JP6330958B1 - Metal powder manufacturing apparatus and metal powder manufacturing method - Google Patents

Metal powder manufacturing apparatus and metal powder manufacturing method Download PDF

Info

Publication number
JP6330958B1
JP6330958B1 JP2017153077A JP2017153077A JP6330958B1 JP 6330958 B1 JP6330958 B1 JP 6330958B1 JP 2017153077 A JP2017153077 A JP 2017153077A JP 2017153077 A JP2017153077 A JP 2017153077A JP 6330958 B1 JP6330958 B1 JP 6330958B1
Authority
JP
Japan
Prior art keywords
flow
cooling liquid
flow path
coolant
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153077A
Other languages
Japanese (ja)
Other versions
JP2019031711A (en
Inventor
賢治 堀野
賢治 堀野
和宏 吉留
和宏 吉留
明洋 原田
明洋 原田
裕之 松元
裕之 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017153077A priority Critical patent/JP6330958B1/en
Application granted granted Critical
Publication of JP6330958B1 publication Critical patent/JP6330958B1/en
Publication of JP2019031711A publication Critical patent/JP2019031711A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】優れた冷却作用を奏する金属粉末製造装置を提供する。【解決手段】溶融金属を吐出する溶融金属供給部と、前記溶融金属供給部の下方に設置される筒体と、前記溶融金属供給部から吐出された前記溶融金属を冷却する冷却液の流れを、前記筒体内に形成する冷却液流形成部と、を有する金属粉末製造装置であって、前記冷却液流形成部は、前記筒体の軸方向の上部から下部に向けて膜状に広がる前記冷却液を前記筒体の内周壁に沿って流出し、前記筒体内に前記冷却液の流れを形成することを特徴とする金属粉末製造装置。【選択図】図2An apparatus for producing a metal powder that exhibits an excellent cooling action is provided. A molten metal supply unit that discharges molten metal, a cylindrical body that is installed below the molten metal supply unit, and a flow of a cooling liquid that cools the molten metal discharged from the molten metal supply unit. A cooling liquid flow forming unit formed in the cylindrical body, wherein the cooling liquid flow forming unit spreads in a film shape from the upper part to the lower part in the axial direction of the cylindrical body. A metal powder manufacturing apparatus, characterized in that a coolant flows out along an inner peripheral wall of the cylindrical body to form a flow of the cooling liquid in the cylindrical body. [Selection] Figure 2

Description

本発明は、金属粉末製造装置と金属粉末の製造方法に関する。   The present invention relates to a metal powder production apparatus and a metal powder production method.

たとえば特許文献1に示すように、いわゆるガスアトマイズ法を用いて金属粉末を製造する金属粉末製造装置とその装置を用いた製造方法が知られている。従来の装置は、溶融金属を吐出する溶融金属供給容器と、この溶融金属供給容器の下方に設置される筒体と、溶融金属供給部から吐出された溶融金属を冷却する冷却液の流れを、筒体の内周壁に沿って形成する冷却液層形成部と、を有する。   For example, as shown in Patent Document 1, a metal powder manufacturing apparatus that manufactures metal powder using a so-called gas atomization method and a manufacturing method using the apparatus are known. The conventional apparatus includes a molten metal supply container that discharges molten metal, a cylinder installed below the molten metal supply container, and a flow of a coolant that cools the molten metal discharged from the molten metal supply unit. And a cooling liquid layer forming part formed along the inner peripheral wall of the cylindrical body.

冷却液層形成手段は、冷却用筒体の内周壁の接線方向に向けて線状に冷却液を噴射し、冷却液を冷却容器の内周壁に沿って旋回させながら流下させることにより、冷却液層を形成している。冷却液層を用いることで、溶滴を急冷し、高機能性の金属粉末を製造することができることが期待されている。   The cooling liquid layer forming means sprays the cooling liquid linearly toward the tangential direction of the inner peripheral wall of the cooling cylinder, and causes the cooling liquid to flow down while swirling along the inner peripheral wall of the cooling container. Forming a layer. By using the cooling liquid layer, it is expected that the droplets can be rapidly cooled to produce a highly functional metal powder.

しかしながら、従来の装置では、冷却用筒体の内周壁の接線方向に向けて冷却液を線状に噴射したとしても、冷却液の一部は、筒体の内周壁に衝突して跳ね返り、冷却液の流れに多量の空気を巻き込む問題を生じ、十分な冷却作用を奏することができない。   However, in the conventional apparatus, even if the cooling liquid is sprayed linearly toward the tangential direction of the inner peripheral wall of the cooling cylinder, a part of the cooling liquid collides with the inner peripheral wall of the cylindrical body and bounces off. This causes a problem of entraining a large amount of air in the liquid flow and cannot provide a sufficient cooling effect.

特開平11−80812号公報Japanese Patent Laid-Open No. 11-80812

本発明は、このような実状に鑑みてなされ、その目的は、優れた冷却作用を奏する金属粉末製造装置と、それを用いる金属粉末の製造方法を提供することである。   This invention is made | formed in view of such an actual condition, The objective is to provide the manufacturing method of the metal powder which uses the metal powder manufacturing apparatus which has the outstanding cooling effect | action, and it.

上記目的を達成するために、本発明に係る金属粉末製造装置は、
溶融金属を吐出する溶融金属供給部と、
前記溶融金属供給部の下方に設置される筒体と、前記溶融金属供給部から吐出された前記溶融金属を冷却する冷却液の流れを、前記筒体内に形成する冷却液流形成部と、を有する金属粉末製造装置であって、
前記冷却液流形成部は、前記筒体の軸方向の上部から下部に向けて膜状に広がる冷却液を前記筒体の内周壁に沿って流出し、前記筒体内に前記冷却液の流れを形成することを特徴とする。
In order to achieve the above object, a metal powder production apparatus according to the present invention comprises:
A molten metal supply unit for discharging the molten metal;
A cylinder installed below the molten metal supply unit, and a cooling liquid flow forming unit that forms a flow of cooling liquid for cooling the molten metal discharged from the molten metal supply unit in the cylinder. A metal powder production apparatus comprising:
The cooling liquid flow forming part flows out the cooling liquid spreading in a film shape from the upper part to the lower part in the axial direction of the cylindrical body along the inner peripheral wall of the cylindrical body, and flows the cooling liquid into the cylindrical body. It is characterized by forming.

