WO2023120663A1 - Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition - Google Patents

Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition Download PDF

Info

Publication number
WO2023120663A1
WO2023120663A1 PCT/JP2022/047438 JP2022047438W WO2023120663A1 WO 2023120663 A1 WO2023120663 A1 WO 2023120663A1 JP 2022047438 W JP2022047438 W JP 2022047438W WO 2023120663 A1 WO2023120663 A1 WO 2023120663A1
Authority
WO
WIPO (PCT)
Prior art keywords
persimmon
water vapor
feeding
vapor pressure
ruminant feed
Prior art date
Application number
PCT/JP2022/047438
Other languages
French (fr)
Japanese (ja)
Inventor
豊 上野
晃一 中村
淳一 橋本
章 神田
修 山本
Original Assignee
国立大学法人信州大学
長野精工金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, 長野精工金属株式会社 filed Critical 国立大学法人信州大学
Publication of WO2023120663A1 publication Critical patent/WO2023120663A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to a ruminant feed composition, a ruminant feed, and a method for producing a ruminant feed composition.
  • Methane (CH 4 ) which is one of the greenhouse gases that cause global warming, has a global warming potential of 20 times or more that of carbon dioxide (CO 2 ), and is urgently required to reduce its emissions.
  • methane gas is mainly discharged from the bodies of paddy fields and livestock.
  • methane gas emitted from the bodies of livestock is produced by fermentation in the digestive tracts of ruminant animals such as cows, sheep, and goats through belching or excrement such as manure. It is released into the atmosphere and becomes a big problem.
  • Patent Document 1 International Publication No. 2018/0030364 describes a method for suppressing methane gas production by reducing methanogenic bacteria in the rumen of ruminants.
  • coffee ingredients such as coffee grounds are fermented with bacteriocin-producing lactic acid bacteria and mixed with feed as a feed efficiency improving agent.
  • the mixing ratio of the feed for livestock and the feed efficiency improving agent according to this method is preferably 100:0.1 to 10 by mass, from the viewpoints of improvement of the feed efficiency improving effect, economic efficiency, and palatability. More preferably 100:1-5.
  • Patent Document 1 requires culturing control of lactic acid bacteria, requires several days for the fermentation process, and requires temperature control during that time, which is laborious and time consuming. Thus, when it is intended to reduce the amount of methane gas produced in the body of a ruminant by means of feed, it is required that the feed be easier to handle.
  • methane-producing bacteria that produce methane gas in the body of ruminants have a nutritional symbiotic relationship with bacteria that produce volatile fatty acids, which serve as an energy source for the animals, for example. Therefore, when trying to reduce the amount of methane gas produced by suppressing the activity of methane-producing bacteria (or by reducing the number of bacteria), it is necessary to ensure that ruminant animals eat properly and have an adverse effect on the health of ruminants. It should be a feed that does not give
  • the present invention has been made in view of the above circumstances, and provides a feed composition for ruminants that can be easily produced and that can be eaten with good palatability even by ruminants to reduce the amount of methane gas produced in the body.
  • An object of the present invention is to provide a ruminant feed and a method for producing a ruminant feed composition.
  • the present invention solves the above problems by means of solutions as described below as one embodiment.
  • the feed composition for ruminants according to the present invention is a persimmon processed product in which the polyphenol-containing material is heated and pressurized in a closed space without boiling so that the water vapor pressure in the closed space follows the saturated water vapor pressure curve. It is a composition consisting of
  • the above feed composition for ruminants after the heating and pressurization, it may be further heated and pressurized with steam at a temperature of 120°C to 134°C for 2 to 5 hours at 2 to 3 atmospheres.
  • the ruminant feed according to the present invention is a feed containing the above-described ruminant feed composition.
  • the ruminant feed may contain 1 part by mass of the powder of the ruminant feed composition per 100 parts by mass of the feed.
  • the method for producing a ruminant feed composition includes the steps of housing a polyphenol-containing material in a closed space, heating and pressurizing the polyphenol-containing material with steam in the closed space, and and cooling the space, wherein the step of heating and pressurizing the sealed space heats and cools the sealed space so that the water vapor pressure in the sealed space follows a saturated water vapor pressure curve.
  • the closed space is cooled such that the water vapor pressure in the closed space follows a saturated water vapor pressure curve.
  • the closed space in the step of heating and pressurizing the closed space, the closed space is heated so that the water in the closed space does not boil, and in the step of cooling the closed space, It is preferable to cool the closed space by preventing the water from boiling.
  • the present invention can be easily produced, and even ruminant animals can eat it with good palatability to reduce the amount of methane gas produced in the body.
  • FIG. 1 is a schematic diagram showing an example of a processing apparatus used for producing a processed persimmon, which is a ruminant feed composition according to an embodiment of the present invention.
  • FIG. 1A is a vertical cross-sectional view of a processing apparatus.
  • FIG. 1B is a plan view of the processing apparatus.
  • FIG. 2 is a flow chart showing a manufacturing process for manufacturing a processed persimmon using a processing apparatus.
  • FIG. 3 is a graph representing a comparison of the means of routine measurements of rumen methane concentration.
  • FIG. 3A is a graph of rumen methane concentration in dairy cattle.
  • FIG. 3B is a graph of beef cattle rumen methane concentration.
  • FIG. 1A is a graph of rumen methane concentration in dairy cattle.
  • FIG. 3B is a graph of beef cattle rumen methane concentration.
  • FIG. 4 is a graph depicting a comparison of mean diurnal variations in ruminal methane concentration.
  • FIG. 4A is a graph of rumen methane concentration in dairy cows.
  • FIG. 4B is a graph of beef cattle ruminal methane concentration.
  • FIG. 5 is a graph showing a comparison of averages by feeding season reflecting diurnal variation in ruminal methane concentration.
  • FIG. 5A is a graph of rumen methane concentration in dairy cattle.
  • FIG. 5B is a graph of beef cattle ruminal methane concentration.
  • FIG. 6 is a graph showing the results of measuring the daily milk yield of dairy cows.
  • FIG. 7 shows the analysis results in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle.
  • FIG. 7 shows the analysis results in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle.
  • FIG. 8 shows the analysis results in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle.
  • FIG. 9 shows the analysis results in the recovered liquid collected from the lower layer of the rumen mat of beef cattle.
  • FIG. 10 shows the analysis results in the recovered liquid collected from the lower layer of the rumen mat of beef cattle.
  • the ruminant feed composition according to the present embodiment is obtained by heating and pressurizing the polyphenol-containing material in a closed space so that the water vapor pressure in the closed space follows the saturated water vapor pressure curve without boiling. It is a composition that The persimmon processed product includes a step of storing a polyphenol-containing material in a closed space, a step of heating and pressurizing the polyphenol-containing material with steam in the closed space, and a step of cooling the closed space.
  • the water vapor pressure in the sealed space is heated so that the water vapor pressure in the sealed space follows the saturated water vapor pressure curve, and in the step of cooling the sealed space, the water vapor pressure in the sealed space is It can be manufactured by a manufacturing method characterized by cooling the sealed space along a saturated water vapor pressure curve.
  • Polyphenol-containing materials are plants containing polyphenols. Specifically, it is a plant containing tannins and catechins, such as plants belonging to the genus Acacia, Persimmon, Chestnut, Pinus, Rheum, Grape, and Cinnamomum. More specifically, polyphenol-containing materials are persimmons, grapes, tea, coffee, and the like. Plants containing polyphenols also include seaweed containing tannins and catechins. In addition, in the present embodiment, persimmon is applied as an example of the polyphenol-containing material, and is hereinafter referred to as persimmon material.
  • the processed persimmon material according to the present embodiment is a processed persimmon material obtained by subjecting the persimmon material to color difference decomposition treatment.
  • the color difference decomposition treatment is a known heat and pressure decomposition treatment of plant tissue components, and examples include Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-19713) and Patent Document 3 (Japanese Patent Application Laid-Open No. 2019-42647). etc.
  • the persimmon processed product can be easily manufactured from the persimmon material in several hours to half a day by using the color difference separation device 10 of the present embodiment, for example. It was also confirmed that the feed containing the processed persimmon was eaten by ruminant animals without disliking it, and that the amount of methane gas produced in the body of ruminant animals was reduced. For this reason, ruminant feed containing a composition produced by color-difference decomposition treatment using plants containing polyphenols such as tannins and catechins as materials and feeding them to ruminant animals also reduces the amount of methane gas produced. can.
  • the temperature inside the sealed container is raised along the saturated water vapor pressure curve, and the plant tissue is treated along the saturated water vapor pressure curve at a predetermined temperature and pressure for a predetermined time. Hydrolyze and cool down along the saturated vapor pressure curve.
  • the color difference decomposition treatment is a heat and pressure decomposition method in which plant raw materials are placed in a closed container and the water vapor pressure in the closed container is controlled along an optimum saturated water vapor pressure curve.
  • the color difference separation process is performed while controlling along the saturated water vapor pressure curve, for example, if the pressure or temperature inside the closed container decreases and deviates from the optimum saturated water vapor pressure curve, the sealed container will be closed. Since the amount of water vapor vaporized in the container is reduced, the total amount of Brownian motion of water vapor acting on the structural water of biopolymers is reduced, resulting in a powerful destructive force that physically breaks glycosidic bonds. can no longer function. As a result, decomposition processing becomes impossible.
  • the color difference decomposition may also be referred to as heat decomposition, steam decomposition, etc., in addition to heat and pressure decomposition.
  • the apparatus described in Patent Document 2 and Patent Document 3 can be used to perform color difference separation processing on the persimmon material.
  • FIG. 1 is a longitudinal sectional view of processing apparatus 10
  • FIG. 1B is a plan view of processing apparatus 10.
  • the processing apparatus 10 includes a pressure vessel 12 provided with a lid 14 on the upper surface, a heater 16 for heating the inside of the pressure vessel 12, a temperature sensor 18 for detecting the temperature inside the pressure vessel 12, and a pressure sensor 18 for detecting the pressure inside the pressure vessel 12. and a pressure sensor 22 for detecting the pressure inside the pressure vessel 12 .
  • the pressure sensor 22 and the solenoid valve 20 are connected to the control section 24.
  • the control unit 24 determines whether or not the pressure in the pressure vessel 12 detected by the pressure sensor 22 is within the set pressure range. adjust the pressure of The temperature sensor 18 and heater 16 are also connected to the controller 24 .
  • the control unit 24 determines whether or not the temperature inside the pressure vessel 12 detected by the temperature sensor 18 is within the set temperature range. adjust the temperature of
  • the water vapor generated in the closed space penetrates into the plant tissue to hydrolyze the plant tissue, and the water vapor pressure in the closed space acts on the surface of the plant raw material to hydrolyze it.
  • This is a method of squeezing the plant tissue components generated by the method to the outside of the plant raw material.
  • water molecules that are the structural water of the polymer (surrounding the polymer) work effectively under the condition of saturated water vapor pressure. Therefore, the processing apparatus 10 controls the water vapor pressure in the closed space so as to follow the saturated water vapor pressure curve.
  • FIG. 2 is a flow chart showing an example of a manufacturing process for manufacturing a persimmon processed product using the processing apparatus 10.
  • FIG. Each processing performed in the steps from step S2 to step S6 described below is automatically performed by the control unit 24 controlling the heater 16 and the electromagnetic valve 20 .
  • step S ⁇ b>1 the operator puts the persimmon material into the pressure vessel 12 .
  • "persimmon material” includes persimmon tree fruit, persimmon tree fruit skin, persimmon tree fruit calyx, persimmon tree leaves, and persimmon tree branches.
  • the skin, stem, etc. of the fruit are crop residues or food residues that are generally removed when ripe fruits are processed, and unripe picked fruit and the like are also crop residues. At least one of these materials may be used as the persimmon material.
  • persimmon materials as crop residues or food residues that have been discarded so far can be effectively utilized.
  • step S1 an operator injects a predetermined amount of water into the pressure vessel 12 as necessary, stores the persimmon material in the basket 26, then stores the basket 26 in the pressure vessel 12, and closes the lid. Body 14 is closed and sealed. Thereby, the persimmon material is accommodated in the closed space.
  • step S2 the inside of the pressure vessel 12 is heated by the heater 16 by pressing a process start button provided in the processing apparatus 10, for example.
  • step S2 the inside of the pressure vessel 12 is heated while the electromagnetic valve 20 is open.
  • step S3 the electromagnetic valve 20 is closed at a predetermined temperature (for example, 80° C.) before the water in the pressure vessel 12 reaches the boiling temperature, and heating is continued.
  • a predetermined temperature for example, 80° C.
  • step 3 by sealing the inside of the pressure vessel 12 before the water inside the pressure vessel 12 reaches the temperature at which it boils, boiling of the water can be reliably prevented.
  • the solenoid valve 20 instead of the solenoid valve 20, another pressure valve such as a pressure valve driven by a motor may be used.
  • control unit 24 substitutes the temperature value in the pressure vessel 12 detected at predetermined intervals by the pressure sensor 22 into an approximation formula of the saturated water vapor pressure curve input in advance, and based on the approximation formula Calculate the saturated water vapor pressure (calculated pressure value).
  • the Tetens formula or the like can be used, but it is not limited to this.
  • the control unit 24 also compares the pressure value (actually measured pressure value) in the pressure vessel 12 detected by the pressure sensor 22 with the calculated pressure value, and determines whether the difference is within the set range.
  • the control unit 24 controls the operation of the heater 16 to adjust the temperature in the pressure vessel 12 so that it approaches the calculated pressure value, or controls the operation of the solenoid valve 20. Adjust the pressure in the pressure vessel 12 so that it approaches the calculated pressure value. In this manner, the temperature and pressure in the pressure vessel 12 are controlled substantially along the saturated water vapor pressure curve from when the electromagnetic valve 20 is closed (step S3) to when it is opened (step S5, which will be described later). Note that the temperature and pressure in the pressure vessel 12 may be adjusted using the near-term equation before closing the solenoid valve 20 (step S2) and after opening it (step S6).
  • step S4 control is performed for a predetermined time at a predetermined temperature and a predetermined pressure along the saturated water vapor pressure curve.
  • the persimmon material is heated and pressurized with steam at a temperature of 120 ° C. to 134 ° C. for 2 to 5 hours to decompose (color difference decomposition, thermal decomposition, heat and pressure decomposition, The name is arbitrary, such as steam decomposition).
  • the pressure at this time is approximately 2 to 3 atmospheres.
  • tannin is presumed to be one of the active ingredients in the ruminant feed composition according to the present embodiment.
  • the reason why the temperature condition for the color difference decomposition is set to 134° C. or lower in this embodiment is that the activity of enzymes involved in the production of tannin gradually decreases at 135° C. or higher. If the temperature inside the pressure vessel 12 reaches 150° C. or higher, the persimmon material will be carbonized.
  • step S5 a step of stopping heating and cooling the pressure vessel 12 is performed.
  • step S5 as an example, the heater 16 is stopped and the pressure vessel 12 is naturally cooled. According to this, the temperature and pressure in the pressure vessel 12 are lowered while remaining substantially along the saturated vapor pressure curve. Further, in step S6, after the water in the pressure vessel 12 reaches a temperature lower than the boiling temperature, the solenoid valve 20 is opened to continue cooling. According to this, boiling of water can be reliably prevented.
  • the controller 24 does not necessarily have to control the temperature and pressure inside the pressure vessel 12.
  • the inside of the pressure vessel 12 may be naturally cooled in steps S5 and S6.
  • step S ⁇ b>7 the operator performs a step of recovering the processed material, which is the material to be subjected to color difference separation, from the pressure vessel 12 .
  • the operator opens the lid 14 of the pressure vessel 12 and collects the liquid material accumulated in the tray 28.
  • the worker collects the solid matter from the basket 26 . Both of these liquids and solids are persimmon processed products containing color-difference decomposition products of persimmon materials.
  • the processing device 10 of the present embodiment includes the electromagnetic valve 20, the processing device 10 is not limited to this, and the processing device 10 may not include the electromagnetic valve 20. That is, the processing apparatus 10 can heat and pressurize the polyphenol-containing material so as to follow the saturated water vapor pressure curve in the closed space without boiling. There may be no step of removing the air inside.
  • the operator only needs to collect the persimmon processed product from the pressure vessel 12 after putting the persimmon material into the processing apparatus 10.
  • the time required to produce processed persimmons using the processing apparatus 10 is from several hours to about half a day. Therefore, for example, by storing the persimmon material in the processing apparatus 10 in the evening, the processed persimmon can be recovered in the morning of the next day.
  • the persimmon processed product according to the present embodiment can be produced.
  • the persimmon processed product according to the present embodiment is manufactured with simple equipment in a short period of time by using the persimmon material, which is an unused resource, as a raw material through the color difference decomposition process.
  • the processed persimmon produced by the color difference decomposition treatment according to the present embodiment has the effect of reducing the amount of methane gas produced in livestock bodies. Therefore, the amount of methane gas produced in the body can be reduced by feeding the ruminant animal feed containing the persimmon processed product according to the present embodiment as a ruminant feed composition.
  • methane gas which is a greenhouse gas
  • the feed composition for ruminants according to the present embodiment does not adversely affect the health of ruminants, the effect of reducing methane gas can be obtained without reducing the productivity and quality of livestock products.
  • the processed persimmon powder according to the present embodiment is added to 100 parts by mass of feed for one day, and the dairy cows and beef cattle that are breeding cows are continuously fed for a predetermined period every day. rice field.
  • both dairy cows and beef cows were able to eat the feed containing the processed persimmon with good palatability without disliking it, and compared to before feeding the processed persimmon powder, the rumen methane concentration in the
  • there was almost no change in body weight compared to before the feeding of the processed persimmon powder no significant abnormalities in blood biochemical properties were observed, and no adverse effects on health conditions due to feeding of the processed persimmon powder were observed. (See Examples).
  • the processed persimmon which is the ruminant feed composition according to the present embodiment, contains various components newly generated or increased by the color difference decomposition treatment of the persimmon material. It is speculated that these components act in a complex and synergistic manner to reduce the amount of methane gas produced in the body of ruminant animals without adversely affecting their health. It is presumed that polyphenols such as catechins, tannins, and other various components in the persimmon processed product can be constituent elements for achieving the object of the present invention as active ingredients. The situation is that it is often impractical to directly identify an object by its structure.
  • the ruminant feed according to the present embodiment is obtained by mixing a predetermined amount of processed persimmon, which is the ruminant feed composition according to the present embodiment, with known feed (for example, processed products such as feed crops). Easy to manufacture.
  • the persimmon processed product may be added to the feed component after drying the liquid or solid as appropriate or powdering it. Alternatively, either one of the liquid and solid persimmon processed products may be added to the feed component, or both may be added to the feed component.
  • the persimmon material was subjected to color difference decomposition treatment using the persimmon skin (persimmon skin of Ichida persimmon (registered trademark and geographical indication)), which is a by-product of dried persimmon production.
  • the solid matter (paste) of the color difference decomposition product was dried to obtain a powder (hereinafter referred to as "persimmon skin powder").
  • the persimmon skin powder contains 316 ⁇ g/100 g of vitamin A, 3570 ⁇ g/100 g of ⁇ -carotene, 10.7 g/100 g of fructose, 14.4 g/100 g of glucose, 0.32 g/100 g of arabinose, and 1.70 g/100 g of tannin as tannic acid.
  • the tester fed 400 g/day of the persimmon skin powder to dairy cows and beef cattle (fistula-equipped cattle) for 4 weeks (28 days) one week after acclimatization, and measured the methane concentration in the rumen.
  • GC-MS gas chromatograph-mass spectrometer
  • the acclimatization period for persimmon skin powder is from October 14th to 20th. was given a gradual increase. Thereafter, persimmon skin powder was fed at a rate of 400 g/day for 4 weeks (28 days) from October 21st to November 18th. The persimmon skin powder was sprinkled on the feed, and after the daily feeding amount was increased to 200 g or more, the persimmon skin powder was fed in multiple times. Moreover, when the previous persimmon skin powder remained at the time of feeding, the previous persimmon skin powder was removed. Table 1 shows the content of the feed, the time of feeding, and the time of feeding persimmon skin powder at the feeding time of 400 g.
  • TMR Total Mixed Ratio
  • Table 1 is mainly composed of corn silage, and contains alfalfa hay, oat hay, timothy hay, Sudangrass hay, beet pulp, brewer's grain, soybean meal, corn press, and other minerals. , vitamins, commercially available feed, etc., together with a predetermined amount of water.
  • “Mother Kuroshi” is the trade name of commercial feed (manufactured by Nihon Nosan Kogyo Co., Ltd.).
  • a "hay cube” is a cube-shaped compacted product of alfalfa hay hay.
  • the persimmon skin powder was fed at 13:30 on the 14th and 15th, and at 9:20 on the 16th and 17th. and 100 g each at 13:30, and 100 g each at 9:20, 13:30 and 15:30 on the 18th, 19th and 20th. This is 1 part by weight for 100 parts by weight of TMR compared to 10 Kg of TMR given to dairy cows.
  • the feeding time of persimmon skin powder during the acclimatization period to beef cattle was 100 g at 13:00 on the 14th and 15th, 100 g at 8:00 and 13:00 on the 16th and 17th, and 100 g at 13:00 on the 16th and 17th. - On the 19th and 20th, 100 g each at 8:00, 13:00 and 16:00.
  • Test 2 Methane concentration in the rumen (diurnal variation) The tester compared the diurnal variation of the methane concentration in the ruminal gas collected five times every 3 hours on a predetermined day before and after feeding the persimmon skin powder and during the feeding period. However, in beef cattle, diurnal variation before feeding could not be measured. For this reason, the tester compared the average methane concentration of 9,078 ppm in rumen gas sampled at regular intervals for 3 days before the start of feeding (acclimation) with the circadian variation during and after the feeding period. Table 3 shows details of collection dates.
  • Test (3) Body weight, blood biochemistry, milk yield Reducing the production of methane gas by simply suppressing the activity of methanogenic bacteria (or reducing the number of bacteria) may worsen the health condition of ruminant animals. , there is concern that the productivity of livestock products (raw milk and carcass) will decline due to the decrease in feed utilization efficiency. Therefore, the testers measured the body weight, blood biochemical properties, and milk yield before and after feeding the persimmon skin powder and during the feeding period, and compared the results. Blood biochemical properties were measured using a clinical chemistry analyzer (trade name: Fuji Drychem 3500V, manufactured by Fujifilm Corporation). The date of measurement (the date of blood sampling for blood biochemical properties) is shown together with the results in Tables 4 and 5 and FIG. 6, which will be described later.
  • FIG. 3 is a graph representing a comparison of the means of routine measurements of rumen methane concentration.
  • FIG. 3A is a graph of rumen methane concentration in dairy cattle.
  • FIG. 3B is a graph of beef cattle ruminal methane concentration.
  • the dairy cow had a pre-feeding methane concentration of 26,866 ppm, but two weeks of feeding the methane concentration decreased to 14,000 ppm.
  • the methane concentration after feeding decreased significantly compared to before feeding, such as 4,100 ppm in the 4th week of feeding and 3,800 ppm in the 3rd week after feeding.
  • the methane concentration before feeding was 9,076 ppm, 2,700 ppm in the second week of feeding, and 2,216 ppm in the fourth week of feeding. Methane concentration decreased. Moreover, the methane concentration three weeks after the end of feeding was 4,086 ppm, which was lower than the methane concentration before feeding.
  • FIG. 4 is a graph depicting a comparison of mean diurnal variations in ruminal methane concentration.
  • FIG. 4A is a graph of rumen methane concentration in dairy cows.
  • FIG. 4B is a graph of beef cattle ruminal methane concentration.
  • Fig. 4B there are three days (October 11, 12, 13) before the start of feeding (acclimation)
  • the average methane concentration of 9,078 ppm in the ruminal gas collected at 13:00) is also shown.
  • FIG. 5 is a graph showing a comparison of the average diurnal variation of rumen methane concentration at each feeding period. That is, FIG. 5 shows a comparison of averages by feeding season reflecting diurnal variation in rumen methane concentration.
  • FIG. 5A is the rumen methane concentration of dairy cows.
  • FIG. 5B is beef cattle rumen methane concentration. As shown in FIGS. 5A and 5B, both the dairy cattle and the beef cattle had significantly lower methane concentrations after the start of feeding than before feeding. In addition, since the methane concentration did not return to the level before feeding three weeks after the end of feeding, it is considered that the methane gas reducing effect of the persimmon skin powder continues at this point.
  • Test (3) Body Weight, Blood Biochemical Properties, Milk Yield Table 4 shows the measurement results of the body weight and blood biochemical properties of dairy cows.
  • Table 5 shows the measurement results of body weight and blood biochemical properties of beef cattle.
  • FIG. 6 shows the results of measuring the daily milk yield of a dairy cow (last calving: March 23, 2021) every 20 days from 25 days to 265 days after calving.
  • the body weight of dairy cattle and beef cattle was about 96% on the day of the end of feeding when the weight before feeding (the day before the start of feeding) was taken as 100%, showing almost no change.
  • the daily milk yield during the feeding period was compared with the standard daily milk yield of 9,000 kg and 10,000 kg cows, and the milk yield was maintained during and after the feeding period. was done. From this, it is considered that feeding persimmon skin powder has no adverse effect on health, no decrease in productivity of livestock products, and no adverse effect on quality.
  • Example 2 the effect of feeding persimmon skin powder to cattle to reduce ruminal methane gas concentration was further confirmed.
  • persimmon skin powder was fed to two cows (one dairy cow and one beef cow) equipped with fistulas. bottom.
  • the testers gradually increased the amount of persimmon skin powder fed, up to 400g per day for 3 weeks.
  • the testers performed the last three days of this persimmon skin feeding period, and three days in February and April as a control period sandwiching the feeding period at 7:00 am, 10:30 am, 1:00 pm, and 4:00 pm.
  • the fistula was opened to take gas samples and rumen contents.
  • the tester separately collected the contents of the rumen from the upper layer and the lower layer of the rumen mat. Salary and sampling schedules are shown in Table 6.
  • the tester measured the gas sample using gas chromatography, and obtained the ratio of the amount of methane gas to the total amount of methane and carbon dioxide as the methane gas fraction.
  • the tester purified the supernatant obtained by further centrifuging the recovered liquid using a solid-phase extraction column, and used liquid chromatography to volatile fatty acid (Volatile Fatty Acid, hereinafter also referred to as "VFA”. ) was quantified.
  • VFA volatile Fatty Acid
  • the tester extracted the microbial genome DNA from the recovered liquid, quantified the total number of bacteria and the number of methanogens by quantitative PCR (Polymerase Chain Reaction), and determined the ratio of the number of methanogens to the total number of bacteria.
  • the tester obtained gas samples in August, November, and December, and rumen contents in November and December by the same procedure. are processed, and analytical results are obtained.
  • Figures 7 and 8 show the total amount of VFA, the acetic acid fraction, the propionic acid fraction, the butyric acid fraction, and the acetic acid/propionic acid ratio (A/P ratio) in the recovered liquid collected from the contents of the rumen of dairy cattle. , is a graph showing the ratio of methanogens.
  • FIG. 7 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat
  • FIG. 8 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat.
  • the total amount of VFA and the butyric acid content in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle were significantly different from the persimmon skin feeding period (November, March) and the non-feeding period (12 months). month, April) was significantly higher.
  • the acetic acid fraction, A/P ratio, and methanogen ratio were significantly lower during the persimmon skin feeding period than during the non-feeding period.
  • the total amount of VFA in the recovered liquid collected from the lower layer of the rumen mat of dairy cattle was significantly higher during the persimmon skin feeding period than during the non-feeding period.
  • FIG. 9 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat
  • FIG. 10 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat.
  • the propionic acid fraction in the recovered liquid collected from the upper layer of the rumen mat of beef cattle was significantly higher during the persimmon skin feeding period than during the non-feeding period.
  • the butyric acid fraction, A/P ratio, and methanogen ratio were significantly lower during the persimmon skin feeding period than during the non-feeding period.
  • the ratio of methanogenic bacteria in the recovered liquid collected from the lower layer of the rumen mat of beef cattle was significantly lower during the persimmon skin feeding period than during the non-feeding period.
  • the reaction pathway in which methane is produced by fermentation performed by microorganisms in the rumen is fixed to some extent. Specifically, first, microorganisms that decompose low-digestible carbohydrates (such as cellulose) produce acetic acid, butyric acid, and hydrogen as main fermentation products. The hydrogen produced is then used by methanogens to reduce carbon dioxide in the rumen, resulting in the production of methane as the final product.
  • low-digestible carbohydrates such as cellulose
  • the change in the VFA ratio which tends to occur simultaneously with methanogenesis, is due to an increase in the acetic acid ratio and a decrease in the propionic acid ratio, and at this time, the acetic acid/propionic acid ratio (A/P ratio) is get higher
  • processing device 12 pressure vessel 14 lid 16 heater 18 temperature sensor 20 electromagnetic valve 22 pressure sensor 24 controller 26 basket 28 tray

