JP6928869B2 - Metal powder manufacturing equipment - Google Patents

Metal powder manufacturing equipment Download PDF

Info

Publication number
JP6928869B2
JP6928869B2 JP2017185812A JP2017185812A JP6928869B2 JP 6928869 B2 JP6928869 B2 JP 6928869B2 JP 2017185812 A JP2017185812 A JP 2017185812A JP 2017185812 A JP2017185812 A JP 2017185812A JP 6928869 B2 JP6928869 B2 JP 6928869B2
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
guide
powder manufacturing
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185812A
Other languages
Japanese (ja)
Other versions
JP2019059989A (en
Inventor
野口 伸
伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017185812A priority Critical patent/JP6928869B2/en
Publication of JP2019059989A publication Critical patent/JP2019059989A/en
Application granted granted Critical
Publication of JP6928869B2 publication Critical patent/JP6928869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、水アトマイズ法と呼ばれる金属粉末の製造方法で用いられる金属粉末製造装置に関する。 The present invention relates to a metal powder manufacturing apparatus used in a method for producing a metal powder called a water atomizing method.

金属粉末を製造する方法として溶融金属(溶湯と呼ぶ)をアトマイズ法により粉末化することが知られている。アトマイズ法を採用する金属粉末製造装置は、水を主とする高圧の流体を噴霧媒体とし、流下する溶湯の周囲から斜め下の方向へ円錐状に噴射する水ジェットとすることで、流体のエネルギーを集中させて溶融金属へ衝突させるように構成されている。水ジェットの衝突エネルギーで溶湯が分裂することで微細な金属粉末となる。この様な金属粉末製造装置は、例えば特許文献1から3に記載されている。 As a method for producing metal powder, it is known that molten metal (called molten metal) is pulverized by an atomizing method. The metal powder manufacturing equipment that adopts the atomization method uses a high-pressure fluid, mainly water, as a spray medium, and uses a water jet that jets diagonally downward from the periphery of the molten metal that flows down, thereby producing the energy of the fluid. Is configured to concentrate and collide with the molten metal. The molten metal splits due to the collision energy of the water jet and becomes a fine metal powder. Such a metal powder manufacturing apparatus is described in, for example, Patent Documents 1 to 3.

図2は金属粉末製造装置の構成の一例を示す図である。金属粉末製造装置101は、溶解炉121から注がれる溶湯110を貯留する貯留容器(タンディシュとも呼ばれる)102と、貯留容器102の下部に所定の空間120を介して配置された流体ノズル103とを有する。流体ノズル103は環状にスリット(細隙)が形成されていて、そこから噴出する水ジェット119によって貯留容器102から溶湯ノズル104を介して流下する溶湯を粉末化する。 FIG. 2 is a diagram showing an example of the configuration of a metal powder manufacturing apparatus. The metal powder manufacturing apparatus 101 has a storage container (also called a tundish) 102 for storing the molten metal 110 poured from the melting furnace 121, and a fluid nozzle 103 arranged below the storage container 102 via a predetermined space 120. Have. The fluid nozzle 103 is formed with an annular slit (small gap), and the water jet 119 ejected from the slit (small gap) pulverizes the molten metal flowing down from the storage container 102 through the molten metal nozzle 104.

細隙から噴射された水ジェット119によって前記空間120には周囲から空気が流入し、溶湯110が流下する経路にも空気の流れF(気流)が形成され、その気流によって溶湯110が水ジェット119の中央へと導かれる。しかしながら、溶湯110がこの空気に接触すると、溶湯110の温度低下を招く場合がある。特に融点が1500℃以上の純鉄やFe基合金、あるいはNi基耐熱合金等の高融点金属では、溶湯が固化する温度が高いため、通常の金属粉末製造装置では溶湯110の流下の途中で水ジェットによる気流Fによって粉末化の前に溶湯の冷却が進んで粘度が高くなり、その後の分裂が不十分になって、所望の粒度の金属粉末を製造することができないことがあった。
Air flows into the space 120 from the surroundings by the water jet 119 ejected from the gap, and an air flow F (air flow) is formed in the path through which the molten metal 110 flows down, and the molten metal 110 is caused by the water jet 119. Guided to the center of. However, when the molten metal 110 comes into contact with this air, the temperature of the molten metal 110 may drop. Especially in high-melting-point metal such as melting point of pure iron and Fe-based alloy above 1500 ° C. or Ni-base heat-resistant alloy, since the temperature at which the molten metal is solidified is high, the ordinary metal powder production apparatus, in the middle of the stream of molten metal 110 In some cases, the airflow F generated by the water jet promotes cooling of the molten metal before pulverization to increase the viscosity, resulting in insufficient splitting thereafter, making it impossible to produce a metal powder having a desired particle size.

特許文献4や特許文献5では、図3に示すように、貯留容器102の下面に接続された溶湯ノズル104を水ジェット119の近くまで及ばせている。溶湯110が直接気流Fに晒される区間が短くなれば、溶湯が気流Fによって冷却されるのを低減することが出来る。 In Patent Document 4 and Patent Document 5, as shown in FIG. 3, the molten metal nozzle 104 connected to the lower surface of the storage container 102 extends close to the water jet 119. If the section in which the molten metal 110 is directly exposed to the air flow F is shortened, it is possible to reduce the cooling of the molten metal by the air flow F.

また特許文献6では、図4に示すように、貯留容器102の下面に接続された溶湯ノズル104を所定の間隔をもって配置された保護管105で覆い、水ジェット119による気流F が直接溶湯ノズル104に晒されるのを減じている。 Further, in Patent Document 6, as shown in FIG. 4, the molten metal nozzle 104 connected to the lower surface of the storage container 102 is covered with a protective pipe 105 arranged at a predetermined interval, and the air flow F by the water jet 119 is directly directed to the molten metal nozzle 104. I'm less exposed to.