上記目的を達成するために、本発明に係る金属粉末の製造方法は、
溶融金属供給部の下方に設置される筒体の内周壁に沿って冷却液の流れを形成する工程と、
前記溶融金属供給部から溶融金属を前記冷却液の流れに向けて吐出する工程と、を有する金属粉末の製造方法であって、
前記冷却液の流れを形成する工程では、前記筒体の上部から下方に向けて膜状に広がる前記冷却液を、前記筒体の前記内周壁に沿って流出することを特徴とする。
In order to achieve the above object, a method for producing a metal powder according to the present invention comprises:
Forming a flow of the coolant along the inner peripheral wall of the cylinder installed below the molten metal supply unit;
Discharging the molten metal from the molten metal supply unit toward the flow of the cooling liquid, and a method for producing a metal powder comprising:
In the step of forming the flow of the cooling liquid, the cooling liquid that spreads in a film shape downward from the upper part of the cylindrical body flows out along the inner peripheral wall of the cylindrical body.

本発明に係る金属粉末製造装置および金属粉末の製造方法では、筒体の軸方向の上部から下部に向けて膜状に広がる冷却液を、筒体の内周壁に沿って流出し、筒体内に前記冷却液の流れを形成する。従来の金属粉末製造装置では、冷却液を線状に流出させていたため、冷却液の流れの中に多くの空気を巻き込む問題を生じていたが、本発明では冷却液を膜状に広がるように、筒体上方から可能へ向けて流出することで、冷却液の流れの中に空気等の雰囲気ガスを巻き込む問題を効果的に抑制し、冷却液による冷却効果を高めることができる。   In the metal powder production apparatus and the metal powder production method according to the present invention, the coolant that spreads in a film shape from the upper part to the lower part in the axial direction of the cylinder flows out along the inner peripheral wall of the cylinder, and enters the cylinder. Forming a flow of the cooling liquid; In the conventional metal powder manufacturing apparatus, since the cooling liquid was caused to flow out linearly, there was a problem of entraining a large amount of air in the flow of the cooling liquid. In the present invention, the cooling liquid is spread in a film shape. By flowing out from above the cylinder as much as possible, it is possible to effectively suppress the problem of involving atmospheric gas such as air in the flow of the cooling liquid, and to enhance the cooling effect by the cooling liquid.

また、たとえば、前記冷却液流形成部は、第1の流路断面積を有しており内部に前記冷却液を流入させる流入部と、前記流入部から前記軸方向の下部へ向けて、前記第1の流路断面積より広い第2の流路断面積まで、徐々に流路断面積が広がる拡大流路部と、前記第2の流路断面積より狭い第3の流路断面積を有しており前記内周壁に沿って膜状に前記冷却液を流出させる冷却液吐出部と、を有する。   Further, for example, the coolant flow forming portion has a first flow path cross-sectional area, and an inflow portion that allows the coolant to flow into the interior, and from the inflow portion toward the lower portion in the axial direction, An expanded flow path portion in which the flow path cross-sectional area gradually increases to a second flow path cross-sectional area wider than the first flow path cross-sectional area, and a third flow path cross-sectional area narrower than the second flow path cross-sectional area And a cooling liquid discharge section for discharging the cooling liquid in a film shape along the inner peripheral wall.

このような冷却流形成部を有する金属粉末製造装置では、冷却液が拡大流路部を通過することにより、冷却流が下方へ向かって広がる流れを生じるため、筒体の軸方向の上部から下部に向けて膜状に広がる冷却液を好適に形成できる。また、冷却液吐出部の流路断面積である第3の流路断面積が、拡大流路部における第2の流路断面積より狭いために、流出する冷却液の流速を上昇させ、溶融金属の冷却効率を高めることができる。   In the metal powder manufacturing apparatus having such a cooling flow forming portion, the cooling liquid passes through the enlarged flow path portion, thereby generating a flow in which the cooling flow spreads downward. A cooling liquid spreading in a film shape toward the surface can be suitably formed. In addition, since the third channel cross-sectional area, which is the channel cross-sectional area of the coolant discharge part, is narrower than the second channel cross-sectional area in the enlarged channel part, the flow rate of the coolant flowing out is increased and melted. The metal cooling efficiency can be increased.

また、たとえば、前記冷却液吐出部は、前記筒体における前記内周壁の同心円方向に沿って延びていてもよい。冷却液吐出部が内周壁の同心円方向に延びていることにより、冷却液の流れが内周壁に沿って好適に形成されるため、冷却液の流れに空気が巻き込まれる問題を防止することができる。   In addition, for example, the coolant discharge section may extend along a concentric direction of the inner peripheral wall of the cylindrical body. Since the cooling liquid discharge portion extends in the concentric direction of the inner peripheral wall, the flow of the cooling liquid is preferably formed along the inner peripheral wall, so that the problem of air being caught in the flow of the cooling liquid can be prevented. .

また、たとえば、金属粉末製造装置は、複数の前記冷却液流形成部を有しており、複数の前記冷却液流形成部は、前記筒体の前記軸方向に対する直交面に沿って、かつ、前記筒体における前記内周壁の同心円方向に沿って配置されていてもよい。金属粉末製造装置に含まれる冷却液形成部の数は、特に限定されないが、複数の冷却液形成部を同心円方向に配置することにより、冷却液の流れが内周壁に沿って好適に形成されるため、冷却液の流れに空気が巻き込まれる問題を防止することができる。   Further, for example, the metal powder manufacturing apparatus has a plurality of the cooling liquid flow forming portions, and the plurality of cooling liquid flow forming portions are along a plane orthogonal to the axial direction of the cylindrical body, and You may arrange | position along the concentric direction of the said internal peripheral wall in the said cylinder. The number of cooling liquid forming parts included in the metal powder manufacturing apparatus is not particularly limited, but the flow of the cooling liquid is suitably formed along the inner peripheral wall by arranging the plurality of cooling liquid forming parts in the concentric direction. Therefore, it is possible to prevent the problem that air is involved in the flow of the coolant.

