JP6929742B2 - Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment - Google Patents

Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment Download PDF

Info

Publication number
JP6929742B2
JP6929742B2 JP2017169584A JP2017169584A JP6929742B2 JP 6929742 B2 JP6929742 B2 JP 6929742B2 JP 2017169584 A JP2017169584 A JP 2017169584A JP 2017169584 A JP2017169584 A JP 2017169584A JP 6929742 B2 JP6929742 B2 JP 6929742B2
Authority
JP
Japan
Prior art keywords
conductive member
conductive
electrophotographic
surface layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017169584A
Other languages
Japanese (ja)
Other versions
JP2019045721A (en
Inventor
健二 ▲高▼嶋
健二 ▲高▼嶋
一浩 山内
一浩 山内
雅大 倉地
雅大 倉地
裕一 菊池
裕一 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017169584A priority Critical patent/JP6929742B2/en
Publication of JP2019045721A publication Critical patent/JP2019045721A/en
Application granted granted Critical
Publication of JP6929742B2 publication Critical patent/JP6929742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrophotography Configuration And Component (AREA)

Description

本発明は、電子写真用の導電性部材及びその製造方法、プロセスカートリッジ、並びに電子写真装置に関する。 The present invention relates to a conductive member for electrophotographic and a method for manufacturing the same, a process cartridge, and an electrophotographic apparatus.

電子写真方式を採用した画像形成装置である電子写真装置においては、導電性部材が様々な用途、例えば、帯電ローラ、現像ローラ、転写ローラなどの導電性ローラとして使用されている。これらの導電性部材は、使用環境に依存せず電気抵抗値が適正な値を維持することが求められ、導電層の導電性を調整するために、カーボンブラックに代表される電子導電剤や、四級アンモニウム塩化合物等のイオン導電剤が添加された導電層が設けられている。導電性ローラが帯電ローラである場合、帯電ローラが適正な抵抗領域外となることで帯電ローラから感光体への放電が安定せず、局所的に過剰な放電が発生することで、白抜け画像などの画像不良が発生することがある。かかる課題に対して、特許文献1では、3次元的に連続な骨格と細孔による共連続構造の多孔質体からなる表面層を有する導電性部材を提供している。 In an electrophotographic apparatus which is an image forming apparatus adopting an electrophotographic method, a conductive member is used for various purposes, for example, as a conductive roller such as a charging roller, a developing roller, and a transfer roller. These conductive members are required to maintain an appropriate electric resistance value regardless of the usage environment, and in order to adjust the conductivity of the conductive layer, an electronic conductive agent typified by carbon black, etc. A conductive layer to which an ionic conductive agent such as a quaternary ammonium salt compound is added is provided. When the conductive roller is a charging roller, the discharge from the charging roller to the photoconductor is not stable because the charging roller is out of the proper resistance region, and excessive discharge is locally generated, resulting in a white-out image. Image defects such as may occur. To solve this problem, Patent Document 1 provides a conductive member having a surface layer made of a three-dimensionally continuous skeleton and a porous body having a co-continuous structure with pores.

特開2015−068987号公報Japanese Unexamined Patent Publication No. 2015-068987

本発明者等の検討により、特許文献1に係る導電性部材を帯電ローラとして用いた場合、放電の微細化により異常放電が抑制されること、絶縁且つ大きな表面積による表面のチャージアップに起因して放電能力が向上することを知見した。また、汚れ付着が抑制されることを確認した。しかしながら、前記導電性部材を、帯電部材として長期に亘る電子写真画像の形成に供したところ、表面の電荷の蓄積量が徐々に低下する場合があった。表面電荷の蓄積量が低下した場合、感光体の表面が十分に帯電されないことがある。また、表面への汚れが付着しやすくなる場合がある。前記導電性部材を転写ローラとして使用した場合にも、同様の課題が生じる場合があった。 According to the study by the present inventors, when the conductive member according to Patent Document 1 is used as a charging roller, abnormal discharge is suppressed by miniaturization of discharge, and surface charge is increased due to insulation and a large surface area. It was found that the discharge capacity was improved. It was also confirmed that dirt adhesion was suppressed. However, when the conductive member is used as a charging member for forming an electrophotographic image for a long period of time, the amount of accumulated charge on the surface may gradually decrease. When the amount of accumulated surface charge decreases, the surface of the photoconductor may not be sufficiently charged. In addition, dirt may easily adhere to the surface. When the conductive member is used as a transfer roller, the same problem may occur.

本発明の一態様は、長期の使用によっても高品位な電子写真画像を安定して形成し得る電子写真用の導電性部材の提供に向けたものである。また、本発明の他の態様は、高品位な電子写真画像を安定して形成することができるプロセスカートリッジ及び電子写真装置の提供に向けたものである。 One aspect of the present invention is to provide a conductive member for electrophotographic capable of stably forming a high-quality electrophotographic image even after long-term use. Another aspect of the present invention is to provide a process cartridge and an electrophotographic apparatus capable of stably forming a high-quality electrophotographic image.

本発明の一態様によれば、導電性支持体と、該導電性支持体上の中間層と、該中間層上の表面層とを有する電子写真用の導電性部材であって、
該中間層は非導電性であり、かつ放射線崩壊型樹脂Aを含み、
該表面層は多孔質体であり、下記(1)、(2)及び(3)の条件を満たす電子写真用の導電性部材が提供される:
(1)該多孔質体が3次元的に連続な骨格と3次元的に連続な細孔とを含む共連続構造を有する;
(2)該表面層の表面の、任意の150μm四方の領域を撮影し、該領域を縦に15等分、横に15等分したときに、該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数との合計が該正方形群全体の数の25%以下である;
(3)該表面層が非導電性である。
According to one aspect of the present invention, a conductive member for electrophotographic having a conductive support, an intermediate layer on the conductive support, and a surface layer on the intermediate layer.
The intermediate layer is non-conductive and contains a radiation decay type resin A.
The surface layer is a porous body, and a conductive member for electrophotographic that satisfies the following conditions (1), (2) and (3) is provided:
(1) The porous body has a co-continuous structure including a three-dimensionally continuous skeleton and three-dimensionally continuous pores;
(2) When an arbitrary 150 μm square region on the surface of the surface layer is photographed and the region is divided vertically into 15 equal parts and horizontally into 15 equal parts, the number of square groups consisting only of the skeleton and the fineness thereof. The sum with the number of squares consisting only of holes is 25% or less of the total number of squares;
(3) The surface layer is non-conductive.

本発明の他の態様によれば、前記電子写真用の導電性部材の製造方法であって、
高分子材料と溶剤との相分離により前記表面層の前記多孔質体を形成する工程を含むことを特徴とする電子写真用の導電性部材の製造方法が提供される。
According to another aspect of the present invention, the method for manufacturing a conductive member for electrophotographic.
Provided is a method for producing a conductive member for electrophotographic, which comprises a step of forming the porous body of the surface layer by phase separation of a polymer material and a solvent.

本発明の他の態様によれば、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、前記導電性部材を具備していることを特徴とするプロセスカートリッジが提供される。 According to another aspect of the present invention, there is provided a process cartridge that is detachably configured on the main body of the electrophotographic apparatus and is characterized by including the conductive member.

本発明の更に他の態様によれば、前記導電性部材を具備している電子写真装置が提供される。 According to still another aspect of the present invention, an electrophotographic apparatus including the conductive member is provided.

本発明の一態様によれば、長期の使用によっても高品位な電子写真画像を安定して形成し得る電子写真用の導電性部材を提供することができる。また、本発明の他の態様によれば、高品位な電子写真画像を安定して形成することができるプロセスカートリッジ及び電子写真装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a conductive member for electrophotographic capable of stably forming a high-quality electrophotographic image even after long-term use. Further, according to another aspect of the present invention, it is possible to provide a process cartridge and an electrophotographic apparatus capable of stably forming a high-quality electrophotographic image.

汚れの付着増加の推定メカニズムの説明図である。It is explanatory drawing of the estimation mechanism of the increase of dirt adhesion. 汚れの静電的な付着の抑制メカニズムの説明図である。It is explanatory drawing of the suppression mechanism of electrostatic adhesion of dirt. 本発明の一態様に係る導電性部材の一例を示す断面図である。It is sectional drawing which shows an example of the conductive member which concerns on one aspect of this invention. 表面層の多孔質体の微細さの評価方法の一例を示す説明図である。It is explanatory drawing which shows an example of the evaluation method of the fineness of the porous body of a surface layer. 離間部材を導入した本発明の一態様に係る導電性部材の一例を示す模式図である。It is a schematic diagram which shows an example of the conductive member which concerns on one aspect of this invention which introduced the separating member. 本発明の一態様に係るプロセスカートリッジの一例を示す模式図である。It is a schematic diagram which shows an example of the process cartridge which concerns on one aspect of this invention. 本発明一態様に係る電子写真装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electrophotographic apparatus which concerns on one aspect of this invention. 樹脂の放射線崩壊性の確認において行われるコロナ放電処理の一例を示す模式図である。It is a schematic diagram which shows an example of the corona discharge treatment performed in confirmation of the radiation disintegration property of a resin.

[電子写真用の導電性部材]
本発明の一態様に係る電子写真用の導電性部材は、導電性支持体と、該導電性支持体上の中間層と、該中間層上の表面層とを有する。ここで、該中間層は非導電性であり、かつ放射線崩壊型樹脂Aを含む。また、該表面層は多孔質体であり、下記(1)、(2)及び(3)の条件を満たす:
(1)該多孔質体が3次元的に連続な骨格と3次元的に連続な細孔とを含む共連続構造を有する;
(2)該表面層の表面の、任意の150μm四方の領域を撮影し、該領域を縦に15等分、横に15等分したときに、該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数との合計が該正方形群全体の数の25%以下である;
(3)該表面層が非導電性である。
[Conductive member for electrophotographic]
The conductive member for electrophotographic according to one aspect of the present invention has a conductive support, an intermediate layer on the conductive support, and a surface layer on the intermediate layer. Here, the intermediate layer is non-conductive and contains a radiation-disintegrating resin A. Further, the surface layer is a porous body and satisfies the following conditions (1), (2) and (3):
(1) The porous body has a co-continuous structure including a three-dimensionally continuous skeleton and three-dimensionally continuous pores;
(2) When an arbitrary 150 μm square region on the surface of the surface layer is photographed and the region is divided vertically into 15 equal parts and horizontally into 15 equal parts, the number of square groups consisting only of the skeleton and the fineness thereof. The sum with the number of squares consisting only of holes is 25% or less of the total number of squares;
(3) The surface layer is non-conductive.

以下に図面を参照して、本発明を実施するための形態を例示的に詳しく説明する。ただし、以下の記載は本発明の技術的範囲を以下の実施の形態に限定するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail exemplarily with reference to the drawings. However, the following description does not limit the technical scope of the present invention to the following embodiments.

帯電部材により感光ドラムなど被帯電部材を帯電させるためには、電圧を帯電部材に印加し、帯電部材の表面と感光ドラムの表面との間に放電を生じさせることが求められる。放電は、パッシェンの法則に従って発生し、電離した電子が空気中の分子や電極と衝突して電子と正イオンを生成する過程を繰り返しながら指数関数的に増加する電子雪崩の拡散現象である。この電子雪崩は電界に従って拡散し、この拡散の度合が最終的な放電電荷量を決定する。 In order to charge a charged member such as a photosensitive drum with a charging member, it is required to apply a voltage to the charging member to generate an electric discharge between the surface of the charging member and the surface of the photosensitive drum. Discharge is an electron avalanche diffusion phenomenon that occurs according to Paschen's law and increases exponentially while repeating the process of ionized electrons colliding with molecules and electrodes in the air to generate electrons and cations. This electron avalanche diffuses according to the electric field, and the degree of this diffusion determines the final amount of discharge charge.

近年、電子写真画像形成装置においては、画質のより一層の高精細化が求められてきている。そのためには、帯電電圧を増大させて、現像コントラストを大きくすることによって、色の階調を増大させる方法が考えられる。しかしながら、帯電電圧を増大させた場合、放電電荷量も大きくなるため、帯電部材に抵抗ムラにおいて放電電荷量が局所的に増加して異常放電が生じ、白抜け画像が発生する可能性がある。 In recent years, there has been a demand for even higher definition of image quality in electrophotographic image forming apparatus. For that purpose, a method of increasing the color gradation by increasing the charging voltage and increasing the development contrast can be considered. However, when the charging voltage is increased, the amount of discharge charge also increases, so that the amount of discharge charge locally increases due to resistance unevenness in the charged member, causing abnormal discharge, and there is a possibility that a white-out image may occur.

特に高温高湿環境においては、空気中の酸素分子、窒素分子の振動が活発になるため、電子雪崩の平均自由行程が短くなる。これにより、放電電荷量の増大が生じ、異常放電に由来する白抜け画像の発生が顕著になる場合がある。 Especially in a high temperature and high humidity environment, the vibration of oxygen molecules and nitrogen molecules in the air becomes active, so that the mean free path of the electron avalanche becomes short. As a result, the amount of discharge charge increases, and the occurrence of white spot images due to abnormal discharge may become remarkable.

本発明者等は、非導電性であり、かつ3次元的に共連続な構造を有する多孔質体からなる表面層を設けることで、異常放電を抑制し、白抜け画像を抑制できることを見出した。この理由は、検討の結果から以下のように推測している。該表面層では、3次元的に連続した微細な骨格が形成する微細な細孔が複数の分岐を有しており、該分岐から導電性支持体の表面につながる箇所を複数有するため、正常放電が異常放電のサイズに成長することを抑制できる。また、細孔は厚み方向に連通しているが、電界と同じ方向に貫通する貫通孔の存在が極力低減されることで、放電が進展した先に骨格が存在するため、放電が分断され、放電電荷量を低減できる。その結果、放電が異常放電にまで成長することなく、白抜け画像を抑制できると推測される。実際に導電性部材と感光ドラムとの間に生じる放電を、高感度カメラを用いて直接観察した結果、多孔質体である該表面層が導電性部材の表面に存在した場合、単発の放電が細分化する現象が確認されている。 The present inventors have found that by providing a surface layer made of a porous body that is non-conductive and has a three-dimensionally co-continuous structure, abnormal discharge can be suppressed and white-out images can be suppressed. .. The reason for this is speculated as follows from the results of the examination. In the surface layer, the fine pores formed by the three-dimensionally continuous fine skeleton have a plurality of branches, and the branch has a plurality of locations connected to the surface of the conductive support, so that the normal discharge occurs. Can be suppressed from growing to the size of an abnormal discharge. In addition, although the pores communicate in the thickness direction, the presence of through holes penetrating in the same direction as the electric field is reduced as much as possible, and the skeleton exists before the discharge progresses, so that the discharge is divided. The amount of discharge charge can be reduced. As a result, it is presumed that the whiteout image can be suppressed without the discharge growing to an abnormal discharge. As a result of directly observing the discharge actually generated between the conductive member and the photosensitive drum using a high-sensitivity camera, when the surface layer, which is a porous body, is present on the surface of the conductive member, a single discharge occurs. The phenomenon of subdivision has been confirmed.

電子写真プロセスにおいては、トナーやトナーの外添剤、いわゆる汚れが、静電的あるいは物理的に帯電部材に付着する。汚れは高抵抗な材料であるため、帯電部材の表面に付着すると抵抗ムラの原因となる。その結果、汚れが付着している部分と汚れが付着していない部分とにおいて放電電荷量が異なるため、画像不良として観察される場合がある。 In the electrophotographic process, toner and toner externals, so-called stains, electrostatically or physically adhere to the charged member. Since dirt is a highly resistant material, if it adheres to the surface of a charged member, it causes uneven resistance. As a result, since the amount of discharge charge differs between the portion with the stain and the portion without the stain, it may be observed as an image defect.

上記現象を、図1を用いてマイナス帯電の場合について説明する。帯電部材10は電源13に接続され、アース14に接地された感光ドラム11と対向する。帯電部材10と感光ドラム11との空隙で放電は生成し、電界に従ってマイナス極性の電子が感光ドラム11へ、プラス極性のイオンが帯電部材10の表面へ引き付けられる。このとき、帯電部材10の表面に汚れ12が存在すると、帯電部材10に引き付けられたプラス極性のイオンが汚れ12に付着し、汚れ12はプラスに帯電する。その結果、汚れ12とマイナスに帯電された帯電部材10との間の静電引力が増加し、汚れ12は帯電部材10の表面に強力に付着することになる。また、使用の進行に対しこの現象は繰り返されるため、汚れ12の付着力は増大し続ける。付着した汚れ12は高抵抗な抵抗ムラとなるため、汚れ12の付着部分は他の部分よりも感光ドラム11への放電電荷量が少なく、ハーフトーン画像において黒ポチ画像として現れる。 The above phenomenon will be described with reference to FIG. 1 in the case of negative charging. The charging member 10 is connected to the power supply 13 and faces the photosensitive drum 11 grounded to the ground 14. An electric discharge is generated in the gap between the charging member 10 and the photosensitive drum 11, and negative-polarity electrons are attracted to the photosensitive drum 11 and positive-polarity ions are attracted to the surface of the charging member 10 according to the electric field. At this time, if the dirt 12 is present on the surface of the charging member 10, the positively polar ions attracted to the charging member 10 adhere to the dirt 12, and the dirt 12 is positively charged. As a result, the electrostatic attraction between the dirt 12 and the negatively charged charging member 10 increases, and the dirt 12 strongly adheres to the surface of the charging member 10. Further, since this phenomenon is repeated as the use progresses, the adhesive force of the dirt 12 continues to increase. Since the attached stain 12 has high resistance unevenness, the amount of discharge charge to the photosensitive drum 11 is smaller in the attached portion of the stain 12 than in the other portions, and the stain 12 appears as a black spot image in the halftone image.

次に、汚れ付着抑制について述べる。まず、汚れは、物理付着力あるいは静電引力によって導電性部材の表面に付着する。特に、帯電部材に突入してくる汚れは、プラスからマイナスまでの電荷分布を有するため、汚れの静電付着は避けられない。また、上述のように、従来の導電性部材においては、帯電部材の表面及び付着物には、放電により印加電圧とは逆極性のイオンが付着する。このため放電を受けるにつれ静電的な付着力が増大し、一度付着した汚れは剥離されにくい。 Next, the suppression of dirt adhesion will be described. First, dirt adheres to the surface of the conductive member by physical adhesive force or electrostatic attraction. In particular, the dirt that rushes into the charging member has a charge distribution from plus to minus, so electrostatic adhesion of dirt is unavoidable. Further, as described above, in the conventional conductive member, ions having a polarity opposite to the applied voltage are attached to the surface and deposits of the charged member by electric discharge. Therefore, as the electric discharge is received, the electrostatic adhesive force increases, and the dirt once attached is hard to be peeled off.

本発明者等は、非導電性であり、かつ3次元的に共連続な構造を有する多孔質体からなる表面層を設けることで、上記のような汚れの物理付着及び静電付着の両方を抑制することができることを見出した。この理由は、検討の結果から以下のように推測している。まず、物理付着に関しては、表面層が微細な骨格と細孔とを有する多孔質体であるため、接触点を非常に小さくすることができ、汚れの物理付着を抑制できる。 The present inventors can prevent both physical adhesion and electrostatic adhesion of stains as described above by providing a surface layer made of a porous body that is non-conductive and has a three-dimensionally co-continuous structure. It was found that it can be suppressed. The reason for this is speculated as follows from the results of the examination. First, regarding physical adhesion, since the surface layer is a porous body having a fine skeleton and pores, the contact point can be made very small, and physical adhesion of dirt can be suppressed.

次に静電付着の抑制に関して図2を用いて説明する。図2はマイナス帯電の場合の帯電部材21、感光ドラム22の模式図である。放電が生じると、マイナスの電荷24は感光ドラム22の表面へ電界に従って進展し、プラス極性の電荷23は表面層20へ進展する。このとき、表面層20は非導電性であるため、プラス極性の電荷23を捕捉して、表面層20はプラスにチャージアップする。このとき、電界によって帯電部材21の表面に付着しようとするプラスに帯電した汚れと静電的に反発するため、汚れに働く静電引力を低減できる。すなわち、従来抑制が困難であった静電付着を低減することができる。さらに、仮に表面層20の表面に汚れが付着したとしても、表面層20は多孔質体であるため、静電付着した汚れを吐き出すことができる。具体的には、細孔内で発生した多孔質体内部の放電が表面層20の表面に付着する汚れに照射されると、汚れが帯びる極性をマイナスに変化させることができるため、汚れに働く静電引力の方向が逆転し、電界によって汚れが剥離する。すなわち、汚れの物理付着と静電付着とを同時に、効率よく抑制できる。その結果、汚れ付着に由来する画像不良である黒ポチを低減できると推測される。 Next, the suppression of electrostatic adhesion will be described with reference to FIG. FIG. 2 is a schematic view of the charging member 21 and the photosensitive drum 22 in the case of negative charging. When a discharge occurs, the negative charge 24 propagates to the surface of the photosensitive drum 22 according to the electric field, and the positive charge 23 propagates to the surface layer 20. At this time, since the surface layer 20 is non-conductive, the positive polarity charge 23 is captured and the surface layer 20 is positively charged up. At this time, since the positively charged dirt that tends to adhere to the surface of the charging member 21 due to the electric field is electrostatically repelled, the electrostatic attraction acting on the dirt can be reduced. That is, it is possible to reduce electrostatic adhesion, which has been difficult to suppress in the past. Further, even if dirt adheres to the surface of the surface layer 20, since the surface layer 20 is a porous body, the dirt adhered electrostatically can be discharged. Specifically, when the electric discharge inside the porous body generated in the pores irradiates the dirt adhering to the surface of the surface layer 20, the polarity of the dirt can be changed negatively, so that the dirt works. The direction of electrostatic attraction is reversed, and dirt is peeled off by the electric field. That is, physical adhesion and electrostatic adhesion of dirt can be efficiently suppressed at the same time. As a result, it is presumed that black spots, which are image defects caused by dirt adhesion, can be reduced.

