)と、 同137℃、約3.3気圧の飽和水蒸気中に4.0時間曝したサンプル(エキ スおよび固形分)を作成した。
<タンニン酸分析試験>
冷凍保存された原料柿(皮)および上記サンプル中のタンニン酸含量の分析試験結果(一般財団法人日本食品分析センター)を表1に示す。
[Specific Example 1]
Tannic acid contained in the frozen and preserved raw persimmon (raw persimmon) of Ichida persimmon (registered trademark) from Takagi village, which is processed by steam decomposition and its extract and solid content. Was analyzed by the ion exchange method (the analysis test was requested to the Japan Food Research Laboratories).
<Sample manufacturing method>
A sample (extract and solid content) of persimmon seeds and persimmon bark exposed to saturated steam at 132 ° C. and about 3.0 atm for 4.0 hours using the pyrolysis treatment device shown in FIG. 1 and a sample (extract and solid content) at 137 ° C. Samples (extracts and solids) exposed to saturated water vapor at about 3.3 atm for 4.0 hours were prepared.
<Tannic acid analysis test>
Table 1 shows the results of the analysis test of the tannic acid content in the frozen raw persimmon (skin) and the above sample (Japan Food Research Laboratories).

Figure 0006933338
表1に示すように、上記水蒸気熱分解処理をした場合に、タンニン量(タンニン酸として)は、0.37〜0.63g/100gとなり、原料柿(皮)の場合の約3〜5倍に増量している。
また、132℃での水蒸気分解処理サンプルの方が、137℃での水蒸気分解処理サンプルよりもタンニン量が増えている。
また、柿皮エキスA、Bの場合に比して、柿実エキスBおよび柿実皮混合エキスAにおけるタンニン量がその約1.5倍と多いことから、柿実の方が、柿皮よりもタンニン量が多いことがわかった。
なお、タンニン量は、柿の種類によっても相違すると考えられる。
Figure 0006933338
As shown in Table 1, the amount of tannin (as tannic acid) is 0.37 to 0.63 g / 100 g when the above steam pyrolysis treatment is performed, which is about 3 to 5 times that of the raw persimmon (skin). The amount has been increased to.
In addition, the amount of tannin in the steam-decomposed sample at 132 ° C. is larger than that in the steam-decomposition-treated sample at 137 ° C.
In addition, since the amount of tannin in the persimmon fruit extract B and the persimmon skin mixed extract A is about 1.5 times larger than that in the case of the persimmon skin extracts A and B, the persimmon fruit is more than the persimmon skin. It was found that the amount of tannin was also large.
The amount of tannin is considered to differ depending on the type of persimmon.

柿皮エキスB(132℃水蒸気分解処理)のエネルギー分を測定したところ、約47kcal/100gであって、砂糖の約1/10となり、低カロリーである。
また、各サンプルを食したところ、渋みはほとんど感じられなかった。水蒸気分解処理を行ったことにより、タンニンが低分子化し、渋みが低減したと考えられる。また、柿本来の甘さが感じられ、実際柿皮エキスBの糖度を糖度計で測定したところ約18°の糖度となり、低カロリーの砂糖代替甘味料として十分使用できることがわかった。
また、実際に柿皮エキスBを湯に溶いて飲用したところ、香ばしく、まろやかでコーヒー様の味がし、そのままでも飲食品として十分に適していることがわかった。
なお、本実施例で得られた柿加工品は、甘味料以外の食品添加材として用いることができるほか、タンニンを含むことから各種抗菌剤等としても用いることができる。
When the energy content of persimmon bark extract B (steam decomposition treatment at 132 ° C.) was measured, it was about 47 kcal / 100 g, which was about 1/10 of that of sugar, and was low in calories.
Moreover, when each sample was eaten, almost no astringency was felt. It is considered that the water vapor decomposition treatment reduced the molecular weight of tannins and reduced astringency. In addition, the original sweetness of the persimmon was felt, and when the sugar content of the persimmon skin extract B was actually measured with a sugar content meter, the sugar content was about 18 °, and it was found that it could be sufficiently used as a low-calorie sugar substitute sweetener.
Moreover, when the persimmon skin extract B was actually dissolved in hot water and drunk, it was found that it had a fragrant, mellow and coffee-like taste, and was sufficiently suitable as a food and drink as it was.
The processed persimmon product obtained in this example can be used as a food additive other than a sweetener, and can also be used as various antibacterial agents because it contains tannin.