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)

Abstract

Provided are a ruminant feed composition that can be easily manufactured and is capable of reducing the amount of methane gas produced in the body, a ruminant feed and a method for manufacturing a ruminant feed composition. The method for manufacturing a ruminant feed composition according to the present invention comprises: a step for housing a persimmon material in a sealed space; a step for heating the sealed space; a step for heating and pressurizing the persimmon material by water vapor in the sealed space for 2-5 hours under a temperature of 120-134°C to decompose the material; and a step for cooling the sealed space. In the step for heating the sealed space, the sealed space is heated while allowing the water vapor pressure in the sealed space to follow the saturated water vapor pressure curve. In the step for cooling the sealed space, the sealed space is cooled while allowing the water vapor pressure in the sealed space to follow the saturated water vapor pressure curve.

Description

反芻動物用飼料組成物、反芻動物用飼料、および、反芻動物用飼料組成物の製造方法Ruminant feed composition, ruminant feed, and method for producing ruminant feed composition 関連出願の相互参照Cross-reference to related applications
 本出願では、2021年12月23日に日本国に出願された特許出願番号2021-209066の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。 This application claims the benefit of patent application number 2021-209066 filed in Japan on December 23, 2021, and the content of that application is incorporated herein by reference.
 本発明は、反芻動物用飼料組成物、反芻動物用飼料、および、反芻動物用飼料組成物の製造方法に関する。 The present invention relates to a ruminant feed composition, a ruminant feed, and a method for producing a ruminant feed composition.
 地球の温暖化は、異常気象等が現実化している近年、ますます深刻度が増している問題である。 Global warming is a problem that has become more and more serious in recent years, when abnormal weather has become a reality.
 地球温暖化の原因となる温室効果ガスの一つとしてのメタン(CH)は、地球温暖化係数が二酸化炭素(CO)の20倍以上であり、排出量の削減が早急に求められる。メタンガスは、農林水産分野においては主に水田や家畜の体内から排出される。このうち、家畜の体内から排出されるメタンガスは、牛、羊、山羊等の反芻動物の消化管内で起こる発酵によって産生されたものが、曖気(げっぷ)等によってもしくは糞尿等の排泄物を介して大気中に排出され、大きな問題となっている。 Methane (CH 4 ), which is one of the greenhouse gases that cause global warming, has a global warming potential of 20 times or more that of carbon dioxide (CO 2 ), and is urgently required to reduce its emissions. In the field of agriculture, forestry and fisheries, methane gas is mainly discharged from the bodies of paddy fields and livestock. Of these, methane gas emitted from the bodies of livestock is produced by fermentation in the digestive tracts of ruminant animals such as cows, sheep, and goats through belching or excrement such as manure. It is released into the atmosphere and becomes a big problem.
 ここで、タンニンやカテキン等のポリフェノールを含む飼料を反芻動物に給与することで、反芻動物の体内でのメタンガスの産生量が減少することが知られている。しかしながら、ポリフェノールを含有する食物を加工せずにそのまま飼料に混ぜて反芻動物に給与するだけでは、反芻動物は十分に当該飼料を摂食しようとしなかった。この理由は、ポリフェノールを含有する食物は独特の風味があり、この風味を反芻動物が嫌うためと考えられる。 Here, it is known that feeding ruminant animals with feed containing polyphenols such as tannins and catechins reduces the amount of methane gas produced in the ruminant's body. However, when the polyphenol-containing food was mixed with feed without processing and fed to ruminants, the ruminants did not sufficiently eat the feed. The reason for this is thought to be that foods containing polyphenols have a unique flavor that ruminants dislike.
 そこで、例えば、作物残渣や食品残渣といった未利用資源からポリフェノールを含む加工物を製造して、反芻動物に給餌することで体内でのメタンガスの産生量を減少させる方法が検討されている。 Therefore, for example, methods to reduce the amount of methane gas produced in the body by producing processed products containing polyphenols from unused resources such as crop residues and food residues and feeding them to ruminants are being investigated.
 一例として、特許文献1(国際公開第2018/003034号)には、反芻動物の第一胃内のメタン産生菌を減少させてメタンガスの産生を抑制する方法が記載されている。この方法は、コーヒー豆粕等のコーヒー成分(コーヒーポリフェノール)をバクテリオシン産生乳酸菌で発酵処理したものを、飼料効率改善剤として飼料に混合して給餌する方法である。この方法による家畜用飼料と飼料効率改善剤の混合割合は、飼料効率改善作用の向上の観点、経済性の観点、および嗜好性の観点から、質量比で好ましくは100:0.1~10、より好ましくは100:1~5とされている。 As an example, Patent Document 1 (International Publication No. 2018/003034) describes a method for suppressing methane gas production by reducing methanogenic bacteria in the rumen of ruminants. In this method, coffee ingredients (coffee polyphenols) such as coffee grounds are fermented with bacteriocin-producing lactic acid bacteria and mixed with feed as a feed efficiency improving agent. The mixing ratio of the feed for livestock and the feed efficiency improving agent according to this method is preferably 100:0.1 to 10 by mass, from the viewpoints of improvement of the feed efficiency improving effect, economic efficiency, and palatability. More preferably 100:1-5.
国際公開第2018/003034号WO2018/003034
 しかしながら、特許文献1に記載の方法では、乳酸菌の培養管理が必要になり、また、発酵処理工程に数日を要し、その間の温度管理等も必要になり、手間および時間が掛かる。このように、飼料によって反芻動物の体内でのメタンガスの産生量を減少させようとする場合、その取扱いがより簡易であることが求められる。 However, the method described in Patent Document 1 requires culturing control of lactic acid bacteria, requires several days for the fermentation process, and requires temperature control during that time, which is laborious and time consuming. Thus, when it is intended to reduce the amount of methane gas produced in the body of a ruminant by means of feed, it is required that the feed be easier to handle.
 また、反芻動物の体内でメタンガスを産生するメタン産生菌は、例えば当該動物のエネルギー源となる揮発性脂肪酸を産生する細菌等と栄養共生関係にある。したがって、メタン産生菌の活動を抑えて(または菌数を減少させて)メタンガスの産生量を減少させようとする場合、反芻動物が嫌うことなく適切に摂食して反芻動物の健康状態等に悪影響を与えない飼料とする必要がある。 In addition, methane-producing bacteria that produce methane gas in the body of ruminants have a nutritional symbiotic relationship with bacteria that produce volatile fatty acids, which serve as an energy source for the animals, for example. Therefore, when trying to reduce the amount of methane gas produced by suppressing the activity of methane-producing bacteria (or by reducing the number of bacteria), it is necessary to ensure that ruminant animals eat properly and have an adverse effect on the health of ruminants. It should be a feed that does not give
 本発明は、上記事情に鑑みてなされ、簡易に製造することができ、かつ反芻動物においても嗜好性よく摂食して体内でのメタンガスの産生量を減少させることができる反芻動物用飼料組成物、反芻動物用飼料、および、反芻動物用飼料組成物の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a feed composition for ruminants that can be easily produced and that can be eaten with good palatability even by ruminants to reduce the amount of methane gas produced in the body. An object of the present invention is to provide a ruminant feed and a method for producing a ruminant feed composition.
 本発明は、一実施形態として以下に記載するような解決手段により、前記課題を解決する。 The present invention solves the above problems by means of solutions as described below as one embodiment.
 本発明に係る反芻動物用飼料組成物は、ポリフェノール含有材料が密閉空間内で、沸騰させることなく前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うように、加熱加圧された柿加工物からなる組成物である。 The feed composition for ruminants according to the present invention is a persimmon processed product in which the polyphenol-containing material is heated and pressurized in a closed space without boiling so that the water vapor pressure in the closed space follows the saturated water vapor pressure curve. It is a composition consisting of
 上記反芻動物用飼料組成物においては、前記加熱加圧の後に、水蒸気により120℃~134℃の温度下で2時間~5時間、2気圧~3気圧でさらに加熱加圧されてもよい。 In the above feed composition for ruminants, after the heating and pressurization, it may be further heated and pressurized with steam at a temperature of 120°C to 134°C for 2 to 5 hours at 2 to 3 atmospheres.
 また、本発明に係る反芻動物用飼料は、上記の反芻動物用飼料組成物を含有する飼料である。 Further, the ruminant feed according to the present invention is a feed containing the above-described ruminant feed composition.
 上記反芻動物用飼料においては、飼料100質量部に対して1質量部の前記反芻動物用飼料組成物の粉末を含有してもよい。 The ruminant feed may contain 1 part by mass of the powder of the ruminant feed composition per 100 parts by mass of the feed.
 また、本発明に係る反芻動物用飼料組成物の製造方法は、ポリフェノール含有材料を密閉空間に収容する工程と、前記密閉空間内で、前記ポリフェノール含有材料を水蒸気により加熱加圧する工程と、前記密閉空間を冷却する工程と、を含み、前記密閉空間を加熱加圧する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を加熱し、前記密閉空間を冷却する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を冷却することを特徴とする。 Further, the method for producing a ruminant feed composition according to the present invention includes the steps of housing a polyphenol-containing material in a closed space, heating and pressurizing the polyphenol-containing material with steam in the closed space, and and cooling the space, wherein the step of heating and pressurizing the sealed space heats and cools the sealed space so that the water vapor pressure in the sealed space follows a saturated water vapor pressure curve. In the step of cooling, the closed space is cooled such that the water vapor pressure in the closed space follows a saturated water vapor pressure curve.
 上記の方法においては、前記密閉空間を加熱加圧する工程では、前記密閉空間内の水が沸騰しないようにして、前記密閉空間を加熱し、前記密閉空間を冷却する工程では、前記密閉空間内の水が沸騰しないようにして、前記密閉空間を冷却することが好ましい。 In the above method, in the step of heating and pressurizing the closed space, the closed space is heated so that the water in the closed space does not boil, and in the step of cooling the closed space, It is preferable to cool the closed space by preventing the water from boiling.
 本発明によれば、簡易に製造することができ、かつ反芻動物においても嗜好性よく摂食して体内でのメタンガスの産生量を減少させることができる。 According to the present invention, it can be easily produced, and even ruminant animals can eat it with good palatability to reduce the amount of methane gas produced in the body.
図1は、本発明の実施形態に係る反芻動物用飼料組成物である柿加工物の製造に用いる処理装置の例を示す概略図である。図1Aは、処理装置の縦断面図である。図1Bは、処理装置の平面図である。FIG. 1 is a schematic diagram showing an example of a processing apparatus used for producing a processed persimmon, which is a ruminant feed composition according to an embodiment of the present invention. FIG. 1A is a vertical cross-sectional view of a processing apparatus. FIG. 1B is a plan view of the processing apparatus. 図2は、処理装置を用いて柿加工物を製造する製造工程を示すフローチャートである。FIG. 2 is a flow chart showing a manufacturing process for manufacturing a processed persimmon using a processing apparatus. 図3は、第一胃内メタン濃度の定時測定の平均の比較を表すグラフである。図3Aは、乳用牛の第一胃内メタン濃度のグラフである。図3Bは、肉用牛の第一胃内メタン濃度のグラフである。FIG. 3 is a graph representing a comparison of the means of routine measurements of rumen methane concentration. FIG. 3A is a graph of rumen methane concentration in dairy cattle. FIG. 3B is a graph of beef cattle rumen methane concentration. 図4は、第一胃内メタン濃度の日内変動の平均の比較を表すグラフである。図4Aは、乳用牛の第一胃内メタン濃度のグラフである。図4Bは、肉用牛の第一胃内メタン濃度のグラフである。FIG. 4 is a graph depicting a comparison of mean diurnal variations in ruminal methane concentration. FIG. 4A is a graph of rumen methane concentration in dairy cows. FIG. 4B is a graph of beef cattle ruminal methane concentration. 図5は、第一胃内メタン濃度の日内変動を反映させた給与時期別の平均の比較を表すグラフである。図5Aは、乳用牛の第一胃内メタン濃度のグラフである。図5Bは、肉用牛の第一胃内メタン濃度のグラフである。FIG. 5 is a graph showing a comparison of averages by feeding season reflecting diurnal variation in ruminal methane concentration. FIG. 5A is a graph of rumen methane concentration in dairy cattle. FIG. 5B is a graph of beef cattle ruminal methane concentration. 図6は、乳用牛の日乳量を測定した結果を表すグラフである。FIG. 6 is a graph showing the results of measuring the daily milk yield of dairy cows. 図7は、乳用牛のルーメンマットの上層部から採集した回収液中における分析結果である。FIG. 7 shows the analysis results in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle. 図8は、乳用牛のルーメンマットの上層部から採集した回収液中における分析結果である。FIG. 8 shows the analysis results in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle. 図9は、肉用牛のルーメンマットの下層部から採集した回収液中における分析結果である。FIG. 9 shows the analysis results in the recovered liquid collected from the lower layer of the rumen mat of beef cattle. 図10は、肉用牛のルーメンマットの下層部から採集した回収液中における分析結果である。FIG. 10 shows the analysis results in the recovered liquid collected from the lower layer of the rumen mat of beef cattle.
 以下、本発明の実施形態について説明する。本実施形態に係る反芻動物用飼料組成物は、ポリフェノール含有材料が密閉空間内で、沸騰させることなく密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うように、加熱加圧された加工物からなる組成物である。当該柿加工物は、ポリフェノール含有材料を密閉空間に収容する工程と、前記密閉空間内で、前記ポリフェノール含有を水蒸気により加熱加圧する工程と、前記密閉空間を冷却する工程と、を含み、前記密閉空間を加熱加圧する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を加熱し、前記密閉空間を冷却する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を冷却することを特徴とする製造方法によって製造することができる。 Embodiments of the present invention will be described below. The ruminant feed composition according to the present embodiment is obtained by heating and pressurizing the polyphenol-containing material in a closed space so that the water vapor pressure in the closed space follows the saturated water vapor pressure curve without boiling. It is a composition that The persimmon processed product includes a step of storing a polyphenol-containing material in a closed space, a step of heating and pressurizing the polyphenol-containing material with steam in the closed space, and a step of cooling the closed space. In the step of heating and pressurizing the space, the water vapor pressure in the sealed space is heated so that the water vapor pressure in the sealed space follows the saturated water vapor pressure curve, and in the step of cooling the sealed space, the water vapor pressure in the sealed space is It can be manufactured by a manufacturing method characterized by cooling the sealed space along a saturated water vapor pressure curve.