長期に亘る使用を考慮した場合、次のような現象が発生する場合がある。電子写真分野における帯電を目的とした放電においては、数百から数千ボルトを帯電部材側に印加する。このため放電時には、正常放電の範囲の帯電電荷量であっても、帯電部材表面の局所に大きなエネルギーが加わる。特に本発明では、表面層は表面積の大きい微細な多孔質構造を有しており、単位面積あたりに受けるエネルギーは大きい。 Considering long-term use, the following phenomena may occur. In the discharge for the purpose of charging in the electrophotographic field, hundreds to thousands of volts are applied to the charging member side. Therefore, at the time of discharge, a large amount of energy is applied locally on the surface of the charged member even if the amount of charged charge is within the range of normal discharge. In particular, in the present invention, the surface layer has a fine porous structure having a large surface area, and the energy received per unit area is large.

表面層を形成する樹脂に上記のような大きい放電エネルギーが継続的に印加されると、分子化学構造における高分子骨格中の炭素−水素などの結合が一部切断され、ラジカルが生成する。通常、このラジカルとなった部分が空気中に存在する酸素や水と反応することで、化学構造内に酸素を取り込み、酸化が進む。また、分子周辺に存在する他のラジカルと新たな結合を形成し、副生成物が副生する。特に、高温高湿条件では該酸化が進行しやすく、また該副生成物の副生量が増加する。高温では樹脂分子の運動性が増して周囲分子との反応が進み、高湿では水分子の増加による酸化が促進されるためである。これらの結果、表面層の非導電性が低下して、蓄積された電荷が導電性支持体に漏えいし、蓄積電荷量が減少する可能性がある。蓄積電荷量が減少すると、放電能力が低下し、帯電不良による画像不良が起こりうる。また、汚れ付着による画像不良が起こりうる。 When the above-mentioned large discharge energy is continuously applied to the resin forming the surface layer, the bonds such as carbon-hydrogen in the polymer skeleton in the molecular chemical structure are partially broken, and radicals are generated. Normally, when this radical portion reacts with oxygen or water existing in the air, oxygen is taken into the chemical structure and oxidation proceeds. In addition, it forms a new bond with other radicals existing around the molecule, and a by-product is produced as a by-product. In particular, under high temperature and high humidity conditions, the oxidation is likely to proceed, and the amount of by-products of the by-products increases. This is because the motility of the resin molecules increases at high temperatures and the reaction with surrounding molecules proceeds, and at high humidity, oxidation is promoted due to the increase of water molecules. As a result, the non-conductive nature of the surface layer may decrease, the accumulated charge may leak to the conductive support, and the amount of accumulated charge may decrease. When the amount of accumulated charge decreases, the discharge capacity decreases, and image defects due to poor charging may occur. In addition, image defects due to dirt adhesion may occur.

本発明者等は鋭意検討の結果、長時間の放電で樹脂に大きなエネルギーが加わった際、導電性部材の挙動が構成する樹脂の放射線に対する性質に関係することを見出した。本発明者等は、放射線崩壊型樹脂を含む非導電性の中間層を設けることで、導電性部材の耐久性を向上させることができることを見出した。その理由は以下のように考えられる。 As a result of diligent studies, the present inventors have found that when a large amount of energy is applied to the resin due to a long-term discharge, the behavior of the conductive member is related to the radiation-related properties of the resin. The present inventors have found that the durability of a conductive member can be improved by providing a non-conductive intermediate layer containing a radiation-disintegrating resin. The reason is considered as follows.

放射線崩壊型樹脂は、放電の曝露に因って生成するラジカルが不安定であり、ラジカルが生成した箇所には安定的に滞留できず周囲に移動し、周辺の化学構造に連鎖的な化学反応を生じさせ、発生源のラジカル自体は即時に反応を終息させる傾向にある。中間層を構成する放射線崩壊型樹脂においては、化学構造内で生じたラジカルが主鎖骨格上を移動し、主鎖骨格を切断する分子切断が起きやすい。この分子切断は骨格末端近傍で起こりやすく、切断が起こることで、切断後の主骨格(分子鎖が長い方の骨格)のラジカル反応は終息する。切断後に主骨格から離れた骨格(分子鎖が短い方の骨格)は、更なる反応で分解が進み、ガス化により消失して全体のラジカル反応が終息する。切断後の主骨格は、僅かながら分子量の低下が起こるが、それ以外はもとの高分子骨格構造と比較して大きな変化がない。 Radicals generated by radiation-disintegrating resin are unstable due to exposure to electric discharge, and cannot stay stably at the place where radicals are generated and move to the surroundings, resulting in a chemical reaction linked to the surrounding chemical structure. The source radical itself tends to terminate the reaction immediately. In the radiation-disintegrating resin constituting the intermediate layer, radicals generated in the chemical structure move on the main clavicle, and molecular cleavage that cleaves the main clavicle is likely to occur. This molecular cleavage is likely to occur near the end of the skeleton, and the cleavage terminates the radical reaction of the main skeleton (the skeleton with the longer molecular chain) after cleavage. The skeleton separated from the main skeleton after cleavage (the skeleton having the shorter molecular chain) is decomposed by a further reaction, disappears by gasification, and the entire radical reaction is terminated. The main skeleton after cleavage has a slight decrease in molecular weight, but other than that, there is no significant change compared to the original polymer skeleton structure.

このようにラジカル発生から反応終息までが即座に起こるため、使用条件に関わらず酸化や副生成物の副生反応が進みにくい。その結果、放射線崩壊型樹脂を含む中間層を設けると、高温高湿環境において長時間に亘って放電に曝露されても、材料の酸化や副生成物の副生が抑制される。従って、低抵抗化が抑制され、蓄積された電荷の導電性支持体への漏えいを低減することができる。これにより、放電安定性と汚れ付着抑制効果を長期に亘って維持することができる。 In this way, since radical generation to termination of the reaction occur immediately, oxidation and by-product reaction of by-products are unlikely to proceed regardless of the conditions of use. As a result, when the intermediate layer containing the radiation-disintegrating resin is provided, oxidation of the material and by-products of by-products are suppressed even when exposed to electric discharge for a long time in a high-temperature and high-humidity environment. Therefore, the reduction in resistance can be suppressed, and the leakage of the accumulated charge to the conductive support can be reduced. As a result, the discharge stability and the effect of suppressing dirt adhesion can be maintained for a long period of time.

以上のような理由から、本発明によれば、放電能力低下に起因する画像不良の抑制と汚れ付着に起因する画像不良の抑制の両立を達成可能な導電性部材を提供することができる。さらに、本発明によれば、長期間に亘って帯電不良による画像不良を抑制でき、汚れ付着に起因する画像不良を抑制できるプロセスカートリッジ及び電子写真装置を提供することができる。 For the above reasons, according to the present invention, it is possible to provide a conductive member capable of achieving both suppression of image defects due to a decrease in discharge capacity and suppression of image defects due to stain adhesion. Further, according to the present invention, it is possible to provide a process cartridge and an electrophotographic apparatus capable of suppressing image defects due to poor charging for a long period of time and suppressing image defects due to stain adhesion.

以下、本発明を詳細に説明する。なお、以下、電子写真用の導電性部材を、その代表例である帯電部材(帯電ローラ)によって説明するが、導電性部材の用途は帯電部材(帯電ローラ)に限定されるものではない。 Hereinafter, the present invention will be described in detail. Hereinafter, the conductive member for electrophotographic will be described with reference to a charging member (charging roller) which is a typical example thereof, but the application of the conductive member is not limited to the charging member (charging roller).

(導電性部材の構成)
図3(a)及び図3(b)に、導電性部材の一例の断面図を示す。図3(a)に示される導電性部材は、導電性支持体32と、中間層33と、表面層31とによって構成されている。導電性支持体32は、導電性軸芯体としての芯金からなる。中間層33は、導電性支持体32の外側に形成されており、放射線崩壊型樹脂Aを含み、非導電性である。表面層31は、中間層33の外周に形成されており、多孔質体である。
(Construction of conductive member)
3 (a) and 3 (b) show cross-sectional views of an example of the conductive member. The conductive member shown in FIG. 3A is composed of a conductive support 32, an intermediate layer 33, and a surface layer 31. The conductive support 32 is made of a core metal as a conductive shaft core. The intermediate layer 33 is formed on the outside of the conductive support 32, contains a radiation-disintegrating resin A, and is non-conductive. The surface layer 31 is formed on the outer periphery of the intermediate layer 33 and is a porous body.

図3(b)に示される導電性部材は、導電性支持体と、中間層33と、表面層31とによって構成されている。導電性支持体は、導電性軸芯体32としての芯金と、その外周に設けられた導電性樹脂層34とからなる。中間層33は、導電性樹脂層34の外側に形成されており、放射線崩壊型樹脂Aを含み、非導電性である。表面層31は、中間層33の外周に形成されており、多孔質体である。なお、導電性部材は、必要に応じて本発明の効果を疎外しない範囲で、導電性樹脂層34が複数配置された多層構成であってもよい。また本導電性部材はローラ形状に限られず、例えばブレード形状であってもよい。 The conductive member shown in FIG. 3B is composed of a conductive support, an intermediate layer 33, and a surface layer 31. The conductive support is composed of a core metal as the conductive shaft core 32 and a conductive resin layer 34 provided on the outer periphery thereof. The intermediate layer 33 is formed on the outside of the conductive resin layer 34, contains a radiation-disintegrating resin A, and is non-conductive. The surface layer 31 is formed on the outer periphery of the intermediate layer 33 and is a porous body. The conductive member may have a multi-layer structure in which a plurality of conductive resin layers 34 are arranged, if necessary, as long as the effects of the present invention are not alienated. Further, the present conductive member is not limited to the roller shape, and may be, for example, a blade shape.

<導電性支持体>
導電性支持体は、前述したように導電性軸芯体からなってもよく、導電性軸芯体と、該導電性軸芯体上の導電性樹脂層とからなってもよい。
<Conductive support>
The conductive support may be made of a conductive shaft core as described above, or may be made of a conductive shaft core and a conductive resin layer on the conductive shaft core.

(1)導電性軸芯体
導電性軸芯体としては、電子写真用の導電性部材の分野で公知なものから適宜選択して用いることができる。例えば炭素鋼合金の表面に5μm程度の厚さのニッケルメッキを施した円柱を用いることができる。導電性軸芯体としては金属製の軸芯体が好ましい。放電時のエネルギーの一部が熱エネルギーに変換される場合、熱伝導率の高い金属製の軸芯体は熱エネルギーを逃がしやすく、導電性部材へのダメージが減少して、耐久性が高くなるためである。
(1) Conductive shaft core body The conductive shaft core body can be appropriately selected and used from those known in the field of conductive members for electrophotographic. For example, a cylinder in which the surface of a carbon steel alloy is nickel-plated with a thickness of about 5 μm can be used. As the conductive shaft core, a metal shaft core is preferable. When a part of the energy at the time of discharge is converted into heat energy, the metal shaft core having high thermal conductivity easily releases the heat energy, the damage to the conductive member is reduced, and the durability is increased. Because.

(2)導電性樹脂層
導電性樹脂層を構成する材料としては、ゴム材料、樹脂材料等を用いることが可能である。ゴム材料としては、特に限定されるものではなく、電子写真用の導電性部材の分野において公知のゴム材料を用いることができ、具体的には以下のものが挙げられる。エピクロルヒドリンホモポリマー、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体の水素添加物、シリコーンゴム、アクリルゴム及びウレタンゴム等。樹脂材料としては、電子写真用の導電性部材の分野において公知の樹脂材料を用いることができる。具体的には、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、導電性樹脂層を構成する材料としてはアクリロニトリル系ゴムが好ましい。導電性樹脂層を構成する材料がアクリロニトリル系ゴムである場合、放電に際してエネルギーが印加された場合にも中間層との反応性が乏しく、副生成物の副生及びそれに伴う抵抗値の変動が起こりにくいためである。
(2) Conductive Resin Layer As a material constituting the conductive resin layer, a rubber material, a resin material, or the like can be used. The rubber material is not particularly limited, and a rubber material known in the field of conductive members for electrophotographic can be used, and specific examples thereof include the following. Epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether ternary copolymer, acrylonitrile-butadiene copolymer, hydrogenated product of acrylonitrile-butadiene copolymer, silicone rubber, acrylic rubber and Urethane rubber, etc. As the resin material, a resin material known in the field of conductive members for electrophotographic can be used. Specific examples thereof include polyurethane resin, polyamide resin, polyester resin, polyolefin resin, epoxy resin, and silicone resin. These may be used alone or in combination of two or more. Among these, acrylonitrile-based rubber is preferable as the material constituting the conductive resin layer. When the material constituting the conductive resin layer is acrylonitrile-based rubber, the reactivity with the intermediate layer is poor even when energy is applied during discharge, and by-products of by-products and accompanying fluctuations in resistance value occur. This is because it is difficult.

前記導電性樹脂層を構成する材料に対して、電気抵抗値の調整のため、必要に応じて電子導電性付与剤やイオン導電性付与剤を配合することができる。電子導電性付与剤としては、電子導電性を示すカーボンブラック、グラファイト;酸化錫等の酸化物;銅、銀等の金属;酸化物や金属を粒子の表面に被覆して導電性を付与した導電性粒子が挙げられる。またイオン導電性付与剤としては、イオン導電性を示す第四級アンモニウム塩、スルホン酸塩等のイオン交換性能を有するイオン導電性付与剤が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。また、本発明の効果を損なわない範囲で、樹脂の配合剤として一般的に用いられている充填剤、軟化剤、加工助剤、粘着付与剤、粘着防止剤、分散剤、発泡剤、粗し粒子等を添加することができる。 An electronic conductivity-imparting agent or an ionic conductivity-imparting agent can be added to the material constituting the conductive resin layer, if necessary, in order to adjust the electric resistance value. Examples of the electron conductivity-imparting agent include carbon black and graphite exhibiting electron conductivity; oxides such as tin oxide; metals such as copper and silver; conductivity obtained by coating the surface of particles with oxides and metals. Sex particles can be mentioned. Examples of the ion conductivity-imparting agent include an ion conductivity-imparting agent having an ion exchange performance such as a quaternary ammonium salt showing ion conductivity and a sulfonate. These may be used alone or in combination of two or more. Further, as long as the effect of the present invention is not impaired, a filler, a softening agent, a processing aid, a tackifier, an anti-adhesive agent, a dispersant, a foaming agent, and a roughening agent generally used as a resin compounding agent are used. Particles and the like can be added.

導電性樹脂層の体積抵抗率は、1×10Ω・cm以上1×10Ω・cm以下であることが好ましい。なお、表面層は、導電性支持体の電気抵抗値が十分に低い場合においても、過剰な放電に起因する画像不良の発生を抑制できることを確認している。 The volume resistivity of the conductive resin layer is preferably 1 × 10 3 Ω · cm or more and 1 × 10 9 Ω · cm or less. It has been confirmed that the surface layer can suppress the occurrence of image defects due to excessive discharge even when the electric resistance value of the conductive support is sufficiently low.

<中間層>
前述したように、導電性部材へ放電によるエネルギーが印加された際に、酸化や副生成物の副生により、表面層から導電性支持体へ蓄積電荷が漏えいし、放電安定性と汚れ付着抑制の効果が低減する。本発明者等は鋭意検討の結果、放射線崩壊型樹脂Aを含む非導電性の中間層を設けることで、表面層から導電性支持体への蓄積電荷の漏えいを長期にわたり抑制できることを見出した。
<Middle class>
As described above, when energy due to discharge is applied to the conductive member, accumulated charge leaks from the surface layer to the conductive support due to oxidation and by-products of by-products, resulting in discharge stability and suppression of dirt adhesion. The effect of is reduced. As a result of diligent studies, the present inventors have found that by providing a non-conductive intermediate layer containing a radiation-disintegrating resin A, leakage of accumulated charges from the surface layer to the conductive support can be suppressed for a long period of time.

放電の影響は、表面層の中間層側の最下端まで到達するため、該中間層の表面は放電に曝されることとなる。ここで、該中間層が、非導電性であり、かつ放電による酸化や副生成物の副生を抑制可能な放射線崩壊型樹脂Aを含むことにより、高抵抗を維持し続けることができ、表面層の抵抗値が下がっても蓄積された電荷の漏えいを遮ることができる。表面層に蓄積された電荷の漏えいを抑制できることで、長期に亘って、放電安定性と汚れ付着抑制の効果を維持することができる。また、後述するように中間層の体積抵抗率を最適化することで、該中間層もチャージアップが可能となる。これにより、導電性部材としてのチャージアップの量の底上げが可能となり、放電安定性と汚れ付着抑制効果がより得られる。なお、本発明においては形式的に、中間層に含まれる放射線崩壊型樹脂を「放射線崩壊型樹脂A」、後述する表面層に含まれる放射線崩壊型樹脂を「放射線崩壊型樹脂B」と示す。 Since the influence of the electric discharge reaches the lowermost end of the surface layer on the intermediate layer side, the surface of the intermediate layer is exposed to the electric discharge. Here, the intermediate layer is non-conductive and contains a radiation-disintegrating resin A capable of suppressing oxidation due to electric discharge and by-products of by-products, so that high resistance can be maintained and the surface surface can be maintained. Even if the resistance value of the layer is lowered, the leakage of accumulated charges can be blocked. By suppressing the leakage of electric charges accumulated in the surface layer, it is possible to maintain the effects of discharge stability and dirt adhesion suppression for a long period of time. Further, by optimizing the volume resistivity of the intermediate layer as described later, the intermediate layer can also be charged up. As a result, the amount of charge-up as the conductive member can be raised, and the discharge stability and the effect of suppressing dirt adhesion can be further obtained. In the present invention, the radiation-disintegrating resin contained in the intermediate layer is formally referred to as "radiation-disintegrating resin A", and the radiation-disintegrating resin contained in the surface layer described later is referred to as "radiation-disintegrating resin B".

(1)中間層の体積抵抗率
中間層は、蓄積された電荷の導電性支持体への漏えいを抑制するために、非導電性である。本発明において「非導電性」とは、体積抵抗率が1×1010Ω・cm以上であることを示す。中間層の体積抵抗率は、1×1012Ω・cm以上1×1017Ω・cm以下であることが好ましい。該体積抵抗率が1×1012Ω・cm以上であることにより、表面層に蓄積された電荷の漏えいを十分に抑制できる。一方、該体積抵抗率が1×1017Ω・cm以下であることにより、表面層の細孔内放電の電荷の供給が十分に可能となる。さらに、該体積抵抗率が1×1015Ω・cm以上1×1017Ω・cm以下であることにより、中間層自体のチャージアップが大きくなる。中間層は一体化しているため、チャージアップさせるとそのばらつきを低減でき、汚れ付着抑制効果を均一化できるためより好ましい。
(1) Volume resistivity of the intermediate layer The intermediate layer is non-conductive in order to suppress leakage of accumulated charges to the conductive support. In the present invention, "non-conductive" means that the volume resistivity is 1 × 10 10 Ω · cm or more. The volume resistivity of the intermediate layer is preferably 1 × 10 12 Ω · cm or more and 1 × 10 17 Ω · cm or less. When the volume resistivity is 1 × 10 12 Ω · cm or more, leakage of charges accumulated in the surface layer can be sufficiently suppressed. On the other hand, when the volume resistivity is 1 × 10 17 Ω · cm or less, it is possible to sufficiently supply the electric charge of the intrapore discharge in the surface layer. Further, when the volume resistivity is 1 × 10 15 Ω · cm or more and 1 × 10 17 Ω · cm or less, the charge-up of the intermediate layer itself becomes large. Since the intermediate layer is integrated, it is more preferable to charge up the intermediate layer because the variation can be reduced and the dirt adhesion suppressing effect can be made uniform.

中間層の非導電性の評価は以下の方法により行う。中間層の体積抵抗率は、走査型プローブ顕微鏡(SPM)を用い、コンタクトモードで測定する。具体的には、導電性部材から、収束イオンビーム法によって、中間層を含む試験片を作製する。次いで、ステンレス鋼製の金属プレート上に該試験片を設置して測定切片を得る。金属プレートに直接接触している箇所を選び、SPMのカンチレバーを接触させ、カンチレバーに50Vの電圧を印加し、電流値を測定する。試験片の測定箇所の厚さと電流値から体積抵抗率を算出する。導電性部材の長手方向に10個の領域に10等分し、それぞれの領域内から任意に1点ずつ、合計10点において上記測定を行い、その平均値を、中間層の体積抵抗率とする。後述する耐久評価後の中間層の体積抵抗率も、上記と同様にして測定することができる。 The non-conductive property of the intermediate layer is evaluated by the following method. The volume resistivity of the intermediate layer is measured in contact mode using a scanning probe microscope (SPM). Specifically, a test piece containing an intermediate layer is produced from a conductive member by a focused ion beam method. Next, the test piece is placed on a metal plate made of stainless steel to obtain a measurement section. Select a location that is in direct contact with the metal plate, bring the SPM cantilever into contact, apply a voltage of 50 V to the cantilever, and measure the current value. The volume resistivity is calculated from the thickness and current value of the measurement point of the test piece. The conductive member is divided into 10 regions in the longitudinal direction, and the above measurement is performed at an arbitrary 1 point from each region, for a total of 10 points, and the average value is taken as the volume resistivity of the intermediate layer. .. The volume resistivity of the intermediate layer after the durability evaluation, which will be described later, can also be measured in the same manner as described above.

(2)中間層の材質
中間層は非導電性であり、放射線崩壊型樹脂Aを含む。中間層が放射線崩壊型樹脂Aを含み、かつ非導電性であれば、前述したように放電を受けても低抵抗化しないため、表面層と導電性支持体との間における蓄積電荷の漏えいを遮断することが可能となる。これにより、長期に亘って汚れ付着抑制効果を維持することができる。
(2) Material of the intermediate layer The intermediate layer is non-conductive and contains a radiation-disintegrating resin A. If the intermediate layer contains the radiation-disintegrating resin A and is non-conductive, the resistance does not decrease even if it receives a discharge as described above, so that the accumulated charge leaks between the surface layer and the conductive support. It becomes possible to shut off. As a result, the dirt adhesion suppressing effect can be maintained for a long period of time.

