JP6927493B2 - イオン源 - Google Patents

イオン源 Download PDF

Info

Publication number
JP6927493B2
JP6927493B2 JP2017197041A JP2017197041A JP6927493B2 JP 6927493 B2 JP6927493 B2 JP 6927493B2 JP 2017197041 A JP2017197041 A JP 2017197041A JP 2017197041 A JP2017197041 A JP 2017197041A JP 6927493 B2 JP6927493 B2 JP 6927493B2
Authority
JP
Japan
Prior art keywords
convex portion
electrode layer
ion source
emitter electrode
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197041A
Other languages
English (en)
Other versions
JP2018063946A (ja
Inventor
祥典 鷹尾
祥典 鷹尾
昌善 長尾
昌善 長尾
勝久 村上
勝久 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yokohama National University NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Yokohama National University NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2018063946A publication Critical patent/JP2018063946A/ja
Application granted granted Critical
Publication of JP6927493B2 publication Critical patent/JP6927493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明は、イオン液体または液体金属からイオンを引き出すイオン源に関する。
近年、超小型人工衛星の打ち上げ数が爆発的に伸びている。これは、小型化によって開発費や開発期間を大幅に削減できるようになったこと、超小型人工衛星を利用した様々なサービスがビジネス化されるようになってきたことによる。超小型人工衛星には、小型の推進システムが必要であるが、推進システムは、大きく分けると次の4つの系から構成される。(1)推進力を生み出すスラスタ系、(2)スラスタに推進剤を供給する推進剤供給系、(3)太陽電池で発生した電力を各系に必要な電力に変換する電力変換系、そして(4)各系に必要な指令を行う制御系である。このうち(1)、(2)の系は、小型化・省電力化が難しいとされている。
50kg級の超小型人工衛星には、すでに小惑星探査機「はやぶさ」に使われたイオンスラスタを小型化したものが搭載され、宇宙空間における実証も行われている。この超小型衛星は、推進剤のキセノンガスをマイクロ波電力によりプラズマ化し、そのプラズマからイオンを引き出すことで推力を得ている。しかし、推進剤としてガスを用いる場合、高圧タンクを含むガス配管系を備える必要がある。そのため、これ以上の小型化は難しく、また、仮に小型化できたとしても、放電室体積に対する表面積の割合が増大する結果、プラズマ生成効率が悪化するため、推進効率が著しく低下する。
さらに、イオンスラスタに代表される従来の静電加速式スラスタでは、正イオンを放出し続けることによる人工衛星の帯電を防止するために、電子放出も同時に行う必要があり、電子放出用の機構(電子源)のスペースを設ける必要がある。ただし、電子放出を行ったとしても、電子は質量が極めて小さくて推力には寄与しないため、電子源に必要な電力、推進剤、および、スペースが推進機の性能低下に直結する。
こうしたスペースと低効率の問題の両方を同時に解決し得るスラスタの一つとして、イオン液体を推進剤に利用する、エレクトロスプレー式マイクロスラスタが知られている。イオン液体は、蒸気圧がほぼゼロであるため、液体状態のままでも真空中での貯蔵や扱いが容易であり、かつ導電性を有することから電気的に制御することができる。放出するイオンの加速は、針状電極と引き出し電極から構成される強い電場により、イオン液体を高速で引き出すエレクトロスプレー現象を利用して行う。プラズマを生成するための電力を必要しないため、電力消費を大幅に低減することができる。
また、イオン液体は、カチオン、アニオンという正負の電荷を持ったイオンのみから構成されるため、引き出し電極に両極性の高電圧パルスを印加すれば、正負両方のイオンを放出することができる。いずれのイオン放出も推進力に寄与し、なおかつ、正負両方のイオンの放出による自己中和可能であるため、推進効率も高くなる。
さらに、エレクトロスプレー式マイクロスラスタでは、推進剤にガスを用いないため、体積の大きくなりがちな高圧ガスタンクやレギュレータ等を必要としない。電荷を持ち、表面張力が大きいイオン液体を用いるので、MEMS技術等を用いて微細なキャピラリを作製することで、毛細管現象と電極間にかかる電場だけで流量制御が可能となり、推進剤供給系の大幅な小型軽量化が可能となる。
特開2014−44885号公報
S.Dandavino,C.Ataman,C.N.Ryan,S.Chakraborty,D.Courtney,J.P.W.Stark and H.Shea,J.Micromechanics and Microengineering 24(2014)075011 R.Krpoun,K.L.Smith,J.P.W.Stark, and H.R.Shea:Appl.Phys.Lett.94,163502(2009) M.Nagao,T. Yoshida:Microelectronic Engineering, 132(2015)14−20
しかしながら、従来のエレクトロスプレー式マイクロスラスタでは、一つの針状電極が生み出す推力は極めて小さいため、十分な推力を得るためには、1万個以上の針状電極を集積しなければならない。現状では、1万個の針状電極の集積化はまだ達成できていない。
エレクトロスプレー式マイクロスラスタには、非特許文献1の図2に開示されているように、(a)ニードル型、(b)含浸(ポーラス)型、(c)キャピラリ型のものがある。いずれも、推進剤となるイオン液体または液体金属が接するエミッタ電極と、引き出しゲート電極とで構成され、両電極間に高電圧を印加することでエレクトロスプレー現象を発生させ、イオン液体を高速(数10km/s)で引き出す仕組みになっている。
ニードル型の場合、鋭利化したエミッタ先端に電界集中が促される結果、イオン液体から陽/陰イオンのみが引き出されるPurely Ionic Regime(PIR)が実現可能とされている。しかし、その構造上、推進剤となるイオン液体をエミッタ裏面から供給できないため、予め供給しておくか、エミッタの側面から供給する方法しかない。前者の供給方法では推進剤の量が確保できず、後者の供給方法では大規模アレイ化した際に、推進剤として均一に供給することが難しい。
含浸型の場合、ポーラス素材をエッチングしてニードル型にしているため、ポーラスの形状等のバラつきが性能に影響する。つまり、ニードル型エミッタに存在するポーラスの大きさ(〜10μm)にばらつきが生じるので、エミッタ−ゲート間に印加するイオン引き出し開始電圧にも差が生じ、一様にイオンを引き出すことが難しい。