図1は本発明の一実施形態に係る金属粉末製造装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a metal powder manufacturing apparatus according to an embodiment of the present invention. 図2は図1に示す金属粉末装置に含まれる冷却液流形成部及び冷却液供給部を示す斜視図である。FIG. 2 is a perspective view showing a coolant flow forming unit and a coolant supply unit included in the metal powder apparatus shown in FIG.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1実施形態
図1に示すように、本発明の一実施形態に係る金属粉末製造装置10は、溶融金属21をアトマイズ法(ガスアトマイズ法)により冷却固化して、多数の金属粒子で構成された金属粉末を得るための装置である。この金属粉末製造装置10は、溶融金属21を吐出する溶融金属供給部20と、溶融金属供給部20の鉛直方向の下方に配置してある冷却部30とを有する。図面において、鉛直方向は、Z軸に沿う方向である。
First Embodiment As shown in FIG. 1, a metal powder manufacturing apparatus 10 according to an embodiment of the present invention is formed of a large number of metal particles by cooling and solidifying a molten metal 21 by an atomizing method (gas atomizing method). An apparatus for obtaining metal powder. The metal powder manufacturing apparatus 10 includes a molten metal supply unit 20 that discharges the molten metal 21 and a cooling unit 30 that is disposed below the molten metal supply unit 20 in the vertical direction. In the drawings, the vertical direction is a direction along the Z axis.

溶融金属供給部20は、溶融金属21を収容する耐熱性容器22を有する。耐熱性容器22の外周には、加熱用コイル24が配置してあり、耐熱性容器22の内部に収容してある溶融金属21を加熱して溶融状態に維持するようになっている。耐熱性容器22の底部には、吐出口23が形成してあり、そこから、冷却部30の筒体32の内周壁33上に形成された冷却液の流れ60に向けて、溶融金属21が滴下溶融金属21aとして吐出されるようになっている。   The molten metal supply unit 20 includes a heat-resistant container 22 that stores the molten metal 21. A heating coil 24 is disposed on the outer periphery of the heat resistant container 22, and the molten metal 21 accommodated in the heat resistant container 22 is heated and maintained in a molten state. A discharge port 23 is formed at the bottom of the heat-resistant container 22, from which the molten metal 21 is directed toward the coolant flow 60 formed on the inner peripheral wall 33 of the cylindrical body 32 of the cooling unit 30. It is discharged as dripping molten metal 21a.

耐熱性容器22の外底壁の外周部には、吐出口23を囲むように、ガス噴射部26が配置してある。ガス噴射部26には、ガス噴射口27が具備してある。ガス噴射口27からは、吐出口23から吐出された滴下溶融金属21aに向けて高圧ガスが噴射される。高圧ガスは、吐出口23から吐出された滴下溶融金属21aの周囲全周から斜め下方向に向けて噴射され、滴下溶融金属21aは、多数の液滴となり、ガスの流れに沿って、円筒状部分32aにおける内周壁33上に形成された冷却液の流れ60に向けて運ばれる。   A gas injection unit 26 is disposed on the outer peripheral portion of the outer bottom wall of the heat resistant container 22 so as to surround the discharge port 23. The gas injection unit 26 includes a gas injection port 27. High-pressure gas is injected from the gas injection port 27 toward the dropped molten metal 21 a discharged from the discharge port 23. The high-pressure gas is jetted obliquely downward from the entire circumference of the dropped molten metal 21a discharged from the discharge port 23. The dropped molten metal 21a becomes a large number of droplets, and is cylindrical along the gas flow. It is carried toward the flow 60 of the coolant formed on the inner peripheral wall 33 in the portion 32a.

溶融金属21は、いかなる元素を含んでいてもよく、たとえば、Ti、Fe、Si、B、Cr、P、Cu、Nb、Zrの少なくともいずれかを含んでいるものも用いることができる。これらの元素は活性が高く、これらの元素を含む溶融金属21は、短時間の空気等との接触により、容易に酸化して酸化膜を形成してしまい、微細化することが困難とされている。金属粉末製造装置10は、上述したようにガス噴射部26のガス噴射口27から噴射するガスとして不活性ガスを用いることで、酸化しやすい溶融金属21であっても、酸化の進行を防ぎながら粉末化することができる。   The molten metal 21 may contain any element. For example, a metal containing at least one of Ti, Fe, Si, B, Cr, P, Cu, Nb, and Zr can be used. These elements are highly active, and the molten metal 21 containing these elements is easily oxidized to form an oxide film by contact with air for a short period of time, making it difficult to miniaturize. Yes. As described above, the metal powder manufacturing apparatus 10 uses an inert gas as a gas to be injected from the gas injection port 27 of the gas injection unit 26, thereby preventing the progress of oxidation even if the molten metal 21 is easily oxidized. It can be pulverized.

ガス噴射口27から噴射されるガスとしては、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス、あるいはアンモニア分解ガス等の還元性ガスが好ましいが、溶融金属21が酸化しにくい金属であれば空気であってもよい。   The gas injected from the gas injection port 27 is preferably an inert gas such as nitrogen gas, argon gas or helium gas, or a reducing gas such as ammonia decomposition gas. However, if the molten metal 21 is a metal that is difficult to oxidize. Air may be used.

冷却部30は、溶融金属供給部20の下方に設置される筒体32と、溶融金属21を冷却する冷却液の流れ60を筒体32内に形成する冷却液流形成部40と、冷却液供給部50(冷却液供給部50については図2参照)とを有する。筒体32は、一端に冷却液流形成部40が接続しており溶融金属供給部20の近くに配置される円筒状部分32aと、円筒状部分32aの他端に接続する円錐状部分32bとを有する。円筒状部分32aの内周壁33の内径は、特に限定されないが、好ましくは50〜500mmである。   The cooling unit 30 includes a cylindrical body 32 installed below the molten metal supply unit 20, a cooling liquid flow forming unit 40 that forms a coolant flow 60 for cooling the molten metal 21 in the cylindrical body 32, and a cooling liquid And a supply unit 50 (see FIG. 2 for the coolant supply unit 50). The cylindrical body 32 has a cylindrical portion 32a connected to one end of the cylindrical portion 32a connected to the molten metal supply portion 20 and a conical portion 32b connected to the other end of the cylindrical portion 32a. Have The inner diameter of the inner peripheral wall 33 of the cylindrical portion 32a is not particularly limited, but is preferably 50 to 500 mm.

本実施形態では、筒体32の軸方向Оは、鉛直線Zに対して所定角度θ1で傾斜してある。所定角度θ1としては、特に限定されないが、好ましくは、5〜45度である。このような角度範囲とすることで、吐出口23からの滴下溶融金属21aを、筒体32の内周壁33に形成してある冷却液の流れ60に向けて吐出させ易くなる。なお、軸方向Оの矢印は、筒体32の上部から下部へ向かう方向である。   In the present embodiment, the axial direction O of the cylindrical body 32 is inclined at a predetermined angle θ1 with respect to the vertical line Z. Although it does not specifically limit as predetermined angle (theta) 1, Preferably, it is 5-45 degree | times. By setting it as such an angle range, it becomes easy to discharge the dripping molten metal 21a from the discharge outlet 23 toward the flow 60 of the coolant formed in the inner peripheral wall 33 of the cylindrical body 32. The arrow in the axial direction O is a direction from the upper part to the lower part of the cylindrical body 32.