 ポリフェノール含有材料は、ポリフェノールを含む植物等である。具体的には、タンニンやカテキンを含む植物であり、例えば、アカシア属、カキノキ属、クリ属、マツ属、ダイオウ属、ブドウ属、ニッケイ属等の植物である。より具体的には、ポリフェノール含有材料は、柿、ブドウ、茶、コーヒー等である。また、ポリフェノールを含む植物は、タンニンやカテキンを含む海藻も含まれる。なお、本実施形態では、ポリフェノール含有材料の一例として、柿を適用し、以下では柿材料という。 Polyphenol-containing materials are plants containing polyphenols. Specifically, it is a plant containing tannins and catechins, such as plants belonging to the genus Acacia, Persimmon, Chestnut, Pinus, Rheum, Grape, and Cinnamomum. More specifically, polyphenol-containing materials are persimmons, grapes, tea, coffee, and the like. Plants containing polyphenols also include seaweed containing tannins and catechins. In addition, in the present embodiment, persimmon is applied as an example of the polyphenol-containing material, and is hereinafter referred to as persimmon material.
 本実施形態に係る柿加工物は、柿材料に色差分解処理を施すことによって得られる柿材料の加工物である。色差分解処理とは、公知の植物組織内成分の加熱加圧分解処理であって、一例として、特許文献2(特開2012-19713号公報)および特許文献3(特開2019-42647号公報)等に記載されている。 The processed persimmon material according to the present embodiment is a processed persimmon material obtained by subjecting the persimmon material to color difference decomposition treatment. The color difference decomposition treatment is a known heat and pressure decomposition treatment of plant tissue components, and examples include Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-19713) and Patent Document 3 (Japanese Patent Application Laid-Open No. 2019-42647). etc.
 上記柿加工物は、詳細を後述するように、例えば本実施形態の色差分解装置10を用いることで数時間から半日程度で柿材料から簡易に製造できる。そして、柿加工物を含有する飼料は、反芻動物が嫌うことなく摂食し、反芻動物の体内でのメタンガスの産生量を減少させることが確認できた。このため、タンニンやカテキン等のポリフェノールを含む植物を材料とし、色差分解処理によって生成された組成物を反芻動物用飼料に含有させて反芻動物に給与することでも、同様にメタンガスの産生量を減少できる。 As will be described later in detail, the persimmon processed product can be easily manufactured from the persimmon material in several hours to half a day by using the color difference separation device 10 of the present embodiment, for example. It was also confirmed that the feed containing the processed persimmon was eaten by ruminant animals without disliking it, and that the amount of methane gas produced in the body of ruminant animals was reduced. For this reason, ruminant feed containing a composition produced by color-difference decomposition treatment using plants containing polyphenols such as tannins and catechins as materials and feeding them to ruminant animals also reduces the amount of methane gas produced. can.
 この植物組織内成分の色差分解処理は、密閉空間内に発生する水蒸気を植物組織内に浸透させて植物組織を加水分解すると共に、密閉空間内の水蒸気圧を植物原料の表面に作用させて、加水分解により生成した植物組織内成分を植物原料の外部に搾り出す加熱加圧分解法である。具体的には、色差分解処理は、植物原料を密閉容器に収容し、密閉容器内の分圧としての水蒸気圧を飽和水蒸気圧曲線に沿って制御しつつ植物組織の加水分解に必要な圧力および温度の範囲で一定時間保持する。また、温度制御の観点からの色差分解処理は、密閉容器内を飽和水蒸気圧曲線に沿って昇温し、飽和水蒸気圧曲線に沿って所定温度、および所定圧力で所定時間制御しつつ植物組織を加水分解し、飽和水蒸気圧曲線に沿って降温させる。 In this color difference decomposition treatment of plant tissue components, the water vapor generated in the closed space penetrates into the plant tissue to hydrolyze the plant tissue, and the water vapor pressure in the closed space acts on the surface of the plant raw material, This is a heat and pressure decomposition method in which the plant tissue components produced by hydrolysis are squeezed out of the plant raw material. Specifically, in the color difference decomposition treatment, plant raw materials are housed in a closed container, and the water vapor pressure as the partial pressure in the closed container is controlled along the saturated water vapor pressure curve while the pressure and pressure required for hydrolyzing the plant tissue are Hold for a certain period of time within the temperature range. In the color difference decomposition process from the viewpoint of temperature control, the temperature inside the sealed container is raised along the saturated water vapor pressure curve, and the plant tissue is treated along the saturated water vapor pressure curve at a predetermined temperature and pressure for a predetermined time. Hydrolyze and cool down along the saturated vapor pressure curve.
 色差分解処理は、水分子のブラウン運動の方向と位相を色力学的に整えてやることによって水分子の連鎖にウェーブが起こり、これが強大な破壊力となって生体高分子のグリコシド結合を物理的に分断するという仕組みを利用している。この場合に重要なことは、これらの高分子の構造水となっている(高分子を取り巻いている)水分子が飽和水蒸気圧の条件下で有効に働くということである。以下に詳述すると、色差分解処理は、植物原料を密閉容器に収容し、密閉容器内の水蒸気圧を最適な飽和水蒸気圧曲線に沿って制御することで行う加熱加圧分解法であることは上述の通りであるが、飽和水蒸気圧曲線に沿って制御しながら色差分解処理を行っているとき、例えば、密閉容器内の圧力、若しくは温度が上昇して、最適な飽和水蒸気圧曲線から逸脱し、密閉容器内の飽和水蒸気圧が保てない状態になると、やがて、生体高分子の構造水までもが気化する状況になって、生体高分子から離れてしまうので、水蒸気のブラウン運動を生体高分子に作用させることができなくなり、グリコシド結合を物理的に分断させる強大な破壊力を生体高分子に作用させることができなくなる。その結果、分解処理ができなくなってしまう。また、飽和水蒸気圧曲線に沿って制御しながら色差分解処理を行っているとき、例えば、密閉容器内の圧力、若しくは温度が低下して、最適な飽和水蒸気圧曲線から逸脱した状態になると、密閉容器内に気化している水蒸気量が低下してしまうので、生体高分子の構造水に対して作用する水蒸気のブラウン運動の総量が減少し、グリコシド結合を物理的に分断させる強大な破壊力を作用させることができなくなる。その結果、分解処理ができなくなってしまう。なお、色差分解は別称として、加熱加圧分解の他に、熱分解、水蒸気分解等と表記される場合もある。 In the chrominance decomposition process, by chromodynamically adjusting the direction and phase of the Brownian motion of water molecules, waves occur in the chain of water molecules. It uses a mechanism of dividing into What is important in this case is that the water molecules that are the structural water of these polymers (surrounding the polymers) work effectively under the condition of saturated water vapor pressure. As will be described in detail below, the color difference decomposition treatment is a heat and pressure decomposition method in which plant raw materials are placed in a closed container and the water vapor pressure in the closed container is controlled along an optimum saturated water vapor pressure curve. As described above, when color difference separation processing is performed while controlling along the saturated water vapor pressure curve, for example, the pressure or temperature inside the closed container rises and deviates from the optimum saturated water vapor pressure curve. When the saturated water vapor pressure in the closed container cannot be maintained, eventually even the structural water of the biopolymer vaporizes and separates from the biopolymer. It becomes impossible to act on molecules, and it becomes impossible to act on biopolymers with a strong destructive force that physically breaks glycosidic bonds. As a result, decomposition processing becomes impossible. Further, when the color difference separation process is performed while controlling along the saturated water vapor pressure curve, for example, if the pressure or temperature inside the closed container decreases and deviates from the optimum saturated water vapor pressure curve, the sealed container will be closed. Since the amount of water vapor vaporized in the container is reduced, the total amount of Brownian motion of water vapor acting on the structural water of biopolymers is reduced, resulting in a powerful destructive force that physically breaks glycosidic bonds. can no longer function. As a result, decomposition processing becomes impossible. The color difference decomposition may also be referred to as heat decomposition, steam decomposition, etc., in addition to heat and pressure decomposition.
 本実施形態において、柿材料に色差分解処理を施すに当たっては、上記の特許文献2および特許文献3に記載されている装置を用いることができる。 In this embodiment, the apparatus described in Patent Document 2 and Patent Document 3 can be used to perform color difference separation processing on the persimmon material.
 具体的に、柿加工物の製造には、図1に示すような処理装置10(色差分解装置、加熱加圧分解装置、水蒸気分解装置等、呼称は任意である)を用いることができる。図1Aは処理装置10の縦断面図であり、図1Bは処理装置10の平面図である。処理装置10は、上面に蓋体14が設けられた圧力容器12と、圧力容器12内を加熱するヒータ16と、圧力容器12内の温度を検出する温度センサ18と、圧力容器12内の圧力を調整する電磁弁20と、圧力容器12内の圧力を検出する圧力センサ22と、を備えている。 Specifically, for the production of persimmon processed products, a processing apparatus 10 (color difference decomposition apparatus, heating/pressure decomposition apparatus, steam decomposition apparatus, or any other name) as shown in FIG. 1 can be used. 1A is a longitudinal sectional view of processing apparatus 10, and FIG. 1B is a plan view of processing apparatus 10. FIG. The processing apparatus 10 includes a pressure vessel 12 provided with a lid 14 on the upper surface, a heater 16 for heating the inside of the pressure vessel 12, a temperature sensor 18 for detecting the temperature inside the pressure vessel 12, and a pressure sensor 18 for detecting the pressure inside the pressure vessel 12. and a pressure sensor 22 for detecting the pressure inside the pressure vessel 12 .
 圧力センサ22および電磁弁20は制御部24に接続されている。制御部24は、圧力センサ22により検出された圧力容器12内の圧力が設定圧力範囲内であるか否を判定し、設定範囲外である場合、電磁弁20を開閉制御して圧力容器12内の圧力を調整する。また、温度センサ18およびヒータ16も制御部24に接続されている。制御部24は、温度センサ18により検出された圧力容器12内の温度が設定温度範囲内であるか否かを判定し、設定範囲外である場合、ヒータ16を動作制御して圧力容器12内の温度を調整する。 The pressure sensor 22 and the solenoid valve 20 are connected to the control section 24. The control unit 24 determines whether or not the pressure in the pressure vessel 12 detected by the pressure sensor 22 is within the set pressure range. adjust the pressure of The temperature sensor 18 and heater 16 are also connected to the controller 24 . The control unit 24 determines whether or not the temperature inside the pressure vessel 12 detected by the temperature sensor 18 is within the set temperature range. adjust the temperature of
 前述の通り、色差分解処理は、密閉空間内に発生する水蒸気を植物組織内に浸透させて植物組織を加水分解すると共に、密閉空間内の水蒸気圧を植物原料の表面に作用させて、加水分解により生成した植物組織内成分を植物原料の外部に搾り出す方法である。色差分解処理においては、高分子の構造水となっている(高分子を取り巻いている)水分子が飽和水蒸気圧の条件下で有効に働く。したがって、処理装置10は、密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うように制御する。また、密閉空間内の水が沸騰すると、水分子が高分子の構造から離れ、それぞれバラバラな分子となって勝手に動きまわり、高分子は動きを止めてしまうため、植物組織に対して大きな破壊力が形成されなくなり、色差分解処理ができなくなる。したがって、処理装置10は、密閉空間内の水が沸騰しないように制御することがより好ましい。 As described above, in the color difference decomposition process, the water vapor generated in the closed space penetrates into the plant tissue to hydrolyze the plant tissue, and the water vapor pressure in the closed space acts on the surface of the plant raw material to hydrolyze it. This is a method of squeezing the plant tissue components generated by the method to the outside of the plant raw material. In the chrominance decomposition process, water molecules that are the structural water of the polymer (surrounding the polymer) work effectively under the condition of saturated water vapor pressure. Therefore, the processing apparatus 10 controls the water vapor pressure in the closed space so as to follow the saturated water vapor pressure curve. Also, when the water in the closed space boils, the water molecules separate from the macromolecular structure and move around freely, causing the macromolecules to stop moving, causing great damage to the plant tissue. Forces are no longer formed and color difference separation processing is no longer possible. Therefore, it is more preferable to control the processing apparatus 10 so that the water in the closed space does not boil.
 図2は、処理装置10を用いて柿加工物を製造する製造工程の一例を示すフローチャートである。下記のステップS2からステップS6に至る工程で行われる各処理は、制御部24がヒータ16および電磁弁20を制御することにより自動的に行われる。 FIG. 2 is a flow chart showing an example of a manufacturing process for manufacturing a persimmon processed product using the processing apparatus 10. FIG. Each processing performed in the steps from step S2 to step S6 described below is automatically performed by the control unit 24 controlling the heater 16 and the electromagnetic valve 20 .
 先ず、ステップS1では、作業者が圧力容器12内に柿材料を収容する。ここでいう「柿材料」は、柿の木の果実、柿の木の果実の皮、柿の木の果実のへた、柿の木の葉、および柿の木の枝を含む。このうち、例えば、果実の皮、へた等は、一般に熟した果実が加工される際に除去される作物残渣または食品残渣であり、また、熟していない摘果実等も作物残渣である。柿材料として、これらから少なくとも1種類の材料を用いればよい。このように、本実施形態では、これまで廃棄されていた作物残渣または食品残渣としての柿材料を好適に有効利用できる。 First, in step S<b>1 , the operator puts the persimmon material into the pressure vessel 12 . As used herein, "persimmon material" includes persimmon tree fruit, persimmon tree fruit skin, persimmon tree fruit calyx, persimmon tree leaves, and persimmon tree branches. Among these, for example, the skin, stem, etc. of the fruit are crop residues or food residues that are generally removed when ripe fruits are processed, and unripe picked fruit and the like are also crop residues. At least one of these materials may be used as the persimmon material. Thus, in this embodiment, persimmon materials as crop residues or food residues that have been discarded so far can be effectively utilized.