1 蓋体、2 圧力容器、3 ヒーター、4 温度センサ、5 制御装置(制御部)、6 圧力センサ、7 電磁弁、8 かご、10 モニター、11 トレー、12 オートサンプラ 1 lid, 2 pressure vessel, 3 heater, 4 temperature sensor, 5 control device (control unit), 6 pressure sensor, 7 solenoid valve, 8 basket, 10 monitor, 11 tray, 12 auto sampler

Claims (5)

圧力容器と、該圧力容器を開閉する蓋体と、前記圧力容器内の温度を検出する温度センサと、前記圧力容器内の圧力を検出する圧力センサと、前記圧力容器を大気に開放可能な電磁弁と、前記圧力容器内を加温するヒーターと、前記温度センサにより検出される温度データおよび前記圧力センサにより検出される圧力データが入力され、該データに基づいて、前記ヒーターの出力を制御すると共に、前記電磁弁を開閉制御して、前記圧力容器内温度を125℃〜149℃にまで上昇させて、前記圧力容器内に収容した植物原料を被処理物として熱分解処理する制御部を有する被処理物の熱分解処理装置において、
前記制御部は、
前記ヒーターをオンして前記圧力容器内を加温する際、および前記ヒーターをオフして前記圧力容器内を冷却する際、前記圧力容器内の水を沸騰させることなく、かつ飽和水蒸気圧曲線に沿うように加温および冷却するように前記ヒーターのオンオフ制御および前記電磁弁の開閉制御をし、
前記ヒーターにより前記圧力容器内を加温する際、前記電磁弁を開いて加温を開始すると共に、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度に到達する前に、前記電磁弁を閉じて、引き続いて前記圧力容器内が前記所要温度になるまで加温するように前記ヒーターおよび前記電磁弁を制御すること
を特徴とする被処理物の熱分解処理装置。
A pressure vessel, a lid for opening and closing the pressure vessel, a temperature sensor for detecting the temperature inside the pressure vessel, a pressure sensor for detecting the pressure inside the pressure vessel, and an electromagnetic wave capable of opening the pressure vessel to the atmosphere. A valve, a heater that heats the inside of the pressure vessel, temperature data detected by the temperature sensor, and pressure data detected by the pressure sensor are input, and the output of the heater is controlled based on the data. At the same time, it has a control unit that controls the opening and closing of the electromagnetic valve to raise the temperature inside the pressure vessel to 125 ° C. to 149 ° C. and thermally decomposes the plant raw material contained in the pressure vessel as an object to be treated. In the thermal decomposition treatment equipment of the object to be processed
The control unit
When the heater is turned on to heat the inside of the pressure vessel, and when the heater is turned off to cool the inside of the pressure vessel, the water in the pressure vessel is not boiled and the saturated water vapor pressure curve is obtained. On / off control of the heater and opening / closing control of the electromagnetic valve are performed so as to heat and cool along the line.
When the inside of the pressure vessel is heated by the heater, the electromagnetic valve is opened to start heating, and the temperature inside the pressure vessel detected by the temperature sensor becomes the temperature at which the water in the pressure vessel boils. before reaching, by closing the electromagnetic valve, of the object it characterized in that subsequently the pressure vessel to control the heater and the solenoid valve to warm until the required temperature heat Disassembly processing equipment.
前記制御部は、
前記圧力センサにより検出される圧力が、前記温度センサにより検出される温度と、予め入力されている飽和水蒸気圧曲線の近似式とから演算される演算圧力値に近接するように、前記ヒーターの出力を制御すること
を特徴とする請求項1記載の被処理物の熱分解処理装置。
The control unit
The output of the heater so that the pressure detected by the pressure sensor is close to the calculated pressure value calculated from the temperature detected by the temperature sensor and the approximate expression of the saturated water vapor pressure curve input in advance. The thermal decomposition treatment apparatus for an object to be processed according to claim 1, wherein the device is used for controlling the temperature of the object to be processed.
前記制御部は、
前記ヒーターをオフし、前記圧力容器内を冷却する際、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度よりも低い温度にまで達したときに前記電磁弁を開くように制御すること
を特徴とする請求項1または2記載の被処理物の熱分解処理装置。
The control unit