筒体32内における冷却液の流れ60に向かって吐出された滴下溶融金属21aは、冷却液の流れ60に衝突し、急速に冷却固化され、固体状の金属粉末となる。筒体32の軸方向Оに沿って下方には、排出部34が設けられ、冷却液の流れ60に含まれる金属粉末を冷却液と共に、外部に排出可能になっている。冷却液と共に排出された金属粉末は、外部の貯留槽などで、冷却液と分離されて取り出される。なお、冷却液としては、特に限定されないが、冷却水が用いられる。   The dropped molten metal 21a discharged toward the coolant flow 60 in the cylindrical body 32 collides with the coolant flow 60, and is rapidly cooled and solidified to become a solid metal powder. A discharge portion 34 is provided below the cylindrical body 32 along the axial direction O, and the metal powder contained in the coolant flow 60 can be discharged together with the coolant to the outside. The metal powder discharged together with the cooling liquid is separated from the cooling liquid and taken out in an external storage tank or the like. The cooling liquid is not particularly limited, but cooling water is used.

冷却液の流れ60の下流側には、調整板35が内周壁33に固定してある。   An adjustment plate 35 is fixed to the inner peripheral wall 33 on the downstream side of the coolant flow 60.

本実施形態では、冷却液流形成部40は、筒体32の軸方向Оの上部に設けられている。冷却液流形成部40は、冷却液吐出部46を介して、筒体32の軸方向Оの上部から下部に向けて膜状に広がる冷却液を、筒体32の内周壁33に沿って流出し、筒体32内に冷却液の流れ60を形成する。   In the present embodiment, the coolant flow forming portion 40 is provided in the upper part of the cylindrical body 32 in the axial direction O. The cooling liquid flow forming part 40 flows out the cooling liquid that spreads in a film shape from the upper part to the lower part in the axial direction O of the cylindrical body 32 along the inner peripheral wall 33 of the cylindrical body 32 via the cooling liquid discharge part 46. Then, a coolant flow 60 is formed in the cylinder 32.

図1に示す冷却液流形成部40は、筒体32の内周壁33に沿って膜状に広がるように、冷却液を流出する。図2は、図1に示す冷却液流形成部40及び冷却液供給部50(図1では不図示)を示す斜視図である。図2に示すように、冷却液流形成部40は、筒体32の軸方向Oに対する直交面Pに沿って、かつ、筒体32の内周壁33の同心円方向Vに沿ってリング状に配列される第1冷却液流形成部40A、第2冷却液流形成部40B、第3冷却液流形成部40C、第4冷却液流形成部40Dの4つの冷却液流形成部で構成される。第1〜第4冷却液流形成部40A〜40Dは、同心円方向Vに関する配置が異なることを除き、互いに同様の形状および構造を有するため、第1冷却液流形成部40Aを例に挙げて説明を行い、その他の冷却液流形成部についての説明は省略する。   The coolant flow forming unit 40 shown in FIG. 1 flows out the coolant so as to spread in a film shape along the inner peripheral wall 33 of the cylindrical body 32. FIG. 2 is a perspective view showing the coolant flow forming part 40 and the coolant supply part 50 (not shown in FIG. 1) shown in FIG. As shown in FIG. 2, the coolant flow forming portion 40 is arranged in a ring shape along a plane P orthogonal to the axial direction O of the cylindrical body 32 and along the concentric direction V of the inner peripheral wall 33 of the cylindrical body 32. The first coolant flow forming unit 40A, the second coolant flow forming unit 40B, the third coolant flow forming unit 40C, and the fourth coolant flow forming unit 40D are configured. The first to fourth cooling liquid flow forming portions 40A to 40D have the same shape and structure except that the arrangement with respect to the concentric direction V is different. Therefore, the first cooling liquid flow forming portion 40A will be described as an example. The description of the other coolant flow forming unit is omitted.

図2に示すように、第1冷却液流形成部40Aは、流入部42と、拡大流路部44と、冷却液吐出部46とを有する。流入部42は、第1冷却液流形成部40Aの上端に位置しており、第1冷却液流形成部40A内に冷却液を流入させる。流入部42には、流入部42に冷却液を供給する第1冷却液供給部50Aが接続している。   As shown in FIG. 2, the first coolant flow forming part 40 </ b> A has an inflow part 42, an enlarged flow path part 44, and a coolant discharge part 46. The inflow portion 42 is located at the upper end of the first coolant flow forming portion 40A, and allows the coolant to flow into the first coolant flow forming portion 40A. The inflow part 42 is connected to a first coolant supply part 50 </ b> A that supplies the coolant to the inflow part 42.

流入部42および第1冷却液供給部50Aは、第1の流路断面積S1を有している。後述するように、第1冷却液流形成部40Aの内部を構成する拡大流路部44の少なくとも一部、好ましくは拡大流路部44の全体は、第1の流路断面積S1より広い流路断面積を有している。   The inflow part 42 and the first coolant supply part 50A have a first flow path cross-sectional area S1. As will be described later, at least a part of the enlarged flow path portion 44 constituting the inside of the first coolant flow forming section 40A, preferably the entire enlarged flow path portion 44, has a flow wider than the first flow path cross-sectional area S1. It has a road cross-sectional area.

図2に示すように、流入部42の下方には拡大流路部44が接続している。拡大流路部44は、流入部42から軸方向Оの下方へ向けて、第1の流路断面積S1より広い第2の流路断面積S2まで、徐々に流路断面積が広がるように構成されている。図2に示すように、拡大流路部44の流路幅は、流入部42に比べて、筒体32の径方向Nと、内周壁33の同心円方向Vとの、両方向に広がっている。   As shown in FIG. 2, an enlarged flow path portion 44 is connected below the inflow portion 42. The enlarged flow path portion 44 gradually expands from the inflow portion 42 downward in the axial direction O to a second flow path cross-sectional area S2 wider than the first flow path cross-sectional area S1. It is configured. As shown in FIG. 2, the channel width of the enlarged channel portion 44 is wider in both the radial direction N of the cylindrical body 32 and the concentric direction V of the inner peripheral wall 33 than the inflow portion 42.