 ステップS1では、作業者が必要に応じて圧力容器12内に所定量の水を注入し、柿材料をカゴ26の中に収容したうえで、このカゴ26を圧力容器12内に収容し、蓋体14を閉じて密閉する。これによって、柿材料が密閉空間内に収容される。 In step S1, an operator injects a predetermined amount of water into the pressure vessel 12 as necessary, stores the persimmon material in the basket 26, then stores the basket 26 in the pressure vessel 12, and closes the lid. Body 14 is closed and sealed. Thereby, the persimmon material is accommodated in the closed space.
 次に、ステップS2およびステップS3では、例えば処理装置10に設けられている処理開始ボタンを押圧することで、ヒータ16により圧力容器12内を加熱する。ステップS2では、電磁弁20を開いた状態で圧力容器12内を加熱する。ステップS3では、圧力容器12内の水が沸騰する温度に到達する前の所定温度(例えば80℃)で電磁弁20を閉じて加熱を続ける。ステップ2によれば、圧力容器12内の水蒸気圧が増すに従って、圧力容器12内の空気は排除される。その結果、圧力容器12内の温度が例えば80℃程度になると、圧力容器12内の空気は殆ど排除され、圧力センサ22によって検出される圧力(実測圧力値)は、殆ど飽和水蒸気圧に近いものとなる。ここで、ステップ2の工程を行うことなく加熱当初(初期)から電磁弁を閉じた状態で圧力容器12を加熱した場合、圧力容器内の空気を排除することができないので、圧力容器内の圧力は、飽和水蒸気圧と空気圧との和となり、飽和水蒸気曲線に沿って制御させることが困難になる。また、ステップ3のように、圧力容器12内の水が沸騰する温度に到達する前に圧力容器12内が密閉されることにより、水が沸騰することを確実に防止できる。なお、電磁弁20の替わりに、モーターを駆動源とする圧力弁等、他の圧力弁が用いられてもよい。 Next, in steps S2 and S3, the inside of the pressure vessel 12 is heated by the heater 16 by pressing a process start button provided in the processing apparatus 10, for example. In step S2, the inside of the pressure vessel 12 is heated while the electromagnetic valve 20 is open. In step S3, the electromagnetic valve 20 is closed at a predetermined temperature (for example, 80° C.) before the water in the pressure vessel 12 reaches the boiling temperature, and heating is continued. According to step 2, as the water vapor pressure within the pressure vessel 12 increases, the air within the pressure vessel 12 is expelled. As a result, when the temperature inside the pressure vessel 12 reaches, for example, about 80° C., most of the air inside the pressure vessel 12 is eliminated, and the pressure (measured pressure value) detected by the pressure sensor 22 is almost the saturated water vapor pressure. becomes. Here, if the pressure vessel 12 is heated with the solenoid valve closed from the beginning (initial stage) of heating without performing the process of step 2, the air in the pressure vessel cannot be removed, so the pressure in the pressure vessel is is the sum of the saturated water vapor pressure and the air pressure, making it difficult to control along the saturated water vapor curve. Further, as in step 3, by sealing the inside of the pressure vessel 12 before the water inside the pressure vessel 12 reaches the temperature at which it boils, boiling of the water can be reliably prevented. Note that, instead of the solenoid valve 20, another pressure valve such as a pressure valve driven by a motor may be used.
 ここで、制御部24は、圧力センサ22により所定の間隔で検出される圧力容器12内の温度値を、予め入力されている飽和水蒸気圧曲線の近似式に代入して、当該近似式に基づく飽和水蒸気圧(演算圧力値)を演算する。近似式としては、Tetensの式等を用いることができるが、これに限定されるものではない。また、制御部24は、圧力センサ22により検出される圧力容器12内の圧力値(実測圧力値)を演算圧力値と比較して、そのずれが設定範囲内であるか否かを判定する。その結果、設定範囲外である場合、制御部24は、ヒータ16を動作制御して圧力容器12内の温度が演算圧力値に近くなるように調整する、又は、電磁弁20を動作制御して圧力容器12内の圧力が演算圧力値に近くなるように調整する。このようにして、電磁弁20を閉じてから(ステップS3)開くまで(後述のステップS5)、圧力容器12内の温度、圧力は、ほぼ飽和水蒸気圧曲線に沿うように制御される。なお、電磁弁20を閉じる前(ステップS2)および開いた後(ステップS6)においても、当該近時式を利用した圧力容器12内の温度、圧力調整が行われてもよい。 Here, the control unit 24 substitutes the temperature value in the pressure vessel 12 detected at predetermined intervals by the pressure sensor 22 into an approximation formula of the saturated water vapor pressure curve input in advance, and based on the approximation formula Calculate the saturated water vapor pressure (calculated pressure value). As an approximation formula, the Tetens formula or the like can be used, but it is not limited to this. The control unit 24 also compares the pressure value (actually measured pressure value) in the pressure vessel 12 detected by the pressure sensor 22 with the calculated pressure value, and determines whether the difference is within the set range. As a result, if it is out of the set range, the control unit 24 controls the operation of the heater 16 to adjust the temperature in the pressure vessel 12 so that it approaches the calculated pressure value, or controls the operation of the solenoid valve 20. Adjust the pressure in the pressure vessel 12 so that it approaches the calculated pressure value. In this manner, the temperature and pressure in the pressure vessel 12 are controlled substantially along the saturated water vapor pressure curve from when the electromagnetic valve 20 is closed (step S3) to when it is opened (step S5, which will be described later). Note that the temperature and pressure in the pressure vessel 12 may be adjusted using the near-term equation before closing the solenoid valve 20 (step S2) and after opening it (step S6).
 次に、ステップS4では、上記の通り、飽和水蒸気圧曲線に沿って、所定温度、および所定圧力で所定時間制御する。具体的には、例えば、圧力容器12内で、柿材料を水蒸気により120℃~134℃の温度下で、2時間~5時間加熱加圧して分解(色差分解、熱分解、加熱加圧分解、水蒸気分解等、呼称は任意である)する。このときの圧力は、概ね2気圧~3気圧である。この処理によって、柿材料中の高分子化合物は加水分解されて、より低分子の様々な種類の化合物が生成されると共に、当該生成成分が破壊された細胞から抽出される。また、柿材料の場合、タンニンの生成に関係する酵素が活性化されて、タンニンの含有量が大いに増加する。タンニンは、本実施形態に係る反芻動物用飼料組成物における有効成分の一つと推測される。本実施形態において色差分解時の温度条件を134℃以下に設定しているのは、135℃以上になるとタンニンの生成に関係する酵素の活性が次第に低下するからである。なお、圧力容器12内の温度が150℃以上に達すると柿材料が炭化してしまう。 Next, in step S4, as described above, control is performed for a predetermined time at a predetermined temperature and a predetermined pressure along the saturated water vapor pressure curve. Specifically, for example, in the pressure vessel 12, the persimmon material is heated and pressurized with steam at a temperature of 120 ° C. to 134 ° C. for 2 to 5 hours to decompose (color difference decomposition, thermal decomposition, heat and pressure decomposition, The name is arbitrary, such as steam decomposition). The pressure at this time is approximately 2 to 3 atmospheres. By this treatment, the high-molecular compounds in the persimmon material are hydrolyzed to produce various kinds of lower-molecular-weight compounds, and the produced components are extracted from the destroyed cells. Also, in the case of persimmon material, the enzymes involved in the production of tannin are activated and the tannin content is greatly increased. Tannin is presumed to be one of the active ingredients in the ruminant feed composition according to the present embodiment. The reason why the temperature condition for the color difference decomposition is set to 134° C. or lower in this embodiment is that the activity of enzymes involved in the production of tannin gradually decreases at 135° C. or higher. If the temperature inside the pressure vessel 12 reaches 150° C. or higher, the persimmon material will be carbonized.
 次に、ステップS5およびステップS6では、加熱を停止して、圧力容器12を冷却する工程を実施する。ステップS5では、一例として、ヒータ16を停止させて圧力容器12内を自然冷却する。これによれば、圧力容器12内は殆ど飽和水蒸気圧曲線に沿ったまま温度および圧力が低下する。また、ステップS6では、圧力容器12内の水が沸騰する温度よりも低い温度に到達した後で電磁弁20を開いて冷却を続ける。これによれば、水が沸騰することを確実に防止できる。 Next, in steps S5 and S6, a step of stopping heating and cooling the pressure vessel 12 is performed. In step S5, as an example, the heater 16 is stopped and the pressure vessel 12 is naturally cooled. According to this, the temperature and pressure in the pressure vessel 12 are lowered while remaining substantially along the saturated vapor pressure curve. Further, in step S6, after the water in the pressure vessel 12 reaches a temperature lower than the boiling temperature, the solenoid valve 20 is opened to continue cooling. According to this, boiling of water can be reliably prevented.
 なお、水が沸騰しなければ、制御部24は、圧力容器12内の温度および圧力を、必ずしも制御する必要はない。例えば本実施形態の製造工程は、ステップS5およびステップS6において圧力容器12内を自然冷却させてもよい。 If the water does not boil, the controller 24 does not necessarily have to control the temperature and pressure inside the pressure vessel 12. For example, in the manufacturing process of this embodiment, the inside of the pressure vessel 12 may be naturally cooled in steps S5 and S6.
 以上のステップを経て、柿材料の被色差分解物は冷却され、結露してトレイ28に溜められる。最後に、ステップS7では、作業者が当該被色差分解物である加工物を圧力容器12内から回収する工程を実施する。具体的には、ステップS7では、作業者が圧力容器12の蓋体14を開いてトレイ28に溜まった液状物を回収する。また、作業者がカゴ26の中から固形物を回収する。これらの液状物および固形物はいずれも柿材料の被色差分解物を含有している柿加工物である。 Through the above steps, the persimmon material to be color-difference decomposed is cooled, condensed, and accumulated in the tray 28 . Finally, in step S<b>7 , the operator performs a step of recovering the processed material, which is the material to be subjected to color difference separation, from the pressure vessel 12 . Specifically, in step S7, the operator opens the lid 14 of the pressure vessel 12 and collects the liquid material accumulated in the tray 28. As shown in FIG. Also, the worker collects the solid matter from the basket 26 . Both of these liquids and solids are persimmon processed products containing color-difference decomposition products of persimmon materials.
 なお、本実施形態の処理装置10では、電磁弁20を備えるが、これに限られず、電磁弁20を備えない処理装置10としてもよい。すなわち、処理装置10は、ポリフェノール含有材料を密閉空間内で飽和水蒸気圧曲線に沿うように、沸騰させることなく加熱加圧できればよく、例えば、ステップS2のような電磁弁20を用いた圧力容器12内の空気を排除する工程がなくてもよい。 Although the processing device 10 of the present embodiment includes the electromagnetic valve 20, the processing device 10 is not limited to this, and the processing device 10 may not include the electromagnetic valve 20. That is, the processing apparatus 10 can heat and pressurize the polyphenol-containing material so as to follow the saturated water vapor pressure curve in the closed space without boiling. There may be no step of removing the air inside.
 このように、本実施形態の処理装置10を用いた色差分解処理によれば、作業者は、柿材料を処理装置10に入れた後に、柿加工物を圧力容器12内から回収するだけでよい。また、処理装置10を用いた柿加工物の製造に要する時間は、数時間から半日程度である。このため、例えば、夕方に柿材料を処理装置10に収容することで、次の日の朝方には柿加工物を回収できる。 As described above, according to the color difference separation processing using the processing apparatus 10 of the present embodiment, the operator only needs to collect the persimmon processed product from the pressure vessel 12 after putting the persimmon material into the processing apparatus 10. . In addition, the time required to produce processed persimmons using the processing apparatus 10 is from several hours to about half a day. Therefore, for example, by storing the persimmon material in the processing apparatus 10 in the evening, the processed persimmon can be recovered in the morning of the next day.
 こうして、本実施形態に係る柿加工物を製造することができる。本実施形態に係る柿加工物は、色差分解処理によって未利用資源としての柿材料を原料として、簡易な設備で且つ短時間で製造される。本実施形態に係る色差分解処理によって製造された柿加工物は、家畜の体内におけるメタンガスの産生量を減少させるという作用効果を有する。したがって、本実施形態に係る柿加工物を反芻動物用飼料組成物として含有する反芻動物用飼料を反芻動物に食べさせることで、体内でのメタンガスの産生量を減少させることができる。その結果、温室効果ガスであるメタンガスを削減することができる。さらに、本実施形態に係る反芻動物用飼料組成物は、反芻動物の健康状態に悪影響を与えないため、畜産物の生産性および品質を落とすことなくメタンガスの削減効果が得られる。 Thus, the persimmon processed product according to the present embodiment can be produced. The persimmon processed product according to the present embodiment is manufactured with simple equipment in a short period of time by using the persimmon material, which is an unused resource, as a raw material through the color difference decomposition process. The processed persimmon produced by the color difference decomposition treatment according to the present embodiment has the effect of reducing the amount of methane gas produced in livestock bodies. Therefore, the amount of methane gas produced in the body can be reduced by feeding the ruminant animal feed containing the persimmon processed product according to the present embodiment as a ruminant feed composition. As a result, methane gas, which is a greenhouse gas, can be reduced. Furthermore, since the feed composition for ruminants according to the present embodiment does not adversely affect the health of ruminants, the effect of reducing methane gas can be obtained without reducing the productivity and quality of livestock products.