When the heater is turned off and the inside of the pressure vessel is cooled, the electromagnetic wave is detected when the temperature inside the pressure vessel reaches a temperature lower than the temperature at which the water in the pressure vessel boils. The thermal decomposition treatment apparatus for an object to be treated according to claim 1 or 2, wherein the valve is controlled to open.
圧力容器と、該圧力容器を開閉する蓋体と、前記圧力容器内の温度を検出する温度センサと、前記圧力容器内の圧力を検出する圧力センサと、前記圧力容器を大気に開放可能な電磁弁と、前記圧力容器内を加温するヒーターとを具備する熱分解処理装置を用いる被処理物の熱分解処理方法において、
前記圧力容器内に植物原料を被処理物として収容する工程と、
前記圧力容器を前記蓋体で密閉する工程と、
前記電磁弁を開くと共に、前記ヒーターにより前記圧力容器内を加温する工程と、
前記ヒーターによる加温時、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度に到達する前に、前記電磁弁を閉じる工程と、
引き続いて、前記圧力容器内温度が125℃〜149℃の温度に上昇するまで、前記ヒーターにより前記圧力容器を加温し、前記植物原料を熱分解する工程と、
前記ヒーターによる加温を停止し、前記圧力容器内を冷却する工程と、
前記圧力容器内を冷却する際、前記温度センサにより検出される前記圧力容器内温度が該圧力容器内の水が沸騰する温度よりも低い温度にまで達したときに前記電磁弁を開いて、前記圧力容器を大気に開放して前記圧力容器を所要温度にまで冷却する工程を具備し、
前記加温時および前記冷却時、前記圧力容器内を、飽和水蒸気圧曲線に沿うように加温および冷却すること
を特徴とする被処理物の熱分解処理方法。
A pressure vessel, a lid for opening and closing the pressure vessel, a temperature sensor for detecting the temperature inside the pressure vessel, a pressure sensor for detecting the pressure inside the pressure vessel, and an electromagnetic wave capable of opening the pressure vessel to the atmosphere. In a method for thermally decomposing an object to be processed using a thermal decomposition treatment apparatus including a valve and a heater for heating the inside of the pressure vessel.
The step of accommodating the plant raw material as an object to be processed in the pressure vessel, and
The step of sealing the pressure vessel with the lid body and
A step of opening the solenoid valve and heating the inside of the pressure vessel with the heater,
During heating by the heater, the step of closing the electromagnetic valve before the temperature inside the pressure vessel detected by the temperature sensor reaches the temperature at which the water in the pressure vessel boils.
Subsequently, a step of heating the pressure vessel with the heater and thermally decomposing the plant raw material until the temperature inside the pressure vessel rises to a temperature of 125 ° C. to 149 ° C.
The step of stopping the heating by the heater and cooling the inside of the pressure vessel,
When cooling the inside of the pressure vessel, the electromagnetic valve is opened when the temperature inside the pressure vessel detected by the temperature sensor reaches a temperature lower than the temperature at which the water in the pressure vessel boils. A step of opening the pressure vessel to the atmosphere and cooling the pressure vessel to a required temperature is provided.
A method for thermally decomposing an object to be treated, which comprises heating and cooling the inside of the pressure vessel at the time of heating and cooling so as to follow a saturated water vapor pressure curve.
前記圧力センサにより検出される圧力が、前記温度センサにより検出される温度と、飽和水蒸気圧曲線の近似式とから演算される演算圧力値に近接するように、前記ヒーターの出力を制御すること
を特徴とする請求項記載の被処理物の熱分解処理方法。
Controlling the output of the heater so that the pressure detected by the pressure sensor is close to the calculated pressure value calculated from the temperature detected by the temperature sensor and the approximate expression of the saturated water vapor pressure curve. The method for thermally decomposing an object to be treated according to claim 4.
JP2017166682A 2017-08-31 2017-08-31 Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed Active JP6933338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017166682A JP6933338B2 (en) 2017-08-31 2017-08-31 Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017166682A JP6933338B2 (en) 2017-08-31 2017-08-31 Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed

Publications (2)

Publication Number Publication Date
JP2019042647A JP2019042647A (en) 2019-03-22
JP6933338B2 true JP6933338B2 (en) 2021-09-08

Family

ID=65815025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017166682A Active JP6933338B2 (en) 2017-08-31 2017-08-31 Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed

Country Status (1)

Country Link
JP (1) JP6933338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120663A1 (en) * 2021-12-23 2023-06-29 国立大学法人信州大学 Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226387A (en) * 1998-02-13 1999-08-24 Karasawa Fine:Kk Treatment by fluid and device therefor
JP5457625B2 (en) * 2007-01-25 2014-04-02 日東電工株式会社 Recycling method of polylactic acid resin
US8372890B2 (en) * 2006-06-16 2013-02-12 Zenyaku Kogyo Kabushikikaisha Functional food containing sodium tricaffeoylaldarate
JP5249559B2 (en) * 2006-11-09 2013-07-31 株式会社ミゾタ Extraction method and apparatus of useful substances from Kazuno Ganoderma
JP2009106816A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Decomposition apparatus
JP4296575B2 (en) * 2007-12-05 2009-07-15 晃一 中村 Method for collecting plant cell tissue components
JP5604166B2 (en) * 2010-04-20 2014-10-08 晃一 中村 Method for improving softening of cooked food
JP2012019713A (en) * 2010-07-13 2012-02-02 Koichi Nakamura Method for extracting effective component in plant tissue

Also Published As

Publication number Publication date
JP2019042647A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Praporscic et al. Ohmically heated, enhanced expression of juice from apple and potato tissues
US11969005B2 (en) Method and device for treating nuts, in particular for producing nuts with improved shelling properties
El Belghiti et al. Mass transfer of sugar from beets enhanced by pulsed electric field
JP6933338B2 (en) Thermal decomposition treatment device for the object to be processed and thermal decomposition treatment method for the object to be processed
US8067216B2 (en) Method for macerating biological material and apparatus for carrying out said method
US5466454A (en) Method and apparatus for producing herbal concentrate
JPWO2005011396A1 (en) Processing method for roasted coffee beans and steam-treated roasted coffee beans
CN104473967B (en) A kind of Pulvis Fellis Suis processing procedure
Zhang et al. Effect of pulsed electric fields pretreatment on juice expression and quality of chicory
CN106167303A (en) A kind of method and apparatus of industrialized production plant hydrogen rich water
JP2012019713A (en) Method for extracting effective component in plant tissue
Vorobiev et al. Processing of sugar beets assisted by pulsed electric fields
US20080050274A1 (en) Process for treating medical waste
JP2006328304A (en) Method for extracting component contained in plant tissue
Koiwai et al. Extraction of catechins from green tea using ultrasound
CN1836537B (en) Steam processing method for baked coffee bean
JP2020096538A (en) Method of producing sweet potato processed food
JP2020110047A (en) Manufacturing method of broccoli processed food
US666413A (en) Method of candying fruit.
TW200829182A (en) Method and apparatus for extraction of vegetable and fruit by carbon dioxide supercritical fluid
EP2201144B1 (en) Method for extraction of sugar
US9029079B2 (en) Method of biotechnological production of bovine hemoderivative
JP4911750B2 (en) Active ingredient extraction method and waste reduction method from food waste, active ingredient extraction device and waste reduction device
US20220176271A1 (en) Atmospheric Pressure Water Ion Plant Cell Disruption and Extraction Method and Apparatus
WO2024069512A2 (en) Process and system for cooking agave piñas to produce distilled beverages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6933338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150