放射線崩壊型樹脂Aとしては、例えば、篠原健一ほか著「放射線と高分子」(槇書店,1968年発行)の第89〜91ページに記載されている放射線崩壊型樹脂を用い得る。具体的には、ポリ−α−メチルスチレン、酢酸セルロースなどが挙げられる。特に、放射線崩壊型樹脂Aは、下記式(1)で示される構成単位を有するアクリル樹脂であることが好ましい。 As the radiation-disintegrating resin A, for example, the radiation-disintegrating resin described on pages 89 to 91 of "Radiation and Polymers" by Kenichi Shinohara et al. (Maki Shoten, published in 1968) can be used. Specific examples thereof include poly-α-methylstyrene and cellulose acetate. In particular, the radiation-disintegrating resin A is preferably an acrylic resin having a structural unit represented by the following formula (1).

Figure 0006929742
Figure 0006929742

前記式(1)中、Rは、炭素数1〜6の炭化水素基を表す。Rが炭素数1〜6の炭化水素基であることにより、放電時にラジカル化し得る部分が多すぎず、周囲の酸素や水と反応する酸化や副生成物の副生が生じにくい。前記式(1)で示される構成単位を有するアクリル樹脂としては、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸イソプロピル、ポリメタクリル酸ブチル、ポリメタクリル酸ターシャリーブチル、ポリメタクリル酸イソブチル、ポリメタクリル酸シクロヘキシルなどが挙げられる。なお、該アクリル樹脂は、前記式(1)で示される構成単位を複数種含む共重合体であってもよく、前記式(1)で示される構成単位以外に、他の単量体単位を含む共重合体であってもよい。 In the formula (1), R 1 represents a hydrocarbon group having 1 to 6 carbon atoms. Since R 1 is a hydrocarbon group having 1 to 6 carbon atoms, there are not too many portions that can be radicalized at the time of discharge, and oxidation that reacts with surrounding oxygen and water and by-products of by-products are unlikely to occur. Examples of the acrylic resin having the structural unit represented by the formula (1) include polymethylmethacrylate, ethylpolymethacrylate, propylpolymethacrylate, isopropylpolymethacrylate, butylpolymethacrylate, tertiarybutylbutylmethacrylate, and poly. Examples thereof include isobutyl methacrylate and cyclohexyl polymethacrylate. The acrylic resin may be a copolymer containing a plurality of structural units represented by the formula (1), and other monomer units may be used in addition to the structural units represented by the formula (1). It may be a copolymer containing.

放射線崩壊型樹脂Aの繰り返し単位が前記式(1)で示される場合に考えられる反応機構について、下記反応式(A)を用いて説明する。下記反応式(A)中、nは繰り返し単位の数を表し、ドットはラジカルを表す。放電によりエネルギーが加えられると、主鎖である高分子骨格に結合するメチル基上の水素が離れて、ラジカルが発生する。このラジカル発生は骨格の末端近傍で起こりやすい。発生したラジカルはエステル結合の電子吸引的な作用により、非常に不安定である。このため、次の反応、つまりラジカルが他の部分に移動しようとする。その際、エステル結合の影響により、ラジカルは主鎖骨格方向へ動くこととなる。メチル基が結合している第4級炭素と、主鎖骨格方向に隣接する炭素との結合が切れ、該主鎖骨格方向に隣接する炭素がラジカル化することで、分子切断が起こる。分子切断後は、主骨格と分子鎖が短くなった骨格とに分かれ、主骨格側は反応が終息し、分子鎖が短くなった骨格側にラジカルが残る。ラジカルが残った側の骨格では更なる反応により分解が進み、ガス化によりラジカルが消失して、全体のラジカル反応が終息する。つまり、不安定なラジカルが形成されて反応終息も急速に行われるため、周囲の酸素や水と反応する機会がより少なくなり、酸化が抑制されると考えられる。 The reaction mechanism that can be considered when the repeating unit of the radiation-disintegrating resin A is represented by the above formula (1) will be described using the following reaction formula (A). In the following reaction formula (A), n represents the number of repeating units and dots represent radicals. When energy is applied by electric discharge, hydrogen on the methyl group bonded to the polymer skeleton, which is the main chain, is separated to generate radicals. This radical generation is likely to occur near the end of the skeleton. The generated radicals are very unstable due to the electron-withdrawing action of the ester bond. Therefore, the next reaction, that is, the radical tries to move to another part. At that time, the radicals move toward the main clavicle due to the influence of the ester bond. Molecular cleavage occurs when the bond between the quaternary carbon to which the methyl group is bonded and the carbon adjacent to the main chain skeleton direction is broken and the carbon adjacent to the main chain skeleton direction is radicalized. After molecular cleavage, the main skeleton is divided into a skeleton with a shortened molecular chain, the reaction is terminated on the main skeleton side, and radicals remain on the skeleton side with a shortened molecular chain. In the skeleton on the side where radicals remain, decomposition proceeds by further reaction, radicals disappear by gasification, and the entire radical reaction ends. That is, it is considered that unstable radicals are formed and the reaction is terminated rapidly, so that the chances of reacting with surrounding oxygen and water are reduced and oxidation is suppressed.

Figure 0006929742
Figure 0006929742

前記式(1)中のRは、炭素数2以上6以下の直鎖状又は分岐鎖状のアルキル基であることが好ましい。Rが環状構造でないために共鳴等による安定ラジカル形成が抑制される上、炭素が複数となり立体的な障害が増えることでこの部分における放電生成物との反応機会が少なくなり、酸化が抑制される。 R 1 in the formula (1) is preferably a linear or branched alkyl group having 2 or more and 6 or less carbon atoms. Since R 1 does not have a cyclic structure, stable radical formation due to resonance or the like is suppressed, and since there are multiple carbons and three-dimensional obstacles increase, the chance of reaction with the discharge product in this portion is reduced, and oxidation is suppressed. NS.

前記式(1)中の前記Rは、下記式(2)から(5)で示される基からなる群から選択される少なくとも1つであることがより好ましい。Rが下記式(2)から(5)で示される基からなる群から選択される少なくとも1つであることにより、R上にラジカルとなりやすい第2級炭素がなく、立体障害が大きくなることで酸化が抑制される。
(2)−C(CH
(3)−CH(CH
(4)−CH(CH)−C(CH
(5)−C(CH−CH(CH
It is more preferable that the R 1 in the formula (1) is at least one selected from the group consisting of the groups represented by the following formulas (2) to (5). Since R 1 is at least one selected from the group consisting of the groups represented by the following formulas (2) to (5), there is no secondary carbon that easily becomes a radical on R 1, and steric hindrance becomes large. This suppresses oxidation.
(2) -C (CH 3 ) 3 ,
(3) -CH (CH 3 ) 2 ,
(4) -CH (CH 3 ) -C (CH 3 ) 3 ,
(5) -C (CH 3 ) 2- CH (CH 3 ) 2 .

前記式(1)中の前記Rは、−C(CHであることが更に好ましい。Rが−C(CHであることにより、第3級炭素がなくなり、第4級炭素及び第1級炭素からなり、安定ラジカルがより形成されにくくなるため、酸化による放電劣化が抑制される。なお、「第4級炭素」とは結合する全ての原子が水素原子以外の原子(具体的には、炭素原子など)である炭素原子を意味するものとする。 It is more preferable that R 1 in the formula (1) is −C (CH 3 ) 3. Since R 1 is −C (CH 3 ) 3 , the tertiary carbon is eliminated and the carbon is composed of quaternary carbon and primary carbon, and stable radicals are less likely to be formed, so that discharge deterioration due to oxidation is suppressed. Will be done. The term "quaternary carbon" means a carbon atom in which all the atoms to be bonded are atoms other than hydrogen atoms (specifically, carbon atoms and the like).

放射線崩壊型樹脂Aの重量平均分子量は、5万以上250万以下であることが好ましい。また、放射線崩壊型樹脂Aのガラス転移温度(Tg)は、−70℃以上250℃以下であることが好ましい。なお、重量平均分子量はゲル浸透クロマトグラフィー(GPC)により測定される値である。また、Tgは後述する方法により測定される値である。 The weight average molecular weight of the radiation-disintegrating resin A is preferably 50,000 or more and 2.5 million or less. The glass transition temperature (Tg) of the radiation-disintegrating resin A is preferably −70 ° C. or higher and 250 ° C. or lower. The weight average molecular weight is a value measured by gel permeation chromatography (GPC). Further, Tg is a value measured by a method described later.

(3)樹脂の放射線崩壊型の判定
樹脂が放射線崩壊型樹脂であるか否かは、放射線、又はそれに相当するエネルギーを印加する処理前後での分子量変化を測定することで、判定が可能である。例えば樹脂に対してコロナ放電を実施して、ゲル浸透クロマトグラフィー(GPC)測定による分析を行う。GPC測定においては、対象樹脂を溶媒に溶解させて溶液にする。ここで溶媒としては、トルエン、クロロベンゼン、テトラヒドロフラン(THF)、トリフロロ酢酸、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(HFIP)、ギ酸などから、対象樹脂を最も溶解しやすい溶媒を用いる。該溶媒に対象樹脂を1質量%以上溶解させて、溶液を調製する。該溶液を用いて、溶解している対象樹脂のGPC測定を行う。分子量がコロナ放電処理前の分子量以下となった場合には、分子骨格の切断が優先して起こっていることを示し、放射線崩壊型と判断される。一方、分子量が増加する場合には放射線架橋型と判断される。
(3) Judgment of radiation-disintegrating type of resin Whether or not the resin is a radiation-disintegrating type resin can be determined by measuring the change in molecular weight before and after the treatment of applying radiation or energy corresponding to it. .. For example, a corona discharge is performed on the resin, and analysis is performed by gel permeation chromatography (GPC) measurement. In GPC measurement, the target resin is dissolved in a solvent to make a solution. Here, as the solvent, the target resin is most dissolved from toluene, chlorobenzene, tetrahydrofuran (THF), trifluoroacetic acid, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), formic acid and the like. Use an easy solvent. A solution is prepared by dissolving 1% by mass or more of the target resin in the solvent. Using the solution, GPC measurement of the dissolved target resin is performed. When the molecular weight is less than or equal to the molecular weight before the corona discharge treatment, it indicates that the molecular skeleton is preferentially cleaved, and it is judged to be a radiation decay type. On the other hand, when the molecular weight increases, it is judged to be a radiation crosslinked type.

(4)中間層の厚さ
中間層の厚さ(膜厚)は、1μm以上5μm以下であることが好ましい。該膜厚が1μm以上であることにより、表面層に蓄積された電荷が導電性支持体へ漏えいすることを抑制でき、汚れ付着抑制の効果が維持できる。また、該膜厚が5μm以下であることにより、電荷が十分に蓄積されるため、放電量が不足することに起因した帯電不良を抑制できる。該膜厚は1.5μm以上4.5μm以下であることがより好ましく、2μm以上4μm以下であることが更に好ましい。
(4) Thickness of the intermediate layer The thickness (thickness) of the intermediate layer is preferably 1 μm or more and 5 μm or less. When the film thickness is 1 μm or more, it is possible to suppress the electric charge accumulated in the surface layer from leaking to the conductive support, and the effect of suppressing dirt adhesion can be maintained. Further, when the film thickness is 5 μm or less, the electric charge is sufficiently accumulated, so that it is possible to suppress the charge defect caused by the insufficient discharge amount. The film thickness is more preferably 1.5 μm or more and 4.5 μm or less, and further preferably 2 μm or more and 4 μm or less.

中間層の膜厚は、カミソリ、マニュピレーターなどの鋭利な刃物で中間層の断面が露出するようなシートを切りだし、これを光学顕微鏡又は電子顕微鏡により観察することで測定を行うことができる。膜厚の最大値をA、最小値をBとしたとき、1μm≦BでありA≦5μmであることが好ましい。なお、導電性部材を長手方向に10等分し、得られた10個の領域の各領域における任意の1箇所(合計10箇所)において前記中間層の厚さの測定を行い、その平均値を中間層の厚さとする。 The film thickness of the intermediate layer can be measured by cutting out a sheet with a sharp blade such as a razor or a manipulator so that the cross section of the intermediate layer is exposed, and observing this with an optical microscope or an electron microscope. When the maximum value of the film thickness is A and the minimum value is B, 1 μm ≦ B and A ≦ 5 μm are preferable. The conductive member is divided into 10 equal parts in the longitudinal direction, and the thickness of the intermediate layer is measured at any one location (10 locations in total) in each region of the obtained 10 regions, and the average value is calculated. The thickness of the intermediate layer.

(5)中間層の構造
中間層の構造は、本発明の効果が発揮されれば特に限定されず、例えば固体膜、多孔質体などであることができるが、固体膜であることが好ましい。中間層が固体膜であることにより、放電のエネルギーによる影響が表面層から離れた部分に及びにくくなり、導電性支持体に近い部分で低抵抗になりにくく、蓄積された電荷の導電性支持体への漏洩が抑制される。
(5) Structure of Intermediate Layer The structure of the intermediate layer is not particularly limited as long as the effects of the present invention are exhibited, and may be, for example, a solid film, a porous body, or the like, but a solid film is preferable. Since the intermediate layer is a solid film, the influence of the energy of the discharge is less likely to extend to the portion away from the surface layer, the resistance is less likely to be low in the portion close to the conductive support, and the conductive support of the accumulated charge is less likely to occur. Leakage to is suppressed.

(6)中間層の形成方法
中間層は、導電性支持体上に次のような公知の方法によって形成可能である。ディッピング法、ロールコート法、スプレー法、静電塗布方法等のコーティング方法、押し出しや多色成形等のチューブ成形方法、インフレーション成形方法、ブロー成形方法、ラミネート等及びそれらの組み合わせ。全面に亘って1μm以上5μm以下の膜厚で形成することができ、均一な蓄積電荷をもたせることが可能となる点で、ディッピング法で中間層を形成することが好ましい。
(6) Method for Forming Intermediate Layer The intermediate layer can be formed on the conductive support by the following known methods. Coating methods such as dipping method, roll coating method, spray method, electrostatic coating method, tube molding method such as extrusion and multicolor molding, inflation molding method, blow molding method, lamination and combinations thereof. It is preferable to form the intermediate layer by the dipping method because it can be formed over the entire surface with a film thickness of 1 μm or more and 5 μm or less, and a uniform accumulated charge can be provided.

<表面層>
表面層は多孔質体であり、下記(1)、(2)及び(3)の条件を満たす。
<Surface layer>
The surface layer is a porous body and satisfies the following conditions (1), (2) and (3).

(1)表面層の多孔質体の共連続構造
表面層の多孔質体は、3次元的に連続な骨格と3次元的に連続な細孔とを含む共連続構造を有する。多孔質体内の放電で生じる電荷が感光ドラム表面に到達するためには、細孔が3次元的に連続であることが必要である。ここで、3次元的に連続な細孔とは、次の2つの特徴を有する細孔を示す。第一に、該細孔は表面層の表面のある開口部と別の複数の開口部とをつないでいる。第二に、該細孔は複数の分岐を有しており、該分岐から中間層表面につながる箇所を複数個有する。また、このような細孔を有する多孔質体を構築するためには、骨格も3次元的に連続である必要がある。このように、細孔も骨格も3次元的に連続な構造であることを、本発明では共連続構造と言う。表面層の多孔質体が共連続構造を有し、複数の分岐が存在することにより、表面層内で放電が進展、成長した先に骨格が存在し、該骨格が放電を分断するため、正常放電が異常放電にまで成長することを抑制することができる。また、汚れの接触面積を低減して汚れの付着を抑制できる。さらに、仮に汚れが付着しても、細孔を通ってきた放電電荷が該汚れに付着することで、汚れの電荷を反転させ、静電的に剥離することが可能になる。なお、放電は電界の方向に従って円錐状に拡散するため、電界の方向に太くて直線的な孔が存在すると、異常放電まで成長し、白抜け画像が発生する可能性がある。したがって、電界と同じ方向、すなわち、厚み方向に直線的に配置される貫通孔は極力少なく、かつ、微細であることが好ましい。
(1) Co-continuous structure of the porous body of the surface layer The porous body of the surface layer has a co-continuous structure including a three-dimensionally continuous skeleton and three-dimensionally continuous pores. In order for the electric charge generated by the electric discharge in the porous body to reach the surface of the photosensitive drum, it is necessary that the pores are three-dimensionally continuous. Here, the three-dimensionally continuous pores indicate pores having the following two characteristics. First, the pores connect one opening on the surface of the surface layer with a plurality of other openings. Second, the pores have a plurality of branches, and the pores have a plurality of locations connected to the surface of the intermediate layer. Further, in order to construct a porous body having such pores, the skeleton also needs to be three-dimensionally continuous. Such a structure in which both the pores and the skeleton are three-dimensionally continuous is referred to as a co-continuous structure in the present invention. The porous body of the surface layer has a co-continuous structure, and the presence of multiple branches causes the discharge to proceed in the surface layer, and the skeleton exists at the point where it grows, and the skeleton divides the discharge, which is normal. It is possible to suppress the discharge from growing to an abnormal discharge. In addition, the contact area of dirt can be reduced to suppress the adhesion of dirt. Further, even if dirt adheres, the discharge charge that has passed through the pores adheres to the dirt, so that the charge of the dirt can be reversed and can be electrostatically peeled off. Since the discharge diffuses in a conical shape according to the direction of the electric field, if a thick and linear hole exists in the direction of the electric field, the discharge may grow to an abnormal discharge and a white-out image may occur. Therefore, it is preferable that the through holes arranged linearly in the same direction as the electric field, that is, in the thickness direction, are as small as possible and fine.

表面層の多孔質体が共連続構造を有するか否かは、走査型電子顕微鏡(SEM)で得られるSEM像や、3次元透過型電子顕微鏡やX線CT検査装置等で得られる多孔質体の3次元像において確認できる。すなわち、該SEM像や該3次元像において、骨格が複数の分岐を有し、表面層の表面から中間層の表面に繋がる箇所を複数有すればよい。さらに、細孔が表面層の表面の複数の開口部を繋いでおり、かつ、複数の分岐を有し、表面層の表面から中間層の表面に到達していることを確認すればよい。共連続構造の有無は、具体的には後述する方法により確認される。 Whether or not the porous body of the surface layer has a co-continuous structure is determined by the SEM image obtained by a scanning electron microscope (SEM), the porous body obtained by a three-dimensional transmission electron microscope, an X-ray CT inspection device, or the like. It can be confirmed in the three-dimensional image of. That is, in the SEM image or the three-dimensional image, the skeleton may have a plurality of branches and may have a plurality of locations connected from the surface of the surface layer to the surface of the intermediate layer. Further, it may be confirmed that the pores connect the plurality of openings on the surface of the surface layer, have a plurality of branches, and reach the surface of the intermediate layer from the surface of the surface layer. The presence or absence of a co-continuous structure is specifically confirmed by a method described later.

(2)表面層の多孔質体の微細さ
表面層の多孔質体は微細な構造を有する。すなわち、表面層の表面の、任意の150μm四方の領域を撮影し、該領域を縦に15等分、横に15等分したときに、該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数との合計は、該正方形群全体の数の25%以下である。細孔を微細にすることで表面積も大きくなるため、放電時に局所的にエネルギーがかかることを抑制できる。これにより、局所的な抵抗値の低下を抑制でき、結果として蓄積された電荷の漏洩の抑制が可能であり、異常放電を抑制できる。
(2) Fineness of the porous body of the surface layer The porous body of the surface layer has a fine structure. That is, when an arbitrary 150 μm square region on the surface of the surface layer is photographed and the region is divided vertically into 15 equal parts and horizontally into 15 equal parts, only the number of square groups consisting of only the skeleton and the pores are present. The total with the number of square groups consisting of is 25% or less of the total number of square groups. Since the surface area is increased by making the pores finer, it is possible to suppress the local application of energy during discharge. As a result, it is possible to suppress a local decrease in resistance value, and as a result, it is possible to suppress leakage of accumulated charges, and it is possible to suppress abnormal discharge.

微細さの評価は次のようにして行う。まず、表面層を該表面層に正対した方向から観察し、該表面層の表面の、任意の150μm四方の領域を撮影する。この時、レーザー顕微鏡、光学顕微鏡、電子顕微鏡等、150μm四方の領域を観察できる方法を適宜使用すればよい。次いで、図4に示されるように、該領域を縦に15等分、横に15等分したときに、骨格のみからなる正方形群の数と細孔のみからなる正方形群の数との合計を算出する。該合計が正方形群全体の数の25%以下であることにより、細孔内の放電時の局所的なエネルギー集中による抵抗値低下が抑制される。該合計は正方形群全体の数の15%以下であることが、より抵抗値の低下を抑制でき、長時間使用後の蓄積電荷の漏洩が軽微になるため好ましい。該合計は正方形群全体の数の5%以下であることが、放電時の局所的なエネルギー集中が更に抑制されるため、蓄積された電荷の導電性支持体への漏洩の抑制効果がさらに得られ、より好ましい。なお、該合計の割合の下限は特に限定されず、値は小さい方が好ましい。表面層の多孔質体の微細さの評価は、具体的には後述する方法により実施される。 The fineness is evaluated as follows. First, the surface layer is observed from the direction facing the surface layer, and an arbitrary 150 μm square region on the surface of the surface layer is photographed. At this time, a method capable of observing a region of 150 μm square, such as a laser microscope, an optical microscope, or an electron microscope, may be appropriately used. Next, as shown in FIG. 4, when the region is divided into 15 equal parts vertically and 15 equal parts horizontally, the total of the number of square groups consisting of only the skeleton and the number of square groups consisting of only pores is calculated. calculate. When the total is 25% or less of the total number of square groups, a decrease in resistance value due to local energy concentration during discharge in the pores is suppressed. It is preferable that the total is 15% or less of the total number of square groups because the decrease in resistance value can be further suppressed and the leakage of accumulated charge after long-term use becomes slight. When the total is 5% or less of the total number of square groups, local energy concentration during discharge is further suppressed, so that the effect of suppressing leakage of accumulated charges to the conductive support is further obtained. And more preferred. The lower limit of the total ratio is not particularly limited, and a smaller value is preferable. The evaluation of the fineness of the porous body of the surface layer is specifically carried out by the method described later.