 本実施形態に係る柿加工物の粉末を、1日分の飼料100質量部に対して約1質量部程度添加して、飼育牛である乳用牛および肉用牛に所定期間毎日給餌し続けた。その結果、乳用牛および肉用牛のいずれの飼育牛においても、柿加工物が添加された餌を嫌うことなく嗜好性よく摂食し、かつ柿加工物粉末給餌前と比較して第一胃内のメタン濃度が減少した。一方、柿加工物粉末給餌前と比較して体重は殆ど変わらず、血液生化学性状に顕著な異常も認められず、柿加工物粉末を給餌することによる健康状態への悪影響は認められなかった(実施例参照)。 About 1 part by mass of the processed persimmon powder according to the present embodiment is added to 100 parts by mass of feed for one day, and the dairy cows and beef cattle that are breeding cows are continuously fed for a predetermined period every day. rice field. As a result, both dairy cows and beef cows were able to eat the feed containing the processed persimmon with good palatability without disliking it, and compared to before feeding the processed persimmon powder, the rumen methane concentration in the On the other hand, there was almost no change in body weight compared to before the feeding of the processed persimmon powder, no significant abnormalities in blood biochemical properties were observed, and no adverse effects on health conditions due to feeding of the processed persimmon powder were observed. (See Examples).
 なお、本実施形態に係る反芻動物用飼料組成物である柿加工物には、柿材料の色差分解処理によって新たに生成された成分や増加した成分が様々含まれている。これらの成分が複合的に且つ相乗的に作用して、反芻動物の健康状態に悪影響を与えずに体内でのメタンガスの産生量を減少させる効果を発揮していると推測される。柿加工物中の、カテキン、タンニン等のポリフェノール、その他の様々な成分が、有効成分として本発明の目的を達するための構成要件になり得ると推測されることから、本実施形態に係る柿加工物をその構造により直接特定することはおよそ実際的でないという事情を有する。 It should be noted that the processed persimmon, which is the ruminant feed composition according to the present embodiment, contains various components newly generated or increased by the color difference decomposition treatment of the persimmon material. It is speculated that these components act in a complex and synergistic manner to reduce the amount of methane gas produced in the body of ruminant animals without adversely affecting their health. It is presumed that polyphenols such as catechins, tannins, and other various components in the persimmon processed product can be constituent elements for achieving the object of the present invention as active ingredients. The situation is that it is often impractical to directly identify an object by its structure.
 また、本実施形態に係る反芻動物用飼料は、本実施形態に係る反芻動物用飼料組成物である柿加工物を公知の飼料(例えば、飼料作物等の加工物)に所定量混合することで簡易に製造できる。柿加工物は、液状物および固形物を適宜乾燥させたり、粉末にしたりして飼料成分に添加すればよい。又は、柿加工物として液状物および固形物のいずれか一方が飼料成分に添加されてもよく、または両方が飼料成分に添加されてもよい。 In addition, the ruminant feed according to the present embodiment is obtained by mixing a predetermined amount of processed persimmon, which is the ruminant feed composition according to the present embodiment, with known feed (for example, processed products such as feed crops). Easy to manufacture. The persimmon processed product may be added to the feed component after drying the liquid or solid as appropriate or powdering it. Alternatively, either one of the liquid and solid persimmon processed products may be added to the feed component, or both may be added to the feed component.
 実施例では、干し柿の製造副産物である果実の皮(市田柿(登録商標および地理的表示)の柿皮)を柿材料として色差分解処理を行った。実施例では、当該被色差分解物の固形物(ペースト)を乾燥させて粉末(以下、「柿皮パウダー」と表記する)を得た。なお、成分分析の結果、柿皮パウダーは、ビタミンAを316μg/100g、βカロテンを3570μg/100g、果糖を10.7g/100g、ブドウ糖を14.4g/100g、アラビノースを0.32g/100g、およびタンニンをタンニン酸として1.70g/100g含んでいることが分かった。 In the example, the persimmon material was subjected to color difference decomposition treatment using the persimmon skin (persimmon skin of Ichida persimmon (registered trademark and geographical indication)), which is a by-product of dried persimmon production. In Examples, the solid matter (paste) of the color difference decomposition product was dried to obtain a powder (hereinafter referred to as "persimmon skin powder"). As a result of component analysis, the persimmon skin powder contains 316 μg/100 g of vitamin A, 3570 μg/100 g of β-carotene, 10.7 g/100 g of fructose, 14.4 g/100 g of glucose, 0.32 g/100 g of arabinose, and 1.70 g/100 g of tannin as tannic acid.
 試験者は、当該柿皮パウダーを、乳用牛および肉用牛(フィステル装着牛)に馴致1週間後に4週間(28日間)400g/日を給与し、第一胃内メタン濃度を測定した。 The tester fed 400 g/day of the persimmon skin powder to dairy cows and beef cattle (fistula-equipped cattle) for 4 weeks (28 days) one week after acclimatization, and measured the methane concentration in the rumen.
 (方法)
 試験者は、柿皮パウダーを2021年10月14日から11月18日までの期間給与し、給与前後および給与期間中にフィステル中央に開けた穴からガス採集器を用いて第一胃内ガスを採集した。そして、試験者は、採集した第一胃内ガスはガスパックで保管し、ガスクロマトグラフ質量分析装置(GC-MS)を用いてメタン濃度を測定した。
(Method)
The testers fed persimmon skin powder from October 14th to November 18th, 2021, and measured the gas in the rumen using a gas collector through a hole made in the center of the fistula before, during and after feeding. was collected. Then, the tester stored the collected gas in the rumen in a gas pack, and measured the methane concentration using a gas chromatograph-mass spectrometer (GC-MS).
 柿皮パウダーは、10月14日から20日までを馴致期間とし、14日・15日は100g/日、16日・17日は200g/日、18日・19日・20日は300g/日とのように漸増給与された。その後、10月21日から11月18日までの4週間(28日間)は400g/日で柿皮パウダーが給与された。なお、柿皮パウダーは飼料にふりかけて給与され、1日の給与量を200g以上にしてからは複数回に分けて給与された。また、給与の際、前回の柿皮パウダーが残っていた場合は、前回の柿皮パウダーは除去された。表1は、飼料の内容および給与時刻、ならびに400g給与時期の柿皮パウダーの給与時刻を示す。 The acclimatization period for persimmon skin powder is from October 14th to 20th. was given a gradual increase. Thereafter, persimmon skin powder was fed at a rate of 400 g/day for 4 weeks (28 days) from October 21st to November 18th. The persimmon skin powder was sprinkled on the feed, and after the daily feeding amount was increased to 200 g or more, the persimmon skin powder was fed in multiple times. Moreover, when the previous persimmon skin powder remained at the time of feeding, the previous persimmon skin powder was removed. Table 1 shows the content of the feed, the time of feeding, and the time of feeding persimmon skin powder at the feeding time of 400 g.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の「TMR」(Total Mixed Ration)は、トウモロコシサイレージを主配合成分とし、アルファルファ乾草、エンバク乾草、チモシー乾草、スーダングラス乾草、ビートパルプ、ビール粕、大豆粕、コーン圧ペン、その他ミネラル、ビタミン、市販飼料等を所定量の水と共に配合した混合飼料である。「マザーくろうし」は、市販飼料(日本農産工業株式会社製)の商品名である。「ヘイキューブ」は、アルファルファヘイ乾草のキューブ状圧縮成型品である。 "TMR" (Total Mixed Ratio) in Table 1 is mainly composed of corn silage, and contains alfalfa hay, oat hay, timothy hay, Sudangrass hay, beet pulp, brewer's grain, soybean meal, corn press, and other minerals. , vitamins, commercially available feed, etc., together with a predetermined amount of water. "Mother Kuroshi" is the trade name of commercial feed (manufactured by Nihon Nosan Kogyo Co., Ltd.). A "hay cube" is a cube-shaped compacted product of alfalfa hay hay.
 また、乳用牛に対する馴致期間(10月14日から20日まで)における柿皮パウダーの給与時刻は、14日・15日においては13:30に100g、16日・17日においては9:20および13:30に100gずつ、18日・19日・20日においては9:20、13:30および15:30に100gずつとした。これは、乳用牛に与える10KgのTMRと比較すると100質量部のTMRに対して1質量部となる。 In addition, the persimmon skin powder was fed at 13:30 on the 14th and 15th, and at 9:20 on the 16th and 17th. and 100 g each at 13:30, and 100 g each at 9:20, 13:30 and 15:30 on the 18th, 19th and 20th. This is 1 part by weight for 100 parts by weight of TMR compared to 10 Kg of TMR given to dairy cows.
 一方、肉用牛に対する馴致期間における柿皮パウダーの給与時刻は、14日・15日においては13:00に100g、16日・17日においては8:00および13:00に100gずつ、18日・19日・20日においては8:00、13:00および16:00に100gずつとした。 On the other hand, the feeding time of persimmon skin powder during the acclimatization period to beef cattle was 100 g at 13:00 on the 14th and 15th, 100 g at 8:00 and 13:00 on the 16th and 17th, and 100 g at 13:00 on the 16th and 17th. - On the 19th and 20th, 100 g each at 8:00, 13:00 and 16:00.
 試験(1) 第一胃内メタン濃度(定時)
 試験者は、柿皮パウダー給与前後および給与期間中の所定日の定時(13:00)に採集した第一胃内ガスのメタン濃度の比較を行った。表2は、採集日時の詳細である。
Test (1) Methane concentration in the rumen (timed)
The tester compared the methane concentration of the ruminal gas collected before and after feeding the persimmon skin powder and at a fixed time (13:00) on a predetermined day during the feeding period. Table 2 shows the details of the date and time of collection.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験(2) 第一胃内メタン濃度(日内変動)
 試験者は、柿皮パウダー給与前後および給与期間中の所定日の3時間毎に5回採集した第一胃内ガスのメタン濃度の日内変動の比較を行った。ただし、肉用牛では給与前の日内変動が測定できなかった。このため、試験者は、給与(馴致)開始日前3日間に定時に採集した第一胃内ガスのメタン濃度の平均値9,078ppmと、給与期間中および供与後の日内変動とを比較した。表3は、採集日時の詳細である。
Test (2) Methane concentration in the rumen (diurnal variation)
The tester compared the diurnal variation of the methane concentration in the ruminal gas collected five times every 3 hours on a predetermined day before and after feeding the persimmon skin powder and during the feeding period. However, in beef cattle, diurnal variation before feeding could not be measured. For this reason, the tester compared the average methane concentration of 9,078 ppm in rumen gas sampled at regular intervals for 3 days before the start of feeding (acclimation) with the circadian variation during and after the feeding period. Table 3 shows details of collection dates.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験(3) 体重、血液生化学性状、乳量
 単純にメタン産生菌の活動を抑えて(または菌数を減少させて)メタンガスの産生量を減少させると、反芻動物の健康状態が悪化したり、飼料の利用効率が低下したりすることで、畜産物(生乳や枝肉)の生産性等の低下につながることが懸念される。そこで、試験者は、柿皮パウダー給与前後および給与期間中の体重、血液生化学性状、乳量を測定してそれぞれで比較を行った。血液生化学性状は、臨床化学分析装置(商品名:富士ドライケム3500V、富士フイルム株式会社製)を用いて測定された。測定日(血液生化学性状は、血液採取日)は、後述する表4、表5、図6に結果と共に示される。
Test (3) Body weight, blood biochemistry, milk yield Reducing the production of methane gas by simply suppressing the activity of methanogenic bacteria (or reducing the number of bacteria) may worsen the health condition of ruminant animals. , there is concern that the productivity of livestock products (raw milk and carcass) will decline due to the decrease in feed utilization efficiency. Therefore, the testers measured the body weight, blood biochemical properties, and milk yield before and after feeding the persimmon skin powder and during the feeding period, and compared the results. Blood biochemical properties were measured using a clinical chemistry analyzer (trade name: Fuji Drychem 3500V, manufactured by Fujifilm Corporation). The date of measurement (the date of blood sampling for blood biochemical properties) is shown together with the results in Tables 4 and 5 and FIG. 6, which will be described later.
 (結果)
 試験(1) 第一胃内メタン濃度(定時)
 図3は、第一胃内メタン濃度の定時測定の平均の比較を表すグラフである。図3Aは、乳用牛の第一胃内メタン濃度のグラフである。図3Bは、肉用牛の第一胃内メタン濃度のグラフである。図3Aに示されるように、乳用牛では、給与前のメタン濃度は26,866ppmであったが、給与2週目でメタン濃度は14,000ppmに減少した。さらに、給与4週目で4,100ppm、給与終了後3週目で3,800ppmとのように、給与後のメタン濃度は給与前と比較して有意に減少した。
(result)
Test (1) Methane concentration in the rumen (timed)
FIG. 3 is a graph representing a comparison of the means of routine measurements of rumen methane concentration. FIG. 3A is a graph of rumen methane concentration in dairy cattle. FIG. 3B is a graph of beef cattle ruminal methane concentration. As shown in Figure 3A, the dairy cow had a pre-feeding methane concentration of 26,866 ppm, but two weeks of feeding the methane concentration decreased to 14,000 ppm. Furthermore, the methane concentration after feeding decreased significantly compared to before feeding, such as 4,100 ppm in the 4th week of feeding and 3,800 ppm in the 3rd week after feeding.
 また、図3Bに示されるように、肉用牛では、給与前のメタン濃度は9,076ppm、給与2週目で2,700ppm、給与4週目で2,216ppmとなり、給与の継続に応じてメタン濃度は減少していった。また、給与終了後3週目のメタン濃度は4,086ppmとなり、給与前のメタン濃度に比較して下回った。 In addition, as shown in FIG. 3B, in beef cattle, the methane concentration before feeding was 9,076 ppm, 2,700 ppm in the second week of feeding, and 2,216 ppm in the fourth week of feeding. Methane concentration decreased. Moreover, the methane concentration three weeks after the end of feeding was 4,086 ppm, which was lower than the methane concentration before feeding.
 試験(2) 第一胃内メタン濃度(日内変動)
 図4は、第一胃内メタン濃度の日内変動の平均の比較を表すグラフである。図4Aは、乳用牛の第一胃内メタン濃度のグラフである。図4Bは、肉用牛の第一胃内メタン濃度のグラフである。ただし、前述のように、肉用牛では給与前の日内変動を測定できなかったため、図4Bには、給与(馴致)開始日前3日間(10月11日・12日・13日)に定時(13:00)に採集した第一胃内ガスのメタン濃度の平均値9,078ppmが併せて示される。
Test (2) Methane concentration in the rumen (diurnal variation)
FIG. 4 is a graph depicting a comparison of mean diurnal variations in ruminal methane concentration. FIG. 4A is a graph of rumen methane concentration in dairy cows. FIG. 4B is a graph of beef cattle ruminal methane concentration. However, as mentioned above, it was not possible to measure the diurnal variation before feeding in beef cattle, so in Fig. 4B, there are three days (October 11, 12, 13) before the start of feeding (acclimation) The average methane concentration of 9,078 ppm in the ruminal gas collected at 13:00) is also shown.
 図4Aに示されるように、乳用牛では、柿皮パウダー給与開始後は、給与2週目の10:00を除く全ての時点の平均値が給与前の平均値を下回った。また、図4Bに示されるように、肉用牛では、柿皮パウダー給与開始後は、全ての時点の平均値が給与前の定時(13:00)測定の平均値(9,078ppm)を下回った。 As shown in Fig. 4A, in dairy cattle, after the start of persimmon skin powder feeding, the average values at all time points except 10:00 in the second week of feeding were lower than the average values before feeding. In addition, as shown in FIG. 4B, in beef cattle, after the start of feeding persimmon skin powder, the average value at all time points was lower than the average value (9,078 ppm) measured at the fixed time (13:00) before feeding. rice field.