拡大流路部44の流路幅が、筒体32の軸方向Oの下方に向けて、内周壁33の同心円方向Vに徐々に広がっていることにより、冷却液の流れ60が筒体32の内周壁33を好適に覆うように、冷却液の層を形成することができる。また、拡大流路部44は、流入部42および冷却液吐出部46に比べて流路断面積が広くなっているため、乱流の発生を抑制しつつ、冷却液が流れる方向を適切に調整することができる。なお、図2に示すように、拡大流路部44は、軸方向Oの下方に向けて流路断面積が広がる部分を有していればよく、これに加えて、流路断面積が一定である他の部分を有していてもよい。   The flow passage width of the enlarged flow passage portion 44 gradually expands in the concentric direction V of the inner peripheral wall 33 toward the lower side in the axial direction O of the cylindrical body 32, so that the coolant flow 60 flows in the cylindrical body 32. A coolant layer can be formed so as to suitably cover the inner peripheral wall 33. In addition, since the enlarged flow path portion 44 has a larger flow path cross-sectional area than the inflow portion 42 and the coolant discharge portion 46, the flow direction of the coolant is appropriately adjusted while suppressing the occurrence of turbulent flow. can do. As shown in FIG. 2, the enlarged flow path portion 44 only needs to have a portion where the flow path cross-sectional area expands downward in the axial direction O, and in addition, the flow path cross-sectional area is constant. You may have the other part which is.

図2に示すように、冷却液吐出部46は、第1冷却液流形成部40Aにおける拡大流路部44の流路底壁44bに形成されており、拡大流路部44を通過して流れてきた冷却液を、下方に続く筒体32の内周壁33に沿って膜状に流出させる。冷却液吐出部は、内周壁33の同心円方向Vに沿って延びており、径方向の流路幅より、同心円方向Vの流路幅が長い。   As shown in FIG. 2, the coolant discharge part 46 is formed on the flow path bottom wall 44 b of the enlarged flow path part 44 in the first coolant flow forming part 40 </ b> A and flows through the enlarged flow path part 44. The coolant that has flown out is allowed to flow out in the form of a film along the inner peripheral wall 33 of the cylinder 32 that continues downward. The coolant discharge part extends along the concentric direction V of the inner peripheral wall 33, and the flow path width in the concentric direction V is longer than the radial flow path width.

冷却液吐出部46は、第2の流路断面積S2より狭い第3の流路断面積S3を有しており、第1冷却液流形成部40Aから筒体32の内周壁33に沿って、冷却液を膜状に流出させる。冷却液吐出部46は、内周壁33の同心円方向Vに沿って伸びる細長い隙間形状を有しているため、円形の冷却液吐出部とは異なり、冷却液を膜状に流出させることができる。   The coolant discharge part 46 has a third flow path cross-sectional area S3 that is narrower than the second flow path cross-sectional area S2, and extends from the first coolant flow forming part 40A along the inner peripheral wall 33 of the cylindrical body 32. Then, the cooling liquid is allowed to flow out into a film. Since the coolant discharge part 46 has an elongated gap shape extending along the concentric direction V of the inner peripheral wall 33, unlike the circular coolant discharge part, the coolant can flow out in a film shape.

冷却液吐出部46は、上方の拡大流路部44における第2の流路断面積S2より狭い第3の流路断面積S3を有するため、内周壁33上に形成される冷却液の流れ60の速度を向上させることができ、このような冷却液吐出部46を有する金属粉末製造装置10は、効果的に滴下溶融金属21aを冷却することができる。   The coolant discharge section 46 has a third flow path cross-sectional area S3 that is narrower than the second flow path cross-sectional area S2 in the upper enlarged flow path section 44. Therefore, the flow 60 of the coolant formed on the inner peripheral wall 33 is provided. The metal powder manufacturing apparatus 10 having such a coolant discharge section 46 can effectively cool the dropped molten metal 21a.

図2に示すように、第2〜第4冷却液流形成部40B〜40Dについても、第1冷却液流形成部40Aと同様に、流入部42と、拡大流路部44と、冷却液吐出部46とを有する。また、第2〜第4冷却液流形成部40B〜40Dの各冷却液吐出部46には、それぞれ第2〜第4冷却液供給部50B〜50Dが接続している。   As shown in FIG. 2, the second to fourth coolant flow forming portions 40B to 40D are also similar to the first coolant flow forming portion 40A, the inflow portion 42, the enlarged flow path portion 44, and the coolant discharge. Part 46. The second to fourth coolant supply units 50B to 50D are connected to the coolant discharge parts 46 of the second to fourth coolant flow forming parts 40B to 40D, respectively.

図2に示すように、冷却液流形成部40では、複数の冷却液吐出部46が、直交面P1および同心円方向Vに沿って配置されている。このような配置により、筒体32の内周壁33上に形成される冷却液の流れ60に空気等が巻き込まれる問題を、より好適に防止することができる。冷却液流形成部40に含まれる流入部42、拡大流路部44および冷却液吐出部46の数は特に限定されず、単数であっても、複数であってもよいが、2〜12とすることが好ましい。なお、冷却液吐出部46と拡大流路部44の数は同じであっても、異なっていてもよく、たとえば、拡大流路部44や冷却液吐出部46が、同心円方向Vに沿って連続していてもよい。   As shown in FIG. 2, in the coolant flow formation unit 40, a plurality of coolant discharge units 46 are arranged along the orthogonal plane P <b> 1 and the concentric direction V. With such an arrangement, it is possible to more suitably prevent the problem that air or the like is involved in the coolant flow 60 formed on the inner peripheral wall 33 of the cylindrical body 32. The numbers of the inflow part 42, the enlarged flow path part 44, and the cooling liquid discharge part 46 included in the cooling liquid flow forming part 40 are not particularly limited, and may be singular or plural. It is preferable to do. Note that the number of the coolant discharge portions 46 and the enlarged flow passage portions 44 may be the same or different. For example, the enlargement flow passage portions 44 and the coolant discharge portions 46 are continuous along the concentric direction V. You may do it.

図1に示すように、各第1〜第4冷却液流形成部40A〜40Dに含まれる冷却液吐出部46の外径端部の径方向位置は、円筒状部分32aにおける内周壁33の径方向位置に一致していることが、冷却液の流れ60への空気等の巻き込みを防止する観点から好ましい。   As shown in FIG. 1, the radial position of the outer diameter end of the coolant discharge part 46 included in each of the first to fourth coolant flow forming parts 40A to 40D is the diameter of the inner peripheral wall 33 in the cylindrical part 32a. It is preferable to match the directional position from the viewpoint of preventing air or the like from being entrained in the coolant flow 60.