(3)表面層の体積抵抗率
表面層は非導電性である。前述したように、「非導電性」とは、体積抵抗率が1×1010Ω・cm以上であることを示す。表面層が非導電性であることにより、表面層の骨格が放電により帯電電圧とは逆極性のイオンを捕捉し、チャージアップすることができる。表面層がチャージアップすると、静電的な反発により汚れの付着を低減することができ、さらに付着した汚れに細孔内の放電が照射されることにより、汚れの電荷を反転させて剥離させることができる。
(3) Volume resistivity of the surface layer The surface layer is non-conductive. As described above, “non-conductive” means that the volume resistivity is 1 × 10 10 Ω · cm or more. Since the surface layer is non-conductive, the skeleton of the surface layer can capture and charge up ions having a polarity opposite to the charging voltage by electric discharge. When the surface layer is charged up, the adhesion of dirt can be reduced by electrostatic repulsion, and the attached dirt is irradiated with a discharge in the pores to reverse the charge of the dirt and peel it off. Can be done.

表面層の体積抵抗率は1×1012Ω・cm以上1×1017Ω・cm以下であることが好ましい。該体積抵抗率が1×1012Ω・cm以上であることにより、骨格が容易にチャージアップすることができ、汚れの付着をより抑制できる。一方、該体積抵抗率が1×1017Ω・cm以下であることにより、表面層の細孔内の放電の生成を促進し、汚れを容易に静電的に剥離することができる。さらに、該体積抵抗率が1×1015Ω・cm以上1×1017Ω・cm以下であることにより、表面層のチャージアップのばらつきの影響が低減され、汚れの静電的な剥離をより一層促進できるため、より好ましい。 The volume resistivity of the surface layer is preferably 1 × 10 12 Ω · cm or more and 1 × 10 17 Ω · cm or less. When the volume resistivity is 1 × 10 12 Ω · cm or more, the skeleton can be easily charged up and the adhesion of dirt can be further suppressed. On the other hand, when the volume resistivity is 1 × 10 17 Ω · cm or less, the generation of electric discharge in the pores of the surface layer is promoted, and dirt can be easily and electrostatically peeled off. Further, when the volume resistivity is 1 × 10 15 Ω ・ cm or more and 1 × 10 17 Ω ・ cm or less, the influence of the variation in the charge-up of the surface layer is reduced, and the electrostatic peeling of dirt is further improved. It is more preferable because it can be further promoted.

なお、表面層の体積抵抗率の測定は次のようにして行う。まず、導電性部材の表面に存在する表面層から、細孔を含まない領域を試験片としてピンセットを用いて取り出す。次いで、走査型プローブ顕微鏡(SPM)のカンチレバーを接触させ、カンチレバーと導電性基板との間に該試験片を挟むことで体積抵抗率を測定する。導電性部材の長手方向を10等分し、得られた10個の領域の各領域における任意の1箇所(合計10箇所)において前記体積抵抗率の測定を行い、その平均値を表面層の体積抵抗率とする。具体的には、後述する方法により測定できる。 The volume resistivity of the surface layer is measured as follows. First, from the surface layer existing on the surface of the conductive member, a region not containing pores is taken out as a test piece using tweezers. Next, the cantilever of the scanning probe microscope (SPM) is brought into contact with the cantilever, and the test piece is sandwiched between the cantilever and the conductive substrate to measure the volume resistivity. The longitudinal direction of the conductive member is divided into 10 equal parts, the volume resistivity is measured at any one location (10 locations in total) in each region of the obtained 10 regions, and the average value is the volume of the surface layer. Let it be the resistivity. Specifically, it can be measured by the method described later.

(4)表面層の多孔質体の細孔の断面形状
表面層の多孔質体は、3次元的に連続な骨格と3次元的に連続な細孔を有していればその細孔の断面形状は特に限定されないが、例えば円形、楕円形、四角形等の多角形、半円形等であることができる。十分な放電電荷量を確保して放電の際のエネルギーが分散するように、表面積は大きいほうが好ましく、細孔の断面形状は円形でないことが好ましい。この場合、表面層の抵抗低下が抑制され、蓄積された電荷の導電性支持体への漏えいが抑制され、汚れによる画像不良が抑制される。
(4) Cross-sectional shape of the pores of the porous body of the surface layer If the porous body of the surface layer has a three-dimensionally continuous skeleton and three-dimensionally continuous pores, the cross section of the pores. The shape is not particularly limited, but may be, for example, a polygon such as a circle, an ellipse, or a quadrangle, or a semicircle. It is preferable that the surface area is large and the cross-sectional shape of the pores is not circular so as to secure a sufficient amount of discharge charge and disperse the energy at the time of discharge. In this case, the decrease in resistance of the surface layer is suppressed, the leakage of the accumulated charge to the conductive support is suppressed, and image defects due to stains are suppressed.

上記のような細孔の断面形状は次のように評価すればよい。まず、ミクロトーム等を用いて表面層の平滑な断面を作製し、この断面を電子顕微鏡で観察して断面画像を取得する。次いで、該断面画像を画像処理して2値化画像を得る。ここで実際の多孔質体の細孔は3次元的に連続ではあるが、ある断面図内の細孔断面は、閉じた形状になる。さらに、該2値化画像内にある細孔断面に対し、各々の細孔の周囲長をL、細孔の面積をSとし、円形度K=L/4πSを算出する。この円形度Kは、細孔及び骨格の形状の複雑さを示している。細孔の形状が真円であるとき、このKの値は1であり、形状が複雑であればあるほど、Kの値は大きくなる。なお、LとSの単位は、Kの単位がなくなる、すなわちKが定数となるように適宜選択することができる。 The cross-sectional shape of the pores as described above may be evaluated as follows. First, a smooth cross section of the surface layer is prepared using a microtome or the like, and this cross section is observed with an electron microscope to obtain a cross section image. Next, the cross-sectional image is image-processed to obtain a binarized image. Here, the pores of the actual porous body are three-dimensionally continuous, but the pore cross section in a certain cross-sectional view has a closed shape. Further, with respect to the pore cross section in the binarized image, the perimeter of each pore is L, the area of the pore is S, and the circularity K = L 2 / 4πS is calculated. This circularity K indicates the complexity of the shape of the pores and skeleton. When the shape of the pores is a perfect circle, the value of K is 1, and the more complicated the shape, the larger the value of K. The units of L and S can be appropriately selected so that the unit of K disappears, that is, K becomes a constant.

該2値化画像内の細孔に対してKを算出したときに、Kの算術平均は2以上であることが好ましい。Kの算術平均が2以上であることにより、蓄積された電荷の導電性支持体への漏洩が十分に抑制できる。また、Kの算術平均が3以上であれば、蓄積される電荷の増加と漏洩抑制がより進み、汚れによる黒ポチ画像の発生を抑制できるため、より好ましい。Kの算術平均は3.5以上がさらに好ましく、4以上が特に好ましい。Kの算術平均の上限は特に限定されないが、例えば10以下とすることができる。なお、Kの算術平均は、導電性部材を長手方向に10等分し、得られた10個の領域の各領域における任意の1箇所(合計10箇所)についてKを測定し、これらを平均することで算出した値である。具体的には、後述する方法により測定できる。 When K is calculated for the pores in the binarized image, the arithmetic mean of K is preferably 2 or more. When the arithmetic mean of K is 2 or more, leakage of the accumulated charge to the conductive support can be sufficiently suppressed. Further, when the arithmetic mean of K is 3 or more, the increase of accumulated charges and the suppression of leakage are further advanced, and the generation of black spot images due to stains can be suppressed, which is more preferable. The arithmetic mean of K is more preferably 3.5 or more, and particularly preferably 4 or more. The upper limit of the arithmetic mean of K is not particularly limited, but can be, for example, 10 or less. The arithmetic mean of K is obtained by dividing the conductive member into 10 equal parts in the longitudinal direction, measuring K at any one location (10 locations in total) in each region of the obtained 10 regions, and averaging these. It is a value calculated by. Specifically, it can be measured by the method described later.

(5)表面層の材質
表面層の多孔質体を構成する骨格の材料は、該多孔質体を形成できる限りにおいて特に制限はなく、有機樹脂、シリカ、チタニア等の無機材料、該有機樹脂と該無機材料とをハイブリッド化させた材料等を用いることができる。ここで有機樹脂とは、分子量が大きい材料を示し、半合成高分子や合成高分子等のモノマーを重合させて得られるポリマーや、天然高分子等の分子量の大きい化合物を表す。
(5) Material of surface layer The material of the skeleton constituting the porous body of the surface layer is not particularly limited as long as the porous body can be formed, and the organic resin, silica, an inorganic material such as titania, and the organic resin are used. A material obtained by hybridizing the inorganic material can be used. Here, the organic resin refers to a material having a large molecular weight, and represents a polymer obtained by polymerizing a monomer such as a semi-synthetic polymer or a synthetic polymer, or a compound having a large molecular weight such as a natural polymer.

前記有機樹脂としては例えば以下のものが挙げられる。アクリル系ポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリイミド;ポリアミド;ポリアミドイミド;ポリパラフェニレンオキサイド、ポリパラフェニレンスルフィド等のポリアリーレン類(芳香族系ポリマー);ポリビニルエーテル;ポリビニルアルコール;ポリオレフィン、ポリスチレン、ポリイミド、ポリアリーレン類(芳香族系ポリマー)に、スルホン酸基(−SOH)、カルボキシル基(−COOH)、リン酸基、スルホニウム基、アンモニウム基、又は、ピリジニウム基を導入したもの;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素系ポリマー;含フッ素系ポリマーの骨格にスルホン酸基、カルボキシル基、リン酸基、スルホニウム基、アンモニウム基、又は、ピリジニウム基を導入したパーフルオロスルホン酸ポリマー、パーフルオロカルボン酸ポリマー、パーフルオロリン酸ポリマー;ポリブダジエン系化合物;エラストマーやゲル等のポリウレタン系化合物;エポキシ系化合物;シリコーン系化合物;ポリ塩化ビニル;ポリエチレンテレフタレート;(アセチル)セルロース;ナイロン;ポリアリレート;多糖類等。なおこれらのポリマーは単独であるいは複数を組み合わせて用いてもよい。また、これらのポリマーはポリマー鎖中に特定の官能基が導入されたものであってもよい。また、これらのポリマーはこれらのポリマーの原料となる単量体の2種以上の組み合わせから製造される共重合体であってもよい。 Examples of the organic resin include the following. Acrylic polymers; polyolefins such as polyethylene and polypropylene; polyimide; polyamides; polyamideimides; polyarylenes such as polyparaphenylene oxide and polyparaphenylene sulfides (aromatic polymers); polyvinyl ethers; polyvinyl alcohols; polyolefins, polystyrenes, polyimides , the polyarylenes (aromatic polymers), sulfonic acid (-SO 3 H), carboxyl group (-COOH), a phosphoric acid group, a sulfonium group, ammonium group, or, those that have been introduced pyridinium groups, polytetra Fluorine-containing polymers such as fluoroethylene and polyvinylidene fluoride; perfluorosulfonic acid polymers in which a sulfonic acid group, a carboxyl group, a phosphoric acid group, a sulfonium group, an ammonium group, or a pyridinium group is introduced into the skeleton of the fluorine-containing polymer. Perfluorocarboxylic acid polymers, perfluorophosphate polymers; polybudadien compounds; polyurethane compounds such as elastomers and gels; epoxy compounds; silicone compounds; polyvinyl chloride; polyethylene terephthalates; (acetyl) cellulose; nylons; polyallylates ; Polymers, etc. These polymers may be used alone or in combination of two or more. Further, these polymers may have a specific functional group introduced into the polymer chain. Further, these polymers may be copolymers produced from a combination of two or more kinds of monomers which are raw materials for these polymers.

前記無機材料としては、Si、Mg、Al、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、Cu、Sn及びZnの酸化物等が挙げられる。より具体的には以下の金属酸化物が挙げられる。シリカ、酸化チタン、酸化アルミニウム、アルミナゾル、酸化ジルコニウム、酸化鉄、酸化クロム等を挙げることができる。これらの無機材料は一種を用いてもよく、二種以上を併用してもよい。 Examples of the inorganic material include oxides of Si, Mg, Al, Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Cu, Sn and Zn. More specifically, the following metal oxides can be mentioned. Examples thereof include silica, titanium oxide, aluminum oxide, alumina sol, zirconium oxide, iron oxide and chromium oxide. One type of these inorganic materials may be used, or two or more types may be used in combination.

表面層は、放射線崩壊型樹脂Bを含むことが好ましい。前述したように、放射線崩壊型樹脂は放電時のエネルギーを受けても低抵抗化しにくいため、表面層の多孔質体も放射線崩壊型樹脂を含むことにより、放電エネルギーへの耐性が更に大きくなり、蓄積された電荷の導電性支持体への漏洩がより抑制される。これにより、放電時のエネルギーが更に大きくなるような条件下においても、長期に亘って汚れ付着抑制の効果を維持可能となる。 The surface layer preferably contains a radiation-disintegrating resin B. As described above, since the radiation-disintegrating type resin is unlikely to have a low resistance even when it receives the energy at the time of discharge, the porous body of the surface layer also contains the radiation-disintegrating type resin, so that the resistance to the discharge energy is further increased. Leakage of the accumulated charge to the conductive support is further suppressed. As a result, the effect of suppressing dirt adhesion can be maintained for a long period of time even under conditions in which the energy at the time of discharge is further increased.

表面層に含まれる前記放射線崩壊型樹脂Bは、下記式(6)で示される構成単位を有するアクリル樹脂であることが好ましい。 The radiation-disintegrating resin B contained in the surface layer is preferably an acrylic resin having a structural unit represented by the following formula (6).

Figure 0006929742
Figure 0006929742

式(6)中、Rは、炭素数1〜6の炭化水素基を表す。Rが炭素数1〜6の炭化水素基であることにより、放電時にラジカル化し得る部分が多すぎず、周囲の酸素や水と反応する酸化や副生成物の副生が生じにくい。前記式(6)で示される構成単位を有するアクリル樹脂としては、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸イソプロピル、ポリメタクリル酸ブチル、ポリメタクリル酸ターシャリーブチル、ポリメタクリル酸イソブチル、ポリメタクリル酸シクロヘキシルなどが挙げられる。なお、該アクリル樹脂は、前記式(6)で示される構成単位を複数種含む共重合体であってもよく、前記式(6)で示される構成単位以外に、他の単量体単位を含む共重合体であってもよい。放射線崩壊型樹脂Bの繰り返し単位が前記式(6)で示される場合に考えられる反応機構については、中間層に含まれる放射線崩壊型樹脂Aと同様に前記反応式(A)により説明される。すなわち、不安定なラジカルが形成されて反応終息も急速に行われるため、周囲の酸素や水と反応する機会がより少なくなり、酸化が抑制されると考えられる。 In formula (6), R 6 represents a hydrocarbon group having 1 to 6 carbon atoms. Since R 6 is a hydrocarbon group having 1 to 6 carbon atoms, there are not too many portions that can be radicalized at the time of discharge, and oxidation that reacts with surrounding oxygen and water and by-products of by-products are unlikely to occur. Examples of the acrylic resin having the structural unit represented by the formula (6) include polymethylmethacrylate, ethylpolymethacrylate, propylpolymethacrylate, isopropylpolymethacrylate, butylpolymethacrylate, tertiarybutylbutylmethacrylate, and poly. Examples thereof include isobutyl methacrylate and cyclohexyl polymethacrylate. The acrylic resin may be a copolymer containing a plurality of structural units represented by the formula (6), and other monomer units may be used in addition to the structural units represented by the formula (6). It may be a copolymer containing. The reaction mechanism that can be considered when the repeating unit of the radiation-disintegrating resin B is represented by the above formula (6) is described by the above-mentioned reaction formula (A) as in the case of the radiation-disintegrating resin A contained in the intermediate layer. That is, it is considered that unstable radicals are formed and the reaction is terminated rapidly, so that the chance of reacting with surrounding oxygen and water is reduced and oxidation is suppressed.

前記式(6)中のRは、炭素数2以上6以下の直鎖状又は分岐鎖状のアルキル基であることが好ましい。Rが環状構造でないために共鳴等による安定ラジカル形成が抑制される上、炭素が複数となり立体的な障害が増えることでこの部分における放電生成物との反応機会が少なくなり、酸化が抑制される。Rは、−C(CHであることがより好ましい。Rが−C(CHであることにより、第3級炭素がなくなり、第4級炭素及び第1級炭素からなり、安定ラジカルがより形成されにくくなるため、酸化による放電劣化が抑制される。 R 6 in the formula (6) is preferably a linear or branched alkyl group having 2 or more and 6 or less carbon atoms. Since R 6 does not have a cyclic structure, stable radical formation due to resonance or the like is suppressed, and the number of carbons increases to increase steric obstacles, which reduces the chance of reaction with the discharge product in this portion and suppresses oxidation. NS. R 6 is more preferably −C (CH 3 ) 3. Since R 6 is −C (CH 3 ) 3 , the tertiary carbon is eliminated and the carbon is composed of quaternary carbon and primary carbon, and stable radicals are less likely to be formed, so that discharge deterioration due to oxidation is suppressed. Will be done.

放射線崩壊型樹脂Bの重量平均分子量は、5万以上250万以下であることが好ましい。また、放射線崩壊型樹脂Bのガラス転移温度(Tg)は、50℃以上250℃以下であることが好ましい。 The weight average molecular weight of the radiation-disintegrating resin B is preferably 50,000 or more and 2.5 million or less. The glass transition temperature (Tg) of the radiation-disintegrating resin B is preferably 50 ° C. or higher and 250 ° C. or lower.

(6)表面層の形成方法
表面層の形成方法は、多孔質体を表面層として形成できる限りにおいて特に制限はなく、例えば次のような方法を挙げることができる。高分子材料溶液の相分離を利用して多孔質体を形成する方法、発泡剤を利用して多孔質体を形成する方法、レーザー等のエネルギー線を照射して多孔質体を形成する方法等。これらの中でも、微細かつ複雑な空孔及び骨格を形成することができるため、高分子材料溶液の相分離を利用する方法が好ましい。ここで、高分子材料溶液とは、高分子材料と溶剤とを含む溶液を表す。高分子材料溶液の相分離を利用する方法としては、例えば以下の3つの方法が挙げられる。
1.複数の高分子材料又は高分子材料の前駆体と溶剤とを混合し、温度、湿度、溶剤濃度、高分子材料の重合に伴う複数の高分子材料間の相溶性等を変化させることにより、高分子材料と高分子材料との相分離を誘発する。その後、一方の高分子材料を除去することによって、連続骨格と連続空孔が共存する多孔質体を得る。
2.高分子材料又は高分子材料の前駆体と溶剤とを混合し、温度、湿度、溶剤濃度、高分子材料の重合に伴う高分子材料と溶剤との相溶性等を変化させることにより、高分子材料と溶剤との相分離を誘発する。その後、溶剤を除去することによって、連続骨格と連続空孔が共存する多孔質体を得る。
3.高分子材料、水、溶剤、界面活性剤及び重合開始剤を混合し、油中水滴型エマルジョンを調製する。油中にて高分子材料を重合させた後、水を除去することによって、連続骨格と連続空孔が共存する多孔質体を得る。
(6) Method for Forming Surface Layer The method for forming the surface layer is not particularly limited as long as the porous body can be formed as the surface layer, and examples thereof include the following methods. A method of forming a porous body by using phase separation of a polymer material solution, a method of forming a porous body by using a foaming agent, a method of irradiating an energy ray such as a laser to form a porous body, etc. .. Among these, a method utilizing phase separation of a polymer material solution is preferable because fine and complicated pores and skeletons can be formed. Here, the polymer material solution represents a solution containing a polymer material and a solvent. Examples of the method using the phase separation of the polymer material solution include the following three methods.
1. 1. Higher by mixing a plurality of polymer materials or precursors of the polymer materials and a solvent, and changing the temperature, humidity, solvent concentration, compatibility between the plurality of polymer materials due to the polymerization of the polymer materials, etc. Induces phase separation between molecular and polymer materials. Then, by removing one of the polymer materials, a porous body in which a continuous skeleton and continuous pores coexist is obtained.
2. By mixing a polymer material or a precursor of the polymer material with a solvent and changing the temperature, humidity, solvent concentration, compatibility between the polymer material and the solvent due to the polymerization of the polymer material, etc., the polymer material Induces phase separation between the solvent and the solvent. Then, by removing the solvent, a porous body in which a continuous skeleton and continuous pores coexist is obtained.
3. 3. A polymer material, water, a solvent, a surfactant and a polymerization initiator are mixed to prepare a water-in-oil emulsion. By polymerizing the polymer material in oil and then removing water, a porous body in which a continuous skeleton and continuous pores coexist is obtained.

これらの中でも、高分子材料と溶剤との相分離により多孔質体を形成する方法は、他の方法と比較して相分離の初期過程において構造を凍結させることが容易なため、結果として、多孔質体の空孔及び骨格の微細化に効果的な方法であり、好ましい。さらに、多孔質体がスピノーダル分解に特徴的な複雑な形状を形成し易いため好ましい。すなわち、電子写真用の導電性部材の製造方法は、高分子材料と溶剤との相分離により表面層の多孔質体を形成する工程を含むことが好ましい。 Among these, the method of forming a porous body by phase separation of a polymer material and a solvent makes it easier to freeze the structure in the initial process of phase separation as compared with other methods, and as a result, it is porous. It is an effective method for finening the pores and the skeleton of the body, and is preferable. Further, it is preferable because the porous body easily forms a complicated shape characteristic of spinodal decomposition. That is, it is preferable that the method for producing a conductive member for electrophotographic photography includes a step of forming a porous body of a surface layer by phase separation between a polymer material and a solvent.

(7)表面層の厚さ
表面層の厚さ(膜厚)は、1μm以上30μm以下であることが好ましい。表面層の厚さが1μm以上であることにより、骨格が十分にチャージアップし、異常放電を抑制できる。また、表面層の厚さが30μm以下であることにより、細孔内の放電が感光ドラムへ到達し、帯電不足を伴わずに画像形成を行うことができる。表面層の厚さは1μm以上20μm以下であることがより好ましく、5μm以上20μm以下であることがさらに好ましい。表面層の厚さが20μm以下であることにより、表面層に付着した汚れの極性を好適に反転し、汚れ付着に由来する画像不良をより抑制することができる。
(7) Thickness of surface layer The thickness (film thickness) of the surface layer is preferably 1 μm or more and 30 μm or less. When the thickness of the surface layer is 1 μm or more, the skeleton is sufficiently charged up and abnormal discharge can be suppressed. Further, when the thickness of the surface layer is 30 μm or less, the discharge in the pores reaches the photosensitive drum, and the image can be formed without insufficient charging. The thickness of the surface layer is more preferably 1 μm or more and 20 μm or less, and further preferably 5 μm or more and 20 μm or less. When the thickness of the surface layer is 20 μm or less, the polarity of the dirt adhering to the surface layer can be suitably reversed, and image defects due to the dirt adhering can be further suppressed.

なお、表面層の厚さは次のようにして確認する。導電性部材から、中間層及び表面層を含む切片を切り出し、X線CT測定を行うことで表面層の厚さを測定する。具体的には、前記X線CT測定で得られた2次元のスライス画像を大津法により2値化し、骨格部と細孔部とを識別する。2値化したスライス画像それぞれにおいて、骨格部の占める割合を数値化し、導電性支持体側から表面層側へ数値の確認を行い、骨格部の占める割合が2%以上になる領域を表面層とし、表面層の最表面部と最下部とを定義する。ここで、「骨格部の占める割合」とは{(骨格部の面積)/(骨格部の面積+細孔部の面積)}によって算出される値を意味する。導電性部材の長手方向を10等分し、得られた10個の領域の各領域における任意の1箇所(合計10箇所)において前記表面層の厚さの測定を行い、その平均値を表面層の厚さとする。具体的には、後述する方法により測定できる。 The thickness of the surface layer is confirmed as follows. A section including the intermediate layer and the surface layer is cut out from the conductive member, and the thickness of the surface layer is measured by performing X-ray CT measurement. Specifically, the two-dimensional slice image obtained by the X-ray CT measurement is binarized by the Otsu method to distinguish between the skeleton portion and the pore portion. In each of the binarized slice images, the ratio occupied by the skeleton part is quantified, the numerical value is confirmed from the conductive support side to the surface layer side, and the region where the ratio occupied by the skeleton part is 2% or more is defined as the surface layer. The outermost surface and the lowest surface of the surface layer are defined. Here, the "ratio occupied by the skeleton portion" means a value calculated by {(area of the skeleton portion) / (area of the skeleton portion + area of the pore portion)}. The longitudinal direction of the conductive member is divided into 10 equal parts, the thickness of the surface layer is measured at any one location (10 locations in total) in each region of the obtained 10 regions, and the average value thereof is taken as the surface layer. The thickness of. Specifically, it can be measured by the method described later.

(8)表面層の空孔率
表面層の多孔質体の空孔率は、本発明の効果を損なわない範囲であればよく、具体的には40%以上95%以下であることが好ましい。該空孔率が40%以上であることにより、画像形成に十分な量の細孔内放電を発生させることができる。また、該空孔率が95%以下であることにより、放電時に場所あたりに受けるエネルギーが少なくなるため、耐汚れ性の低下が抑制され、黒ポチ画像が発生しにくくなる。該空孔率は50%以上90%以下がより好ましく、60%以上85%以下が更に好ましい。
(8) Porosity of the surface layer The porosity of the porous body of the surface layer may be as long as it does not impair the effect of the present invention, and specifically, it is preferably 40% or more and 95% or less. When the porosity is 40% or more, a sufficient amount of intrapore discharge can be generated for image formation. Further, when the porosity is 95% or less, the energy received per place at the time of discharge is reduced, so that the decrease in stain resistance is suppressed and the black spot image is less likely to occur. The porosity is more preferably 50% or more and 90% or less, and further preferably 60% or more and 85% or less.

前記空孔率は次のようにして確認できる。導電性部材から、中間層及び表面層を含む切片を切り出し、X線CT測定を行うことで測定することができる。尚、空孔率の測定箇所は任意であるが、測定箇所が偏らないように、例えば、導電性部材の長手方向を10等分し、得られた10個の領域の各領域における任意の1箇所(合計10箇所)を測定箇所とする方法が挙げられる。この場合、得られた値の平均値を空孔率とすることができる。 The porosity can be confirmed as follows. It can be measured by cutting out a section including the intermediate layer and the surface layer from the conductive member and performing X-ray CT measurement. The porosity measurement point is arbitrary, but in order to prevent the measurement point from being biased, for example, the longitudinal direction of the conductive member is divided into 10 equal parts, and any 1 in each of the obtained 10 regions is obtained. Examples thereof include a method in which points (10 points in total) are used as measurement points. In this case, the average value of the obtained values can be used as the porosity.

<離間部材>
導電性部材は、離間部材を有していてもよい。離間部材は、感光ドラムと表面層とを離間でき、かつ、本発明の効果を妨げない限りにおいて制限はなく、例えばリング、スペーサ等が挙げられる。離間部材を導入する方法としては、例えば以下の方法が挙げられる。導電性部材がローラ形状の場合、導電性部材よりも外径が大きく、かつ、感光ドラムと導電性部材との空隙を保持できる硬度を有するリングを、リングと導電性部材との回転中心が同じ位置になるように配置する方法。導電性部材がブレード形状である場合、導電性部材と感光ドラムとが摩擦、摩耗しないように、両者を離間できるようなスペーサを導入する方法。
<Separation member>
The conductive member may have a separating member. The separating member is not limited as long as the photosensitive drum and the surface layer can be separated from each other and the effect of the present invention is not impaired, and examples thereof include a ring and a spacer. Examples of the method of introducing the separating member include the following methods. When the conductive member has a roller shape, a ring having a larger outer diameter than the conductive member and having a hardness capable of holding a gap between the photosensitive drum and the conductive member has the same center of rotation between the ring and the conductive member. How to arrange so that it is in position. When the conductive member has a blade shape, a method of introducing a spacer that can separate the conductive member and the photosensitive drum so that they do not rub or wear.

離間部材を構成する材料は、本発明の効果を妨げない限りにおいて制限はないが、離間部材を介した通電を防ぐため、非導電性の公知の材料を適宜使用すればよい。例えばポリアセタール樹脂、高分子量ポリエチレン樹脂、ナイロン樹脂などの摺動性に優れた高分子材料、酸化チタン、酸化アルミニウムなどの金属酸化物材料が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。 The material constituting the separating member is not limited as long as it does not interfere with the effect of the present invention, but a known non-conductive material may be appropriately used in order to prevent energization through the separating member. Examples thereof include polymer materials having excellent slidability such as polyacetal resin, high molecular weight polyethylene resin and nylon resin, and metal oxide materials such as titanium oxide and aluminum oxide. These may be used alone or in combination of two or more.

離間部材を導入する位置としては、本発明の効果を妨げない限りにおいて制限はなく、例えば導電性支持体の長手方向の端部に設置すればよい。図5に、離間部材を導入した場合の導電性部材の一例(ローラ形状)を示す。図5において、50は導電性部材、51は離間部材、52は導電性支持体(導電性軸芯体)を示す。 The position where the separating member is introduced is not limited as long as the effect of the present invention is not impaired, and may be installed, for example, at the end portion in the longitudinal direction of the conductive support. FIG. 5 shows an example (roller shape) of the conductive member when the separating member is introduced. In FIG. 5, 50 is a conductive member, 51 is a separating member, and 52 is a conductive support (conductive shaft core).

[プロセスカートリッジ]
本発明の一態様に係るプロセスカートリッジは、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、本発明の一態様に係る導電性部材を具備している。該導電性部材を帯電ローラとして具備している電子写真用のプロセスカートリッジの一例を図6に示す。図6に示されるプロセスカートリッジは、現像装置と帯電装置とを一体化し、電子写真装置の本体に着脱可能に構成されたものである。現像装置は、少なくとも現像ローラ63とトナー容器66とを一体化したものであり、必要に応じてトナー供給ローラ64、トナー69、現像ブレード68、及び攪拌羽610を備えていてもよい。帯電装置は、感光ドラム61、クリーニングブレード65、及び帯電ローラ62を少なくとも一体化したものであり、廃トナー容器67を備えていてもよい。帯電ローラ62、現像ローラ63、トナー供給ローラ64、及び現像ブレード68には、それぞれ電圧が印加されるようになっている。
[Process cartridge]
The process cartridge according to one aspect of the present invention is a process cartridge that is detachably configured to be attached to and detached from the main body of the electrophotographic apparatus, and includes a conductive member according to one aspect of the present invention. FIG. 6 shows an example of a process cartridge for electrophotographic that includes the conductive member as a charging roller. The process cartridge shown in FIG. 6 integrates a developing device and a charging device, and is configured to be removable from the main body of the electrophotographic apparatus. The developing apparatus integrates at least the developing roller 63 and the toner container 66, and may include a toner supply roller 64, a toner 69, a developing blade 68, and a stirring blade 610, if necessary. The charging device is at least integrated with the photosensitive drum 61, the cleaning blade 65, and the charging roller 62, and may include a waste toner container 67. A voltage is applied to the charging roller 62, the developing roller 63, the toner supply roller 64, and the developing blade 68, respectively.

[電子写真装置]
本発明の一態様に係る電子写真装置は、本発明の一態様に係る導電性部材を具備している。該導電性部材を帯電ローラとして具備している電子写真装置の一例を図7に示す。図7に示される電子写真装置は、四つの前記プロセスカートリッジが着脱可能に装着されたカラー電子写真装置である。各プロセスカートリッジには、ブラック、マゼンダ、イエロー、シアンの各色のトナーが使用されている。感光ドラム71は矢印方向に回転し、帯電バイアス電源から電圧が印加された帯電ローラ72によって一様に帯電され、露光光711により、その表面に静電潜像が形成される。一方、トナー容器76に収納されているトナー79は、攪拌羽710によりトナー供給ローラ74へと供給され、トナー供給ローラ74から現像ローラ73上に搬送される。そして現像ローラ73と接触配置されている現像ブレード78により、現像ローラ73の表面上にトナー79が均一にコーティングされるとともに、摩擦帯電によりトナー79へと電荷が与えられる。前記静電潜像には、感光ドラム71に対して接触配置される現像ローラ73によって搬送されるトナー79が付与されて現像され、トナー像として可視化される。
[Electrographer]
The electrophotographic apparatus according to one aspect of the present invention includes a conductive member according to one aspect of the present invention. FIG. 7 shows an example of an electrophotographic apparatus including the conductive member as a charging roller. The electrophotographic apparatus shown in FIG. 7 is a color electrophotographic apparatus in which the four process cartridges are detachably attached. Black, magenta, yellow, and cyan toners are used in each process cartridge. The photosensitive drum 71 rotates in the direction of the arrow and is uniformly charged by the charging roller 72 to which a voltage is applied from the charging bias power supply, and an electrostatic latent image is formed on the surface by the exposure light 711. On the other hand, the toner 79 stored in the toner container 76 is supplied to the toner supply roller 74 by the stirring blade 710, and is conveyed from the toner supply roller 74 onto the developing roller 73. Then, the developing blade 78 arranged in contact with the developing roller 73 uniformly coats the toner 79 on the surface of the developing roller 73, and the toner 79 is charged by triboelectric charging. The electrostatic latent image is developed by applying toner 79 conveyed by a developing roller 73 that is arranged in contact with the photosensitive drum 71, and is visualized as a toner image.

可視化された感光ドラム71上のトナー像は、一次転写バイアス電源により電圧が印加された一次転写ローラ712によって、テンションローラ713と中間転写ベルト駆動ローラ714に支持、駆動される中間転写ベルト715に転写される。各色のトナー像が順次重畳されて、中間転写ベルト715上にカラー像が形成される。転写材719は、給紙ローラ(不図示)により装置内に給紙され、中間転写ベルト715と二次転写ローラ716との間に搬送される。二次転写ローラ716には二次転写バイアス電源(不図示)から電圧が印加され、中間転写ベルト715上のカラー像を転写材719に転写する。カラー像が転写された転写材719は、定着器718により定着処理され、装置外に排紙されプリント動作が終了する。一方、転写されずに感光ドラム71上に残存したトナー79は、クリーニングブレード75により掻き取られて廃トナー収容容器77に収納され、クリーニングされた感光ドラム71は、上述の工程に繰り返し使用される。また転写されずに中間転写ベルト715上に残存したトナー79もクリーニング装置717により掻き取られる。 The visualized toner image on the photosensitive drum 71 is transferred to the intermediate transfer belt 715 which is supported and driven by the tension roller 713 and the intermediate transfer belt drive roller 714 by the primary transfer roller 712 to which a voltage is applied by the primary transfer bias power supply. Will be done. Toner images of each color are sequentially superimposed, and a color image is formed on the intermediate transfer belt 715. The transfer material 719 is fed into the apparatus by a paper feed roller (not shown), and is conveyed between the intermediate transfer belt 715 and the secondary transfer roller 716. A voltage is applied to the secondary transfer roller 716 from a secondary transfer bias power supply (not shown) to transfer the color image on the intermediate transfer belt 715 to the transfer material 719. The transfer material 719 on which the color image is transferred is fixed by the fixing device 718, and the paper is discharged to the outside of the apparatus to complete the printing operation. On the other hand, the toner 79 remaining on the photosensitive drum 71 without being transferred is scraped off by the cleaning blade 75 and stored in the waste toner storage container 77, and the cleaned photosensitive drum 71 is repeatedly used in the above-mentioned steps. .. Further, the toner 79 remaining on the intermediate transfer belt 715 without being transferred is also scraped off by the cleaning device 717.

<実施例1>
〔1.導電性支持体の作製〕
段階的に外径が異なる全長252mmの丸棒状の快削鋼を、導電性軸芯体として用意した。前記丸棒状の快削鋼の両端部11mmずつを除く中央部230mmの範囲は外径が8.5mmであり、両端部11mmの部分は外径が6mmである。前記丸棒状の快削鋼を導電性支持体A1として用いた。
<Example 1>
[1. Fabrication of conductive support]
A round bar-shaped free-cutting steel having a total length of 252 mm having a stepwise different outer diameter was prepared as a conductive shaft core. The range of the central portion 230 mm excluding the both end portions 11 mm of the round bar-shaped free-cutting steel has an outer diameter of 8.5 mm, and the portion of the both end portions 11 mm has an outer diameter of 6 mm. The round bar-shaped free-cutting steel was used as the conductive support A1.

〔2.中間層の形成〕
ポリメタクリル酸ターシャリーブチル(PtBMA)(シグマアルドリッチ製、重量平均分子量:17.0万)をN,N−ジメチルアセチルアミド(DMAC)に2質量%溶解し、塗工液1を得た。前記導電性支持体A1を、その長手方向を鉛直方向にして塗工液1中に浸漬して、ディッピング法で塗工液1を塗工した。浸漬時間は9秒間であった。引き上げ速度は、初期速度が20mm/秒、最終速度が3mm/秒、その間は時間に対して直線的に速度を変化させた。得られた塗工物を常温で30分間風乾し、温度160℃に設定した熱風循環乾燥機中において15分間乾燥して、中間層を有する導電性ローラA1を得た。
[2. Formation of intermediate layer]
Polybutyl methacrylate (PtBMA) (manufactured by Sigma-Aldrich, weight average molecular weight: 170,000) was dissolved in N, N-dimethylacetylamide (DMAC) in an amount of 2% by mass to obtain a coating solution 1. The conductive support A1 was immersed in the coating liquid 1 with its longitudinal direction in the vertical direction, and the coating liquid 1 was coated by a dipping method. The immersion time was 9 seconds. The pulling speed was 20 mm / sec for the initial speed and 3 mm / sec for the final speed, during which the speed was changed linearly with time. The obtained coated product was air-dried at room temperature for 30 minutes and dried in a hot air circulation dryer set at a temperature of 160 ° C. for 15 minutes to obtain a conductive roller A1 having an intermediate layer.

〔3.表面層の形成〕
骨格材料としてのポリビニルアルコール(PVA、重量平均分子量:15.0万、けん化度:87〜89モル%、シグマアルドリッチ社製)12g、水120mLをナスフラスコに加え、撹拌及び加熱還流させて水溶液を得た。該水溶液を50℃に冷却し、そこへ、水58mlとアセトン130mlの混合溶媒を加え、PVA溶液を調製した。導電性ローラA1をセットした型に該PVA溶液を注入した後密封し、20℃で12時間静置した。イソプロピルアルコールで3回洗浄し、混合溶媒中の水をイソプロピルアルコールに置換した。その後24時間常温で減圧乾燥を行い、イソプロピルアルコールを除去して表面層を有する導電性部材A1を製造した。
[3. Surface layer formation]
Add 12 g of polyvinyl alcohol (PVA, weight average molecular weight: 155,000, saponification degree: 87 to 89 mol%, manufactured by Sigma Aldrich) and 120 mL of water as a skeleton material to the eggplant flask, and stir and heat to reflux to prepare an aqueous solution. Obtained. The aqueous solution was cooled to 50 ° C., and a mixed solvent of 58 ml of water and 130 ml of acetone was added thereto to prepare a PVA solution. The PVA solution was injected into a mold in which the conductive roller A1 was set, sealed, and allowed to stand at 20 ° C. for 12 hours. The mixture was washed with isopropyl alcohol three times, and the water in the mixed solvent was replaced with isopropyl alcohol. Then, it was dried under reduced pressure at room temperature for 24 hours to remove isopropyl alcohol to produce a conductive member A1 having a surface layer.

〔4.特性評価〕
得られた導電性部材A1を以下の評価試験に供した。評価結果を表5に示す。なお、導電性部材がローラ形状の導電性部材である場合、x軸方向、y軸方向、及びz軸方向は、それぞれ以下の方向を意味する。x軸方向は、ローラ(導電性部材)の長手方向である。y軸方向は、x軸に直交するローラ(導電性部材)の横断面(すなわち、円形断面)における接線方向である。z軸方向は、x軸に直交するローラ(導電性部材)の横断面における直径方向である。また「xy平面」とはz軸に直交する平面を意味し、「yz断面」とはx軸に直交する断面を意味する。
[4. Characteristic evaluation]
The obtained conductive member A1 was subjected to the following evaluation test. The evaluation results are shown in Table 5. When the conductive member is a roller-shaped conductive member, the x-axis direction, the y-axis direction, and the z-axis direction mean the following directions, respectively. The x-axis direction is the longitudinal direction of the roller (conductive member). The y-axis direction is a tangential direction in the cross section (that is, the circular cross section) of the roller (conductive member) orthogonal to the x-axis. The z-axis direction is the radial direction in the cross section of the roller (conductive member) orthogonal to the x-axis. Further, the "xy plane" means a plane orthogonal to the z-axis, and the "yz cross section" means a cross section orthogonal to the x-axis.

[評価4−1.中間層の非導電性の評価]
中間層の非導電性の評価は以下の方法により行った。中間層の体積抵抗率は、走査型プローブ顕微鏡(SPM)(商品名:Q−Scope250、Quesant Instrument Corporation社製)を用い、コンタクトモードで測定した。
[Evaluation 4-1. Evaluation of non-conductive nature of the intermediate layer]
The non-conductive property of the intermediate layer was evaluated by the following method. The volume resistivity of the intermediate layer was measured in a contact mode using a scanning probe microscope (SPM) (trade name: Q-Scope250, manufactured by Quant Instrument Corporation).

まず、導電性部材A1を長手方向に10個の領域に等分した。そして、各領域から、収束イオンビーム法によって、x軸方向に1mm、y軸方向に各500μmの長さ、z軸方向には導電性支持体A1を含む700μmの深さで切片を切り出して、合計10個の試験片を作製した。次いで、各試験片を、ステンレス鋼製の金属プレート上に、導電性支持体A1の部分が、金属プレートと接するように置いて、測定切片を得た。 First, the conductive member A1 was equally divided into 10 regions in the longitudinal direction. Then, a section is cut out from each region by a focused ion beam method to a length of 1 mm in the x-axis direction, a length of 500 μm in the y-axis direction, and a depth of 700 μm including the conductive support A1 in the z-axis direction. A total of 10 test pieces were prepared. Next, each test piece was placed on a stainless steel metal plate so that the portion of the conductive support A1 was in contact with the metal plate, and a measurement section was obtained.

次に、各測定切片の中間層の部分に、SPMのカンチレバーを接触させ、カンチレバーに50Vの電圧を印加し、電流値を測定した。次に、各試験片のyz断面を観察し、中間層の厚さを測定した。さらに、当該厚さと電流値から体積抵抗率を算出した。各試験片から得られた体積抵抗率の平均値を、本評価における中間層の体積抵抗率とした。 Next, the cantilever of the SPM was brought into contact with the intermediate layer portion of each measurement section, a voltage of 50 V was applied to the cantilever, and the current value was measured. Next, the yz cross section of each test piece was observed, and the thickness of the intermediate layer was measured. Further, the volume resistivity was calculated from the thickness and the current value. The average value of the volume resistivity obtained from each test piece was taken as the volume resistivity of the intermediate layer in this evaluation.

[評価4−2.中間層の厚さの測定]
上記評価4−1において、各試験片から測定した中間層の厚みの平均値を、本評価における中間層の厚さとした。
[Evaluation 4-2. Measurement of intermediate layer thickness]
In the above evaluation 4-1 the average value of the thickness of the intermediate layer measured from each test piece was taken as the thickness of the intermediate layer in this evaluation.

[評価4−3.中間層を形成する樹脂の放射線崩壊性の確認]
中間層を形成する樹脂が放射線崩壊型の樹脂であるか否かを、コロナ放電処理及びGPC測定によって確認した。具体的には、導電性部材A1から中間層をはぎ取って、試料の質量を測定した。その後、トルエン、クロロベンゼン、テトラヒドロフラン(THF)、トリフルオロ酢酸、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(HFIP)のうち、溶解しやすい溶媒を選択して1質量%の試料溶液を調製した。調製した試料溶液を用いて以下の条件にて分子量を測定した。温度40℃のヒートチャンバー中でカラムを安定させ、この温度のカラムに溶離液として、試料の溶解に用いた溶媒を毎分1mLの流速で流した。該試料溶液100μLをカラムに注入した。試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とリテンションタイムとの関係から算出した。単分散ポリスチレン標準試料には、TSKgel標準ポリスチレン「0005202」〜「0005211」(商品名、東ソー社製)を用いた。また、GPC装置にはGPCゲル浸透クロマトグラフ装置(商品名:HLC−8120、東ソー社製)、検出器には示差屈折率検出器(商品名:RI−8020、東ソー社製)を用いた。カラムには、市販のポリスチレンゲルカラム(商品名:TSK−GEL SUPER HM−M、東ソー社製)を3本組み合わせて用いた。コロナ放電処理前の導電性部材A1の中間層からサンプリングされた試料の重量平均分子量(Mw)は17.0万であった。
[Evaluation 4-3. Confirmation of radiation decay property of the resin forming the intermediate layer]
Whether or not the resin forming the intermediate layer was a radiation decay type resin was confirmed by corona discharge treatment and GPC measurement. Specifically, the intermediate layer was peeled off from the conductive member A1 and the mass of the sample was measured. Then, from toluene, chlorobenzene, tetrahydrofuran (THF), trifluoroacetic acid, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), a soluble solvent was selected and 1% by mass was selected. Sample solution was prepared. Using the prepared sample solution, the molecular weight was measured under the following conditions. The column was stabilized in a heat chamber at a temperature of 40 ° C., and the solvent used for dissolving the sample was flowed through the column at this temperature as an eluent at a flow rate of 1 mL / min. 100 μL of the sample solution was injected into the column. In measuring the molecular weight of the sample, the molecular weight distribution of the sample was calculated from the relationship between the logarithmic value of the calibration curve prepared from several types of monodisperse polystyrene standard samples and the retention time. As the monodisperse polystyrene standard sample, TSKgel standard polystyrenes "0005202" to "0005211" (trade name, manufactured by Tosoh Corporation) were used. A GPC gel permeation chromatograph device (trade name: HLC-8120, manufactured by Tosoh Corporation) was used as the GPC device, and a differential refractive index detector (trade name: RI-8020, manufactured by Tosoh Corporation) was used as the detector. As the column, three commercially available polystyrene gel columns (trade name: TSK-GEL SUPER HM-M, manufactured by Tosoh Corporation) were used in combination. The weight average molecular weight (Mw) of the sample sampled from the intermediate layer of the conductive member A1 before the corona discharge treatment was 170,000.

続いて、導電性部材A1のコロナ放電処理を、春日電機(株)製のコロナ放電表面処理装置を用いて行った。実施環境はH/H環境(温度30℃、相対湿度80%の環境)であった。コロナ放電処理の方法を図8に示す。導電性部材81の両端部82を支持部83で固定し、アルミニウム製のコロナ電極84の長手方向が、導電性部材81の長手方向と平行になるよう、そしてコロナ電極84の表面が導電性部材81の表面に向くように位置を調整した。コロナ電極84の表面と導電性部材81の表面との最近接部分の距離は1mmとした。支持部83を毎分30回転の速度で回転させることで導電性部材81を回転させ、電極側に電源85から8KVを印加した状態を2時間継続した。 Subsequently, the corona discharge treatment of the conductive member A1 was performed using a corona discharge surface treatment device manufactured by Kasuga Electric Co., Ltd. The implementation environment was an H / H environment (environment with a temperature of 30 ° C. and a relative humidity of 80%). The method of corona discharge treatment is shown in FIG. Both ends 82 of the conductive member 81 are fixed by the support portion 83 so that the longitudinal direction of the aluminum corona electrode 84 is parallel to the longitudinal direction of the conductive member 81, and the surface of the corona electrode 84 is the conductive member. The position was adjusted so as to face the surface of 81. The distance between the surface of the corona electrode 84 and the surface of the conductive member 81 in close contact with each other was set to 1 mm. The conductive member 81 was rotated by rotating the support portion 83 at a speed of 30 rotations per minute, and the state in which 8 KV was applied from the power source 85 to the electrode side was continued for 2 hours.

その後、コロナ放電処理後の導電性部材A1から中間層をはぎ取って質量を測定した後、上記と同じ方法にてGPCによってMwを測定した。そして、コロナ放電処理後の試料のMwが、コロナ放電処理前の試料のMw以下である場合には、放射線崩壊型の樹脂であると判定した。一方、Mwがコロナ放電処理後に上昇した場合には、放射線架橋型の樹脂であると判定した。導電性部材A1の、コロナ放電処理前の試料のMwは17.0万、コロナ放電処理後の試料のMwは16.8万であり、導電性部材A1の中間層を形成する樹脂は放射線崩壊型であった。なお、評価結果の示す後述の表5において、「放射線崩壊型樹脂」は「崩壊型」と表記し、「放射線架橋型樹脂」は「架橋型」と表記した。 Then, the intermediate layer was peeled off from the conductive member A1 after the corona discharge treatment to measure the mass, and then Mw was measured by GPC by the same method as described above. When the Mw of the sample after the corona discharge treatment is equal to or less than the Mw of the sample before the corona discharge treatment, it is determined that the resin is a radiation decay type resin. On the other hand, when Mw increased after the corona discharge treatment, it was determined that the resin was a radiation crosslinked type. The Mw of the sample before the corona discharge treatment of the conductive member A1 is 170,000, the Mw of the sample after the corona discharge treatment is 168,000, and the resin forming the intermediate layer of the conductive member A1 is radiation-disintegrated. It was a mold. In Table 5 described later, which shows the evaluation results, the "radiation-disintegrating type resin" was described as "disintegrating type", and the "radiation-crosslinked type resin" was described as "crosslinked type".

[評価4−4.ガラス転移温度(Tg)の測定]
先ず、導電性部材A1の中間層をピンセットで剥離し、3mgのサンプルを得た。前記サンプルについて、示差走査熱量測定装置(商品名:DSC7020AS、ヤマト科学(株)製)を用いて、示差走査熱量測定を行った。温度−150℃にて30分間静置した後、10℃/分の昇温速度にて250℃まで温度を変化させながら、熱エネルギーの出入りを測定した。装置付属の解析ソフトにより、測定データを解析してガラス転移温度Tgを得た。
[Evaluation 4-4. Measurement of glass transition temperature (Tg)]
First, the intermediate layer of the conductive member A1 was peeled off with tweezers to obtain a 3 mg sample. The differential scanning calorimetry was performed on the sample using a differential scanning calorimetry device (trade name: DSC7020AS, manufactured by Yamato Scientific Co., Ltd.). After allowing to stand at a temperature of −150 ° C. for 30 minutes, the inflow and outflow of heat energy was measured while changing the temperature to 250 ° C. at a heating rate of 10 ° C./min. The measurement data was analyzed by the analysis software attached to the device to obtain the glass transition temperature Tg.

[評価4−5.表面層の多孔質体の共連続構造の確認]
表面層の多孔質体の共連続構造の評価を以下の方法により行った。導電性部材A1の表面層に対して剃刀を当てて、x軸方向及びy軸方向に各250μmの長さ、z軸方向には、表面層の全体が含まれるように中間層を含む任意の深さで切片を切り出した。次に、X線CT検査装置(商品名:TX−300、(株)東研製)を用い、該切片に対して3次元再構築を行った。得られた3次元像から、z軸に対して間隔1μmで2次元のスライス画像(xy平面と平行)を切り出した。次に、これらのスライス画像を2値化し、骨格部と細孔部を識別した。該スライス画像をz軸に対して順に確認していき、骨格部及び細孔部が3次元的に連続であるか否かを確認した。これにより、共連続構造の有無を判断した。
[Evaluation 4-5. Confirmation of the co-continuous structure of the porous body of the surface layer]
The co-continuous structure of the porous body of the surface layer was evaluated by the following method. A razor is applied to the surface layer of the conductive member A1 to have a length of 250 μm in the x-axis direction and the y-axis direction, and any intermediate layer is included in the z-axis direction so as to include the entire surface layer. Sections were cut out at depth. Next, a three-dimensional reconstruction was performed on the section using an X-ray CT inspection device (trade name: TX-300, manufactured by Token Co., Ltd.). From the obtained three-dimensional image, a two-dimensional slice image (parallel to the xy plane) was cut out at an interval of 1 μm with respect to the z-axis. Next, these slice images were binarized to distinguish between the skeleton and the pores. The slice images were sequentially confirmed with respect to the z-axis, and it was confirmed whether or not the skeleton portion and the pore portion were three-dimensionally continuous. From this, the presence or absence of the co-continuous structure was judged.

[評価4−6.表面層の微細さの評価]
表面層の微細さの評価を次のようにして行った。前記評価4−5で用いた切片の表面を白金蒸着して蒸着切片を得た。次いで、該蒸着切片の表面をz軸方向から、走査型電子顕微鏡(SEM)(商品名:S−4800、(株)日立ハイテクノロジーズ製)を用いて1000倍で撮影し、表面画像を得た。該表面画像を、画像処理ソフト(商品名:Imageproplus、MediaCybernetics社製)を使用して、150μm四方の領域をグレースケール化、2値化し、さらにエッジ抽出を施して骨格と空孔の境界線を抽出し、境界線画像を得た。この時、背景を白色、該境界線を黒色とした。次いで、2.5μm四方の黒色のグリッド線を白色の背景上に縦に14本、横に14本作製し、合計225個の白色セルを有するグリッド画像を形成した。該境界線画像と該グリッド画像とを重ね合わせて、評価画像を得た。該評価画像において、骨格のみからなる正方形群と細孔のみからなる正方形群は、2.5μm四方の領域内に境界線を含まない。そのため、該評価画像中で、2.5μmグリッドと同じ面積のセルの個数の割合をImageproplusのカウント機能によって算出した。評価は以下の基準で行った。
[Evaluation 4-6. Evaluation of surface layer fineness]
The fineness of the surface layer was evaluated as follows. The surface of the section used in the evaluation 4-5 was platinum-deposited to obtain a vapor-deposited section. Next, the surface of the vapor-deposited section was photographed from the z-axis direction using a scanning electron microscope (SEM) (trade name: S-4800, manufactured by Hitachi High-Technologies Corporation) at a magnification of 1000 to obtain a surface image. .. Using image processing software (trade name: Imageplus, manufactured by Media Cybernetics), the surface image is grayscaled and binarized in a 150 μm square area, and edge extraction is performed to create a boundary line between the skeleton and the pores. Extraction was performed to obtain a borderline image. At this time, the background was white and the boundary line was black. Next, 14 black grid lines of 2.5 μm square were prepared vertically and 14 horizontally on a white background to form a grid image having a total of 225 white cells. The boundary line image and the grid image were superposed to obtain an evaluation image. In the evaluation image, the square group consisting only of the skeleton and the square group consisting only of the pores do not include a boundary line in the region of 2.5 μm square. Therefore, in the evaluation image, the ratio of the number of cells having the same area as the 2.5 μm grid was calculated by the counting function of Imageplus. The evaluation was performed according to the following criteria.

ランクA:該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数の合計が、正方形群全体の数の5%以下である。
ランクB:該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数の合計が、正方形群全体の数の5%を超えて、15%以下である。
ランクC:該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数の合計が、正方形群全体の数の15%を超えて、25%以下である。
ランクD:該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数の合計が、正方形群全体の数の25%を超える。
Rank A: The total number of square groups consisting only of the skeleton and the number of square groups consisting only of the pores is 5% or less of the total number of square groups.
Rank B: The total number of square groups consisting only of the skeleton and the number of square groups consisting only of the pores exceeds 5% of the total number of square groups and is 15% or less.
Rank C: The total number of square groups consisting only of the skeleton and the number of square groups consisting only of the pores exceeds 15% of the total number of square groups and is 25% or less.
Rank D: The total number of square groups consisting only of the skeleton and the number of square groups consisting only of the pores exceeds 25% of the total number of square groups.

[評価4−7.表面層の細孔の断面形状(円形度K)の評価]
表面層の細孔の断面形状の評価は次のようにして行った。前記評価4−5のX線CTの測定で得られた2次元のスライス画像を2値化して得られる2値化画像において、各々の細孔の周囲長をL、細孔の面積をSとし、円形度K=L/4πSを算出した。導電性部材A1を長手方向に10個の領域に10等分し、それぞれの領域内から任意に1点ずつ、合計10点から該2値化画像を取得して円形度Kの算出を行い、その平均値を円形度Kとした。
[Evaluation 4-7. Evaluation of cross-sectional shape (circularity K) of pores in the surface layer]
The cross-sectional shape of the pores of the surface layer was evaluated as follows. In the binarized image obtained by binarizing the two-dimensional slice image obtained by the X-ray CT measurement of the evaluation 4-5, the perimeter of each pore is L and the area of the pore is S. , Circularity K = L 2 / 4πS was calculated. The conductive member A1 is divided into 10 regions in the longitudinal direction into 10 equal parts, and the binarized image is acquired from a total of 10 points, one point arbitrarily from each region, and the circularity K is calculated. The average value was defined as circularity K.

[評価4−8.表面層の厚さの評価]
表面層の厚さは次のようにして評価した。前記評価4−5のX線CTの測定で得られた2次元のスライス画像を2値化し、多孔質部と空孔部を識別した。2値化したスライス画像それぞれにおいて、多孔質部の占める割合を数値化し、導電性支持体から表面層側へ数値の確認を行い、該割合が2%以下になった点を表面層の最表面部とした。これにより、表面層の厚さを測定した。この作業を、導電性部材A1を長手方向に10等分して得られる各領域内の任意の1点(合計10点)に対して行い、得られる値を平均して表面層の厚さとした。
[Evaluation 4-8. Evaluation of surface layer thickness]
The thickness of the surface layer was evaluated as follows. The two-dimensional slice image obtained by the measurement of the X-ray CT of the evaluation 4-5 was binarized, and the porous portion and the vacant portion were distinguished. In each of the binarized slice images, the ratio occupied by the porous part was quantified, the numerical value was confirmed from the conductive support to the surface layer side, and the point where the ratio was 2% or less was the outermost surface of the surface layer. It was a department. Thereby, the thickness of the surface layer was measured. This work was performed on any one point (10 points in total) in each region obtained by dividing the conductive member A1 into 10 equal parts in the longitudinal direction, and the obtained values were averaged to obtain the surface layer thickness. ..

[評価4−9.表面層の空孔率の評価]
前記評価4−5のX線CTの評価で得られる3次元像において、細孔部の占める割合を数値化し、表面層の空孔率を求めた。この作業を、導電性部材A1を長手方向に10等分して得られる各領域内の任意の1点(合計10点)に対して行い、得られる値の平均値を表面層の空孔率とした。
[Evaluation 4-9. Evaluation of surface layer porosity]
In the three-dimensional image obtained by the evaluation of the X-ray CT of the evaluation 4-5, the proportion occupied by the pores was quantified, and the porosity of the surface layer was determined. This work is performed on any one point (10 points in total) in each region obtained by dividing the conductive member A1 into 10 equal parts in the longitudinal direction, and the average value of the obtained values is the porosity of the surface layer. And said.

[評価4−10.表面層の非導電性の評価]
表面層の非導電性の評価は以下の方法により行った。表面層の体積抵抗率は、走査型プローブ顕微鏡(SPM)(商品名:Q−Scope250、Quesant Instrument Corporation社製)を用い、コンタクトモードで測定した。
まず、導電性部材A1を長手方向に10個の領域に等分した。そして、各領域における表面層をピンセットで採取し、10個の試料を用意した。該試料の各々を、ステンレス鋼製の金属プレート上に設置し、10個の測定切片を作製した。次に、各測定切片について、金属プレート上の試料に、SPMのカンチレバーを接触させ、カンチレバーに50Vの電圧を印加し、電流値を測定した。
また、該SPMで、電流値を測定した部分の試料の厚さを測定した。測定した厚さと、カンチレバーの接触面積とから、該電流値を体積抵抗率に変換した。各測定切片から得られた体積抵抗率の平均値を、本評価における表面層の体積抵抗率とした。
[Evaluation 4-10. Evaluation of non-conductiveness of surface layer]
The non-conductive property of the surface layer was evaluated by the following method. The volume resistivity of the surface layer was measured in a contact mode using a scanning probe microscope (SPM) (trade name: Q-Scope250, manufactured by Quant Instrument Corporation).
First, the conductive member A1 was equally divided into 10 regions in the longitudinal direction. Then, the surface layer in each region was collected with tweezers, and 10 samples were prepared. Each of the samples was placed on a stainless steel metal plate to prepare 10 measurement sections. Next, for each measurement section, the cantilever of SPM was brought into contact with the sample on the metal plate, a voltage of 50 V was applied to the cantilever, and the current value was measured.
Further, with the SPM, the thickness of the sample at the portion where the current value was measured was measured. The current value was converted into volume resistivity from the measured thickness and the contact area of the cantilever. The average value of the volume resistivity obtained from each measurement section was taken as the volume resistivity of the surface layer in this evaluation.

[評価4−11.表面層を形成する樹脂の放射線崩壊性の確認とTgの評価]
表面層を導電性部材A1から剥離して試験片とした以外は、中間層における評価(評価4−3、評価4−4)の方法と同様にして、表面層を形成する樹脂の放射線崩壊性の確認及びガラス転移温度Tgの評価を行った。
[Evaluation 4-11. Confirmation of radiation decay property of the resin forming the surface layer and evaluation of Tg]
The radiation disintegration property of the resin forming the surface layer is the same as the method of evaluation (evaluation 4-3, evaluation 4-4) in the intermediate layer except that the surface layer is peeled from the conductive member A1 to form a test piece. And the glass transition temperature Tg was evaluated.

〔5.耐久評価〕
[評価5−1.耐久評価A]
(評価5−1−1.新品の導電性部材の蓄積電荷量の評価)
新品の導電性部材A1の表面電位(蓄積電荷量)を、次のようにして測定した。まず、電子写真装置として、電子写真方式のレーザープリンタ(商品名:Laserjet CP4525dn、HP社製)を用意した。ただし、導電性部材をより過酷な評価環境に置くために、該レーザープリンタを、単位時間当たりの出力枚数がオリジナルの出力枚数よりも多い、A4サイズの用紙で50枚/分となるように変更した。その際、記録メディアの出力スピードは300mm/秒、画像解像度は1,200dpiとした。レーザープリンタ専用のトナーカートリッジに、帯電ローラとして導電性部材A1を装着した。また、表面電位計(商品名:Model347 トレックジャパン社製)に接続した表面電位プローブ(商品名:Model555P−1 トレックジャパン社製)を、蓄積電荷量を測定できるように、上記電子写真のカートリッジ内に固定した。具体的には、表面電位プローブを導電性部材A1の表面に距離1mmで対向するようにポリイミドテープで固定した。このトナーカートリッジを該レーザープリンタに装填した。
[5. Durability evaluation]
[Evaluation 5-1. Durability evaluation A]
(Evaluation 5-1-1. Evaluation of accumulated charge amount of new conductive member)
The surface potential (accumulated charge amount) of the new conductive member A1 was measured as follows. First, as an electrophotographic apparatus, an electrophotographic laser printer (trade name: Laserjet CP4525dn, manufactured by HP) was prepared. However, in order to put the conductive member in a harsher evaluation environment, the laser printer was changed so that the number of output sheets per unit time was 50 sheets / minute on A4 size paper, which is larger than the original number of output sheets. bottom. At that time, the output speed of the recording medium was set to 300 mm / sec, and the image resolution was set to 1,200 dpi. A conductive member A1 was attached as a charging roller to a toner cartridge dedicated to a laser printer. Further, a surface potential probe (trade name: Model 555P-1 manufactured by Trek Japan) connected to a surface electrometer (trade name: Model 347 Trek Japan) can be placed in the cartridge of the above electrograph so that the accumulated charge amount can be measured. Fixed to. Specifically, the surface potential probe was fixed to the surface of the conductive member A1 with a polyimide tape so as to face the surface at a distance of 1 mm. This toner cartridge was loaded into the laser printer.

次いで、該レーザープリンタを用いて、H/H環境(温度30℃、相対湿度80%の環境)下で、ベタ白画像を形成した。帯電ローラである導電性部材A1と感光ドラムとの間の印加電圧を−1,200Vとした。そして、当該ベタ白画像を出力中の、導電性部材A1の表面電位を測定した。このときに測定された表面電位と、帯電ローラと感光ドラムの間に印可される電圧との差分を、新品の導電性部材A1の蓄積電荷量とした。 Then, using the laser printer, a solid white image was formed in an H / H environment (environment with a temperature of 30 ° C. and a relative humidity of 80%). The voltage applied between the conductive member A1 which is a charging roller and the photosensitive drum was set to -1,200 V. Then, the surface potential of the conductive member A1 during the output of the solid white image was measured. The difference between the surface potential measured at this time and the voltage applied between the charging roller and the photosensitive drum was taken as the accumulated charge amount of the new conductive member A1.

長期使用後の帯電能低下の抑制効果を確認するために、後述する耐久試験AとBのそれぞれ前後において上記蓄積電荷量の測定を行った。このとき、帯電ローラと感光ドラムの間の印可電圧は耐久試験中の印可電圧で測定を行った。また、耐久試験前後蓄積電荷量の減少割合を算出した。 In order to confirm the effect of suppressing the decrease in chargeability after long-term use, the above-mentioned accumulated charge amount was measured before and after each of the durability tests A and B described later. At this time, the applied voltage between the charging roller and the photosensitive drum was measured at the applied voltage during the durability test. In addition, the rate of decrease in the amount of accumulated charge before and after the durability test was calculated.

(評価5−1−2.表面の汚れ付着に由来する画像不良の評価 黒ポチ)
評価5−1−1で使用したレーザープリンタを用いて、H/H環境(温度30℃、相対湿度80%の環境)下で、100000枚の電子写真画像を出力した。なお、出力は、2枚の画像を出力した後、感光ドラムの回転を完全に約3秒間停止させ、画像出力を再開するという間欠的な画像形成動作で行った。また、出力する画像は、サイズが4ポイントのアルファベットの「E」の文字が、A4サイズの紙の面積に対し被覆率が4%となるように印字されるような画像とした。さらに、当該電子写真画像の形成は、帯電ローラである導電性部材A1と感光ドラムとの間の印加電圧を−1,200Vとした。
(Evaluation 5-1-2. Evaluation of image defects due to adhesion of dirt on the surface Black spot)
Using the laser printer used in Evaluation 5-1-1, 100,000 electrophotographic images were output in an H / H environment (environment with a temperature of 30 ° C. and a relative humidity of 80%). The output was performed by an intermittent image forming operation in which the rotation of the photosensitive drum was completely stopped for about 3 seconds after the two images were output, and the image output was restarted. Further, the output image was an image in which the letter "E" of the alphabet having a size of 4 points was printed so that the coverage was 4% with respect to the area of A4 size paper. Further, in forming the electrophotographic image, the applied voltage between the conductive member A1 which is a charging roller and the photosensitive drum was set to -1,200 V.

100000枚の電子写真画像を出力した後、ハーフトーン画像(感光ドラムの回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)を1枚出力した。このときの帯電ローラと感光ドラムとの間の印加電圧も−1,200Vとした。得られた該ハーフトーン画像を目視で観察し、帯電ローラの表面の汚れに由来する画像不良の有無、画像不良が観察される場合にはその程度を以下の基準で評価した。 After outputting 100,000 electrophotographic images, one halftone image (an image in which a horizontal line having a width of 1 dot and an interval of 2 dots is drawn in the direction perpendicular to the rotation direction of the photosensitive drum) was output. The voltage applied between the charging roller and the photosensitive drum at this time was also set to -1,200 V. The obtained halftone image was visually observed, and the presence or absence of image defects due to dirt on the surface of the charging roller and the degree of image defects were evaluated according to the following criteria.

ランクA:汚れ付着に由来する画像欠陥が無い。
ランクB:一部に軽微な汚れ付着に由来する画像欠陥(黒ポチ)が見られる。
ランクC:全面に軽微な汚れ付着に由来する画像欠陥(黒ポチ)が見られる。
ランクD:全面に汚れ付着に由来する画像欠陥(黒ポチ)が見られ、かつ、画像欠陥が縦スジとして観察される。
Rank A: There are no image defects due to dirt adhesion.
Rank B: Image defects (black spots) due to slight stains are observed in some parts.
Rank C: Image defects (black spots) due to slight stains are observed on the entire surface.
Rank D: Image defects (black spots) due to dirt adhesion are observed on the entire surface, and image defects are observed as vertical streaks.

(評価5−1−3.長期使用後の導電性部材の蓄積電荷量の評価)
上記評価5−1−2に供した導電性部材A1の蓄積電荷量を、上記評価5−1−1と同様にして測定した。
(Evaluation 5-1-3. Evaluation of accumulated charge of conductive member after long-term use)
The amount of accumulated charge of the conductive member A1 used in the above evaluation 5-1-2 was measured in the same manner as in the above evaluation 5-1-1.

[評価5−2.耐久評価B]
評価5−1−2に係る評価結果が、ランクAまたはランクBであった場合に、本耐久評価Bを行った。
[Evaluation 5-2. Durability evaluation B]
When the evaluation result according to the evaluation 5-1-2 was rank A or rank B, this durability evaluation B was performed.

(評価5−2−1.新品の導電性部材の蓄積電荷量の評価)
帯電ローラである導電性部材A1と感光ドラムとの間の印加電圧を−1,500Vとした以外は、上記評価5−1−1と同様にして蓄積電荷量を測定した。
(Evaluation 5-2-1. Evaluation of accumulated charge amount of new conductive member)
The amount of accumulated charge was measured in the same manner as in the above evaluation 5-1-1 except that the applied voltage between the conductive member A1 which is a charging roller and the photosensitive drum was set to -1,500 V.

(評価5−2−2.表面の汚れ付着に由来する画像不良の評価 黒ポチ)
耐久試験Bとして、100000枚の電子写真画像の出力時、およびハーフトーン画像の出力時の導電性部材A1と感光ドラムとの間の印加電圧を−1,500Vとした以外は、評価5−1−2と同様に評価した。
(Evaluation 5-2-2. Evaluation of image defects due to adhesion of dirt on the surface Black spot)
As the durability test B, evaluation 5-1 except that the applied voltage between the conductive member A1 and the photosensitive drum at the time of outputting 100,000 electrophotographic images and at the time of outputting halftone images was set to -1,500 V. It was evaluated in the same manner as -2.

(評価5−2−3.長期使用後の導電性部材の蓄積電荷量の評価)
上記評価5−2−2に供した導電性部材A1の蓄積電荷量を、評価5−2−1と同様にして測定した。
(Evaluation 5-2-3. Evaluation of accumulated charge of conductive member after long-term use)
The amount of accumulated charge of the conductive member A1 used in the evaluation 5-2-1 was measured in the same manner as in the evaluation 5-2-1.

<実施例2〜17>
中間層の形成に、表1に示す塗工液2〜17を用いた以外は、実施例1と同様に導電性部材A2〜A17を作製した。
<Examples 2 to 17>
Conductive members A2 to A17 were produced in the same manner as in Example 1 except that the coating liquids 2 to 17 shown in Table 1 were used for forming the intermediate layer.

Figure 0006929742
Figure 0006929742

PtBMA:ポリメタクリル酸ターシャリーブチル(R:−C(CH
PEMA:ポリメタクリル酸エチル(R:−CHCH
PBMA:ポリメタクリル酸ブチル(R:−CHCHCHCH
PiBMA:ポリメタクリル酸イソブチル(R:−CHCH(CH
PiPMA:ポリメタクリル酸イソプロピル(R:−CH(CH
P(B−iB)MA:メタクリル酸ブチル−メタクリル酸イソブチル共重合体
P(B−E)MA:メタクリル酸ブチル−メタクリル酸エチル共重合体
PCMA:ポリメタクリル酸シクロヘキシル(R:−Cy)
PMS:ポリ−α−メチルスチレン
POM:ポリアセタール
PIB:ポリイソブチレン
PS:ポリスチレン
DMAC:N,N−ジメチルアセトアミド
HFIP:1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール。
PtBMA: Tershally Butyl Polymethacrylate (R 1 : -C (CH 3 ) 3 )
PEMA: Polyethyl methacrylate (R 1 : -CH 2 CH 3 )
PBMA: Butyl polymethacrylate (R 1 : -CH 2 CH 2 CH 2 CH 3 )
PiBMA: Isobutyl polymethacrylate (R 1 : -CH 2 CH (CH 3 ) 2 )
PiPMA: Polyisopropyl methacrylate (R 1 : -CH (CH 3 ) 2 )
P (B-iB) MA: Butyl methacrylate-isobutyl methacrylate copolymer P (BE) MA: Butyl methacrylate-ethyl methacrylate copolymer PCMA : Polycyclohexyl methacrylate (R 1 : -Cy)
PMS: Poly-α-methylstyrene POM: Polyacetal PIB: Polyisobutylene PS: Polystyrene DMAC: N, N-Dimethylacetamide HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol.

<実施例18>
表2に示される種類と量の各材料を加圧式ニーダーで混合してA練りゴム組成物を得た。さらに、前記A練りゴム組成物166質量部と、表3に示される種類と量の各材料とをオープンロールにて混合して、B練りゴム組成物を調製した。
<Example 18>
Each material of the type and amount shown in Table 2 was mixed with a pressure kneader to obtain an A kneaded rubber composition. Further, 166 parts by mass of the A kneaded rubber composition and each material of the type and amount shown in Table 3 were mixed by an open roll to prepare a B kneaded rubber composition.

Figure 0006929742
Figure 0006929742

Figure 0006929742
Figure 0006929742

快削鋼の表面に無電解ニッケルメッキ処理を施した全長252mm、外径6mmの丸棒を用意した。次に前記丸棒の両端部11mmずつを除く230mmの範囲に全周にわたって、接着剤を塗布した。接着剤には、導電性のホットメルトタイプのものを使用した。また、塗布にはロールコーターを用いた。前記接着剤を塗布した丸棒を導電性軸芯体として使用した。該導電性軸芯体の表面に、導電性樹脂層を設けた。導電性軸芯体の供給機構、未加硫ゴムローラの排出機構を有するクロスヘッド押出機を用意し、クロスヘッドに内径12.5mmのダイスを取付け、押出機とクロスヘッドを80℃に、導電性軸芯体の搬送速度を60mm/秒に調整した。この条件で、押出機より前記B練りゴム組成物を供給して、クロスヘッド内にて前記導電性軸芯体の外周面に前記B練りゴム組成物の層を形成し、未加硫ゴムローラを得た。次に、170℃の熱風加硫炉中に前記未加硫ゴムローラを投入し、60分間加熱して、B練りゴム組成物の層中の未加硫のNBRを加硫し、未研磨導電性ローラを得た。その後、導電性樹脂層の端部を切除した。最後に、導電性樹脂層の表面を回転砥石で研磨した。これによって、中央部から両端部側へ各90mmの位置における各直径が8.4mm、中央部直径が8.5mmの導電性ローラを得た。該導電性ローラを用いたこと以外は、実施例1と同様にして導電性部材A18を製造した。 A round bar having a total length of 252 mm and an outer diameter of 6 mm was prepared by subjecting the surface of the free-cutting steel to electroless nickel plating. Next, the adhesive was applied over the entire circumference in a range of 230 mm excluding 11 mm at both ends of the round bar. A conductive hot melt type adhesive was used as the adhesive. A roll coater was used for coating. A round bar coated with the adhesive was used as a conductive shaft core. A conductive resin layer was provided on the surface of the conductive shaft core. Prepare a crosshead extruder that has a supply mechanism for the conductive shaft core and a discharge mechanism for unvulcanized rubber rollers, attach a die with an inner diameter of 12.5 mm to the crosshead, and heat the extruder and crosshead to 80 ° C. The transport speed of the shaft core was adjusted to 60 mm / sec. Under these conditions, the B kneaded rubber composition is supplied from the extruder, a layer of the B kneaded rubber composition is formed on the outer peripheral surface of the conductive shaft core in the crosshead, and an unvulcanized rubber roller is formed. Obtained. Next, the unvulcanized rubber roller was put into a hot air vulcanization furnace at 170 ° C. and heated for 60 minutes to vulcanize the unvulcanized NBR in the layer of the B kneaded rubber composition, resulting in unpolished conductivity. Got a roller. Then, the end portion of the conductive resin layer was excised. Finally, the surface of the conductive resin layer was polished with a rotary grindstone. As a result, a conductive roller having a diameter of 8.4 mm and a diameter of the central portion of 8.5 mm was obtained at a position of 90 mm from the central portion to both end portions. The conductive member A18 was manufactured in the same manner as in Example 1 except that the conductive roller was used.

<実施例19>
表4に記載の材料をオープンロールにて混合して、未加硫ゴム組成物を調製した。実施例18におけるB練りゴム組成物を、該未加硫ゴム組成物に変えた以外は、実施例18と同様にして導電性ローラを得た。該導電性ローラを用いたこと以外は、実施例1と同様にして導電性部材A19を製造した。
<Example 19>
The materials shown in Table 4 were mixed with an open roll to prepare an unvulcanized rubber composition. A conductive roller was obtained in the same manner as in Example 18 except that the B kneaded rubber composition in Example 18 was changed to the unvulcanized rubber composition. The conductive member A19 was manufactured in the same manner as in Example 1 except that the conductive roller was used.

Figure 0006929742
Figure 0006929742

<実施例20>
導電性支持体として、アルミニウム製の導電性支持体を用いた以外は、実施例1と同様に導電性部材A20を製造した。
<Example 20>
The conductive member A20 was manufactured in the same manner as in Example 1 except that the conductive support made of aluminum was used as the conductive support.

<実施例21>
骨格材料としてのポリフッ化ビニリデン(PVDF)(重量平均分子量:53.0万、シグマアルドリッチ社製)12g、DMAC200mLをナスフラスコに加え、撹拌及び加熱還流させて溶液を得た。そこへ、DMAC55mlとエチレングリコール45mlの混合溶媒を加え、PVDF溶液を調製した。実施例1の導電性ローラA1をセットした型に該PVDF溶液を注入した後密封し、20℃で12時間静置した。イソプロピルアルコールで3回洗浄し、その後24時間常温で減圧乾燥を行い、イソプロピルアルコールを除去して導電性部材A21を製造した。
<Example 21>
12 g of polyvinylidene fluoride (PVDF) (weight average molecular weight: 530,000, manufactured by Sigma-Aldrich) as a skeleton material and 200 mL of DMAC were added to a eggplant flask, and the mixture was stirred and heated to reflux to obtain a solution. A mixed solvent of 55 ml of DMAC and 45 ml of ethylene glycol was added thereto to prepare a PVDF solution. The PVDF solution was injected into the mold in which the conductive roller A1 of Example 1 was set, sealed, and allowed to stand at 20 ° C. for 12 hours. It was washed with isopropyl alcohol three times, and then dried under reduced pressure at room temperature for 24 hours to remove isopropyl alcohol to produce the conductive member A21.

<実施例22>
骨格材料としてのポリスチレン(PS)(重量平均分子量:26.2万、シグマアルドリッチ社製)15g、クロロホルム200mLをナスフラスコに加え、撹拌及び加熱還流させて溶液を得た。そこへ、クロロホルム40mlとシクロヘキサン60mlの混合溶媒を加え、PS溶液を調製した。実施例1の導電性ローラA1をセットした型に該PS溶液を注入した後密封し、20℃で12時間静置した。洗浄、乾燥により導電性部材A22を製造した。
<Example 22>
15 g of polystyrene (PS) (weight average molecular weight: 262,000, manufactured by Sigma-Aldrich) as a skeleton material and 200 mL of chloroform were added to an eggplant flask, and the mixture was stirred and heated to reflux to obtain a solution. A mixed solvent of 40 ml of chloroform and 60 ml of cyclohexane was added thereto to prepare a PS solution. The PS solution was injected into the mold in which the conductive roller A1 of Example 1 was set, sealed, and allowed to stand at 20 ° C. for 12 hours. The conductive member A22 was manufactured by washing and drying.

<実施例23>
骨格材料としての酢酸セルロース(商品名:L−70、ダイセル株式会社製、酢化度:55%)6g、溶剤としてのアセトン250g、1−オクタノール47gをナスフラスコに加え、攪拌し、酢酸セルロースを溶解させて酢酸セルロース溶液を調製した。該酢酸セルロース溶液を実施例1の導電性ローラA1に1回ディッピング塗布し、23℃で30分間以上風乾し、次いで140℃に設定した熱風循環乾燥機にて1時間乾燥して、導電性部材A23を製造した。
<Example 23>
Add 6 g of cellulose acetate (trade name: L-70, manufactured by Daicel Co., Ltd., vinegaring degree: 55%) as a skeleton material, 250 g of acetone as a solvent, and 47 g of 1-octanol to a eggplant flask, and stir to add cellulose acetate. It was dissolved to prepare a cellulose acetate solution. The cellulose acetate solution was dipped once on the conductive roller A1 of Example 1, air-dried at 23 ° C. for 30 minutes or more, and then dried in a hot air circulation dryer set at 140 ° C. for 1 hour to obtain a conductive member. A23 was manufactured.

<実施例24>
骨格材料としてのポリアクリロニトリル(PAN)(重量平均分子量:15.0万、シグマアルドリッチ社製)12g、溶剤としてのジメチルスルホキシド255g、水40gをナスフラスコに加え、攪拌し、PAN溶液を調製した。該PAN溶液を実施例1の導電性ローラA1に1回ディッピング塗布し、25℃で12分間以上風乾して導電性部材A24を製造した。
<Example 24>
12 g of polyacrylonitrile (PAN) (weight average molecular weight: 150,000, manufactured by Sigma-Aldrich) as a skeleton material, 255 g of dimethyl sulfoxide as a solvent, and 40 g of water were added to a eggplant flask and stirred to prepare a PAN solution. The PAN solution was dipped once on the conductive roller A1 of Example 1 and air-dried at 25 ° C. for 12 minutes or more to produce a conductive member A24.

<実施例25>
骨格材料としてのキトサン(シグマアルドリッチ社製)2g、溶剤としての1mol/L酢酸水溶液100g、エチレングリコール0.2gを添加して、キトサン溶液を調製した。実施例1の導電性ローラA1をセットした型に該キトサン溶液を注入した後密封し、−6℃で6時間、−30℃で6時間静置した。その後、減圧下、−80℃で6時間冷却した後、2mol/L水酸化ナトリウム水溶液に24時間浸し、水洗浄して導電性部材A25を製造した。
<Example 25>
A chitosan solution was prepared by adding 2 g of chitosan (manufactured by Sigma-Aldrich) as a skeleton material, 100 g of a 1 mol / L acetic acid aqueous solution as a solvent, and 0.2 g of ethylene glycol. The chitosan solution was injected into the mold in which the conductive roller A1 of Example 1 was set, sealed, and allowed to stand at −6 ° C. for 6 hours and at −30 ° C. for 6 hours. Then, after cooling at −80 ° C. for 6 hours under reduced pressure, it was immersed in a 2 mol / L sodium hydroxide aqueous solution for 24 hours and washed with water to produce a conductive member A25.

<実施例26>
骨格材料としてのPtBMA(シグマアルドリッチ社製、重量平均分子量:17.0万)12g、溶剤としてのDMAC200g、水40gを添加して、PtBMA溶液を調製した。実施例1の導電性ローラA1に該PtBMA溶液を1回ディッピング塗布し、25℃で30分間以上風乾し、次いで60℃に設定した熱風循環乾燥機にて1時間乾燥して、導電性部材A26を作製した。導電性部材A26について、実施例1と同様に評価した。
<Example 26>
A PtBMA solution was prepared by adding 12 g of PtBMA (manufactured by Sigma-Aldrich, Inc., weight average molecular weight: 17,000,000) as a skeleton material, 200 g of DMAC as a solvent, and 40 g of water. The PtBMA solution was dipped once on the conductive roller A1 of Example 1, air-dried at 25 ° C. for 30 minutes or more, and then dried in a hot air circulation dryer set at 60 ° C. for 1 hour to obtain the conductive member A26. Was produced. The conductive member A26 was evaluated in the same manner as in Example 1.

<実施例27>
骨格材料としてのポリメタクリル酸メチル(PMMA)(シグマアルドリッチ社製、重量平均分子量:99.6万)16g、溶剤としての蒸留水55ml、エタノール230mlをナスフラスコに加えた。これを攪拌しながら加熱還流し、PMMAを溶解させてPMMA溶液を調製した。該PMMA溶液を実施例1の導電性ローラA1に1回ディッピング塗布し、23℃で30分間以上風乾し、次いで60℃に設定した熱風循環乾燥機にて1時間乾燥し、導電性部材A27を作製した。導電性部材A27について、実施例1と同様に評価した。
<Example 27>
16 g of polymethyl methacrylate (PMMA) (manufactured by Sigma-Aldrich, weight average molecular weight: 99,600) as a skeleton material, 55 ml of distilled water as a solvent, and 230 ml of ethanol were added to the eggplant flask. This was heated under reflux with stirring to dissolve PMMA to prepare a PMMA solution. The PMMA solution was dipped once on the conductive roller A1 of Example 1, air-dried at 23 ° C. for 30 minutes or more, and then dried in a hot air circulation dryer set at 60 ° C. for 1 hour to obtain the conductive member A27. Made. The conductive member A27 was evaluated in the same manner as in Example 1.

<実施例28>
骨格材料としてのPiBMA(シグマアルドリッチ社製、重量平均分子量:30.1万)8g、溶剤としてのDMAC220g、水40gを添加して、PiBMA溶液を調製した。実施例1の導電性ローラA1に該PiBMA溶液を1回ディッピング塗布し、25℃で30分間以上風乾し、次いで30℃に設定した熱風循環乾燥機にて2時間乾燥し、導電性部材A28を作製した。
<Example 28>
A PiBMA solution was prepared by adding 8 g of PiBMA (manufactured by Sigma-Aldrich, Inc., weight average molecular weight: 301,000) as a skeleton material, 220 g of DMAC as a solvent, and 40 g of water. The PiBMA solution was dipped once on the conductive roller A1 of Example 1, air-dried at 25 ° C. for 30 minutes or more, and then dried in a hot air circulation dryer set at 30 ° C. for 2 hours to obtain the conductive member A28. Made.

<実施例29>
骨格材料としてのPCMA(シグマアルドリッチ社製、重量平均分子量:6.5万)18g、溶剤としてのDMAC240g、水40gを添加して、PCMA溶液を調製した。実施例1の導電性ローラA1に該PCMA溶液を1回ディッピング塗布し、25℃で30分間以上風乾し、次いで60℃に設定した熱風循環乾燥機にて2時間乾燥し、導電性部材A29を作製した。
<Example 29>
A PCMA solution was prepared by adding 18 g of PCMA (manufactured by Sigma-Aldrich, Inc., weight average molecular weight: 65,000) as a skeleton material, 240 g of DMAC as a solvent, and 40 g of water. The PCMA solution was dipped once on the conductive roller A1 of Example 1, air-dried at 25 ° C. for 30 minutes or more, and then dried in a hot air circulation dryer set at 60 ° C. for 2 hours to obtain the conductive member A29. Made.

<実施例30〜34>
実施例15で作製した酢酸セルロースの中間層を設けた導電性ローラA15に、実施例24〜26、28、29と同様に表面層を設けて導電性部材A30〜A34を作製した。
<Examples 30 to 34>
Conductive members A30 to A34 were prepared by providing a surface layer on the conductive roller A15 provided with the intermediate layer of cellulose acetate prepared in Example 15 in the same manner as in Examples 24 to 26, 28 and 29.

<実施例35>
骨格材料としてのPVA(重量平均分子量:5.0万、けん化度:98〜99モル%、シグマアルドリッチ社製)22g、水140mLをナスフラスコに加え、撹拌及び加熱還流させて水溶液を得た。該水溶液を50℃に冷却し、そこへ、水45mlとアセトン100mlの混合溶媒を加え、PVA溶液を調製した。該PVA溶液を用いて表面層を形成した以外は、実施例1と同様に導電性部材A35を作製した。なお、表面層形成後、湿度50%、70℃で10分間熱処理を行い、表面を研磨により均質に整えることにより、導電性部材A35を得た。
<Example 35>
22 g of PVA (weight average molecular weight: 50,000, saponification degree: 98 to 99 mol%, manufactured by Sigma Aldrich) as a skeleton material and 140 mL of water were added to a eggplant flask, and the mixture was stirred and heated to reflux to obtain an aqueous solution. The aqueous solution was cooled to 50 ° C., and a mixed solvent of 45 ml of water and 100 ml of acetone was added thereto to prepare a PVA solution. A conductive member A35 was produced in the same manner as in Example 1 except that the surface layer was formed using the PVA solution. After forming the surface layer, heat treatment was performed at a humidity of 50% and 70 ° C. for 10 minutes, and the surface was uniformly prepared by polishing to obtain a conductive member A35.

<実施例36>
前記熱処理を湿度50%、70℃で1時間実施した以外は、実施例35と同様にして導電性部材A36を製造した。
<Example 36>
The conductive member A36 was produced in the same manner as in Example 35 except that the heat treatment was carried out at a humidity of 50% and 70 ° C. for 1 hour.

<実施例37>
実施例1の表面層の形成において骨格材料として使用したPVA粉末を、冷凍粉砕機(商品名:JFC−2000、日本分析工業(株)製)を使用して凍結粉砕した。具体的には、該冷凍粉砕機のステンレス鋼製の試料容器内に、PVA粉末10gをタングステンカーバイド製鋼球と共に投入した。この容器を粉砕ロッドに装着したのち、粉砕ロッドを冷凍粉砕機の本体に装着した。その後、試料容器全体を液体窒素中に浸し、5分間冷却した後に、粉砕ロッドを、1000回/分で10分間往復させて、試料容器内のPVA粉末を粉砕した。次いで、試料容器を、室温A(23℃)まで戻した後、試料容器から、PVAの微粉末を取り出した。
<Example 37>
The PVA powder used as the skeleton material in the formation of the surface layer of Example 1 was freeze-ground using a freezing crusher (trade name: JFC-2000, manufactured by Nippon Analytical Industry Co., Ltd.). Specifically, 10 g of PVA powder was put into a stainless steel sample container of the refrigerating crusher together with a tungsten carbide steel ball. After mounting this container on the crushing rod, the crushing rod was mounted on the main body of the freezing crusher. Then, the whole sample container was immersed in liquid nitrogen and cooled for 5 minutes, and then the crushing rod was reciprocated at 1000 times / minute for 10 minutes to crush the PVA powder in the sample container. Then, the sample container was returned to room temperature A (23 ° C.), and then the fine powder of PVA was taken out from the sample container.

次に、得られたPVAの微粉末を、風力分級機を用いて分級した。具体的には、風力分級機(商品名:エルボジェットラボEJ−L3、日鉄鉱業社製)を使用した。該風力分級機に、PVAの微粉末を投入し、操作画面上で、真比重と希望粒径を入力して、分級処理を行った。そして、粒径0.5μm以上8μm以下のPVA微粉末を得た。実施例1の導電性ローラA1をセットした型に該PVA微粉末を投入して、湿度50%、80℃で1時間熱処理した。表面を研磨により均質に整え、導電性部材A37を作製した。 Next, the obtained fine powder of PVA was classified using a wind power classifier. Specifically, a wind power classifier (trade name: Elbow Jet Lab EJ-L3, manufactured by Nittetsu Mining Co., Ltd.) was used. Fine powder of PVA was put into the wind power classifier, and the true specific density and the desired particle size were input on the operation screen to perform the classifying process. Then, a PVA fine powder having a particle size of 0.5 μm or more and 8 μm or less was obtained. The PVA fine powder was put into a mold in which the conductive roller A1 of Example 1 was set, and heat-treated at a humidity of 50% and 80 ° C. for 1 hour. The surface was uniformly prepared by polishing to prepare a conductive member A37.

<実施例38〜40>
PtBMA100質量部に対して、カーボンブラック(CB、朝日カーボン製、商品名:X15)を7質量部、5質量部、または、2質量部をそれぞれに加えた以外は、塗工液1と同様にして、塗工液1(2)〜塗工液1(4)を調製した。中間層の形成にこれらの塗工液を用いた以外は、実施例1と同様にして導電性部材A38〜A40を製造した。
<Examples 38-40>
Same as coating liquid 1 except that 7 parts by mass, 5 parts by mass, or 2 parts by mass of carbon black (CB, manufactured by Asahi Carbon, trade name: X15) was added to 100 parts by mass of PtBMA. Then, the coating liquid 1 (2) to the coating liquid 1 (4) were prepared. Conductive members A38 to A40 were produced in the same manner as in Example 1 except that these coating liquids were used for forming the intermediate layer.

<実施例41>
PtBMA100質量部に対して、5質量部のp−ヒドロキノン(シグマアルドリッチ製)を加えた以外は、塗工液1と同様にして、塗工液1(5)を調製した。中間層の形成に、塗工液1(5)を用いた以外は、実施例1と同様に導電性部材A41を製造した。
<Example 41>
Coating liquid 1 (5) was prepared in the same manner as coating liquid 1 except that 5 parts by mass of p-hydroquinone (manufactured by Sigma-Aldrich) was added to 100 parts by mass of PtBMA. The conductive member A41 was manufactured in the same manner as in Example 1 except that the coating liquid 1 (5) was used for forming the intermediate layer.

<実施例42>
実施例1の塗工液1の調製で使用したPtBMA粉末を、実施例37と同様にして凍結粉砕および分級を行って粒径0.5μm以上8μm以下のPtBMA微粉末を得た。導電性支持体A1をセットした型に、得られた粒径0.5μm以上8μm以下のPtBMA微粉末を投入して、120℃で1時間熱処理した。表面を研磨により均質に整え、中間層が多孔質体である導電性ローラA42を作製した。導電性ローラA42を用いた以外は実施例1と同様に導電性部材A42を製造した。
<Example 42>
The PtBMA powder used in the preparation of the coating liquid 1 of Example 1 was freeze-pulverized and classified in the same manner as in Example 37 to obtain a PtBMA fine powder having a particle size of 0.5 μm or more and 8 μm or less. The obtained PtBMA fine powder having a particle size of 0.5 μm or more and 8 μm or less was put into a mold in which the conductive support A1 was set, and heat-treated at 120 ° C. for 1 hour. The surface was uniformly prepared by polishing to prepare a conductive roller A42 having a porous intermediate layer. The conductive member A42 was manufactured in the same manner as in Example 1 except that the conductive roller A42 was used.

<実施例43>
実施例1の導電性部材A1の中間層及び表面層の端部に、外径8.6mm、内径6mm、幅2mmのリングを離間部材として取り付け、導電性部材A43を製造した。
<Example 43>
A ring having an outer diameter of 8.6 mm, an inner diameter of 6 mm, and a width of 2 mm was attached to the ends of the intermediate layer and the surface layer of the conductive member A1 of Example 1 as a separating member to manufacture the conductive member A43.

上記実施例2〜43に係る導電性部材A2〜A43について、実施例1に記載の評価4−1〜4−10、及び評価5−1〜5−3に供した。導電性部材A1〜A43の評価結果を、表5〜表9に示す。 The conductive members A2 to A43 according to Examples 2 to 43 were subjected to the evaluations 4-1 to 4-10 and evaluations 5-1 to 5-3 described in Example 1. The evaluation results of the conductive members A1 to A43 are shown in Tables 5 to 9.

Figure 0006929742
Figure 0006929742

Figure 0006929742
Figure 0006929742

Figure 0006929742
Figure 0006929742

Figure 0006929742
Figure 0006929742

Figure 0006929742
Figure 0006929742

<比較例1>
中間層を形成しなかった以外は、実施例1と同様にして導電性部材C1を製造した。
<Comparative example 1>
The conductive member C1 was manufactured in the same manner as in Example 1 except that the intermediate layer was not formed.

<比較例2>
中間層の形成において、塗工液1の代わりに表1に示される塗工液18を用いた以外は、実施例1と同様に導電性部材C2を作製した。
<Comparative example 2>
In the formation of the intermediate layer, the conductive member C2 was produced in the same manner as in Example 1 except that the coating liquid 18 shown in Table 1 was used instead of the coating liquid 1.

<比較例3>
塗工液1の調製において使用したPtBMA100質量部に対して、12質量部のカーボンブラック(CB、朝日カーボン製、商品名:X15)を加えた以外は、塗工液1と同様にして本比較例用の塗工液C1を調製した。塗工液C1を用いて中間層を形成した以外は、実施例1と同様に導電性部材C3を製造した。
<Comparative example 3>
Compared to 100 parts by mass of PtBMA used in the preparation of coating liquid 1, 12 parts by mass of carbon black (CB, manufactured by Asahi Carbon, trade name: X15) was added in the same manner as in coating liquid 1. An example coating liquid C1 was prepared. The conductive member C3 was produced in the same manner as in Example 1 except that the intermediate layer was formed by using the coating liquid C1.

<比較例4>
表面層の形成において、実施例1で用いたPVA溶液に、PVA100質量部に対して7.5質量部のカーボンブラック(CB、朝日カーボン製、商品名:X15)を加えた溶液を用いた。それ以外は、実施例1と同様に導電性部材C4を製造した。
<Comparative example 4>
In forming the surface layer, a solution obtained by adding 7.5 parts by mass of carbon black (CB, manufactured by Asahi Carbon, trade name: X15) to 100 parts by mass of PVA to the PVA solution used in Example 1 was used. Other than that, the conductive member C4 was manufactured in the same manner as in Example 1.

<比較例5>
実施例6と同様に表面層まで形成した後、湿度50%、80℃で1時間熱処理を行った。表面を均一にして、厚さを調整するために表面を研磨して、導電性部材C5を得た。
<Comparative example 5>
After forming the surface layer in the same manner as in Example 6, heat treatment was performed at a humidity of 50% and 80 ° C. for 1 hour. The surface was made uniform and the surface was polished to adjust the thickness to obtain a conductive member C5.

<比較例6>
前記熱処理を湿度50%、80℃で1時間実施した以外は、実施例35と同様に導電性部材C6を製造した。
<Comparative Example 6>
The conductive member C6 was produced in the same manner as in Example 35, except that the heat treatment was carried out at a humidity of 50% and 80 ° C. for 1 hour.

比較例1〜6に係る導電性部材C1〜C6を、実施例1に記載の評価4−1〜4−10および評価5−1〜5−3に供した。その結果を表10に示す。 The conductive members C1 to C6 according to Comparative Examples 1 to 6 were subjected to evaluations 4-1 to 4-10 and evaluations 5-1 to 5-3 described in Example 1. The results are shown in Table 10.

比較例1に係る導電性部材C1は、中間層が無いため、耐久試験後の蓄積電荷量が大幅に減少し、画像評価が不良であった。
比較例2に係る導電性部材C2は、中間層が放射線崩壊型樹脂を含まないため、耐久試験後の蓄積電荷量が大幅に減少し、画像評価が不良であった。
比較例3に係る導電性部材C3は、中間層が導電性であるため、耐久試験後の蓄積電荷量が大幅に減少し、画像評価が不良であった。
比較例4に係る導電性部材C4は、表面層が導電性であるため、十分な蓄積電荷量が得られず、画像評価が不良であった。
比較例5に係る導電性部材C5は、表面層が共連続構造を有さないため、十分な蓄積電荷量が得られず、耐久試験後の蓄積電荷量の減少率が大きく、画像評価が不良であった。
比較例6に係る導電性部材C6は、表面層の骨格が大きい(微細でない)ため、十分な蓄積電荷量が得られず、耐久試験後の蓄積電荷量の減少率が大きく、画像評価が不良であった。
Since the conductive member C1 according to Comparative Example 1 does not have an intermediate layer, the amount of accumulated charges after the durability test is significantly reduced, and the image evaluation is poor.
In the conductive member C2 according to Comparative Example 2, since the intermediate layer did not contain the radiation-disintegrating resin, the amount of accumulated charge after the durability test was significantly reduced, and the image evaluation was poor.
Since the intermediate layer of the conductive member C3 according to Comparative Example 3 is conductive, the amount of accumulated charge after the durability test is significantly reduced, and the image evaluation is poor.
Since the surface layer of the conductive member C4 according to Comparative Example 4 is conductive, a sufficient amount of accumulated charges could not be obtained, and the image evaluation was poor.
Since the surface layer of the conductive member C5 according to Comparative Example 5 does not have a co-continuous structure, a sufficient amount of accumulated charge cannot be obtained, the rate of decrease of the amount of accumulated charge after the durability test is large, and the image evaluation is poor. Met.
In the conductive member C6 according to Comparative Example 6, since the skeleton of the surface layer is large (not fine), a sufficient amount of accumulated charge cannot be obtained, the rate of decrease in the amount of accumulated charge after the durability test is large, and the image evaluation is poor. Met.

Figure 0006929742
Figure 0006929742

31 表面層
32 導電性支持体(導電性軸芯体)
33 中間層
31 Surface layer 32 Conductive support (conductive shaft core)
33 Middle class

Claims (16)

導電性支持体と、該導電性支持体上の中間層と、該中間層上の表面層とを有する電子写真用の導電性部材であって、
該中間層は非導電性であり、かつ放射線崩壊型樹脂Aを含み、
該表面層は多孔質体であり、下記(1)、(2)及び(3)の条件を満たすことを特徴とする電子写真用の導電性部材:
(1)該多孔質体が3次元的に連続な骨格と3次元的に連続な細孔とを含む共連続構造を有する;
(2)該表面層の表面の、任意の150μm四方の領域を撮影し、該領域を縦に15等分、横に15等分したときに、該骨格のみからなる正方形群の数と該細孔のみからなる正方形群の数との合計が該正方形群全体の数の25%以下である;
(3)該表面層が非導電性である。
An electrophotographic conductive member having a conductive support, an intermediate layer on the conductive support, and a surface layer on the intermediate layer.
The intermediate layer is non-conductive and contains a radiation decay type resin A.
The surface layer is a porous body, and is characterized by satisfying the following conditions (1), (2) and (3):
(1) The porous body has a co-continuous structure including a three-dimensionally continuous skeleton and three-dimensionally continuous pores;
(2) When an arbitrary 150 μm square region on the surface of the surface layer is photographed and the region is divided vertically into 15 equal parts and horizontally into 15 equal parts, the number of square groups consisting only of the skeleton and the fineness thereof. The sum with the number of squares consisting only of holes is 25% or less of the total number of squares;
(3) The surface layer is non-conductive.
前記中間層の体積抵抗率が、1×1012Ω・cm以上1×1017Ω・cm以下である請求項1に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to claim 1, wherein the volume resistivity of the intermediate layer is 1 × 10 12 Ω · cm or more and 1 × 10 17 Ω · cm or less. 前記中間層の体積抵抗率が、1×1015Ω・cm以上1×1017Ω・cm以下である請求項1に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to claim 1, wherein the volume resistivity of the intermediate layer is 1 × 10 15 Ω · cm or more and 1 × 10 17 Ω · cm or less. 前記放射線崩壊型樹脂Aが、下記式(1)で示される構成単位を有するアクリル樹脂である請求項1から3のいずれか一項に記載の電子写真用の導電性部材:
Figure 0006929742
(式(1)中、Rは、炭素数1〜6の炭化水素基を表す。)。
The conductive member for electrophotographic according to any one of claims 1 to 3, wherein the radiation-disintegrating resin A is an acrylic resin having a structural unit represented by the following formula (1).
Figure 0006929742
(In the formula (1), R 1 represents a hydrocarbon group having 1 to 6 carbon atoms).
前記Rが炭素数2以上6以下の直鎖状又は分岐鎖状のアルキル基である請求項4に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to claim 4, wherein R 1 is a linear or branched alkyl group having 2 or more and 6 or less carbon atoms. 前記Rが、下記式(2)から(5)で示される基からなる群から選択される少なくとも1つである請求項4又は5に記載の電子写真用の導電性部材:
(2)−C(CH、(3)−CH(CH、(4)−CH(CH)−C(CH、(5)−C(CH−CH(CH
The electrophotographic conductive member according to claim 4 or 5, wherein R 1 is at least one selected from the group consisting of the groups represented by the following formulas (2) to (5).
(2) -C (CH 3 ) 3 , (3) -CH (CH 3 ) 2 , (4) -CH (CH 3 ) -C (CH 3 ) 3 , (5) -C (CH 3 ) 2- CH (CH 3 ) 2 .
前記Rが−C(CHである請求項4から6のいずれか一項に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to any one of claims 4 to 6, wherein R 1 is −C (CH 3 ) 3. 前記中間層の厚さが1μm以上5μm以下である請求項1から7のいずれか一項に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to any one of claims 1 to 7, wherein the thickness of the intermediate layer is 1 μm or more and 5 μm or less. 前記表面層が放射線崩壊型樹脂Bを含む請求項1から8のいずれか一項に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to any one of claims 1 to 8, wherein the surface layer contains a radiation-disintegrating resin B. 前記放射線崩壊型樹脂Bが、下記式(6)で示される構成単位を有するアクリル樹脂である請求項9に記載の電子写真用の導電性部材:
Figure 0006929742
(式(6)中、Rは、炭素数1〜6の炭化水素基を表す。)。
The conductive member for electrophotographic according to claim 9, wherein the radiation-disintegrating resin B is an acrylic resin having a structural unit represented by the following formula (6).
Figure 0006929742
(In formula (6), R 6 represents a hydrocarbon group having 1 to 6 carbon atoms.)
前記Rが炭素数2以上6以下の直鎖状又は分岐鎖状のアルキル基である請求項10に記載の電子写真用の導電性部材。 The conductive member for electrophotographic according to claim 10, wherein R 6 is a linear or branched alkyl group having 2 or more and 6 or less carbon atoms. 前記Rが−C(CHである請求項10又は11に記載の電子写真用の導電性部材。 The electrophotographic conductive member according to claim 10 or 11, wherein R 6 is −C (CH 3 ) 3. 前記表面層の断面画像を撮影し、該断面画像における該細孔の周囲長をL、該細孔の面積をSとしたとき、L/4πSで求められる円形度Kの算術平均が2以上である請求項1から12のいずれか一項に記載の電子写真用の導電性部材。 When a cross-sectional image of the surface layer is taken and the peripheral length of the pores in the cross-sectional image is L and the area of the pores is S, the arithmetic mean of the circularity K obtained by L 2 / 4πS is 2 or more. The conductive member for electrophotographic according to any one of claims 1 to 12. 請求項1から13のいずれか一項に記載の電子写真用の導電性部材の製造方法であって、
高分子材料と溶剤との相分離により前記表面層の前記多孔質体を形成する工程を含むことを特徴とする電子写真用の導電性部材の製造方法。
The method for manufacturing a conductive member for electrophotographic according to any one of claims 1 to 13.
A method for producing a conductive member for electrophotographic, which comprises a step of forming the porous body of the surface layer by phase separation of a polymer material and a solvent.
電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、請求項1から13のいずれか一項に記載の導電性部材を具備していることを特徴とするプロセスカートリッジ。 A process cartridge that is detachably configured on the main body of an electrophotographic apparatus and includes the conductive member according to any one of claims 1 to 13. 請求項1から13のいずれか一項に記載の導電性部材を具備していることを特徴とする電子写真装置。 An electrophotographic apparatus comprising the conductive member according to any one of claims 1 to 13.
JP2017169584A 2017-09-04 2017-09-04 Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment Active JP6929742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017169584A JP6929742B2 (en) 2017-09-04 2017-09-04 Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169584A JP6929742B2 (en) 2017-09-04 2017-09-04 Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment

Publications (2)

Publication Number Publication Date
JP2019045721A JP2019045721A (en) 2019-03-22
JP6929742B2 true JP6929742B2 (en) 2021-09-01

Family

ID=65816412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169584A Active JP6929742B2 (en) 2017-09-04 2017-09-04 Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment

Country Status (1)

Country Link
JP (1) JP6929742B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381114A (en) * 1976-12-25 1978-07-18 Toshiba Corp Radiation sensitive material
JPS5639539A (en) * 1979-09-07 1981-04-15 Chiyou Lsi Gijutsu Kenkyu Kumiai Pattern forming method
JPH10212360A (en) * 1997-01-30 1998-08-11 Sumitomo Electric Ind Ltd Production of polymer molding with smooth surface
KR20110061288A (en) * 2009-12-01 2011-06-09 삼성전자주식회사 Charge roller for image forming apparatus and method of manufacturing the same
JP6198548B2 (en) * 2013-09-27 2017-09-20 キヤノン株式会社 Electrophotographic conductive member, process cartridge, and electrophotographic apparatus
WO2015045395A1 (en) * 2013-09-27 2015-04-02 キヤノン株式会社 Conductive member for electrophotography, process cartridge, and electrophotographic device

Also Published As

Publication number Publication date
JP2019045721A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6198548B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic apparatus
US10678158B2 (en) Electro-conductive member for electrophotography, process cartridge, and electrophotographic image forming apparatus
JP6415222B2 (en) Conductive member for electrophotography, process cartridge, and electrophotographic apparatus
JP6192466B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic apparatus
EP3051358B1 (en) Electrophotographic conductive member, process cartridge, and electrophotographic device
JP6590661B2 (en) Electrophotographic member, process cartridge, and image forming apparatus
JP5989052B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP2018055090A (en) Conductive member for electrophotography, process cartridge, and electrophotographic image forming apparatus
JP2016188999A (en) Conductivity member for electrophotography, process cartridge and electrophotographic apparatus
JP6136862B2 (en) Charging member, charging device, process cartridge, and image forming apparatus
JP6303573B2 (en) Charging device, process cartridge, and image forming apparatus
JP6929742B2 (en) Conductive members for electrophotographic and their manufacturing methods, process cartridges, and electrophotographic equipment
JP2012118322A (en) Charging roller and method for manufacturing the same
JP6905418B2 (en) Conductive members for electrophotographic, process cartridges and electrophotographic equipment
JP2021018292A (en) Charging device, process cartridge, image forming apparatus, and assembly
JP2015068986A (en) Manufacturing method of conductive member for electrophotography
JP5793044B2 (en) Charging roller and charging device
JP2012103367A (en) Charging member, process cartridge and electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210811

R151 Written notification of patent or utility model registration

Ref document number: 6929742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151