 続いて、図5は、各給与時期の第一胃内メタン濃度の日内変動の全時点の平均の比較を表すグラフである。すなわち、図5は、第一胃内メタン濃度の日内変動を反映させた給与時期別の平均の比較を表す。図5Aは、乳用牛の第一胃内メタン濃度である。図5Bは、肉用牛の第一胃内メタン濃度である。図5Aおよび図5Bに示されるように、乳用牛および肉用牛とも給与前と比較して給与開始後は有意にメタン濃度が減少していた。また、給与終了後3週目でもメタン濃度は給与前の水準に戻らないため、柿皮パウダーのメタンガス減少効果が当該時点で継続していると考えられる。 Next, FIG. 5 is a graph showing a comparison of the average diurnal variation of rumen methane concentration at each feeding period. That is, FIG. 5 shows a comparison of averages by feeding season reflecting diurnal variation in rumen methane concentration. FIG. 5A is the rumen methane concentration of dairy cows. FIG. 5B is beef cattle rumen methane concentration. As shown in FIGS. 5A and 5B, both the dairy cattle and the beef cattle had significantly lower methane concentrations after the start of feeding than before feeding. In addition, since the methane concentration did not return to the level before feeding three weeks after the end of feeding, it is considered that the methane gas reducing effect of the persimmon skin powder continues at this point.
 試験(3) 体重、血液生化学性状、乳量
 表4は、乳用牛の体重および血液生化学性状の測定結果である。表5は、肉用牛の体重および血液生化学性状の測定結果である。また、図6は、乳用牛(最終分娩:2021年3月23日)の日乳量を分娩後25日から265日までで20日毎に測定した結果である。試験に供した乳用牛の305日乳量は約9,400kgと推定されたことから、図6には、https://www.nosai-do.or.jp/manage/wp-content/uploads/2022/03/fcb233f8ddbb292e51f96591a7507ca7.pdfのアドレスで公開されている北海道農業共済組合のウェブサイトにおける十勝統括センターによる家畜技術情報から引用する9,000kg牛および10,000kg牛の泌乳曲線が標準日乳量として併せて示される。
Test (3) Body Weight, Blood Biochemical Properties, Milk Yield Table 4 shows the measurement results of the body weight and blood biochemical properties of dairy cows. Table 5 shows the measurement results of body weight and blood biochemical properties of beef cattle. FIG. 6 shows the results of measuring the daily milk yield of a dairy cow (last calving: March 23, 2021) every 20 days from 25 days to 265 days after calving. Since the 305-day milk yield of the dairy cows subjected to the test was estimated to be about 9,400 kg, Figure 6 shows https://www.nosai-do.or.jp/manage/wp-content/uploads The milk production curves of 9,000 kg and 10,000 kg cows quoted from the livestock technical information by the Tokachi General Center on the website of the Hokkaido Agricultural Mutual Aid Association published at the address /2022/03/fcb233f8ddbb292e51f96591a7507ca7.pdf are the standard daily milk yields. Also shown as
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4および表5に示されるように、体重は、乳用牛および肉用牛とも給与前(給与開始前日)を100%としたときの給与終了日は約96%で殆ど変化なかった。 As shown in Tables 4 and 5, the body weight of dairy cattle and beef cattle was about 96% on the day of the end of feeding when the weight before feeding (the day before the start of feeding) was taken as 100%, showing almost no change.
 また、給与前後および給与期間中を通して血液生化学性状に顕著な異常値は見られなかった。肉用牛の給与終了後7週目のGOT値の増加は前日に外傷を受けていたことによると考えられた。また、脂溶性ビタミンのうち、レチノールについては、肉用牛の給与終了後12週目で76.0IU/dlであったが、それ以外の全測定時で乳用牛および肉用牛ともに保健量である80IU/dlを超えた。また、α-トコフェロールについては、乳用牛および肉用牛ともに全測定時で正常下限値である150μg/dlを超えた。また、β-カロテンについては、乳用牛の全調査時で不足傾向である150μg/dl以下に該当した。このように、脂溶性ビタミンについては、給与時期(給与前後および給与期間中)間で同傾向を示した。そのため、今回の脂溶性ビタミンに関する結果には、柿皮パウダーよりも飼料が強く影響していると考えられた。 In addition, no significant abnormal blood biochemical properties were observed before, during and after feeding. The increase in GOT values 7 weeks after the end of beef cattle feeding was attributed to the previous day's trauma. Among fat-soluble vitamins, retinol was 76.0 IU/dl 12 weeks after feeding to beef cattle. exceeded 80 IU/dl. In addition, α-tocopherol exceeded the lower limit of normal of 150 μg/dl in all measurements for both dairy cattle and beef cattle. In addition, β-carotene fell under 150 μg/dl, which is deficient in all surveys of dairy cattle. Thus, fat-soluble vitamins showed the same tendency between feeding periods (before and after feeding and during the feeding period). Therefore, it was thought that the results of this study on fat-soluble vitamins were more strongly influenced by feed than by persimmon skin powder.
 さらに、図6に示されるように、給与期間中の日乳量は、9,000kg牛および10,000kg牛の標準日乳量と比較したところ、給与期間中および給与終了後も乳量は維持された。このことから、柿皮パウダーを給与することによる健康状態への悪影響は認められず、畜産物の生産性低下は見られず、ひいては品質への悪影響がもたらされることもないと考えられる。 Furthermore, as shown in Figure 6, the daily milk yield during the feeding period was compared with the standard daily milk yield of 9,000 kg and 10,000 kg cows, and the milk yield was maintained during and after the feeding period. was done. From this, it is considered that feeding persimmon skin powder has no adverse effect on health, no decrease in productivity of livestock products, and no adverse effect on quality.
 実施例2では、柿皮パウダーの牛への給与による第一胃内メタンガス濃度の減少効果についてさらに確認した。実施例2では、実施例1に準じて、令和4年2月から3月にかけて、フィステルを装着した牛2頭(乳用牛、肉用牛各1頭)に対して柿皮パウダーを給与した。 In Example 2, the effect of feeding persimmon skin powder to cattle to reduce ruminal methane gas concentration was further confirmed. In Example 2, according to Example 1, from February to March 2022, persimmon skin powder was fed to two cows (one dairy cow and one beef cow) equipped with fistulas. bottom.
 試験者は、柿皮パウダーの給与量を徐々に増加し、最大1日400gを3週間給与した。試験者は、この柿皮給与期間の最後の3日間、さらに給与期間を挟む対照期間として2月と4月の3日間の午前7:00、午前10:30、午後1:00、午後4:00、午後7:00の1日5回において、フィステルを開口してガスサンプルと第一胃内容物を採取した。なお、試験者は、第一胃内容物について、ルーメンマットの上層部と下層部とから別々に採取した。給与と試料採取のスケジュールは、表6のとおりである。 The testers gradually increased the amount of persimmon skin powder fed, up to 400g per day for 3 weeks. The testers performed the last three days of this persimmon skin feeding period, and three days in February and April as a control period sandwiching the feeding period at 7:00 am, 10:30 am, 1:00 pm, and 4:00 pm. At 00, 7:00 pm, five times a day, the fistula was opened to take gas samples and rumen contents. The tester separately collected the contents of the rumen from the upper layer and the lower layer of the rumen mat. Salary and sampling schedules are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験者は、ガスサンプルについてガスクロマトグラフィを用いて測定し、メタンと二酸化炭素の合計ガス量に対するメタンガス量の比率をメタンガス分率として求めた。試験者は、この回収液をさらに遠心分離して得られた上清を、固相抽出カラムを用いて精製し、液体クロマトグラフィを用いて揮発性脂肪酸(Volatile Fatty Acid、以下「VFA」ともいう。)を定量した。 The tester measured the gas sample using gas chromatography, and obtained the ratio of the amount of methane gas to the total amount of methane and carbon dioxide as the methane gas fraction. The tester purified the supernatant obtained by further centrifuging the recovered liquid using a solid-phase extraction column, and used liquid chromatography to volatile fatty acid (Volatile Fatty Acid, hereinafter also referred to as "VFA". ) was quantified.
 さらに試験者は、回収液から微生物ゲノムDNAを抽出し、定量PCR(Polymerase Chain Reaction)により総細菌数とメタン生成菌数を定量して総細菌数に対するメタン生成菌数の比率を求めた。なお、試験者は、実施例1の実施期間中についても、ガスサンプルについては8月、11月、12月に、第一胃内容物については11月、12月に同様の手順でサンプルを取得し、処理しており、合わせて分析結果を得ている。 Furthermore, the tester extracted the microbial genome DNA from the recovered liquid, quantified the total number of bacteria and the number of methanogens by quantitative PCR (Polymerase Chain Reaction), and determined the ratio of the number of methanogens to the total number of bacteria. In addition, during the implementation period of Example 1, the tester obtained gas samples in August, November, and December, and rumen contents in November and December by the same procedure. are processed, and analytical results are obtained.
 図7,8は、乳用牛の第一胃内容物から採集した回収液中における総VFA量、酢酸分率、プロピオン酸分率、酪酸分率、酢酸/プロピオン酸比(A/P比)、メタン生成菌比率を示すグラフである。なお、図7は、ルーメンマットの上層部から採集した回収液中における分析結果であり、図8は、ルーメンマットの上層部から採集した回収液中における分析結果である。 Figures 7 and 8 show the total amount of VFA, the acetic acid fraction, the propionic acid fraction, the butyric acid fraction, and the acetic acid/propionic acid ratio (A/P ratio) in the recovered liquid collected from the contents of the rumen of dairy cattle. , is a graph showing the ratio of methanogens. FIG. 7 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat, and FIG. 8 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat.
 図7に示されるように、乳用牛のルーメンマットの上層部から採集した回収液中の総VFA量と酪酸分率は、柿皮給与期間(11月、3月)が不給与期間(12月、4月)より有意に高くなった。一方で、酢酸分率、A/P比、及びメタン生成菌比率は、柿皮給与期間が不給与期間より有意に低くなった。また、図8に示されるように、乳用牛のルーメンマットの下層から採取した回収液中の総VFA量は、柿皮給与期間が不給与期間より有意に高くなった。 As shown in FIG. 7, the total amount of VFA and the butyric acid content in the recovered liquid collected from the upper layer of the rumen mat of dairy cattle were significantly different from the persimmon skin feeding period (November, March) and the non-feeding period (12 months). month, April) was significantly higher. On the other hand, the acetic acid fraction, A/P ratio, and methanogen ratio were significantly lower during the persimmon skin feeding period than during the non-feeding period. In addition, as shown in FIG. 8, the total amount of VFA in the recovered liquid collected from the lower layer of the rumen mat of dairy cattle was significantly higher during the persimmon skin feeding period than during the non-feeding period.
 図9,10は、肉用牛の第一胃内容物から採集した回収液中における総VFA量、酢酸分率、プロピオン酸分率、酪酸分率、A/P比、メタン生成菌比率を示すグラフである。なお、図9は、ルーメンマットの上層部から採集した回収液中における分析結果であり、図10は、ルーメンマットの上層部から採集した回収液中における分析結果である。 Figures 9 and 10 show the total VFA amount, acetic acid fraction, propionic acid fraction, butyric acid fraction, A/P ratio, and methanogen ratio in the liquid collected from the ruminal contents of beef cattle. graph. FIG. 9 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat, and FIG. 10 shows the analysis results of the collected liquid collected from the upper layer of the rumen mat.
 図9に示されるように、肉用牛のルーメンマットの上層部から採集した回収液中のプロピオン酸分率は、柿皮給与期間が不給与期間より有意に高くなった。一方で、酪酸分率、A/P比、及びメタン生成菌比率は、柿皮給与期間が不給与期間より有意に低くなった。また、図10に示されるように、肉用牛のルーメンマットの下層から採取した回収液中のメタン生成菌比率は、柿皮給与期間が不給与期間より有意に低くなった。 As shown in Fig. 9, the propionic acid fraction in the recovered liquid collected from the upper layer of the rumen mat of beef cattle was significantly higher during the persimmon skin feeding period than during the non-feeding period. On the other hand, the butyric acid fraction, A/P ratio, and methanogen ratio were significantly lower during the persimmon skin feeding period than during the non-feeding period. Moreover, as shown in FIG. 10, the ratio of methanogenic bacteria in the recovered liquid collected from the lower layer of the rumen mat of beef cattle was significantly lower during the persimmon skin feeding period than during the non-feeding period.
 ここで、反芻胃内の微生物が行う発酵によってメタンが生成される反応経路はある程度固定されている。具体的には、まず低消化性の炭水化物(セルロース等)を分解する微生物が主たる発酵産物として酢酸や酪酸と水素を産生する。次いで、産生された水素がメタン生成菌によって反芻胃内の二酸化炭素を還元するために用いられた結果、最終生産物としてメタンが生成される。 Here, the reaction pathway in which methane is produced by fermentation performed by microorganisms in the rumen is fixed to some extent. Specifically, first, microorganisms that decompose low-digestible carbohydrates (such as cellulose) produce acetic acid, butyric acid, and hydrogen as main fermentation products. The hydrogen produced is then used by methanogens to reduce carbon dioxide in the rumen, resulting in the production of methane as the final product.
 こうした反応経路の特徴によると、メタン生成と同時に起こりやすいVFAの比率変化は、酢酸比率の上昇とプロピオン酸比率の低下によるものであり、このとき、酢酸/プロピオン酸比(A/P比)は高くなる。 According to the characteristics of these reaction pathways, the change in the VFA ratio, which tends to occur simultaneously with methanogenesis, is due to an increase in the acetic acid ratio and a decrease in the propionic acid ratio, and at this time, the acetic acid/propionic acid ratio (A/P ratio) is get higher
 実施例2による分析結果で示された、柿皮給与による反芻胃からの回収液中におけるVFAの生産状況の変化は、おおむねこのような特徴を反映している。すなわち、実施例2の分析結果から、柿皮給与によって反芻胃内の微生物による発酵過程が変化した結果、メタン生成が抑制された状況が推察される。さらに、乳用牛のルーメンマットの上層部、肉用牛のルーメンマットの上層部及び下層部から採集した回収液中における、柿皮給与期のメタン生成菌比率が低下していることからも、メタン生成が抑制された結果とよく一致している。 Changes in the production of VFA in the liquid recovered from the rumen by feeding persimmon skins, shown in the analysis results of Example 2, generally reflect these characteristics. That is, from the analysis results of Example 2, it is inferred that methane production was suppressed as a result of changes in the fermentation process by microorganisms in the rumen caused by feeding persimmon skins. Furthermore, in the collected liquid collected from the upper layer of the rumen mat of dairy cattle and the upper and lower layers of the rumen mat of beef cattle, the ratio of methanogenic bacteria during the persimmon skin feeding season has decreased. This is in good agreement with the result that methane production is suppressed.
10 処理装置
12 圧力容器
14 蓋体
16 ヒータ
18 温度センサ
20 電磁弁
22 圧力センサ
24 制御部
26 カゴ
28 トレイ
10 processing device 12 pressure vessel 14 lid 16 heater 18 temperature sensor 20 electromagnetic valve 22 pressure sensor 24 controller 26 basket 28 tray