図2に示すような冷却液流形成部40から流出した冷却液は、冷却液流形成部40で形成された流れの方向と、流出後に冷却液に作用する重力とにより、筒体32の内周壁33に沿う冷却液の流れ60を形成する。図1に示す金属粉末製造装置10では、このようにして形成された冷却液の流れ60の内周側液面に、図1に示す滴下溶融金属21aが入射し、滴下溶融金属21aは、冷却液の流れ60の内部で冷却されながら、冷却液と共に流れて排出部34へ向かって移動する。   The coolant that has flowed out of the coolant flow forming unit 40 as shown in FIG. 2 is formed in the cylindrical body 32 by the direction of the flow formed by the coolant flow forming unit 40 and the gravity that acts on the coolant after flowing out. A coolant flow 60 is formed along the peripheral wall 33. In the metal powder manufacturing apparatus 10 shown in FIG. 1, the dropped molten metal 21 a shown in FIG. 1 is incident on the inner peripheral liquid surface of the coolant flow 60 formed in this way, and the dropped molten metal 21 a is cooled. While being cooled inside the liquid flow 60, it flows with the cooling liquid and moves toward the discharge portion 34.

本実施形態に係る金属粉末製造装置10は、冷却液流形成部40が冷却液を下方へ向かって膜状に広がるように流出させるため、筒体32の内周壁33に沿う冷却液の流れ60が空気等を巻き込み難く、冷却液の流れ60に入射する滴下溶融金属21aを効率的に冷却することが可能である。また、このような金属粉末製造装置10では、たとえ冷却液流形成部40に供給する冷却液の圧力を上昇させたとしても、冷却液の流れ60が空気等を巻き込むのような乱流を生じにくいため、高速かつ層流である冷却液の流れ60を用いた、効果的な滴下溶融金属21aの急冷を行うことができる。   In the metal powder manufacturing apparatus 10 according to the present embodiment, the coolant flow forming unit 40 causes the coolant to flow out so as to spread downward in a film shape, and thus the coolant flow 60 along the inner peripheral wall 33 of the cylindrical body 32. However, it is difficult to entrain air or the like, and it is possible to efficiently cool the dropped molten metal 21a incident on the coolant flow 60. Further, in such a metal powder manufacturing apparatus 10, even if the pressure of the coolant supplied to the coolant flow forming unit 40 is increased, a turbulent flow such that the coolant flow 60 entrains air or the like is generated. Therefore, it is possible to rapidly cool the dripped molten metal 21a using the coolant flow 60 that is high-speed and laminar.

以上、実施形態を示して本発明に係る金属粉末製造装置を説明したが、本発明は上述した金属粉末製造装置10のみに限定されるものではなく、他の実施形態や変形例を有することは言うまでもない。たとえば、図2に示す第1〜第4冷却液流形成部40A〜40Dには、軸方向Оに沿って延びる第1〜第4冷却液供給部50A〜50Dが接続しているが、各冷却液供給部は、軸方向Оに対して傾斜する方向から冷却液流形成部に接続していてもよい。これにより、冷却液吐出部46から流出する冷却液も、軸方向Оに対して傾斜させることができ、冷却液の流れ60を渦巻き状の旋回流にすることができる。   As mentioned above, although embodiment was shown and the metal powder manufacturing apparatus which concerns on this invention was demonstrated, this invention is not limited only to the metal powder manufacturing apparatus 10 mentioned above, and having other embodiment and a modified example Needless to say. For example, the first to fourth cooling liquid flow forming parts 40A to 40D shown in FIG. 2 are connected to the first to fourth cooling liquid supply parts 50A to 50D extending along the axial direction O. The liquid supply unit may be connected to the cooling liquid flow forming unit from a direction inclined with respect to the axial direction O. As a result, the coolant flowing out from the coolant discharge section 46 can also be inclined with respect to the axial direction O, and the coolant flow 60 can be made into a spiral swirl flow.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例
図1に示す金属粉末製造装置10を用いて、Fe−Si−B(実験番号6)、Fe−Si−Nb−B−Cu(実験番号7)、Fe−Si−B−P−Cu(実験番号8)、Fe−Nb−B(実験番号9)、Fe−Zr−B(実験番号10)から成る金属粉末を製造した。
EXAMPLE Using the metal powder production apparatus 10 shown in FIG. 1, Fe-Si-B (Experiment No. 6), Fe-Si-Nb-B-Cu (Experiment No. 7), Fe-Si-B-P-Cu (Experiment No. 8), Fe-Nb-B (Experiment No. 9), and Fe-Zr-B (Experiment No. 10) were produced.

各実験において溶解温度1500℃、噴射ガス圧5MPa、使用ガス種アルコ゛ンと一定とし冷却液の水流条件はポンプ圧7.5kPaであった。実施例においては平均粒径が約25μmの金属粉末を製造することができた。平均粒径は、乾式粒度分布測定装置(HELLOS)を用いて測定し求めた。また実験番号6〜10で作製した金属粉末の結晶分析を、粉末X線回折法により評価した。金属粉末の磁気特性についてはHcメータにて保磁力(Oe)を測定することで行った。結果を表1に示す。   In each experiment, the dissolution temperature was 1500 ° C., the injection gas pressure was 5 MPa, the gas type argon used was constant, and the coolant flow condition was a pump pressure of 7.5 kPa. In the examples, metal powder having an average particle diameter of about 25 μm could be produced. The average particle size was determined by measurement using a dry particle size distribution measuring device (HELLOS). Moreover, the crystal analysis of the metal powder produced by experiment number 6-10 was evaluated by the powder X-ray diffraction method. The magnetic properties of the metal powder were measured by measuring the coercive force (Oe) with an Hc meter. The results are shown in Table 1.

Figure 0006330958
Figure 0006330958

比較例
円形の冷却液吐出部を具備しており冷却液を線状に流出させる点を除き、実施例と同じ金属粉末製造装置を用いて、実施例と同じようにして、金属粉末(実験番号1〜5)を製造し、同様な評価を行った。結果を表1に示す。
Comparative Example A metal powder (experiment number) was prepared in the same manner as in the example using the same metal powder production apparatus as in the example, except that a circular coolant discharge unit was provided and the coolant flowed out linearly. 1-5) were produced and evaluated similarly. The results are shown in Table 1.

表1の実施例と比較例を比べると磁気特性が向上しており非晶質性が向上した。これは冷却液が冷却液吐出部46を通過することでさらに整流化されたため冷却液の流れが均一化し、より効果的な冷却効果が得られ、冷却不足となる粉末が少ないことが起因であると考えられる。また金属粉末の結晶分析を粉末X線回折により行ったところ、結晶に起因するピークを持つ比較例もあった。同一組成で比較した場合、金属粉末の磁気特性については比較例の方が実施例よりも保磁力が大きく、実施例において非晶質化に伴う磁気特性が顕著に表れていることが確認でき、実施例においてすぐれた冷却効果が得られていることが確認できた。   Comparing the examples of Table 1 and the comparative example, the magnetic properties were improved and the amorphousness was improved. This is because the flow of the coolant is further rectified by passing through the coolant discharge portion 46, so that the flow of the coolant becomes uniform, a more effective cooling effect is obtained, and there is less powder that is insufficiently cooled. it is conceivable that. Further, when the crystal analysis of the metal powder was performed by powder X-ray diffraction, there was a comparative example having a peak due to the crystal. When compared with the same composition, for the magnetic properties of the metal powder, the comparative example has a larger coercive force than the example, it can be confirmed that the magnetic properties accompanying the amorphization in the example appears significantly, It was confirmed that an excellent cooling effect was obtained in the examples.

上記比較例と実施例を比較すると、冷却液を膜状に流出させる冷却液流形成部を用いることで、たとえポンプ圧が高い状態においても、冷却液の流れは乱流にならず整流化されたことで、金属粉末の冷却効果が上昇し、従来作製できなかった組成に対しても非晶質性が確認でき、さらに磁気特性も改善することができた。   Comparing the above comparative example with the example, the flow of the cooling liquid is rectified without being turbulent even when the pump pressure is high, by using the cooling liquid flow forming section that causes the cooling liquid to flow out in a film shape. As a result, the cooling effect of the metal powder increased, amorphousness could be confirmed even for compositions that could not be produced conventionally, and magnetic properties could be improved.

10… 金属粉末製造装置
20… 溶融金属供給部
21… 溶融金属
21a… 滴下溶融金属
22… 耐熱性容器
23… 吐出口
24… 加熱用コイル
26… ガス噴射部
27… ガス噴射口
30… 冷却部
32… 筒体
32a… 円筒状部分
32b… 円錐状部分
33… 内周壁
34… 排出部
35… 調整板
40… 冷却液流形成部
40A〜40D… 第1〜第4冷却液流形成部
42… 流入部
44… 拡大流路部
44b… 流路底壁
46… 冷却液吐出部
50… 冷却液供給部
50A〜50D… 第1〜第4冷却液供給部
60… 冷却液の流れ
S1〜S3… 第1〜第3の流路断面積
N… 径方向
О… 軸方向
P1… 直交面
V… 同心円方向
DESCRIPTION OF SYMBOLS 10 ... Metal powder manufacturing apparatus 20 ... Molten metal supply part 21 ... Molten metal 21a ... Dripping molten metal 22 ... Heat-resistant container 23 ... Discharge port 24 ... Heating coil 26 ... Gas injection part 27 ... Gas injection part 30 ... Cooling part 32 ... cylindrical body 32a ... cylindrical part 32b ... conical part 33 ... inner peripheral wall 34 ... discharge part 35 ... adjusting plate 40 ... cooling liquid flow forming part 40A-40D ... first to fourth cooling liquid flow forming part 42 ... inflow part 44 ... Enlarged flow path 44b ... Flow path bottom wall 46 ... Coolant discharge part 50 ... Coolant supply part 50A-50D ... 1st-4th coolant supply part 60 ... Coolant flow S1-S3 ... 1st ~ Third channel cross-sectional area N ... radial direction OO ... axial direction P1 ... orthogonal plane V ... concentric direction

Claims (4)