キャピラリ型の場合、エミッタの内部に推進剤であるイオン液体の導入経路が設けられている。これにより裏面からの一様な推進剤供給が可能であり、また、含浸型と比較してキャピラリ径を能動的に制御して加工し易いため、複数のキャピラリを設けた場合、1つ1つのキャピラリの形状等のバラツキを抑えることができる。ただし、エミッタ内部にキャピラリを設ける都合、エミッタ先端が平坦となり上述の2つの型のものより電界集中が弱まるためイオン引き出し開始電圧が高くなる傾向にある。
また、従来技術ではキャピラリの内径を8μmより小さくすることは難しく、そのためドロップレットの発生を抑えることができなかった。ドロップレットが発生すると、エミッタ電極とゲート電極との間で電気的なショートが起こってしまい、それぞれの電極の寿命が短くなるという問題がある。仮にショートが起こらなかったとしても、射出されるイオンにドロップレットが混入してしまうことにより、推進効率が極端に悪くなってしまうことが報告されている(非特許文献1の図3参照)。
一方、TEM試料作製の分野において用いられるFIB(Focused Ion Beam system)は、現在の微細加工技術の発展に不可欠な存在となっている。FIBは、イオンビーム照射による加工機能を有しており、また、イオンビーム照射によって試料表面から放出される二次電子を検出することにより、SIM(Scanning Ion Microscopy)像を取得する手段として用いることができる。さらに、FIBには、イオンビーム照射を行った領域近傍の試料表面に、化合物ガスを吹き付けて成膜を行う等の活用方法もある。
FIBのイオン源には、液体金属を用いるのが一般的であり、実用的な温度の制約からもっぱらGaが用いられている。液体金属はイオン液体より表面張力が大きいため、エレクトロスプレー現象を起こすには、より強い電界が必要となる。その分、高い電位差を印加する必要があり、一般的には1〜30kVの電位差をかけてGaイオンビームを引き出している。
例えば、TEM試料を作製するに当たって、数10kVに加速されたGaイオンビームを利用すると、TEM試料にはダメージ層ができ、その厚さはGaイオンビームの加速電圧に比例する。ダメージを減らすには印加電圧を下げるしかなく、その分加工速度が犠牲になる。また、30kV印加をしても得られる電流は60nA程度が現状であり、100μm以上の幅をもつ断面加工には数時間を要する。さらに、液体金属をイオン源に用いる限り、実用的な温度の観点からGaまたはInが選択肢となり、イオンビームとしては正イオンしか利用することはできない。
本発明は、かかる事情に鑑みてなされたものであり、ドロップレットの発生を抑えつつ、原料液を効率よく供給することを可能とし、かつ、供給された原料液からイオンを効率よく引き出すことを可能とする、イオン源を提供することを目的とする。
本発明は、以下の手段を提供する。
[1]電界により、イオン液体、液体金属からイオンを引き出すイオン源であって、一端に開口を有するタンクと、前記開口を覆うエミッタ電極層と、前記エミッタ電極層上に積層された絶縁層と、前記絶縁層上に積層されたゲート電極層と、を備え、前記エミッタ電極層、前記絶縁層、前記ゲート電極層が、それぞれ、互いに重なる位置において、前記タンクの外側に突出し、先端が尖った中空の凸部を有し、それぞれの前記凸部の先端は、互いに連通する開口部を有していることを特徴とするイオン源。
[2]前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部の突出方向に沿った断面視において、前記エミッタ電極層の凸部の側面と、前記ゲート電極層の凸部の側面とのなす角度が、10度以下であることを特徴とする[1]に記載のイオン源。
[3]前記エミッタ電極層の凸部の開口部の内径が、1μm以下であることを特徴とする[1]または[2]のいずれかに記載のイオン源。
[4]前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部が、いずれも、上底と下底とが開放した中空の円錐台の形状を有していることを特徴とする[1]〜[3]のいずれか一つに記載のイオン源。
[5]前記エミッタ電極層の円錐台の底面の直径が、3μm以下であることを特徴とする[4]に記載のイオン源。
[6]前記エミッタ電極層の凸部の開口端と、前記ゲート電極層の凸部の開口端との距離が、10μm以下であることを特徴とする[1]〜[5]のいずれか一つに記載のイオン源。
[7]前記エミッタ電極層の前記タンク側に、炭素系材料からなる膜が積層されていることを特徴とする[1]〜[6]のいずれか一つに記載のイオン源。
[8]前記ゲート電極層が、絶縁層を挟んだ多層構造を有しており、いずれの絶縁層も、前記凸部の先端と重なる部分が開口していることを特徴とする[1]〜[7]のいずれか一つに記載のイオン源。
[9]前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部の重なり構造が、500個/cm以上の面密度で並んでいることを特徴とする[1]〜[8]のいずれか一つに記載のイオン源。
[10]前記エミッタ電極層の凸部の内側に、前記凸部の先端側に頂点を有する円錐状の部材が配されていることを特徴とする[1]〜[9]のいずれか一つに記載のイオン源。
[11]複数の前記凸部の先端が向く側において、複数の前記凸部と対向するように延在する加速電極を有し、前記加速電極が、その延在方向と交差する加速電極孔を有し、前記加速電極孔と重なる位置ごとに、複数の前記凸部の重なり構造がグループを形成して分布していることを特徴とする[1]〜[10]のいずれか一つに記載のイオン源。
[12]それぞれの前記グループと重なる位置に、集束電極が配されていることを特徴とする[1]〜[11]のいずれか一つに記載のイオン源。
[13]それぞれの前記グループにおいて、中央の前記凸部の重なり構造側に、周囲の前記凸部の先端の向きが傾いていることを特徴とする[1]〜[12]のいずれか一つに記載のイオン源。
本発明のエミッタ電極層は、先端が尖った凸部を有しており、ゲート電極層との間に電圧を印加した際に、尖った先端には電界集中が促される。そのため、本発明のエミッタ電極層では、供給された原料液から、陽イオンのみまたは陰イオンのみが引き出されるPurely Ionic Regime(PIR)が実現可能となっている。また、尖った先端に電界が集中することにより、原料液からのイオンの引き出しに要する電圧(イオン引き出し開始電圧)を低く抑えることができる。
本発明では、エミッタ電極層の凸部と重なる位置において、ゲート電極層も同様に凸部を有している。ゲート電極層の凸部は、エミッタ電極層の凸部上に絶縁層を介して積層されており、両凸部の対向する側面同士が略平行となっている。後述するように、ゲート電極層は、絶縁層上に形成されるものであり、形成後にその開口端近傍の絶縁層が除去されることにより、開口端が突出した構造となるものである。開口端の内面は、製造過程において絶縁膜に接していた面であるため、滑らかであり、開口部の形状は真円度の高い滑らかな円となる。したがって、本発明のイオン源では、ゲート電極に電圧を印加した際に、開口端での電界分布の乱れが少なく、不必要な方向へのイオンの加速を減らすことができるため、イオンを所望の方向のみに効率よく加速することができる。
本発明のイオン源では、イオンの射出口となる開口部が、凸部の尖った先端に設けられている。そのため、この開口部に流れ込むイオンに対して大きい抵抗がかかることになり、ドロップレットの発生を抑えることができる。
本発明のイオン源では、エミッタ電極の凸部が中空となっており、先端に開口部を有している。そのため、原料液を収容するタンクの内部とイオン源の外部とが連通しており、原料液の供給経路が、当該イオン源の内部に設けられていることになる。したがって、本発明のイオン源では、この供給経路を介することにより、外部からエミッタ電極層の凸部の先端に向けて、原料液を一様に効率よく供給することができる。
本発明の第1実施形態に係るイオン源の断面図である。 (a)〜(k)本発明の第1実施形態に係るイオン源の各製造工程における断面図である。 (a)、(b)本発明の第1実施形態の応用例に係るイオン源の平面図、断面図である。 図3のイオン源の変形例であって、加速電極を加えたイオン源の断面図である。 図4のイオン源を加速電極側から平面視した図である。 図3のイオン源の他の変形例であって、加速電極を加えたイオン源の断面図である。 (a)従来技術によるゲート電極層の開口部の電子顕微鏡写真である。(b)本発明によるゲート電極層の開口部の電子顕微鏡写真である。 本発明の第2実施形態に係るイオン源の断面図である。 本発明の第3実施形態に係るイオン源の断面図である。 本発明の第4実施形態に係るイオン源の断面図である。
以下、本発明を適用した実施形態であるイオン源について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<第1実施形態>
[イオン源の構成]
本発明の第1実施形態に係るイオン源100は、電界により、イオン液体、液体金属等の原料液Lからイオンを引き出す機能を有する装置である。イオン源100の構成について、図1を用いて説明する。図1は、イオン源100の断面図である。イオン源100は、一端に開口101aを有するタンク101と、開口101aを覆うエミッタ電極層102と、エミッタ電極層102上に積層された絶縁層103と、絶縁層103上に積層されたゲート電極層(引き出しゲート電極層)104と、を備えている。
エミッタ電極層102、絶縁層103、ゲート電極層104は、それぞれ、厚み方向に互いに重なる位置において、タンク101の外側(図1では上方)に突出し、先端が尖った中空の凸部102a、103a、104aを有している。凸部102aは、内部に原料液Lの流路(キャピラリ)を有し、かつ、その流路の下流側が尖った形状(ニードル状、錐状)をなしていることから、以下ではキャピラリニードルと呼ぶこともある。
凸部102a、103a、104aのそれぞれの先端は、互いに連通する開口部を有している。開口部の形状に関する制限はないが、等方性の高い形状であることが好ましく、円状であることが最も好ましい。
エミッタ電極層の凸部102a、絶縁層の凸部103a、ゲート電極層の凸部104aの突出方向に沿った断面視において、エミッタ電極層の凸部102aの側面(側壁面)と、ゲート電極層の凸部104aの側面(側壁面)とが略平行であることが好ましい。具体的には、両側面のなす角度が約10度以下であることが好ましく、平行であればより好ましい。
従来技術においては、内径が8μm以下の開口部を凸部102aの先端に形成することが難しく、凸部102aの開口部において、ドロップレットの発生を抑えることができないという課題がある。ドロップレットが発生すると、エミッタ電極層とゲート電極層との間で電気的なショートが起こり、各電極層の寿命が短くなってしまうことがある。仮にショートが起こらなかったとしても、ドロップレットの混入により、推進効率が極端に悪くなってしまうことが報告されている(非特許文献1の図3参照)。
ドロップレットの発生は、キャピラリ(原料液の流路)内を流れる流体の抵抗が小さいために、キャピラリから単体のイオンではなく、ドロップレットとして放出されてしまうことに起因している。したがって、ドロップレットの発生を抑えるためには、キャピラリ内の流体の抵抗を上げる必要がある。抵抗を上げるための一つの手段として、凸部102aの開口部の内径の短縮化が挙げられる。
具体的には、キャピラリニードル内の原料液の流れを、管径が一定の円管を流れる粘性流体の定常層流解として得られるハーゲン・ポアズイユの流れとすると、キャピラリ内の流体の抵抗Rは、圧力損失と体積流量の比から得られる下記の式(1)で定義される。
Figure 0006927493
ここで、μは粘性率、Lはキャピラリの長さ、Dはキャピラリの内径である。非特許文献1では、Lが100μm、Dが8μmであり、原料液としてイオン液体EMI−BFを用いた場合に、μが0.038Pa・sであることから、Rが3.8×1016kg/s−1−4と算出されている。同文献では、この時、PIR(Purely Ionic Regime)が実現できておらず、ドロップレットが混入しているとの説明がなされている。
一方、非特許文献2では、キャピラリ内部にシリカビーズを詰め込み、抵抗Rを1018kg/s−1−4程度まで高めた結果、PIRを実現できていることが報告されている。
上記の式(1)から明らかように、抵抗Rは、長さLに比例し、内径Dの4乗に反比例することから、スケールを相似的に小さくして内径Dを小さくすることで、抵抗Rを大幅に大きくすることができる。例えば、内径を1μmまで小さくすれば、長さLが2μmであっても、抵抗Rは3.1×1018kg/s−1−4に到達するため、PIRの実現が可能であると考えられる。
上述した理由により、本実施形態において、原料液Lの流路をなす凸部102aの開口部の内径は、1μm以下であることが好ましく、0.5μm以下であればより好ましい。
凸部104aの開口部の内径は、凸部102aの開口部から射出されるイオンが発散することを考慮すると、少なくとも凸部102aの開口部の内径より大きいことが好ましい。ただし、凸部104aの開口部が広くなりすぎると、イオン源100として動作させた際に、射出されるイオンの発散角が大きくなり、本来射出したい方向と垂直な方向の速度成分が増えてしまう。この場合、イオン源100を、例えば人工衛星等の推進システムに用いる場合には、推力として寄与しない損失成分が多く発生することになる。
したがって、例えば図1においては、ゲート電極端104bはエミッタ電極端102bから見て上方にある方が好ましい。より詳細には、凸部104aの開口部の内径は、凸部102aの開口部の内径より大きく、かつ、凸部102aの開口部の内径の5倍以下であることが好ましく、3倍以下であればより好ましい。
エミッタ電極層の凸部102a、絶縁層の凸部103a、ゲート電極層の凸部104aは、いずれも、上底(開口部)と下底(タンク101との連結部)とが開放した中空の円錐台の形状を有していることが好ましい。この場合の円錐台の底面に相当する部分の直径は、3μm以下であることが好ましい。
また、この場合、エミッタ電極層の凸部102aの開口端(エミッタ電極端)102bと、ゲート電極層の凸部104aの開口端(ゲート電極端)104bとの距離は、10μm以下であることが好ましい。この距離にすると、従来数kV必要であった引き出し電圧を100V程度に抑えることが可能である。
引き出し電圧をこのように低く抑えたイオン源100は、例えば人工衛星に搭載するスラスタモジュールに用いる際に、同時に搭載する電源としてより小さいものを用いることができ、スラスタモジュールを格段に小型化することができる。
また、引き出し電圧をこのように低く抑えたイオン源100は、例えばFIB用途において、低エネルギーのイオン照射を行うことができ、ダメージレスなTEM試料の作製が実現可能となる。
さらに、エミッタ電極端102bとゲート電極端104bとの距離を狭めることにより、両電極端の間で、イオン分子のフラグメンテーションが発生する確率を下げることができる。イオン分子のフラグメンテーションが発生すると、電荷をもたない中性分子は電界による加速を得られず、イオンの引き出し効率が下がるため、イオン源100としての性能悪化につながる。
タンク101は、シリコン等の半導体または絶縁体で構成されている。タンク101の開口面積は、少なくとも凸部102aの後端側の開口面積より大きい。凸部102aの後端で囲まれる面は、タンクの開口面101aより小さく、開口面101aの略中央に位置している。
エミッタ電極層102は、少なくとも1層の導電性を有する材料で構成されている。エミッタ電極層102の材料としては、例えば、ニオブ、タンタル、タングステン等が挙げられる。エミッタ電極層102の厚さは、基本的には任意に選ぶことができるが、最終的には中空に自立した膜として形成するためには、10nm以上であることが好ましく、さらに1μm以下の開口を得るためには、300nm以下であることが好ましい。
ゲート電極層104は、少なくとも1層の導電性を有する材料で構成されている。ゲート電極層104の材料としては、例えば、ニオブ、タンタル、タングステン、白金等が挙げられる。ゲート電極層104の厚さについては、特に制約はないが、適切な強度を有し、なおかつエッチング加工が容易な厚さであればよく、例えば、10nm以上300nm以下であれば好ましい。
原料液Lとしてガリウムやインジウムなどの液体金属を用いる場合には、それらの濡れ性を考慮した材料を選択することが好ましい。例えば、原料液Lとしてガリウムを用いる場合には、タングステンのエミッタ電極層102、ゲート電極層104を用いることが好ましい。
エミッタ電極層102、ゲート電極層104に対する原料液Lの濡れ性を良くする上では、イオン源100の近傍にヒーター(加熱手段)を付設し、2つの電極層102、104を加熱することも有効である。
また、原料液Lの濡れ性を良くする上では、2つの電極層102、104のそれぞれを通電加熱してもよく、それぞれの電極層の温度を独立して制御することができる点において有効である。この場合、例えば、ゲート電極層104をエミッタ電極層102より高温にすることで、イオンとして引き出せずに蒸気圧により蒸発した液体金属材料が、ゲート電極に再付着してゲート電極を汚染するのを防ぐこともできる。
なお、原料液Lとして液体金属を用いる場合には、正イオンしか抽出できなくなるため、宇宙推進機として用いる際には、電荷中和のための電子源が別途必要となるが、非特許文献3等で開示されている任意の電子源を別途製作することで対応可能となる。
本実施形態に係るイオン源100において、原料液Lとして用いることが可能なイオン液体としては、例えば、EMI−BF、EMI−DCA、EMI−GaCl、EMI−C(CN)、EMI−N(CN)、EMI−Im、BMI−DCA、BMI−NO、EMI−EtSO、EMI−Beti、CMI−(CPF、Cmim−I、BMI−FeBr、CMI−FeBr、CMI−FeCl、DMPI−Me、[1−Me−3−H−IM][No]、[1−Bu−3−H−IM][NO]、[C−mim][TfN]、[C−mim][TfN]、[C−mim][TfO]、[C−mim][PF]等のイオンの液体が挙げられる。当該イオン液体は、1種類のイオンを含むものであってもよいし、2種類以上のイオンを混合して含むものであってもよい。
上述した構成のイオン源100において、イオン液体、液体金属等の原料液Lからイオンを引き出す仕組みについて説明する。
まず、タンク101内およびエミッタ電極層の凸部102a内に、原料液Lを充填する。充填箇所については図示していないが、タンク101の壁部に設けられているものとする。なお、応用例として後述するように、イオン源をアレイ化する場合には、充填箇所はタンク101の底部側に設けられていることが好ましい。
エミッタ電極層102とゲート電極層104との間に電位差がない場合には、充填された原料液Lは、表面張力によって、凸部102aの開口部から外部に若干盛り上がった形状で静止している。
エミッタ電極層102とゲート電極層104との間に所定の強さの電界が発生するように電圧を印加すると、原料液Lは、その電界に引っ張られることにより、凸部102aの開口部から外部に突出したテーラーコーンL1が形成される。
テーラーコーンL1が形成されると、その先端部分において局所的に電界が強まり、その結果として、テーラーコーンL1の先端は、更に引っ張られるようになり、やがて原料液Lの一部がイオンとして引き出される。凸部102aの開口部は、イオンの射出口として機能することになる。
この時、エミッタ電極層の凸部102aの開口端(エミッタ電極端)102b、ゲート電極の凸部104aの開口端(ゲート電極端)104bにも、同様の強電界が発生する。この強電界は、各電極端102b、104bから電子が放出される現象(電界放出現象)の発生要因となり、放出された電子による放電破壊に繋がる可能性が高い。したがって、電界放出現象の発生を抑えるように、各電極端102b、104bは、滑からな曲面に加工されていることが好ましい。
なお、電界放出現象の発生を抑える上では、原料液Lに接することのないゲート電極層104の材料として、Pt等の仕事関数が大きい材料を用いることも有効である。
[イオン源の製造方法]
本実施形態に係るイオン源100の製造方法について、図2(a)〜(k)を用いて説明する。イオン源100の製造方法は、主な製造工程として、下記の第1〜第11工程を有している。図2(a)〜(k)は、イオン源100の各製造工程における断面図である。
(第1工程)
まず、図2(a)に示すように、シリコン等の半導体基板11の一方の主面11aに、ニッケル、シリコン、チタン等の金属材料からなる円錐形状の突起物19を形成する。突起物の大きさは、先端の曲率半径が100nm以下であり、高さが2μm以上であることが好ましい。突起物の材料としては、金属材料以外の任意の材料を用いることもできるが、アスペクト比や先端曲率半径が、上記の値になるような材料を用いることが好ましい。
上記突起物を形成する方法としては、例えば、非特許文献3に開示されているように、シリコン基板をエッチングすることでシリコンの円錐形状を作製するような方法、本発明者らが特許文献1に開示した方法等が挙げられる。
ここで、特許文献1に開示した方法を利用して、円錐形状の突起物を形成する場合について説明する。
まず、半導体基板の一方の主面11aに、リフトオフレジストを回転塗布する。リフトオフレジストとしては、感光性はないが、通常のフォトリソグラフィー工程で用いる現像液(テトラメチルアンモニウムハイドロオキサイド、TMAH)でエッチングされる材料、例えば、マイクロケム社製LOR−7A等を用いることができる。
次に、回転塗布したリフトオフレジストの上に、さらに通常のフォトレジストを回転塗布し、通常のフォトリソグラフィー法を用いて、1μm程度の穴を露光し、現像することでアンダーカット構造を形成する。フォトレジストとしては、所望の大きさのパターニングができるものであればよく、例えば住友化学社製PFI−38A7等を用いることができる。現像時間は、レジストのパターニングに必要な時間と、リフトオフレジストをエッチストップ層までエッチングするための時間を考慮して設定する。
次に、電子ビーム蒸着法等の成膜粒子の直進性が高い方法により、ニッケル等の金属材料をレジストに蒸着させる。この時、金属材料はレジストの上にも、穴の底にも蒸着されるが、レジストの穴の周りに蒸着された部分が次第に張り出すように膜成長が起こるので、穴の径が徐々に小さくなっていき、結果として穴の底に蒸着される形状は円錐形状となる。
この時の、穴のふさがり具合は、成膜時の基板温度や蒸着材料によって異なる。基板温度が高いほど穴がふさがりにくいので、円錐のアスペクト比が高くなる傾向にある。したがって、作製したいキャピラリのアスペクト比に応じて基板温度を選択する。また、成膜する膜厚は穴が完全に塞がるまで成膜するが、この時の膜厚は概ね2μm以上である。
蒸着材料は、特に限定されるものではないが、2μm程度の厚膜をフォトレジスト上に蒸着している時に、応力などで剥離することがない材料を選ぶ必要がある。本実施形態においては、Si、Ti、Ni等が、この条件を満足する材料として挙げられる。特にNiは、アスペクト比を高く維持することもでき、キャピラリを形成する上でより好適な材料である。
次に、有機溶剤に浸漬し、リフトオフレジストより上の部分を剥離させる。有機溶剤としては、使用するレジストやリフトオフレジストに応じて任意に選ぶことができるが、本実施形態においては、Nメチル2ピロリジノン(NMP)を用いることが好ましい。Nメチル2ピロリジノンを70℃程度に加熱し、ウエハを浸漬することにより、良好に剥離することができる。
このようにして、図2(a)に示すように、基板11上に円錐形状の突起物19を形成することができる。突起物19の形状は、単純な円錐に限定されることはなく、円柱の上に円錐を載せたような形状であっても良い。形成方法も上述したものに限定されることはない。ただし、基板11上の突起物19の密度が最終的にキャピラリニードルの密度になるので、土台の部分があまり大きくなり過ぎないような方法を選ぶ必要がある。
(第2工程)
次に、図2(b)に示すように、突起物19を含めた基板の一方の主面11a側に、絶縁膜13Aと金属膜12とを順に形成する。ここで形成する金属膜12は、エミッタ電極として機能するものである。絶縁膜13Aの形成は、下地の円錐の形状に対してコンフォーマルに形成できる方法を用いて行うことが好ましい。例えば、テトラエトキシシランガスを用いたプラズマ援用化学気相合成法により、シリコン酸化膜等を形成する方法が好適である。金属膜12の材料は、使用する原料液Lとの濡れ性を考慮して選べばよいが、例えばシリコンなどの半導体やニオブなどの金属を用いることができる。これらの材料からなる膜は、スパッタリング法で形成することができる。
(第3工程)
次に、第2工程で成膜した金属膜12上に、フォトレジスト膜R1を形成する。フォトレジスト膜R1は、金属膜12のうち突起物19を覆う部分が隠れる厚さとなるように形成する。酸素プラズマ等によって、形成したフォトレジスト膜R1の所定の厚さ分を除去し、図2(c)に示すように、金属膜12のうち突起物19の形状に沿って尖った部分を露出させ、露出した部分をRIE(Reactive Ion Etching)等で除去する。
(第4工程)
次に、図2(d)に示すように、残ったフォトレジスト膜R1をレジスト剥離液等で除去し、更に絶縁膜13Bと金属膜14とを順に形成する。ここで形成する金属膜14は、引き出しゲート電極として機能するものである。
(第5工程)
次に、第3工程と同様にフォトレジスト膜R2を形成する。形成したフォトレジスト膜R2を、酸素プラズマで薄くすることにより、金属膜14のうち突起物19の形状に沿って尖った部分を露出させ、これを図2(e)に示すようにRIEで除去する。
(第6工程)
次に、残ったフォトレジストをレジスト剥離液等で除去し、絶縁膜の一部を除去することで、第2工程で形成した金属膜12にイオン射出口となる開口部12aを形成し、さらに第4工程で形成した金属膜14にも開口部14aを形成することができる。絶縁膜がシリコン酸化膜である場合には、BHF(バッファードフッ酸)を用いて除去することができる。
イオン射出口となる開口部12aの口径は、第2工程で形成した絶縁膜13Bの厚さで決定することができる。例えば、絶縁膜13Bの厚さを200〜300nm程度と設定しておくことで1μm以下の口径の開口部12aを再現性良く形成することができる。
次に、金属膜12、14の開口端(電極端)を、図2(f)に示すように滑らかな曲面とするために、それぞれの開口端に対してイオン照射を行う。具体的には、100kVのアルゴンイオンを1016個/cm程度照射する。
(第7工程)
次に、後続工程でエッチング処理を行う際に、第1〜第6工程を経て形成した金属膜12、14の構造を保護するために、図2(g)に示すように、金属膜12、14を覆うフォトレジスト膜R3等を形成する。
(第8工程)
次に、図2(h)に示すように、基板の他方の主面11bのうち、外周部分をマスク材Mでマスクする。通常の半導体基板は、数百μmの厚さを有するので、そのエッチングに耐え得るようなマスク材を選ぶ必要がある。例えば、フッ素系のRIEによりシリコン基板をエッチングする際には、マスク材としてアルミニウム等を用いることができる。
(第9工程)
次に、RIE等により、基板を他方の主面11b側からエッチングし、図2(i)に示すように、貫通口を形成する。エッチング方法としては、ボッシュプロセスなど深掘りが可能な方法を用いることができる。この時、ニッケルなどの金属材料は、ボッシュプロセス等に用いるフッ素系のRIEではエッチングされないので、円錐形状の突起物19はエッチングされずに残るが、その周りにある絶縁膜13Aはわずかながらエッチングされる可能性がある。その場合には、第1工程の前に、基板の一方の主面11aに、予めエッチストップ層を形成しておくこともできる。エッチストップ層の材料としては、アルミニウム等のフッ素系のRIEではほとんどエッチングが進行しないものを選ぶ。
(第10工程)
次に、図2(j)に示すように、円錐形状の突起物19を、所定の溶液で除去する。突起物19がニッケルからなり、エッチストップ層がアルミニウムからなる場合には、アルミニウムとニッケルの両方をエッチング可能な、リン硝酸を用いることができる。また、深掘りエッチングの際にマスクとして用いた膜も、同時にエッチングすることができる。それぞれの膜を別々にエッチングしてもよい。
続いて、金属膜12の内側に残った絶縁膜13Aを、所定の溶液で除去する。絶縁膜13Aがシリコン酸化膜である場合には、BHF(バッファードフッ酸)を用いて除去することができる。なお、絶縁膜13Aは、イオンの射出に問題がないようであれば、必ずしも除去する必要はない。
(第11工程)
最後に、図2(k)に示すように、第7工程で形成したフォトレジスト膜R3および第8工程で形成したマスク材Mを、所定の溶液で除去することにより、サブミクロンの口径を有する、キャピラリニードル型のイオン源100を得ることができる。上述した第1〜第11工程を経ることによって、エミッタ電極層12の凸部に、内径が1μm以下の開口部12aを精度よく、かつ、応用例として後述するように大量に製造することができる。
なお、基板11とエミッタ電極層12との間に絶縁膜13Aが形成されているが、この絶縁膜13Aは、製造過程において利用されるものであって、最終形態であるイオン源100の構成要素としては必須ではない。絶縁膜13Aを備えていても、イオン源100の動作に支障が生じることはない。絶縁膜13Aを備えていない構成とする場合には、例えば、第2工程において、金属膜12を形成する前に、形成した絶縁膜13Aのうち、突起物19を被覆していない部分を除去しておけばよい。ここで、突起物19を被覆していない部分とは、基板の一方の主面11aに対する厚さが略一定となる部分を意味している。
(応用例)
本実施形態を応用したイオン源110について、図3(a)、(b)を用いて説明する。図3(a)は、イオン源110を、イオンの射出口側から見た場合の平面図である。図3(b)は、図3(a)においてイオン源110を、α−α線を通る面で切断した際の断面図である。
イオン源110の構成は、一つのタンク111に対して、エミッタ電極層112の凸部、絶縁層113の凸部、ゲート電極層114の凸部の重なり構造115が、複数設けられている点で、上述したイオン源100の構成と異なっている。一つ一つの重なり構造115、その他の部分の構成については、イオン源100と同様である。
3つの層112、113、114の凸部の重なり構造115は、500個/cm以上の面密度で並んでアレイ化していることが好ましい。重なり構造115の並び方に関しては、特に制限されることはないが、図3(a)に示すように、各重なり構造115に対して、他の6つの重なり構造が等距離で隣接するように配置すると、最も高密度で並ぶことになるため好ましい。
一つ一つの重なり構造によるイオンの放出量が十分でない場合であっても、このように複数並べて駆動させることによって、所望の量のイオンを放出することができる。例えば人工衛星等の推進システムとして用いる場合、1万個以上の重なり構造115を並べて駆動させることによって、十分な推力を得ることができる。
収束イオンビームを照射し、一つずつイオンの射出口を形成する従来の方法によって、このように多数の重なり構造115を得ようとすることは、多大な時間を要し、現実的でない。しかしながら、上述した本実施形態に係る製造方法であれば、複数の重なり構造115を同時に製造することが可能であるため、このような問題を解消することができる。
図4は、図3に示したイオン源110の変形例となる、イオン源500の断面図である。イオン源500では、イオンビームの射出方向、すなわち、複数の凸部504aの先端が向く側において、複数の凸部504aと対向するように延在する加速電極516を有している。加速電極516は、その延在方向Eと交差する方向に貫通する加速電極孔516Hを有している。
図5は、本例のイオン源500を、加速電極516側から平面視した図である。図5に示すように、加速電極孔516Hと重なる位置ごとに、複数の凸部の重なり構造(以下ではエミッタと呼ぶ)515がグループ(以下ではエミッタアレイと呼ぶ)510を形成して分布している。加速電極孔516Hと重ならない位置には、エミッタ515は分布していないことが好ましい。本例のイオン源500の構成によれば、ビームが、加速電極孔516Hを貫通するように射出されることになるため、ビーム発散角の存在による加速電極へのビーム衝突を抑え、スラスタの動作寿命への影響を大幅に抑えることができる。
このような加速電極へのビーム衝突を抑える上では、エミッタアレイ510と加速電極516との間において、エミッタアレイ510と重なる位置に、集束電極(アインツェルレンズ)が配されていることが、より好ましい。
なお、エミッタ515の厚み(凸部の突出方向の寸法)Dは数μmスケールであり、kVオーダーの電圧印加に備えた絶縁耐性を確保するため、エミッタ515と加速電極516との間には、数100μmスケールの距離Dが必要となる。加速電極孔516Hの孔径Dは、エミッタアレイ510のサイズ(エミッタ515の分布範囲の寸法)D以上であることが好ましい。
図6は、図3に示したイオン源110の他の変形例となる、イオン源600の断面図である。イオン源600では、それぞれのエミッタアレイ610において、中央の凸部の重なり構造615A側に、周囲の凸部の重なり構造615Bを構成する、凸部604aの先端の向きが傾いている。それ以外の構成については、図4に示したイオン源500の構成と同様である。本例のイオン源600の構成によれば、加速電極516に向かうビームを、貫通孔616Hの中心側に収束させることができる。そのため、ビームが貫通孔516Hから外れた位置に衝突するのを防ぐことができ、ビーム発散角の存在による加速電極へのビーム衝突を、より一層抑え、スラスタの動作寿命への影響を最小限にすることができる。
以上説明したように、本実施形態に係るエミッタ電極層102は、先端が尖った凸部102aを有しており、ゲート電極層104との間に電圧を印加した際に、尖った先端には電界集中が促される。そのため、本実施形態に係るエミッタ電極層102では、供給された原料液Lから、陽イオンのみ、または陰イオンのみが引き出されるPIRが実現可能となっている。また、尖った先端に電界が集中することにより、原料液Lからのイオンの引き出しに要する電圧(イオン引き出し開始電圧)を低く抑えることができる。
本実施形態では、エミッタ電極層の凸部102aと重なる位置において、ゲート電極層104も同様に凸部104aを有している。ゲート電極層の凸部104aは、エミッタ電極層の凸部102a上に絶縁層103を介して積層されており、両凸部102a、104aの対向する側面同士が略平行となっている。
イオンビームの軌道を決める上で、ゲート電極層の開口部の真円度は重要である。従来の平坦なゲート電極層に開口部を形成する場合、通常のフォトリソグラフィー工程においては、様々な要因により、エッチングの端面がきれいな直線や曲線とならず、ゆらぎのあるギザギザした面になる。例えば、2μm程度の円形パターンをエッチングしてゲート電極にホールを形成した場合には、図7(a)の電子顕微鏡写真に示すように、エッチング端面がきれいな滑らかな円とならない。これでは、電圧をかけたときにきれいな電位分布とならない。
推進機用途としては、このような電界分布の乱れは、イオンの加速される向きが所望の推力のベクトルとは異なる方向の成分を持つことになるわけであるから、効率の良い推進力が得られないばかりか、方向の制御性が悪いことになる。また、集束イオンビームなどの用途においては、ビームを収束する際の収差の発生につながるので、良好な集束ビームが得られないという結果になる。
一方、略平行に作製した場合、作製方法の図2(e)に示すように、開口部の内面は、エッチングの端面とはならずに、もともとCVDで成膜した絶縁膜(CVD膜等)に接していた面であるので、滑らかな円となる。したがって、図7(b)の電子顕微鏡写真に示すように、滑らかな円となり、結果として、イオンビームの加速成分に、不必要な方向のベクトルは加わらず効率の良い推進力が得られ、制御性の良いイオンビームが得られる。
本実施形態に係るイオン源100では、イオンの射出口となる開口部が、凸部の尖った先端に設けられている。そのため、この開口部に流れ込むイオンに対して大きい抵抗がかかることになり、ドロップレットの発生を抑えることができる。
本実施形態に係るイオン源100では、エミッタ電極の凸部102aが中空となっており、先端に開口部を有している。そのため、原料液Lを収容するタンク101の内部とイオン源100の外部とが連通しており、原料液Lの供給経路が、当該イオン源100の内部に設けられていることになる。したがって、本発明のイオン源では、この供給経路を介することにより、外部からエミッタ電極層の凸部102aの先端に向けて、原料液Lを一様に効率よく供給することができる。
<第2実施形態>
本発明の第2実施形態に係るイオン源200について、図8を用いて説明する。図8は、イオン源200の断面図である。イオン源200の構成は、炭素系材料からなる膜(炭素系材料層)206が、エミッタ電極層202上に積層されている点において、第1実施形態に係るイオン源100の構成と異なる。炭素系材料からなる膜206は、エミッタ電極層202のタンク201側、すなわち、凸部202aの内壁面およびタンク開口201aとの対向面に積層されている。イオン源200の他の部分の構成については、イオン源100と同様である。
イオン源200は、第1実施形態に係るイオン源100を製造する場合と同様に、第1〜第11工程を経るが、第2工程においてエミッタ電極(金属膜)12を形成する際に、Fe、Ni、Co、Cuから選択される金属を用いた上で、さらに、次に説明する第12工程を経ることによって得ることができる。
または、Fe、Ni、Co、Cuから選択される金属を用いて1層からなるエミッタ電極12とする代わりに、Fe、Ni、Co、Cuから選択される金属を用いて1層形成した後に、他の金属、例えばニオブ、タングステンなどを用いてさらに1層形成し、2層からなるエミッタ電極としても良い。いずれにしても、後にグラフェンやグラファイトなどイオン液体との濡れ性がよい炭素系薄膜をコーティングしたい面に、Fe、Ni、Co、Cuから選択される材料の膜を形成しておくことが重要である。
(第12工程)
第11工程を経たあと、メタンと水素の混合ガスを導入した雰囲気で構造体を800℃以上に加熱することで、エミッタ電極のうち、Fe、Ni、Co、Cuからなる面の部分に選択的にグラフェンもしくはグラファイトを選択的に成膜することができる。基板温度が高すぎて構造体にダメージが入る場合には、メタンと水素ガスのプラズマを援用することで基板温度を400℃にまで下げても、同様の効果が得られる。このように炭素系の薄膜をエミッタ電極に選択的に被覆することにより、イオン液体との濡れ性が向上し、イオン液体の良好な放出が可能となる。
<第3実施形態>
本発明の第3実施形態に係るイオン源300について、図9を用いて説明する。図9は、イオン源300の断面図である。イオン源300の構成は、ゲート電極層304が多層構造である点において、第1実施形態に係るイオン源100の構成と異なる。ゲート電極層304は、絶縁層307を挟んだ多層構造を有しており、いずれの絶縁層307も、各電極層の凸部302a、304aの先端と重なる部分が開口している。図9では、ゲート電極層304が3層構造(304A、304B、304C)である場合の例を示しているが、層数は2以上であればよい。イオン源300の他の部分の構成については、イオン源100と同様である。
イオン源300は、第1実施形態と同様に、第1〜第5工程を経た後にレジスト膜を除去し、さらに、第4工程、第5工程、レジスト膜除去工程を、それぞれ、形成するゲート電極層の層数分繰り返した後に、第6〜第11工程を経ることによって得ることができる。
ゲート電極層304が多層構造であることにより、電位の与え方の自由度が大幅に向上し、イオンの射出口(凸部302a、304aの開口部)近傍の電界分布を自在に制御することができる。
<第4実施形態>
本発明の第4実施形態に係るイオン源400について、図10(a)、(b)を用いて説明する。図10(a)は、イオン源400の断面図である。イオン源400の構成は、エミッタ電極層402の凸部402aの内側に、円錐状の部材408が配されている点において、第1実施形態に係るイオン源100の構成と異なる。イオン源400の他の部分の構成については、イオン源100と同様である。
円錐状の部材408は、凸部402aの先端側に頂点を有し、その中心軸が、凸部402aの中心軸上、およびイオンの射出方向と略一致するように配されている。ここでの凸部402aの中心軸は、凸部の先端の開口部の中心と後端の開口部の中心とを結ぶ軸を意味するものとする。
図10(b)は、円錐状の部材408の近傍の領域Aをタンク側から見た図である。円錐状の部材408は、絶縁性の梁部材409を介してエミッタ電極層402に連結されることによって、支持されている。
イオン源400は、第1実施形態の製造工程のうち、第1工程において、基板の一方の主面に、円錐形状の突起物に連結された梁部材を形成し、かつ、第10工程において、突起物および梁部材が除去されない溶液を選択することによって、得ることができる。
このように円錐状の部材408が配されていることにより、テイラーコーンの先端の位置を、円錐の中心軸上、すなわち凸部402aの中心軸上に固定することができる。そのため、射出されるイオンビームの方向が、凸部402aの中心軸方向から逸脱するのを防ぐことができる。
さらに、凸部402aの内側に円錐状の部材408が配されていることにより、原料液Lの流路が第1実施形態に比べてさらに狭くなり、抵抗が大きくなるため、上述したようにドロップレットの発生をより抑えることができる。
本発明のイオン源は、人工衛星等の推進システム、試料の加工や試料の表面の観察等に用いるFIBにおいて利用することができる。
100、110、200、300、400・・・イオン源
101、111、201、301、401・・・タンク
101a、111a、201a、301a、401a・・・開口
102、112、202、302、402・・・エミッタ電極層
102a、202a、302a、402a・・・凸部
102b、202b、302b、402b・・・エミッタ電極端
103、113、203、303、307、403・・・絶縁層
104、114、204、304、404・・・ゲート電極層
104a、204a、304a、404a・・・凸部
104b、204b、304b、404b・・・ゲート電極端
115・・・重なり構造
206・・・炭素系材料層
408・・・突起物
409・・・梁部材
L・・・原料液
L1・・・テーラーコーン
M・・・マスク材
R1、R2、R3・・・レジスト膜
11・・・基板
11a・・・基板の一方の主面
11b・・・基板の他方の主面
12、14・・・金属膜
12a、14a・・・開口部
13A、13B・・・絶縁膜
11c・・・基板の貫通口の内壁面
19・・・突起物

Claims (13)

  1. 電界により、イオン液体、液体金属からイオンを引き出すイオン源であって、
    一端に開口を有するタンクと、
    前記開口を覆うエミッタ電極層と、
    前記エミッタ電極層上に積層された絶縁層と、
    前記絶縁層上に積層されたゲート電極層と、を備え、
    前記エミッタ電極層、前記絶縁層、前記ゲート電極層が、それぞれ、互いに重なる位置において、前記タンクの外側に突出し、先端が尖った中空の凸部を有し、
    それぞれの前記凸部の先端は、互いに連通する開口部を有していることを特徴とするイオン源。
  2. 前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部の突出方向に沿った断面視において、前記エミッタ電極層の凸部の側面と、前記ゲート電極層の凸部の側面とのなす角度が、10度以下であることを特徴とする請求項1に記載のイオン源。
  3. 前記エミッタ電極層の凸部の開口部の内径が、1μm以下であることを特徴とする請求項1または2のいずれかに記載のイオン源。
  4. 前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部が、いずれも、上底と下底とが開放した中空の円錐台の形状を有していることを特徴とする請求項1〜3のいずれか一項に記載のイオン源。
  5. 前記エミッタ電極層の円錐台の底面の直径が、3μm以下であることを特徴とする請求項4に記載のイオン源。
  6. 前記エミッタ電極層の凸部の開口端と、前記ゲート電極層の凸部の開口端との距離が、10μm以下であることを特徴とする請求項1〜5のいずれか一項に記載のイオン源。
  7. 前記エミッタ電極層の前記タンク側に、炭素系材料からなる膜が積層されていることを特徴とする請求項1〜6のいずれか一項に記載のイオン源。
  8. 前記ゲート電極層が、絶縁層を挟んだ多層構造を有しており、いずれの絶縁層も、前記凸部の先端と重なる部分が開口していることを特徴とする請求項1〜7のいずれか一項に記載のイオン源。
  9. 前記エミッタ電極層の凸部、前記絶縁層の凸部、前記ゲート電極層の凸部の重なり構造が、500個/cm以上の面密度で並んでいることを特徴とする請求項1〜8のいずれか一項に記載のイオン源。
  10. 前記エミッタ電極層の凸部の内側に、前記凸部の先端側に頂点を有する円錐状の部材が配されていることを特徴とする請求項1〜9のいずれか一項に記載のイオン源。
  11. 複数の前記凸部の先端が向く側において、複数の前記凸部と対向するように延在する加速電極を有し、
    前記加速電極が、その延在方向と交差する加速電極孔を有し、
    前記加速電極孔と重なる位置ごとに、複数の前記凸部の重なり構造がグループを形成して分布していることを特徴とする請求項1〜10のいずれか一項に記載のイオン源。
  12. それぞれの前記グループと重なる位置に、集束電極が配されていることを特徴とする請求項1〜11のいずれか一項に記載のイオン源。
  13. それぞれの前記グループにおいて、中央の前記凸部の重なり構造側に、周囲の前記凸部の先端の向きが傾いていることを特徴とする請求項1〜12のいずれか一項に記載のイオン源。
JP2017197041A 2016-10-11 2017-10-10 イオン源 Active JP6927493B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016200401 2016-10-11
JP2016200401 2016-10-11

Publications (2)

Publication Number Publication Date
JP2018063946A JP2018063946A (ja) 2018-04-19
JP6927493B2 true JP6927493B2 (ja) 2021-09-01

Family

ID=61967976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197041A Active JP6927493B2 (ja) 2016-10-11 2017-10-10 イオン源

Country Status (1)

Country Link
JP (1) JP6927493B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101938A (ja) * 1984-10-24 1986-05-20 Hitachi Ltd 液体金属イオン源
FR2618604B1 (fr) * 1987-07-22 1989-11-24 Realisations Nucleaires Et Source d'ions de metaux liquides a arc sous vide
JP3550831B2 (ja) * 1995-10-12 2004-08-04 日新電機株式会社 粒子線照射装置
JP2005532166A (ja) * 2001-10-31 2005-10-27 エスアールアイ インターナショナル 微小ノズル構造体を用いて微小量流体を処理し、計量供給するためのシステム及び方法
JP5062761B2 (ja) * 2008-08-28 2012-10-31 独立行政法人産業技術総合研究所 集束電極一体型電界放出素子及びその作製方法
JP5988570B2 (ja) * 2010-12-31 2016-09-07 エフ・イ−・アイ・カンパニー 選択可能な複数の粒子放出器を備える荷電粒子源

Also Published As

Publication number Publication date
JP2018063946A (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
US10685808B2 (en) Method and apparatus for a porous electrospray emitter
EP2606506B1 (en) Ion transfer tube having elongate bore segments
Hill et al. High-throughput ionic liquid ion sources using arrays of microfabricated electrospray emitters with integrated extractor grid and carbon nanotube flow control structures
US8791411B2 (en) Method and apparatus for a porous electrospray emitter
US20130098774A1 (en) Method and Apparatus for a Porous Metal Electrospray Emitter
US10497541B2 (en) Apparatus and method for programmable spatially selective nanoscale surface functionalization
US8847154B2 (en) Ion transfer tube for a mass spectrometer system
KR19990043770A (ko) 탄소 나노튜브를 이용한 전계 방출 소자의 제조 방법
US9196447B2 (en) Self-aligned gated emitter tip arrays
EP3724497B1 (en) Ion thruster
Inoue et al. Fabrication of a high-density emitter array for electrospray thrusters using field emitter array process
US8410678B2 (en) Liquid metal wetting of micro-fabricated charge-emission structures
US20220194633A1 (en) Micro scalable thrusters for adaptive mission profiles in space - ustamps
JP6927493B2 (ja) イオン源
Coffman et al. On the manufacturing and emission characteristics of dielectric electrospray sources
Takao et al. Microfabrication of a massive emitter array for higher thrust density of ionic liquid electrospray thrusters
US10811212B2 (en) Suspended grid structures for electrodes in vacuum electronics
US20220068623A1 (en) Electrospray devices and methods for fabricating electrospray devices
Chinh et al. A Micromachined Ionic Liquid Ion Source with Flow-Controlled Segmented Annular Channels
WO2022046103A1 (en) Electrospray devices and methods for fabricating electrospray devices
Reddy et al. Design and fabrication of field‐emission tips with self‐aligned gates
Tsai et al. Parallel electron beam micro-column with self-aligned carbon nanotube emitters

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6927493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250