Claims (6)

  1.  ポリフェノール含有材料が密閉空間内で、沸騰させることなく前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うように、加熱加圧された加工物からなる反芻動物用飼料組成物。 A feed composition for ruminants consisting of a polyphenol-containing material that is heated and pressurized in a closed space without boiling so that the water vapor pressure in the closed space follows the saturated water vapor pressure curve.
  2.  前記加熱加圧の後に、水蒸気により120℃~134℃の温度下で2時間~5時間、2気圧~3気圧でさらに加熱加圧する請求項1に記載の反芻動物用飼料組成物。 The feed composition for ruminants according to claim 1, wherein after the heating and pressurization, the composition is further heated and pressurized with steam at a temperature of 120°C to 134°C for 2 to 5 hours at 2 to 3 atmospheres.
  3.  請求項1又は請求項2に記載の反芻動物用飼料組成物を含有する反芻動物用飼料。 A ruminant feed containing the ruminant feed composition according to claim 1 or claim 2.
  4.  飼料100質量部に対して1質量部の前記反芻動物用飼料組成物の粉末を含有する請求項3に記載の反芻動物用飼料。 The ruminant feed according to claim 3, which contains 1 part by mass of the powder of the ruminant feed composition per 100 parts by mass of the feed.
  5.  ポリフェノール含有材料を密閉空間に収容する工程と、
     前記密閉空間内で、前記ポリフェノール含有材料を水蒸気により加熱加圧する工程と、
     前記密閉空間を冷却する工程と、を含み、
     前記密閉空間を加熱加圧する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を加熱し、
     前記密閉空間を冷却する工程では、前記密閉空間内の水蒸気圧が飽和水蒸気圧曲線に沿うようにして、前記密閉空間を冷却する反芻動物用飼料組成物の製造方法。
    housing the polyphenol-containing material in an enclosed space;
    a step of heating and pressurizing the polyphenol-containing material with water vapor in the closed space;
    cooling the enclosed space;
    In the step of heating and pressurizing the sealed space, the sealed space is heated so that the water vapor pressure in the sealed space follows the saturated water vapor pressure curve,
    In the step of cooling the closed space, the method for producing a feed composition for ruminants includes cooling the closed space such that the water vapor pressure in the closed space follows a saturated water vapor pressure curve.
  6.  前記密閉空間を加熱加圧する工程では、前記密閉空間内の水が沸騰しないようにして、前記密閉空間を加熱し、
     前記密閉空間を冷却する工程では、前記密閉空間内の水が沸騰しないようにして、前記密閉空間を冷却する請求項5に記載の反芻動物用飼料組成物の製造方法。
     