溶融金属を吐出する溶融金属供給部と、
前記溶融金属供給部の下方に設置される筒体と、前記溶融金属供給部から吐出された前記溶融金属を冷却する冷却液の流れを、前記筒体内に形成する冷却液流形成部と、を有する金属粉末製造装置であって、
前記冷却液流形成部は、前記筒体の軸方向の上部から下部に向けて冷却液を前記筒体の内周壁に沿って流出し、前記筒体内に前記冷却液の流れを形成し、
前記冷却液流形成部は、
第1の流路断面積を有しており内部に前記冷却液を流入させる流入部と、
前記流入部から前記軸方向の下部へ向けて、前記第1の流路断面積より広い第2の流路断面積まで、徐々に流路断面積が広がる拡大流路部と、
前記第2の流路断面積より狭い第3の流路断面積を有しており前記内周壁に沿って膜状に前記冷却液を流出させる冷却液吐出部と、を有することを特徴とする金属粉末製造装置。
A molten metal supply unit for discharging the molten metal;
A cylinder installed below the molten metal supply unit, and a cooling liquid flow forming unit that forms a flow of cooling liquid for cooling the molten metal discharged from the molten metal supply unit in the cylinder. A metal powder production apparatus comprising:
The cooling liquid flow forming unit, a cold却液toward the bottom from the axial direction of the upper portion of the cylindrical body to flow out along the inner peripheral wall of the cylinder to form a flow of the cooling liquid in the cylindrical body,
The coolant flow forming part is
An inflow portion having a first flow path cross-sectional area and allowing the cooling liquid to flow therein;
From the inflow portion toward the lower portion in the axial direction, an enlarged flow path portion in which the flow path cross-sectional area gradually expands to a second flow path cross-sectional area wider than the first flow path cross-sectional area;
A cooling liquid discharge section having a third flow path cross-sectional area narrower than the second flow path cross-sectional area and allowing the cooling liquid to flow out in a film form along the inner peripheral wall. Metal powder production equipment.
前記冷却液吐出部は、前記筒体における前記内周壁の同心円方向に沿って延びていることを特徴とする請求項に記載の金属粉末製造装置。 The metal powder manufacturing apparatus according to claim 1 , wherein the coolant discharge part extends along a concentric direction of the inner peripheral wall of the cylindrical body. 複数の前記冷却液流形成部を有しており、
複数の前記冷却液流形成部は、前記筒体の前記軸方向に対する直交面に沿って、かつ、前記筒体における前記内周壁の同心円方向に沿って配置されていることを特徴とする請求項1または請求項2に記載の金属粉末製造装置。
A plurality of the coolant flow forming portions;
The plurality of cooling liquid flow forming portions are arranged along a plane orthogonal to the axial direction of the cylindrical body and along a concentric direction of the inner peripheral wall of the cylindrical body. The metal powder manufacturing apparatus of Claim 1 or Claim 2 .
冷却液形成部が、溶融金属供給部の下方に設置される筒体の内周壁に沿って冷却液の流れを形成する工程と、
前記溶融金属供給部から溶融金属を前記冷却液の流れに向けて吐出する工程と、を有する金属粉末の製造方法であって、
前記冷却液の流れを形成する工程では、前記冷却液形成部が、前記筒体の上部から下方に向けて前記冷却液を、前記筒体の前記内周壁に沿って流出し、
前記冷却液流形成部は、
第1の流路断面積を有しており内部に前記冷却液を流入させる流入部と、
前記流入部から前記軸方向の下部へ向けて、前記第1の流路断面積より広い第2の流路断面積まで、徐々に流路断面積が広がる拡大流路部と、
前記第2の流路断面積より狭い第3の流路断面積を有しており前記内周壁に沿って膜状に前記冷却液を流出させる冷却液吐出部と、を有することを特徴とする金属粉末の製造方法。
A step of forming a flow of the cooling liquid along the inner peripheral wall of the cylindrical body installed below the molten metal supply unit , the cooling liquid forming unit ;
Discharging the molten metal from the molten metal supply unit toward the flow of the cooling liquid, and a method for producing a metal powder comprising:
Wherein in the step of forming a flow of cooling fluid, the cooling fluid forming section, a pre-Symbol coolant downward from the upper portion of the cylindrical body, flows along the inner peripheral wall of the cylindrical body,
The coolant flow forming part is
An inflow portion having a first flow path cross-sectional area and allowing the cooling liquid to flow therein;
From the inflow portion toward the lower portion in the axial direction, an enlarged flow path portion in which the flow path cross-sectional area gradually expands to a second flow path cross-sectional area wider than the first flow path cross-sectional area;
A cooling liquid discharge section having a third flow path cross-sectional area narrower than the second flow path cross-sectional area and allowing the cooling liquid to flow out in a film form along the inner peripheral wall. A method for producing metal powder.
JP2017153077A 2017-08-08 2017-08-08 Metal powder manufacturing apparatus and metal powder manufacturing method Active JP6330958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153077A JP6330958B1 (en) 2017-08-08 2017-08-08 Metal powder manufacturing apparatus and metal powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153077A JP6330958B1 (en) 2017-08-08 2017-08-08 Metal powder manufacturing apparatus and metal powder manufacturing method

Publications (2)

Publication Number Publication Date
JP6330958B1 true JP6330958B1 (en) 2018-05-30
JP2019031711A JP2019031711A (en) 2019-02-28

Family

ID=62236362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153077A Active JP6330958B1 (en) 2017-08-08 2017-08-08 Metal powder manufacturing apparatus and metal powder manufacturing method

Country Status (1)

Country Link
JP (1) JP6330958B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084094B1 (en) 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
CN114734045A (en) * 2022-06-13 2022-07-12 成都大学 Device for preparing alloy powder by utilizing electric arc

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998758A (en) * 1973-01-05 1974-09-18
JPS6144111A (en) * 1984-08-07 1986-03-03 Kawasaki Steel Corp Apparatus for producing metallic powder
JPH05148516A (en) * 1991-06-05 1993-06-15 Kubota Corp Production of metal powder and device therefor
JP2010090410A (en) * 2008-10-03 2010-04-22 Seiko Epson Corp Metal powder production apparatus
JP2010090421A (en) * 2008-10-06 2010-04-22 Seiko Epson Corp Metal powder production apparatus
CN104084596A (en) * 2014-07-15 2014-10-08 中国科学院宁波材料技术与工程研究所 Method and device for manufacturing amorphous powder
JP2017153081A (en) * 2010-09-03 2017-08-31 ハンド ヘルド プロダクツ インコーポレーティッド Encoded information reading terminal with multi-band antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998758A (en) * 1973-01-05 1974-09-18
JPS6144111A (en) * 1984-08-07 1986-03-03 Kawasaki Steel Corp Apparatus for producing metallic powder
JPH05148516A (en) * 1991-06-05 1993-06-15 Kubota Corp Production of metal powder and device therefor
JP2010090410A (en) * 2008-10-03 2010-04-22 Seiko Epson Corp Metal powder production apparatus
JP2010090421A (en) * 2008-10-06 2010-04-22 Seiko Epson Corp Metal powder production apparatus
JP2017153081A (en) * 2010-09-03 2017-08-31 ハンド ヘルド プロダクツ インコーポレーティッド Encoded information reading terminal with multi-band antenna
CN104084596A (en) * 2014-07-15 2014-10-08 中国科学院宁波材料技术与工程研究所 Method and device for manufacturing amorphous powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084094B1 (en) 2017-08-08 2021-08-10 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
US11628500B2 (en) 2017-08-08 2023-04-18 Tdk Corporation Manufacturing apparatus for metal powder and manufacturing method thereof
CN114734045A (en) * 2022-06-13 2022-07-12 成都大学 Device for preparing alloy powder by utilizing electric arc

Also Published As

Publication number Publication date
JP2019031711A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6323602B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP6323603B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
US10328492B2 (en) Metal powder production apparatus
JP6721138B1 (en) Method for producing water atomized metal powder
JP5396802B2 (en) Metal powder production equipment
JP6330958B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP2016141817A (en) Method for producing metal powder by water atomizing process
US7485254B2 (en) Metal powder production apparatus
CN105436509A (en) Metal atomization double-layer restrictive nozzle with electromagnetic field assisting function
JP6565941B2 (en) Method for producing soft magnetic iron powder
JP2017145494A (en) Metal powder production apparatus
JP6330959B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP6721137B1 (en) Method for producing water atomized metal powder
JP2017145493A (en) Metal powder production apparatus
JP6323604B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP7110867B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP2017145495A (en) Metal powder production apparatus
JP2012000592A (en) Gas atomizer of high-temperature molten metal
JP2018083965A (en) Metal powder production apparatus
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2023051427A (en) Metallic powder manufacturing apparatus and manufacturing method for metallic powder
JPS62182236A (en) Production of particle dispersed metal
JPH04276005A (en) Production of fine metal powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150