保護管105には熱伝導性の高い鉄系、チタン系、あるいは銅系等の金属材料が用いられていて、それを貯留容器102の下面に接して設けることで、貯留容器102側の熱を利用して保護管105を加熱している。更に加熱手段を付加し保護管105を加熱するなどして、保護管105が気流Fによって冷却されても、それを補うようにしている。 A metal material such as iron, titanium, or copper having high thermal conductivity is used for the protective tube 105, and by providing the protective tube 105 in contact with the lower surface of the storage container 102, heat on the storage container 102 side can be generated. It is used to heat the protective tube 105. Further, a heating means is added to heat the protective tube 105, so that even if the protective tube 105 is cooled by the air flow F, it is compensated for.

また溶湯ノズル104と保護管105との隙間は、貯留容器102側の上端は閉じていて、流体ノズル103側の下端は開いるように構成される。水ジェット119による気流F が直接溶湯ノズル104に晒されるのを減じ、さらに気流Fによって前記隙間内の圧力を低下させて減圧状態に維持することで断熱性を向上し、溶湯ノズル104を通る溶融金属の温度低下を抑え、その粘度上昇を抑制している。 Further, the gap between the molten metal nozzle 104 and the protective tube 105 is configured such that the upper end on the storage container 102 side is closed and the lower end on the fluid nozzle 103 side is open. It reduces the direct exposure of the airflow F by the water jet 119 to the molten metal nozzle 104, and further reduces the pressure in the gap by the airflow F to maintain the reduced pressure state, thereby improving the heat insulating property and melting through the molten metal nozzle 104. It suppresses the temperature drop of the metal and suppresses the increase in its viscosity.

特公昭43−6389号公報Special Publication No. 43-6389 特開昭60−152605号公報Japanese Unexamined Patent Publication No. 60-152605 国際公開第1999/011407号International Publication No. 1999/011407 特開平2−198620号公報Japanese Unexamined Patent Publication No. 2-198620 特開2007−247054号公報Japanese Unexamined Patent Publication No. 2007-247054 特開2012−201941号公報Japanese Unexamined Patent Publication No. 2012-201941

特許文献4から6の金属粉末製造装置では、貯留容器102から水ジェットの細隙に近い位置まで溶湯ノズル104を及ばせた構造となっている。貯留容器102や溶湯110の熱で溶湯ノズル104が加温されるものの、溶湯ノズル104が長いほど、流体ノズル103側の下端では温度が低下するため、溶湯ノズル104の内壁に接触する溶湯110の粘度が上昇して、溶湯ノズル104を通る溶湯110の通過量が変動したり、溶湯ノズル104内で溶湯110が固まって詰まりを生じたりする場合がある。また溶湯ノズル104は溶湯110の出湯毎に取り換える必要があるが、金属系の材料と比べて相対的に熱伝導性の低い、アルミナなやジルコニアなどのセラミックス材料で構成される溶湯ノズル104は、その長さが長いほど作製が難しく高価なものとなり、製造コストを増加させる要因にもなる。 The metal powder manufacturing apparatus of Patent Documents 4 to 6 has a structure in which the molten metal nozzle 104 extends from the storage container 102 to a position close to the gap of the water jet. Although the molten metal nozzle 104 is heated by the heat of the storage container 102 and the molten metal 110, the longer the molten metal nozzle 104, the lower the temperature at the lower end on the fluid nozzle 103 side. The viscosity may increase and the amount of the molten metal 110 passing through the molten metal nozzle 104 may fluctuate, or the molten metal 110 may solidify in the molten metal nozzle 104 and cause clogging. Further, the molten metal nozzle 104 needs to be replaced every time the molten metal 110 is discharged, but the molten metal nozzle 104 made of a ceramic material such as alumina or zirconia, which has a relatively low thermal conductivity as compared with a metal-based material, has a molten metal nozzle 104. The longer the length, the more difficult and expensive it is to manufacture, and it also becomes a factor that increases the manufacturing cost.

また特許文献6の金属粉末製造装置では、溶湯ノズル104を覆う保護管105を貯留容器102の下面に接して設けるが、貯留容器102側と流体ノズル103側との間の断熱構造が複雑なものとなり易く、また溶湯ノズル104が気流Fによって冷却されることで貯留容器102側の熱を奪ってしまい、それによって局部的な溶湯温度の低下等の不具合が生じることも懸念される。 Further, in the metal powder manufacturing apparatus of Patent Document 6, a protective tube 105 covering the molten metal nozzle 104 is provided in contact with the lower surface of the storage container 102, but the heat insulating structure between the storage container 102 side and the fluid nozzle 103 side is complicated. In addition, the molten metal nozzle 104 is cooled by the air flow F to take heat from the storage container 102 side, which may cause a problem such as a local decrease in the molten metal temperature.

そこで本発明の目的は、溶湯が流下する経路の気流の影響を低減し、溶湯ノズルの詰りを抑えて、生産性に優れ金属粉末を安定的に製造可能な金属粉末製造装置を提供することにある。 Therefore, an object of the present invention is to provide a metal powder manufacturing apparatus capable of stably producing metal powder with excellent productivity by reducing the influence of the air flow in the path through which the molten metal flows and suppressing clogging of the molten metal nozzle. be.

本発明は、溶湯を溜める貯留容器と、前記貯留容器から前記溶湯を鉛直方向に流す溶湯流路と、前記溶湯流路に向かって前記溶湯を粉末化する流体を噴出する細隙を備えた流体ノズルと、を有する金属粉末製造装置であって、前記貯留容器の下部に設けられ、前記溶湯流路を構成する溶湯ノズルと、前記溶湯ノズルの下部側に設けられ、前記溶湯ノズルよりも溶湯流路の断面積が大きい溶湯流路を構成する筒状の溶湯ガイドと、前記溶湯ガイドの外側を覆う風防部とを備え、前記流体ノズルは前記溶湯ガイドの直下に貫通孔を有し、前記貫通孔は上方から前記細隙に向かう方向の縮径部を備え、前記縮径部と前記風防部との間で前記流体の噴出により生じる気流の流路を構成し、前記溶湯ガイドの下端部は、前記風防部から前記貫通孔側へ突出し、前記流体ノズルの上端と前記流体ノズルの細隙との間に位置する金属粉末製造装置である。 The present invention has a storage container for storing molten metal, a molten metal flow path for flowing the molten metal in the vertical direction from the storage container, and a fluid having a gap for ejecting a fluid for pulverizing the molten metal toward the molten metal flow path. A metal powder manufacturing apparatus having a nozzle, which is provided at the lower part of the storage container and constitutes the molten metal flow path, and is provided on the lower side of the molten metal nozzle and has a molten fluid flow rather than the molten metal nozzle. A tubular molten metal guide constituting a molten metal flow path having a large cross-sectional area of the path and a windshield portion covering the outside of the molten metal guide are provided, and the fluid nozzle has a through hole directly below the molten metal guide and the penetration. The hole is provided with a reduced diameter portion in the direction from above toward the narrow gap, constitutes a flow path of an air flow generated by the ejection of the fluid between the reduced diameter portion and the windshield portion, and the lower end portion of the molten metal guide is formed. , A metal powder manufacturing apparatus that protrudes from the windshield portion toward the through hole side and is located between the upper end of the fluid nozzle and the gap of the fluid nozzle.

本発明においては、前記溶湯ガイドの外側に加熱手段を有し、前記加熱手段を前記風防部で覆うのが好ましい。 In the present invention, it is preferable to have a heating means on the outside of the molten metal guide and cover the heating means with the windshield portion.

また本発明においては、前記溶湯ガイドの上端側に前記溶湯ノズルの下端を挿入して配置するのが好ましい。 Further, in the present invention, it is preferable to insert and arrange the lower end of the molten metal nozzle on the upper end side of the molten metal guide.

本発明によれば、溶湯が流下する経路の気流の影響を低減し、溶湯ノズルの詰りを抑えて、生産性に優れ金属粉末を安定的に製造可能な金属粉末製造装置を提供することが出来る。 According to the present invention, it is possible to provide a metal powder manufacturing apparatus capable of stably producing metal powder with excellent productivity by reducing the influence of the air flow in the path through which the molten metal flows and suppressing clogging of the molten metal nozzle. ..

本発明の一実施例に係る金属粉末製造装置の断面図である。It is sectional drawing of the metal powder manufacturing apparatus which concerns on one Example of this invention. 従来の金属粉末製造装置の断面図である。It is sectional drawing of the conventional metal powder manufacturing apparatus. 従来の他の金属粉末製造装置の断面図である。It is sectional drawing of another conventional metal powder manufacturing apparatus. 従来の他の金属粉末製造装置の断面図である。It is sectional drawing of another conventional metal powder manufacturing apparatus.

以下、本発明の一実施形態に係る金属粉末製造装置について具体的に説明する。ただし、本発明はこれに限定されるものではない。なお、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。また説明において示される寸法や形状、構成部材の相対的な位置関係等は特に断わりの記載がない限りは、それのみに限定されない。さらに説明においては、同一の名称、符号については同一又は同質の部材を示していて、図示していても詳細説明を省略する場合がある。 Hereinafter, the metal powder manufacturing apparatus according to the embodiment of the present invention will be specifically described. However, the present invention is not limited to this. In addition, in a part or all of the figure, a part unnecessary for explanation is omitted, and there is a part shown by enlargement or reduction for facilitation of explanation. Further, the dimensions and shapes shown in the description, the relative positional relationship of the constituent members, and the like are not limited thereto unless otherwise specified. Further, in the description, members of the same or the same quality are shown with the same name and reference numeral, and detailed description may be omitted even if they are shown in the figure.

図1は、本発明の金属粉末製造装置の一実施形態を示す縦断面図である。図1に示す金属粉末製造装置1は、貯留容器側と流体ノズル側とその間の吸気部とに分けられる。溶湯10を水等でなる噴霧媒体で粉砕し、粉砕された溶湯を水等の冷却媒体により冷却して粉末化するのに用いられる装置であって、溶融し流下する原料溶湯をノズルより噴射した高圧水で粉砕して粉末状とするとともに、冷却も行って粉末を得る。得られる粉末は、例えばサブミクロンから数百ミクロンオーダーまで広く分布する大小の粒子で構成されたものとなっている。 FIG. 1 is a vertical cross-sectional view showing an embodiment of the metal powder manufacturing apparatus of the present invention. The metal powder manufacturing apparatus 1 shown in FIG. 1 is divided into a storage container side, a fluid nozzle side, and an intake portion between them. This device is used to crush the molten metal 10 with a spray medium made of water or the like, cool the crushed molten metal with a cooling medium such as water to pulverize it, and inject the molten raw material that melts and flows down from a nozzle. It is crushed with high-pressure water to make a powder, and also cooled to obtain a powder. The obtained powder is composed of large and small particles widely distributed, for example, from submicrons to several hundreds of microns.

この金属粉末製造装置1は貯留容器2側に、溶解炉(図示せず)から注がれる溶湯10を一時的に溜める貯留容器2と、その底面に設けられた溶湯ノズル4と、前記溶湯ノズル4の下方に設けられた溶湯ガイド5と、前記溶湯ガイド5から流出する溶湯10を粉砕する流体ノズル3を有しており、さらに、溶湯ガイド5の外側にヒータ等の加熱手段12を備え、それらの外側を覆うように、風防部11が設けられている。 The metal powder manufacturing apparatus 1 has a storage container 2 for temporarily storing the molten metal 10 poured from a melting furnace (not shown), a molten metal nozzle 4 provided on the bottom surface thereof, and the molten metal nozzle on the storage container 2 side. It has a molten metal guide 5 provided below the molten metal guide 5 and a fluid nozzle 3 for crushing the molten metal 10 flowing out from the molten metal guide 5, and further, a heating means 12 such as a heater is provided on the outside of the molten metal guide 5. A windshield portion 11 is provided so as to cover the outside of them.

流体ノズル3は、その本体部分と、本体部分に設けられ、貯留容器2から流下する溶湯10を通過させる溶湯流路となる貫通孔22と、貫通孔22に向けて水ジェット19を噴射する細隙23とを有している。貫通孔22は水ジェットにより形成される気流Fの流路20でもある。貫通孔22は、流体ノズル3の本体部分を鉛直方向に貫通し、その径は細隙23に向かって連続的に縮径する縮径部を備えている。具体的には、吸気部において貯留容器2と流体ノズル3との空間20から連続し、貯留容器2側である流体ノズル3の上部において最も大きく開口し、下方の細隙23に向かって減少している。細隙23よりも下方側では、下方に向かって拡径している。貫通孔22を鉛直方向に見ると円形をなしていて、その中心と貯留容器2から流下する溶湯10の経路である溶湯流路の中心とが一致するように流体ノズル3が配置されている。 The fluid nozzle 3 is provided in the main body portion, a through hole 22 provided in the main body portion and serving as a molten metal flow path through which the molten metal 10 flowing down from the storage container 2 passes, and a thin hole 22 for injecting a water jet 19 toward the through hole 22. It has a gap 23. The through hole 22 is also a flow path 20 of the air flow F formed by the water jet. The through hole 22 has a reduced diameter portion that penetrates the main body portion of the fluid nozzle 3 in the vertical direction and whose diameter is continuously reduced toward the gap 23. Specifically, the intake portion is continuous from the space 20 between the storage container 2 and the fluid nozzle 3, has the largest opening at the upper part of the fluid nozzle 3 on the storage container 2 side, and decreases toward the lower gap 23. ing. Below the narrow gap 23, the diameter increases downward. The through hole 22 has a circular shape when viewed in the vertical direction, and the fluid nozzle 3 is arranged so that the center thereof coincides with the center of the molten metal flow path, which is the path of the molten metal 10 flowing down from the storage container 2.

流体ノズル3の本体部分は上部筒25と下部筒26とを重ねて構成されている。外部のポンプ装置等の流体の供給源(図示せず)からホース等の接続経路にて供給される50〜200MPaの高圧流体は、流体通路24と、それと繋がり、貫通孔22側に開口する円環状の導入路27を経て細隙23から流下する溶湯10へ噴射され、円錐状の水ジェット19を形成する。流体ノズル3は耐熱性と、流体の圧力に耐えうる耐圧性とを備えた材料であれば特に限定されないが、金属材料で構成するのが好ましい。 The main body portion of the fluid nozzle 3 is formed by overlapping the upper cylinder 25 and the lower cylinder 26. A high-pressure fluid of 50 to 200 MPa supplied from a fluid supply source (not shown) of an external pump device or the like through a connection path such as a hose is connected to the fluid passage 24 and a circle that opens to the through hole 22 side. It is injected into the molten metal 10 flowing down from the gap 23 through the annular introduction path 27 to form a conical water jet 19. The fluid nozzle 3 is not particularly limited as long as it is a material having heat resistance and pressure resistance that can withstand the pressure of the fluid, but it is preferably made of a metal material.

図1に示すように、有底の貯留容器2は、周囲がジルコン砂(図示せず)で埋められた状態となっていて、更にその周囲を電気絶縁性及び耐熱性に優れるマイカボード(図示せず)で囲われ、さらに誘導コイル(図示せず)が配置されている。誘導コイルによって加温して溶解炉から注がれる溶湯10の温度を所定の範囲となるように調整している。貯留容器2は溶湯10によって変形等が生じない材料であればよく、例えば、アルミナ、ジルコニアのような各種セラミックス材料や、黒鉛などが用いられる。また、貯留容器2の底部には、貫通孔が設けられていて、そこに溶湯ノズル4が螺合結合等によって嵌められる。ジルコン砂は貯留容器の固定と保温・断熱のために用いられ、他にもアルミナ砂等を用いても良い。また溶湯ノズル4はセラミック製のロッド35によって開栓、閉栓される。 As shown in FIG. 1, the bottomed storage container 2 is in a state where the periphery is filled with zircon sand (not shown), and the periphery thereof is a mica board having excellent electrical insulation and heat resistance (FIG. 1). It is surrounded by (not shown), and an induction coil (not shown) is further arranged. The temperature of the molten metal 10 poured from the melting furnace by heating with an induction coil is adjusted to be within a predetermined range. The storage container 2 may be a material that is not deformed by the molten metal 10, and for example, various ceramic materials such as alumina and zirconia, graphite, and the like are used. Further, a through hole is provided at the bottom of the storage container 2, and the molten metal nozzle 4 is fitted into the through hole by screw coupling or the like. Zircon sand is used for fixing the storage container and for heat retention / heat insulation, and alumina sand or the like may also be used. The molten metal nozzle 4 is opened and closed by a ceramic rod 35.

溶湯ノズル4は図1に示すように長尺の筒状の部材で直線状に貫通する孔部を有し、それを通して貯留容器2内に貯留された溶湯10を下方に流下させる。溶湯ノズル4の形状は筒状であれば特に限定されず、貯留容器2への取り付け性や耐熱衝撃性等を考慮して適宜設定可能である。孔部の開口形状は円状が好ましく、また長さ方向の断面は、貯留容器2側が幅広で下方になるほど幅が狭くなるテーパ状で、更に最も狭まった部分から直線状とするのが好ましい。得られる金属粉末の粒度(レーザー回折法により計測される体積基準の粒度分布から、小径側からの累積%が50体積%となる粒子径であるメジアン径d50で規定)は、一般に溶湯ノズル4の内径に影響を受ける。そのため目的とする金属粉末のメジアン径が1〜20μm程度であれば、孔部の最も狭い部分の内径は1〜5mm程度であるのが好ましい。溶湯ノズル4には、アルミナ、ジルコニア、ムライト、ボロン・ナイトライドのような各種セラミックス材料が用いられる。 As shown in FIG. 1, the molten metal nozzle 4 is a long tubular member having a hole through which the molten metal nozzle 4 linearly penetrates, and the molten metal 10 stored in the storage container 2 is allowed to flow downward through the hole. The shape of the molten metal nozzle 4 is not particularly limited as long as it has a tubular shape, and can be appropriately set in consideration of attachability to the storage container 2, heat resistance and impact resistance, and the like. The opening shape of the hole is preferably circular, and the cross section in the length direction is preferably a taper that is wider on the storage container 2 side and narrows toward the bottom, and is preferably straight from the narrowest portion. The particle size of the obtained metal powder (defined by the median diameter d50, which is the particle size at which the cumulative% from the small diameter side is 50% by volume from the volume-based particle size distribution measured by the laser diffraction method) is generally determined by the molten metal nozzle 4. Affected by inner diameter. Therefore, when the median diameter of the target metal powder is about 1 to 20 μm, the inner diameter of the narrowest portion of the hole is preferably about 1 to 5 mm. Various ceramic materials such as alumina, zirconia, mullite, and boron nitride are used for the molten metal nozzle 4.

溶湯ノズル4の周囲には、例えば溶湯ノズル4を中心に円筒状に配置可能なアルミナ等の断熱用のセラミック部材16が配置されている。図示した例ではアルミナスリーブを用いている、セラミック部材16の上端側と貯留容器2との底部側とで挟むようにして、溶湯ノズル4の貯留容器2への取り付け部にグラファイト等の高耐熱性シール部材(図示せず)が設けられている。また流体ノズル3側との断熱のため、貯留容器2の底部にはファイバーボード等の断熱部材28が敷き詰められ、その下部には冷却用の水冷銅板17を設けて、断熱性を高めている。なお溶湯ノズル4の下端は水冷銅板17から突き出ない位置とするようにしている。ファイバーボード等の断熱部材28の厚みは、断熱性と金属粉末製造装置の小形・省スペースを考慮すれば1〜5cmであるのが好ましい。断熱部材28はファイバーボードのほかに、アルミナブロックを敷き、その間をジルコニア砂で埋めて形成しても良い。 Around the molten metal nozzle 4, for example, a ceramic member 16 for heat insulation such as alumina that can be arranged in a cylindrical shape around the molten metal nozzle 4 is arranged. In the illustrated example, an alumina sleeve is used, and a highly heat-resistant sealing member such as graphite is attached to the attachment portion of the molten metal nozzle 4 to the storage container 2 so as to be sandwiched between the upper end side of the ceramic member 16 and the bottom side of the storage container 2. (Not shown) is provided. Further, in order to insulate the fluid nozzle 3 side, a heat insulating member 28 such as a fiber board is spread on the bottom of the storage container 2, and a water-cooled copper plate 17 for cooling is provided under the heat insulating member 28 to improve the heat insulating property. The lower end of the molten metal nozzle 4 is set so as not to protrude from the water-cooled copper plate 17. The thickness of the heat insulating member 28 such as the fiber board is preferably 1 to 5 cm in consideration of the heat insulating property and the small size and space saving of the metal powder manufacturing apparatus. In addition to the fiber board, the heat insulating member 28 may be formed by laying an alumina block and filling the space between them with zirconia sand.

溶湯ノズル4の下方に、溶湯ノズル4を通過した溶湯10を通す長尺で筒状の溶湯ガイド5が配置される。溶湯ガイド5の孔部の中心は溶湯ノズル4の孔部の中心に一致するように設けられているのが好ましい。筒状の溶湯ガイド5の孔部の断面積が溶湯ノズル4よりも大きくて、溶湯ガイド5の上端が溶湯ノズル4の下端を囲むように、溶湯ノズル4の下端側が溶湯ガイド5の孔部の上端側に挿しいれられている。また下端は流体ノズルの近くまで及ぶ位置となるようにしている。溶湯ガイド5を構成する材料としては、耐熱鋼のような鉄系材料や、アルミナ、ジルコニア、ムライト、あるいは耐熱衝撃性に優れるボロン・ナイトライドのような各種セラミックス材料などが用いられる。溶湯ガイド5の形状も、筒状であれば特に限定されないが、形成の容易さから円筒形状が好ましく、上端側に鍔部を設けたりして組み付けが容易なようにしても良い。溶湯ガイド5が上記のような構成になっていると、図1に示すように、冷却用の水冷銅板17の下側の窪みに溶湯ガイド5の上端を差し込むように配置して、その鍔部を押さえ板18で水冷銅板17に螺子固定することが出来る。上端を固定するだけで溶湯ガイド5を容易に取り付けることができ、取り外しの作業も容易になる。 Below the molten metal nozzle 4, a long and tubular molten metal guide 5 for passing the molten metal 10 that has passed through the molten metal nozzle 4 is arranged. It is preferable that the center of the hole of the molten metal guide 5 is provided so as to coincide with the center of the hole of the molten metal nozzle 4. The cross-sectional area of the hole of the tubular molten metal guide 5 is larger than that of the molten metal nozzle 4, and the lower end side of the molten metal nozzle 4 is the hole of the molten metal guide 5 so that the upper end of the molten metal guide 5 surrounds the lower end of the molten metal nozzle 4. It is inserted on the upper end side. The lower end is set to a position that extends close to the fluid nozzle. As the material constituting the molten metal guide 5, iron-based materials such as heat-resistant steel, various ceramic materials such as alumina, zirconia, mullite, and boron nitride having excellent heat-resistant impact resistance are used. The shape of the molten metal guide 5 is not particularly limited as long as it is tubular, but a cylindrical shape is preferable from the viewpoint of ease of formation, and a flange portion may be provided on the upper end side to facilitate assembly. When the molten metal guide 5 has the above configuration, as shown in FIG. 1, the molten metal guide 5 is arranged so as to be inserted into the recess on the lower side of the water-cooled copper plate 17 for cooling, and the flange portion thereof. Can be screw-fixed to the water-cooled copper plate 17 with the holding plate 18. The molten metal guide 5 can be easily attached only by fixing the upper end, and the work of removing the molten metal guide 5 becomes easy.

溶湯ガイド5の下端部は、貫通孔22内に配置され、流体ノズル3の上端と細隙23との間に位置するようするのが好ましい。このように配置すると、溶湯ガイド5の孔部を溶湯流路として気流Fの影響を避けながら、溶湯10を水ジェット19に近づけて供給することが出来る。なお水ジェット19は基本頂点が下方の円錐状であるが、細隙23の近くでは、一部が分裂した溶湯とともに上方向へ吹きあがる場合がある。吹きあがった溶湯が溶湯ガイド5の下端に付着しても良いが、水ジェット19への溶湯ガイド5を閉塞せず、溶湯流路を確保できる位置が、溶湯ガイド5の下端の目安となる。 It is preferable that the lower end of the molten metal guide 5 is arranged in the through hole 22 and is located between the upper end of the fluid nozzle 3 and the gap 23. With this arrangement, the molten metal 10 can be supplied close to the water jet 19 while avoiding the influence of the air flow F by using the hole of the molten metal guide 5 as the molten metal flow path. The water jet 19 has a conical shape whose basic apex is downward, but in the vicinity of the gap 23, the water jet 19 may be blown upward together with a partially split molten metal. The blown molten metal may adhere to the lower end of the molten metal guide 5, but a position where the molten metal guide 5 to the water jet 19 can be secured without blocking the molten metal guide 5 is a guideline for the lower end of the molten metal guide 5.

溶湯10を溶湯ガイド5の中空部を通過させるように構成することで、溶湯ノズル4を細隙23の近くまで延ばす必要がなく、短くしても貯留容器2内の溶湯10を安定して流体ノズル3の細隙近傍まで供給出来る。また溶湯ノズル4を短くすることで溶湯10の詰まりが生じる虞も低減することが出来る。 By configuring the molten metal 10 to pass through the hollow portion of the molten metal guide 5, it is not necessary to extend the molten metal nozzle 4 to the vicinity of the gap 23, and even if it is shortened, the molten metal 10 in the storage container 2 can be stably fluidized. It can supply up to the vicinity of the gap of the nozzle 3. Further, by shortening the molten metal nozzle 4, the possibility that the molten metal 10 is clogged can be reduced.

溶湯ガイド5の溶湯10が流下する内空間は断熱層としても機能し、溶湯10の粘度上昇を抑制することが出来る。また、高圧の流体によって水ジェット19が形成されると、それに伴って気体の流路20の上方から下方に向かう気流が生じる。この気流Fにより、溶湯ガイド5の内空間が減圧状態となり易い。特許文献6では、水ジェットにより吸引される気流F によって、溶湯ノズル104と保護管105との隙間の圧力が低下して減圧状態に維持され、それによって隙間の断熱性を高めているが、本発明においても同様な効果が得られやすい。 The inner space into which the molten metal 10 of the molten metal guide 5 flows down also functions as a heat insulating layer, and an increase in the viscosity of the molten metal 10 can be suppressed. Further, when the water jet 19 is formed by the high-pressure fluid, an air flow from the upper side to the lower side of the gas flow path 20 is generated accordingly. Due to this air flow F, the inner space of the molten metal guide 5 tends to be in a decompressed state. In Patent Document 6, the pressure in the gap between the molten metal nozzle 104 and the protective tube 105 is reduced by the air flow F sucked by the water jet to maintain the decompressed state, thereby improving the heat insulating property of the gap. Similar effects are likely to be obtained in the invention.

更に溶湯ガイド5の外側には風防部11を有している。風防部11は溶湯ガイド5の下端側を通すように開口していて、溶湯ガイド5の略全体を覆うように、気流Fの流路20を構成する吸気部の一部である天板30側に取り付けられる。 Further, a windshield portion 11 is provided on the outside of the molten metal guide 5. The windshield portion 11 is open so as to pass through the lower end side of the molten metal guide 5, and is on the top plate 30 side which is a part of the intake portion forming the flow path 20 of the air flow F so as to cover substantially the entire molten metal guide 5. Attached to.

また風防部11の形状を、流体ノズル3の貫通孔22の形状に倣った流線形とすることで、気流Fの妨げとなるのを防いでいる。溶湯ガイド5から流下した溶湯10は安定した気流Fとともに水ジェット19に送られて、良好な条件で粉末化することが出来る。風防部11は、その形状への加工の容易さから、耐熱鋼のような鉄系材料やステンレス鋼などの金属材料を用いるのが好ましい。 Further, the shape of the windshield portion 11 is streamlined to follow the shape of the through hole 22 of the fluid nozzle 3 to prevent the airflow F from being obstructed. The molten metal 10 flowing down from the molten metal guide 5 is sent to the water jet 19 together with the stable air flow F, and can be pulverized under good conditions. It is preferable to use an iron-based material such as heat-resistant steel or a metal material such as stainless steel for the windshield portion 11 because of its ease of processing into its shape.

溶湯ガイド5にヒータ等の加熱手段12を設けても良い。加熱手段12は溶湯ノズル4の下端よりも下方であって、溶湯ノズル4の長手方向の中間付近に設けるのが好ましい。この加熱手段によって溶湯ガイド5を加熱することにより、溶湯10の温度低下をより確実に抑制することができる。また、溶湯ガイド5に溶湯10が飛散した場合に熱衝撃で割れる虞が低減される。また加熱の効率を上げるように風防部11で加熱手段19の全体を覆うのが好ましい。加熱手段12を前記天板30に取り付けても良い。また、前記天板30には加熱手段12への接続ケーブルや測温用の熱電対を配置する溝等を設けても良い。 The molten metal guide 5 may be provided with a heating means 12 such as a heater. The heating means 12 is preferably provided below the lower end of the molten metal nozzle 4 and near the middle of the molten metal nozzle 4 in the longitudinal direction. By heating the molten metal guide 5 by this heating means, it is possible to more reliably suppress the temperature drop of the molten metal 10. Further, when the molten metal 10 is scattered on the molten metal guide 5, the possibility of cracking due to thermal shock is reduced. Further, it is preferable to cover the entire heating means 19 with the windshield portion 11 so as to increase the heating efficiency. The heating means 12 may be attached to the top plate 30. Further, the top plate 30 may be provided with a connection cable to the heating means 12, a groove for arranging a thermocouple for temperature measurement, or the like.

この様な構成の金属粉末製造装置では、短い溶湯ノズル4から溶湯10を流下させ、その溶湯ノズル4から流下する溶湯10を溶湯ガイド5の中空部を通過させるように構成することで、貯留容器2内の溶湯10を、溶湯ノズル4から溶湯ガイド5を通って流体ノズル3へと供給する。そのため溶湯10の温度低下を抑えて安定して流体ノズル3の細隙近傍まで溶湯10を供給出来る。また溶湯ノズル4を流体ノズル3の細隙23の近くまで延ばす必要がなく、溶湯ノズル4を短くすることで溶湯10の詰まりが生じる虞も低減し生産性を損ねることが無い。水ジェット19によって分裂した溶湯は微細な金属粉末はスラリーとして回収され、金属粉末を安定的に製造可能となる。 In the metal powder manufacturing apparatus having such a configuration, the molten metal 10 is allowed to flow down from the short molten metal nozzle 4, and the molten metal 10 flowing down from the molten metal nozzle 4 is configured to pass through the hollow portion of the molten metal guide 5. The molten metal 10 in 2 is supplied from the molten metal nozzle 4 to the fluid nozzle 3 through the molten metal guide 5. Therefore, the temperature drop of the molten metal 10 can be suppressed and the molten metal 10 can be stably supplied to the vicinity of the gap of the fluid nozzle 3. Further, it is not necessary to extend the molten metal nozzle 4 to the vicinity of the gap 23 of the fluid nozzle 3, and shortening the molten metal nozzle 4 reduces the possibility of clogging of the molten metal 10 and does not impair productivity. In the molten metal split by the water jet 19, fine metal powder is recovered as a slurry, and the metal powder can be stably produced.

1 金属粉末製造装置
2 貯留容器
3 流体ノズル
4 溶湯ノズル
5 溶湯ガイド
10 溶湯
11 風防部
12 加熱手段
15 誘導コイル
19 水ジェット
20 気流の流路
22 溶湯流路
23 細隙
24 流体通路
25 流体ノズルの上部筒
26 流体ノズルの下部筒
27 円環状の導入路

1 Metal powder manufacturing equipment 2 Storage container 3 Fluid nozzle 4 Molten nozzle 5 Molten guide 10 Molten 11 Windshield 12 Heating means 15 Induction coil 19 Water jet 20 Flow path 22 Molten flow path 23 Nipple 24 Fluid passage 25 Fluid nozzle Upper cylinder 26 Lower cylinder of fluid nozzle 27 Circular introduction path

Claims (3)

溶湯を溜める貯留容器と、
前記貯留容器から前記溶湯を鉛直方向に流す溶湯流路と、
前記溶湯流路に向かって前記溶湯を粉末化する流体を噴出する細隙を備えた流体ノズルと、を有する金属粉末製造装置であって、
前記貯留容器の下部に設けられ、前記溶湯流路を構成する溶湯ノズルと、
前記溶湯ノズルの下部側に設けられ、前記溶湯ノズルよりも溶湯流路の断面積が大きい溶湯流路を構成する筒状の溶湯ガイドと、
前記溶湯ガイドの外側を覆う風防部とを備え、
前記溶湯ノズルの下端側が前記溶湯ガイドの孔部の上端側に挿しいれられていて、
前記流体ノズルは前記溶湯ガイドの直下に貫通孔を有し、前記貫通孔は上方から前記細隙に向かう方向の縮径部を備え、前記縮径部と前記風防部との間で前記流体の噴出により生じる気流の流路を構成し、
前記溶湯ガイドの下端部は、前記風防部から前記貫通孔側へ突出し、前記流体ノズルの上端と前記流体ノズルの細隙との間に位置する金属粉末製造装置。
A storage container for storing molten metal and
A molten metal flow path that allows the molten metal to flow vertically from the storage container,
A metal powder manufacturing apparatus comprising a fluid nozzle having a gap for ejecting a fluid for pulverizing the molten metal toward the molten metal flow path.
A molten metal nozzle provided at the bottom of the storage container and forming the molten metal flow path, and a molten metal nozzle.
A tubular molten metal guide provided on the lower side of the molten metal nozzle and forming a molten metal flow path having a larger cross-sectional area of the molten metal flow path than the molten metal nozzle.
And a windshield portion covering the outside of the molten metal guide,
The lower end side of the molten metal nozzle is inserted into the upper end side of the hole of the molten metal guide.
The fluid nozzle has a through hole directly below the molten metal guide, and the through hole has a reduced diameter portion in a direction from above toward the gap, and the reduced diameter portion and the windshield portion of the fluid. It constitutes the flow path of the airflow generated by the ejection,
A metal powder manufacturing apparatus in which the lower end of the molten metal guide projects from the windshield toward the through hole and is located between the upper end of the fluid nozzle and the gap of the fluid nozzle.
請求項1に記載の金属粉末製造装置であって、
前記溶湯ガイドの外側に加熱手段を有し、前記加熱手段を前記風防部で覆った金属粉末製造装置。
The metal powder manufacturing apparatus according to claim 1.
A metal powder manufacturing apparatus having a heating means on the outside of the molten metal guide and covering the heating means with the windshield portion.
請求項2に記載の金属粉末製造装置であって、
前記溶湯ガイドの上端側に前記溶湯ノズルの下端が挿入された金属粉末製造装置。
The metal powder manufacturing apparatus according to claim 2.
A metal powder manufacturing apparatus in which the lower end of the molten metal nozzle is inserted into the upper end side of the molten metal guide.
JP2017185812A 2017-09-27 2017-09-27 Metal powder manufacturing equipment Active JP6928869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185812A JP6928869B2 (en) 2017-09-27 2017-09-27 Metal powder manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185812A JP6928869B2 (en) 2017-09-27 2017-09-27 Metal powder manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2019059989A JP2019059989A (en) 2019-04-18
JP6928869B2 true JP6928869B2 (en) 2021-09-01

Family

ID=66176303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185812A Active JP6928869B2 (en) 2017-09-27 2017-09-27 Metal powder manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6928869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065932B1 (en) 2020-12-08 2022-05-12 株式会社クボタ Molten metal discharge device
CN112916859B (en) * 2021-01-29 2022-08-02 上海电气集团股份有限公司 Atomizing nozzle and gas atomization powder manufacturing equipment
JP7470657B2 (en) * 2021-04-06 2024-04-18 東京窯業株式会社 Atomization Equipment
DE102021212367A1 (en) 2021-11-03 2023-05-04 Sms Group Gmbh Atomizing unit for atomizing metal melts, especially for powder metallurgy purposes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198017A (en) * 1992-02-11 1993-03-30 General Electric Company Apparatus and process for controlling the flow of a metal stream
JPH0654740U (en) * 1992-12-28 1994-07-26 いすゞ自動車株式会社 Nozzle device for atomizing powder manufacturing equipment
JP4867630B2 (en) * 2006-02-16 2012-02-01 セイコーエプソン株式会社 Metal powder manufacturing apparatus and metal powder
CN101479046B (en) * 2006-09-01 2012-06-27 株式会社神户制钢所 Acceleration nozzle and injection nozzle apparatus
JP2011033268A (en) * 2009-07-31 2011-02-17 Tdk Corp Spray dryer and method of manufacturing granule
JP5803198B2 (en) * 2011-03-25 2015-11-04 セイコーエプソン株式会社 Metal powder manufacturing apparatus and metal powder manufacturing method

Also Published As

Publication number Publication date
JP2019059989A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6928869B2 (en) Metal powder manufacturing equipment
CN104220191B (en) Continuous casting equipment
ES2822048T3 (en) Process and apparatus for producing powder particles by atomization of elongated member feed material
WO2012157733A1 (en) Metallic powder production method and metallic powder production device
CN105899312A (en) Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder
JP5396802B2 (en) Metal powder production equipment
JP6178575B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
CN105436509B (en) A kind of metal atomization bilayer restrictive nozzle with electromagnetic field booster action
JP2017075386A (en) Manufacturing apparatus of metal powder and manufacturing method thereof
CN109365819A (en) A kind of melting condensation integrated 3D printing device and method of metal material
JP4207954B2 (en) Metal powder production equipment
JP2012201940A (en) Apparatus and method for producing metal powder
US20180147631A1 (en) Alloy powder manufacturing device and method with temperature control design
CA3061799C (en) Metal powder production apparatus
JP6854008B2 (en) Metal powder manufacturing equipment
KR20210021037A (en) Metal powder manufacturing apparatus, its crucible and molten metal nozzle
JP2019031711A (en) Metal powder production apparatus and method for producing metal powder
JP2969754B2 (en) Metal powder production equipment
JP5803198B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP6330959B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
KR102597563B1 (en) Apparatus for Manufacturing Metal Powder Using Fluid Spray
JP2022067395A (en) Cold crucible melting furnace
JP2010236026A (en) Atomization apparatus
JP2018083965A (en) Metal powder production apparatus
KR20170077948A (en) Apparatus for producing an alloy powder for dental

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R150 Certificate of patent or registration of utility model

Ref document number: 6928869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350