    In the step of heating and pressurizing the sealed space, the sealed space is heated so that the water in the sealed space does not boil;
    6. The method for producing a ruminant feed composition according to claim 5, wherein in the step of cooling the closed space, the closed space is cooled so that the water in the closed space does not boil.
PCT/JP2022/047438 2021-12-23 2022-12-22 Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition WO2023120663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209066 2021-12-23
JP2021-209066 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120663A1 true WO2023120663A1 (en) 2023-06-29

Family

ID=86902745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047438 WO2023120663A1 (en) 2021-12-23 2022-12-22 Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition

Country Status (1)

Country Link
WO (1) WO2023120663A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136196A (en) * 2007-12-05 2009-06-25 Koichi Nakamura Method for collecting cell tissue component of plant
JP2019042647A (en) * 2017-08-31 2019-03-22 長野精工金属株式会社 Thermal decomposition treatment deice of article to be processed and thermal decomposition treatment method of article to be processed

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136196A (en) * 2007-12-05 2009-06-25 Koichi Nakamura Method for collecting cell tissue component of plant
JP2019042647A (en) * 2017-08-31 2019-03-22 長野精工金属株式会社 Thermal decomposition treatment deice of article to be processed and thermal decomposition treatment method of article to be processed

Similar Documents

Publication Publication Date Title
US9326534B2 (en) Beet processing process and unit
IE45611B1 (en) Feedstuff or feedstuff additive and process for its producion
CN107348099A (en) A kind of graminous pasture and the Silaging method of alfalfa
Lounglawan et al. Silage production from cassava peel and cassava pulp as energy source in cattle diets
JP6499348B2 (en) Method for producing lactic acid fermented bamboo liquid
Chedly et al. Silage from by-products for smallholders
Naeini et al. Effects of urea and molasses supplementation on chemical composition, protein fractionation and fermentation characteristics of sweet sorghum and bagasse silages as alternative silage crop compared with maize silage in the arid areas.
Khan et al. Effect of Lactobacillus plantarum and Lactobacillus buchneri on composition, aerobic stability, total lactic acid bacteria and E. coli count of ensiled corn stover with or without molasses supplementation.
US20240164421A1 (en) Naturally fermented composition of pollen using glacial snow water and preparation method therefor
Nasrin et al. Valorization of vegetable wastes
WO2023120663A1 (en) Ruminant feed composition, ruminant feed, and method for manufacturing ruminant feed composition
RU2366271C1 (en) Forage additive as preventive and treatment medium for domestic and farm animals
Chernyuk et al. Biological conservants impact on the silage quality and aerobic stability
Islam et al. Preparation of wastelage with poultry droppings and rice straw (Oryza sativa L.) as a cattle feed
El Hajji et al. Ensiling characteristics of prickly pear (opuntia-ficus indica) rejects with and without molasses for animal feed.
KR101643501B1 (en) Ergothioneine cotaining chicken feed and eggs and related breeding method
Malavanh et al. Ensiling leaves of Taro (Colocasia esculenta (L.) Shott) with sugar cane molasses
Buckmaster Assessing activity access of forage or biomass
Sainz-Ramírez et al. Effect of the cutting date and the use of additives on the chemical composition and fermentative quality of sunflower silage
WO2015128892A1 (en) Lactic acid-fermented bamboo liquid, lactic acid-fermented bamboo agent, and method for manufacturing lactic acid-fermented bamboo liquid
Sariri et al. The utilization of microbes as a fermentation agent to reduce saponin in Trembesi leaves (Sammanea saman)
Shakerardekani et al. Post-harvest pistachio waste: Methods of its reduction and conversion
Besharati et al. Comparative effects of addition of monensin, tannic acid and cinnamon essential oil on in vitro gas production parameters of sesame meal
Denek et al. An Investigation on the Effect of Adding Different Levels of Molasses on the Silage Quality of Pistachio (Pistachio vera) by Product and Wheat Straw Mixture Silages
Rodrigues et al. Evaluation of the nutritive value of apple pulp mixed with different amounts of wheat straw

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569547

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE