JP6926200B2 - Headlight device - Google Patents

Headlight device Download PDF

Info

Publication number
JP6926200B2
JP6926200B2 JP2019514923A JP2019514923A JP6926200B2 JP 6926200 B2 JP6926200 B2 JP 6926200B2 JP 2019514923 A JP2019514923 A JP 2019514923A JP 2019514923 A JP2019514923 A JP 2019514923A JP 6926200 B2 JP6926200 B2 JP 6926200B2
Authority
JP
Japan
Prior art keywords
light
phosphor
light source
excitation light
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514923A
Other languages
Japanese (ja)
Other versions
JPWO2018198201A1 (en
Inventor
平田 浩二
浩二 平田
涼 野村
涼 野村
康彦 國井
康彦 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Publication of JPWO2018198201A1 publication Critical patent/JPWO2018198201A1/en
Priority to JP2021128480A priority Critical patent/JP7228010B2/en
Application granted granted Critical
Publication of JP6926200B2 publication Critical patent/JP6926200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Description

本発明は、青色レーザ光源により蛍光体を励起することで発光色を得る光源装置およびそれを利用したヘッドライト装置に関する。 The present invention relates to a light source device that obtains an emitted color by exciting a phosphor with a blue laser light source and a headlight device using the same.

近年におけるLED等の固体発光素子の著しい発展に伴い、当該固体発光素子を光源として利用した照明装置は、小型・軽量で、かつ、低消費電力で環境保護にも優れた長寿命な光源として、各種の照明器具において広く利用されてきており、車載の電子装置として各種の制御が可能な視認性にも優れた車両用のヘッドライト装置、更には投射型表示装置の光源としても利用されてきている。 With the remarkable development of solid-state light emitting elements such as LEDs in recent years, lighting devices using the solid-state light emitting elements as a light source have become compact and lightweight, and have a long life as a light source with low power consumption and excellent environmental protection. It has been widely used in various lighting fixtures, and has been used as a headlight device for vehicles that can be controlled in various ways as an in-vehicle electronic device and has excellent visibility, and also as a light source for a projection type display device. There is.

例えば、従来、車両用のヘッドライト装置として、ロービーム用LED光源アレイとハイビーム用LED光源アレイと、これらLED光源からのロービーム光とハイビーム光を受けてコリメートする第1の光学ライトガイドと、コリメートされたロービーム光とハイビーム光を拡散パターンの組み合わせとして拡散する第2光学のライトガイド等を備え、これらのアレイや光学ライトガイドをケーシング内に機械的に支持する車両用ヘッドランプは、以下の特許文献1により既に知られている。 For example, conventionally, as a headlight device for a vehicle, a low beam LED light source array, a high beam LED light source array, and a first optical light guide that receives and collimates low beam light and high beam light from these LED light sources are collimated. Vehicle headlamps that include a second optical light guide that diffuses low-beam light and high-beam light as a combination of diffusion patterns and mechanically support these arrays and optical light guides in a casing are described in the following patent documents. Already known by 1.

また、新たな光源装置として特許文献2によれば、レーザ光源を光源として利用し、高効率で小型の固体光源装置が開示されている。具体的には、青色レーザ光により緑色、赤色蛍光体または黄色蛍光体を励起することで励起光である青色レーザ光と合わせて効率良く白色光を得る構成が開示されている。 Further, according to Patent Document 2 as a new light source device, a high-efficiency and compact solid-state light source device using a laser light source as a light source is disclosed. Specifically, a configuration is disclosed in which a green, red phosphor, or yellow phosphor is excited by a blue laser light to efficiently obtain white light in combination with the blue laser light which is the excitation light.

特表2008−532250号公報Special Table 2008-532250 特開2015−121606号公報Japanese Unexamined Patent Publication No. 2015-121606

固体光源であるLEDは、その発光効率の向上に伴って車両用のヘッドランプ装置における発光源として用いることが有効となっている。しかしながら、上述した従来技術、特許文献1では、その光利用効率を向上するための具体的な技術手段については開示されていない。 An LED, which is a solid light source, has become effective to be used as a light emitting source in a headlamp device for a vehicle as its luminous efficiency is improved. However, the above-mentioned prior art and Patent Document 1 do not disclose specific technical means for improving the light utilization efficiency.

一方、プロジェクタ用の光源として特許文献2に示されたように、青色レーザ光で蛍光体を励起することでエタンディユーを小さくして照明系の光利用効率を高めた方式が提案されているが、蛍光体の発光効率を向上する具体的な技術手段については開示されていない。 On the other hand, as shown in Patent Document 2 as a light source for a projector, a method has been proposed in which a phosphor is excited by a blue laser beam to reduce the phosphorescence and improve the light utilization efficiency of the lighting system. No specific technical means for improving the luminous efficiency of the phosphor is disclosed.

そこで、本発明は、モジュール化された面状の照明用光源として容易に利用可能な光源装置としてLED光源、特に青色LEDからの励起光と前記励起光から放射される光の利用効率が高い車両用のヘッドライト装置や青色レーザプロジェクタ用の光源を提供することをその目的とするものである。 Therefore, the present invention has a vehicle having high utilization efficiency of an LED light source, particularly an excitation light from a blue LED and a light emitted from the excitation light, as a light source device that can be easily used as a modularized planar illumination light source. It is an object of the present invention to provide a light source for a headlight device for a blue laser projector or a blue laser projector.

上記の目的を達成するための第一の実施形態として、本発明によれば、車両の一部に取り付けられて当該車両が走行する路面上に照明光を照射する車両用ヘッドライト装置であって、前記照明光を発生する光源装置として、青色LEDを励起光源として蛍光体を励起して白色光を得る。 As a first embodiment for achieving the above object, according to the present invention, a vehicle headlight device which is attached to a part of a vehicle and irradiates an illumination light on a road surface on which the vehicle travels. As a light source device that generates the illumination light, a blue LED is used as an excitation light source to excite a phosphor to obtain white light.

また、第二の実施形態としてのプロジェクタ用光源としては、青色レーザ光を蛍光体に集光して蛍光体を励起し発光点を小さくしてエタンデューを小さくして照明光学系の効率を高める。この時、励起光が集光されて発熱量が大きくても放熱量が大きく、蛍光体内部での光の発散や蛍光体表面での励起光の反射や蛍光光表面の反射を低減することで発光効率の高い光源装置が提供される。 Further, as the light source for the projector as the second embodiment, the blue laser light is focused on the phosphor to excite the phosphor, the emission point is reduced, the ethandue is reduced, and the efficiency of the illumination optical system is improved. At this time, even if the excitation light is condensed and the amount of heat generated is large, the amount of heat radiation is large, and by reducing the divergence of light inside the phosphor, the reflection of the excitation light on the surface of the phosphor, and the reflection on the surface of the fluorescent light. A light source device having high luminous efficiency is provided.

上述した本発明によれば、青色光を励起光として蛍光体を励起する光源の発光効率が高く低コストで製造可能、かつ、小型でかつモジュール化が容易な光源装置を実現でき、低消費電力で、環境保護にも優れ、かつ、長寿命な車両用のヘッドライト装置やプロジェクタ用光源装置が実現できる。 According to the above-described invention, it is possible to realize a light source device that has high luminous efficiency of a light source that excites a phosphor by using blue light as excitation light, can be manufactured at low cost, is compact, and is easy to modularize, and has low power consumption. Therefore, it is possible to realize a headlight device for a vehicle and a light source device for a projector, which are excellent in environmental protection and have a long life.

本発明の光源装置の実施例1としての車両用のヘッドライト装置を自動車の前照灯として適用した全体構成(a)と光源部の斜視図(b)である。It is an overall configuration (a) and the perspective view (b) of the light source part which applied the headlight device for a vehicle as Example 1 of the light source device of this invention as a headlight of an automobile. 本発明の光源装置の実施例1としての車両用のヘッドライト装置の全体構成(a)とその光源部を示す断面図(b)である。It is sectional drawing (b) which shows the whole structure (a) of the headlight device for a vehicle as Example 1 of the light source device of this invention, and the light source part thereof. 本発明の光源装置の実施例2としてのプロジェクタの全体構成を示す図である。It is a figure which shows the whole structure of the projector as Example 2 of the light source apparatus of this invention. プロジェクタの照明光学系の光源部の第一の実施例である。This is the first embodiment of the light source portion of the illumination optical system of the projector. プロジェクタの照明光学系の光源部の第二の実施例である。It is the second embodiment of the light source part of the illumination optical system of a projector. プロジェクタの照明光学系の光源部の第一の実施において全反射レンズをリフレクタとして利用した変形例を示す図である。It is a figure which shows the modification which used the total reflection lens as a reflector in the 1st implementation of the light source part of the illumination optical system of a projector. 励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部の原理を示す詳細断面図である。It is a detailed cross-sectional view which shows the principle of the light source part by this invention which shows the example of the excitation light reflection type in which the excitation light is incident from the same direction as the emission direction of fluorescent light. 励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部の原理を示す詳細断面図である。It is a detailed cross-sectional view which shows the principle of the light source part by this invention which shows the example of the excitation light transmission type which incidents the excitation light from the direction different from the emission direction of fluorescent light. 励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部を示す詳細断面図である。It is a detailed cross-sectional view which shows the light source part by this invention which shows the example of the excitation light reflection type in which the excitation light is incident from the same direction as the emission direction of fluorescent light. 励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部を示す詳細断面図である。It is a detailed cross-sectional view which shows the light source part by this invention which shows the example of the excitation light transmission type which incidents the excitation light from the direction different from the emission direction of fluorescent light. 従来技術による励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部の原理を示す詳細断面図である。It is a detailed cross-sectional view which shows the principle of the light source part by this invention which shows the example of the excitation light reflection type which incidents the excitation light by the prior art from the same direction as the emission direction of fluorescence light. 従来技術による励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部の原理を示す詳細断面図である。It is a detailed cross-sectional view which shows the principle of the light source part by this invention which shows the example of the excitation light transmission type which incidents the excitation light by the prior art from the direction different from the emission direction of fluorescent light. 蛍光体への励起光の入射角と反射角の関係を示す図である。It is a figure which shows the relationship between the incident angle and the reflection angle of the excitation light to a phosphor. P偏光とS偏光に対する屈折率1.5の物質に対する反射率の角度特性の一例を示す図である。It is a figure which shows an example of the angular characteristic of the reflectance with respect to the substance of the refractive index 1.5 with respect to P-polarized light and S-polarized light. 緑蛍光光の青励起光に対する変換効率の励起光入射角度特性を示す特性図である。It is a characteristic diagram which shows the excitation light incident angle characteristic of conversion efficiency with respect to blue excitation light of green fluorescence light. 励起光の偏光光別蛍光体層への入射角度依存性を示す特性図である。It is a characteristic figure which shows the incident angle dependence of the excitation light to the phosphor layer by polarized light. 蛍光光の出力に対する励起光の角度依存性を示す特性図である。It is a characteristic diagram which shows the angle dependence of the excitation light with respect to the output of fluorescent light. 本発明の実施例である蛍光体への励起光入射角度依存性を示す特性図である。It is a characteristic figure which shows the excitation light incident angle dependence to the phosphor which is an Example of this invention. 蛍光体層への励起光偏光方向別の入射角度に対する光変換効率を示す図である。It is a figure which shows the light conversion efficiency with respect to the incident angle for each excitation light polarization direction to a phosphor layer. 蛍光体層への励起光入射角度に対する偏光方向による光変換効率の比率を示す図である。It is a figure which shows the ratio of the light conversion efficiency by the polarization direction with respect to the angle of incidence of excitation light to a phosphor layer.

以下、本発明の実施の形態について、添付の図面を参照しながら、詳細に説明する。なお、本発明は以下の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための図において、同一の機能を有するものは、同一の符号を付けて示し、また、その繰り返しの説明については省略する場合もある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following description, and various modifications and modifications by those skilled in the art can be made within the scope of the technical idea disclosed in the present specification. Further, in the drawings for explaining the present invention, those having the same function are shown with the same reference numerals, and the repeated description thereof may be omitted.

まず、図1には、本発明の一実施の形態になる、固体発光素子を用いた車両用ヘッドライト装置を搭載した車両1を、その斜視図およびその一部拡大図により示す。図1(a)は、本発明の車両用のヘッドライト装置1000を搭載した車両1の全体を示しており、図1(b)は、当該車両のヘッドライト装置部分の拡大図を示している。 First, FIG. 1 shows a vehicle 1 equipped with a vehicle headlight device using a solid-state light emitting element, which is an embodiment of the present invention, with a perspective view thereof and a partially enlarged view thereof. FIG. 1A shows the entire vehicle 1 equipped with the headlight device 1000 for the vehicle of the present invention, and FIG. 1B shows an enlarged view of the headlight device portion of the vehicle. ..

図2(a)は、上記図1(b)に示したヘッドライト装置1000の側面断面であり、図2(b)は、その光源部分の構成断面を示している。加えて、図3は、本発明の一実施例による光源装置を光源として採用する、即ち、上記のヘッドライト装置の光源装置を利用して車両の前方に車両の進行方向などを含めた情報を投射して表示する車両用のプロジェクタの全体構造を示す図である。 FIG. 2A is a side cross section of the headlight device 1000 shown in FIG. 1B, and FIG. 2B shows a constituent cross section of the light source portion thereof. In addition, FIG. 3 employs the light source device according to the embodiment of the present invention as the light source, that is, uses the light source device of the headlight device to provide information including the traveling direction of the vehicle in front of the vehicle. It is a figure which shows the whole structure of the projector for a vehicle which projects and displays.

(実施例1)
図1に示すヘッドライト装置1000は、これらの図にも示すように、基本的には、光源装置である可視光照明ユニット10と、当該照明ユニットからの出射照明光を車両1の前方空間、および車両1が走行する路面上に照射するための光学系であり、いわゆる、プロジェクタレンズ51とから構成されている。更には、プロジェクタレンズ51に替えて、反射ミラー60を用いて投射光学性を構成しても良く、あるいは、図2(a)にも示すように、プロジェクタレンズ51と反射ミラー60の双方から構成することで路面への照射光の分布を高精度に制御し、ヘッドライト装置全体の容積を低減してもよい。
(Example 1)
As shown in these figures, the headlight device 1000 shown in FIG. 1 basically transmits the visible light lighting unit 10 which is a light source device and the illumination light emitted from the lighting unit to the space in front of the vehicle 1. It is an optical system for irradiating the road surface on which the vehicle 1 travels, and is composed of a so-called projector lens 51. Further, the projection optics may be configured by using the reflection mirror 60 instead of the projector lens 51, or as shown in FIG. 2A, it is composed of both the projector lens 51 and the reflection mirror 60. By doing so, the distribution of the irradiation light on the road surface may be controlled with high accuracy, and the volume of the entire headlight device may be reduced.

そして、これらの図からも明らかなように、本発明になるヘッドライト装置1000では、可視光照明ユニット10からの照明光は、励起光源12からの励起光を蛍光体に照射することで蛍光光を得る構成となっている。光源装置では、一例として、白色光を得る場合には、図2(b)に示すように、励起光源12からの励起光である青色光束13により励起された蛍光体19は黄色または緑と赤の混合色などを発光し、励起光の青色と混色することで白色の光を得ることができる。即ち、白色に対して前記励起光とは補色の関係になる波長領域の光束を発光することが好ましい。得られた照射光束は、図2(a)に示されたように反射ミラー60により所定の方向に折り曲げられる。このことにより、反射面の形状自由度により照射方向、強度の更なる精密な制御が可能になる。 As is clear from these figures, in the headlight device 1000 of the present invention, the illumination light from the visible light illumination unit 10 is fluorescent light by irradiating the phosphor with the excitation light from the excitation light source 12. It is configured to obtain. In the light source device, for example, when white light is obtained, as shown in FIG. 2B, the phosphor 19 excited by the blue light beam 13 which is the excitation light from the excitation light source 12 is yellow or green and red. White light can be obtained by emitting a mixed color of the above and mixing it with the blue color of the excitation light. That is, it is preferable to emit a luminous flux in a wavelength region having a complementary color relationship with the excitation light with respect to white. The obtained irradiation light flux is bent in a predetermined direction by the reflection mirror 60 as shown in FIG. 2 (a). This enables more precise control of the irradiation direction and intensity depending on the degree of freedom in the shape of the reflecting surface.

続いて、以下には、上述した本発明になるヘッドライト装置1000の各構成要件の詳細について説明する。 Subsequently, the details of each configuration requirement of the headlight device 1000 according to the present invention described above will be described below.

<光源ユニット>
本発明の光源装置である可視光照明ユニット10は、白色光を得るために、励起光源12として、後にも述べる1つまたは複数の固体光源である半導体光源素子LED(Light Emitting Diode)やLASER(Light Amplification by Stimulated Emission of Radiation)を用い、黄色または緑と赤色を発光する蛍光体19を励起して得られる光と励起光を混色することで所望の白色光を得るように構成されている。図2(b)に図示したように、混合色光の出射方向から照射して蛍光光と励起光を反射面17で反射させて所望の方向に出射させる方式(以下「反射方式」と記載)と、蛍光体19を配置した溝部の底面に励起光源を配置する方式(図示せず、以下「透過方式」と記載)があるが、ヘッドライト装置全体をコンパクトにするために透過方式が採用される場合が多い。
<Light source unit>
In order to obtain white light, the visible light illumination unit 10 which is a light source device of the present invention has a semiconductor light source element LED (Light Emitting Diode) or LASER (Light Emitting Diode) which is one or a plurality of solid light sources described later as an excitation light source 12. Light Amplification by Stimulated Emission of Radiation) is used to excite the phosphor 19 that emits yellow or green and red, and the light obtained by exciting the excitation light is mixed with the excitation light to obtain a desired white light. As shown in FIG. 2B, a method of irradiating from the emission direction of mixed color light, reflecting fluorescent light and excitation light on the reflecting surface 17 and emitting them in a desired direction (hereinafter referred to as “reflection method”). , There is a method of arranging an excitation light source on the bottom surface of the groove in which the phosphor 19 is arranged (not shown, hereinafter referred to as "transmission method"), but a transmission method is adopted in order to make the entire headlight device compact. In many cases.

以下、図2(b)に示した反射方式を中心に、かつ、説明の都合上、励起光として青色レーザ光を用いた場合の方式について、その構成および得られる効果について説明する。 Hereinafter, the configuration and the effect obtained will be described with respect to the method when the blue laser light is used as the excitation light, focusing on the reflection method shown in FIG. 2B and for convenience of explanation.

光源ユニットから効率良く光源光を得るためには、以下に示し3つの要因を低減することが有効であることを発明者等は実験により導き出した。
(1)励起光源12からの励起光13を効率良く蛍光体に照射する。
(2)蛍光体19により発生した蛍光を効率良く所望の方向に出射させる。
(3)蛍光体の発光効率を高める。
The inventors have derived from experiments that it is effective to reduce the following three factors in order to efficiently obtain the light source light from the light source unit.
(1) The phosphor is efficiently irradiated with the excitation light 13 from the excitation light source 12.
(2) The fluorescence generated by the phosphor 19 is efficiently emitted in a desired direction.
(3) Increase the luminous efficiency of the phosphor.

上述した(1)を実現するためには、蛍光体19を含む蛍光体層に励起光束13を照射する。この時、蛍光体層表面での反射を低減するために表面に反射防止膜21を設ける。更に、励起光13は蛍光体層への入射角と反射角の関係を示した図13と同じ励起光の入力エネルギーに対して、蛍光光の出力を実験により求めた。結果は図19に示すようにP偏光を用いた方が、S偏光より光変換効率(出射光エネルギー/入射光エネルギー)が高く光を取り出せることが判った。図20はP偏光を用いた場合の効率とS偏光を用いた場合の光変換効率の比を励起光の入射角度をパラメータとして示したものである。P偏光の方が高効率であり、入射角30度付近が最も効率が高いことが判った。これは、図14に示すP波とS波の違いにより界面での反射率が異なることと、以下で詳解する蛍光体の冷却による発光効率の向上の両者が原因であった。 In order to realize the above-mentioned (1), the phosphor layer containing the phosphor 19 is irradiated with the excitation luminous flux 13. At this time, an antireflection film 21 is provided on the surface in order to reduce reflection on the surface of the phosphor layer. Further, for the excitation light 13, the output of the fluorescence light was experimentally determined for the same input energy of the excitation light as in FIG. 13, which shows the relationship between the angle of incidence on the phosphor layer and the angle of reflection. As a result, as shown in FIG. 19, it was found that the use of P-polarized light has a higher light conversion efficiency (emission light energy / incident light energy) than S-polarized light and can extract light. FIG. 20 shows the ratio of the efficiency when P-polarized light is used and the light conversion efficiency when S-polarized light is used, with the incident angle of the excitation light as a parameter. It was found that P-polarized light has higher efficiency, and the most efficient is around an incident angle of 30 degrees. This was due to both the difference in reflectance at the interface due to the difference between the P wave and the S wave shown in FIG. 14 and the improvement in luminous efficiency by cooling the phosphor, which will be described in detail below.

更に、発明者らは、蛍光体層の構成を図11および図12に示す蛍光体19とバインダ23の間に空隙が存在する従来技術による構成に替えて、図7および図8に示すような、空隙の密度を大幅に低減するため、蛍光体19とバインダ23を焼成するなどを採用することにより、蛍光体と真空(または空気)界面での反射を防止する構造とした。この時、使用した蛍光体としては、緑発光蛍光体としてLuAG:Ce(屈折率1.85)、黄色蛍光体としてYAG:Ce(屈折率1.82)を使用し、また、バインダとしては、透明性と熱伝導率が高い酸化アルミ(アルミナ)(屈折率1.76)と酸化チタン(屈折率2.5)を使用して比較検討した。この結果、蛍光体19とバインダ23の屈折率差が小さい酸化アルミをバインダ23として使用した場合の方が、蛍光体内部での散乱光21の発生が低減される従来技術による空隙が存在する方法に比べて、光出力が6%以上改善する結果を得た。即ち、バインダとしては、前記蛍光体との屈折率差が0.2以下の部材を用いることが好ましいことが分かった。 Further, the inventors have changed the structure of the phosphor layer to the structure according to the prior art in which a gap exists between the phosphor 19 and the binder 23 shown in FIGS. 11 and 12, as shown in FIGS. 7 and 8. In order to significantly reduce the density of voids, the structure is such that the phosphor 19 and the binder 23 are fired to prevent reflection at the interface between the phosphor and the vacuum (or air). At this time, as the phosphor used, LuAG: Ce (refractive index 1.85) was used as the green phosphor, YAG: Ce (refractive index 1.82) was used as the yellow phosphor, and the binder was used. A comparative study was carried out using aluminum oxide (alumina) (refractive index 1.76) and titanium oxide (refractive index 2.5), which have high transparency and thermal conductivity. As a result, when aluminum oxide having a small difference in refractive index between the phosphor 19 and the binder 23 is used as the binder 23, the generation of scattered light 21 inside the phosphor is reduced. The result was that the light output was improved by 6% or more. That is, it was found that it is preferable to use a member having a refractive index difference of 0.2 or less from the phosphor as the binder.

次に、上述した(2)を実現するため、図9および図10にも示すように蛍光体層を設ける構造体15、18に溝部分16を設け、当該溝部分16の開口形状が図中の断面方向では奥行き方向に向かって一部または全部が小さくなる断面形状(いわゆる、「すり鉢状」)とする。この時、構造体18と蛍光体19の接触面には90%以上の可視光線反射率を有する反射膜17、20を設けることで所望の方向に得られた光を出射することができる。また構造体18に蛍光体19とバインダを焼成すると冷却時に収縮が発生する。この結果、反射面と蛍光体層の間に空気または真空の界面が発生するが、蛍光体層の平均屈折率が1.75程度になるため一部の光は全反射して所望の方向に出射するので、以降の光学系に対して効率良く光を取り出すことができる。 Next, in order to realize (2) described above, a groove portion 16 is provided in the structures 15 and 18 provided with the phosphor layer as shown in FIGS. 9 and 10, and the opening shape of the groove portion 16 is shown in the drawing. In the cross-sectional direction of, a cross-sectional shape (so-called “mortar-shaped”) in which part or all of the portion becomes smaller in the depth direction is adopted. At this time, the light obtained in a desired direction can be emitted by providing the reflective films 17 and 20 having a visible light reflectance of 90% or more on the contact surface between the structure 18 and the phosphor 19. Further, when the phosphor 19 and the binder are fired on the structure 18, shrinkage occurs during cooling. As a result, an air or vacuum interface is generated between the reflecting surface and the phosphor layer, but since the average refractive index of the phosphor layer is about 1.75, some light is totally reflected and in a desired direction. Since it emits light, light can be efficiently extracted from the subsequent optical system.

最後に、上述した(3)を実現するための技術手段について、発明者らは励起光を照射した状態での蛍光体温度と光変換効率の関係を調査し、蛍光体の温度上昇により光変換効率が低下することを突き止めた。そこで蛍光体温度を低減するために上述した構造体を、熱伝導率の高い金属とし、かつ、その溝部分の反射面には金属性の反射膜でも高い反射率を有するアルミまたは銀合金の反射膜を設けることで光変換効率を8%以上向上させた。この時、蛍光体19と酸化アルミ製のバインダ23を焼成し熱的に結合することで励起光による蛍光体の温度上昇が軽減し、高効率化を実現した。 Finally, regarding the technical means for realizing the above-mentioned (3), the inventors investigated the relationship between the phosphor temperature and the light conversion efficiency in the state of being irradiated with the excitation light, and photoconverted by increasing the temperature of the phosphor. We have found that the efficiency is reduced. Therefore, in order to reduce the phosphor temperature, the above-mentioned structure is made of a metal having a high thermal conductivity, and the reflective surface of the groove portion reflects the aluminum or silver alloy having a high reflectance even with a metallic reflective film. By providing the film, the light conversion efficiency was improved by 8% or more. At this time, by firing the phosphor 19 and the binder 23 made of aluminum oxide and thermally bonding them, the temperature rise of the phosphor due to the excitation light was reduced, and high efficiency was realized.

また、温度上昇を低減するもう1つの手段として励起光を蛍光体層に斜めから照射することで蛍光体層に入射する励起光のエネルギー密度を低減し受熱後の熱伝導効率を高めることで、励起光および蛍光光の光出力を向上できることを見出した。結果を図17に示す。横軸は蛍光体層に対する励起光線の入射角度、縦軸は励起光と蛍光光の出力を示したものである。また、図18の横軸は蛍光体層に対する励起光線の入射角度を、縦軸には励起光が蛍光体層に垂直入射した場合の出力を、相対値1.00とした場合の励起光と蛍光光の出力を比較して示したもので、上述したように、励起光を蛍光体層に斜めから照射することで蛍光体層に入射する励起光のエネルギー密度を低減し、結果として、受熱後の熱伝導効率を高めることで励起光および蛍光光の光出力が向上した。上記の結果から、特に、励起光線としては、P偏光光であり、また、その入射角度は、40度から70度の範囲での入射するように構成することが好ましい。 In addition, as another means of reducing the temperature rise, by irradiating the phosphor layer with excitation light at an angle, the energy density of the excitation light incident on the phosphor layer is reduced and the heat conduction efficiency after receiving heat is increased. We have found that the light output of excitation light and fluorescence light can be improved. The results are shown in FIG. The horizontal axis shows the angle of incidence of the excitation light on the phosphor layer, and the vertical axis shows the output of the excitation light and the fluorescent light. Further, the horizontal axis of FIG. 18 is the angle of incidence of the excitation light beam on the phosphor layer, and the vertical axis is the excitation light when the output when the excitation light is vertically incident on the phosphor layer is set to a relative value of 1.00. The output of the fluorescent light is compared and shown. As described above, the excitation light is obliquely irradiated to the phosphor layer to reduce the energy density of the excitation light incident on the phosphor layer, and as a result, heat is received. By increasing the heat conduction efficiency later, the light output of the excitation light and the fluorescence light was improved. From the above results, it is particularly preferable that the excitation ray is P-polarized light, and the incident angle thereof is configured to be incident in the range of 40 degrees to 70 degrees.

以上、本発明の光源装置として可視光照明ユニット10は、白色光を得るために、励起光源12として、後にも述べる1つまたは複数の固体光源である半導体光源素子LED(Light Emitting Diode)やLASER(Light Amplification by Stimulated Emission of Radiation)を用い、黄色または緑と赤色を発光する蛍光体19を励起して得られた光と励起光を混色することで所望の白色光を得るように構成されたものとして、更には、図2(b)に図示したように、実施例について、混合色の出射方向から照射して蛍光光と励起光を反射面17、20で反射させ所望の方向に出射させる方式(以下「反射方式」と記載)について説明した。しかしながら、本発明はそれらに限定されることなく、図8および図10に示すように、蛍光体19を配置した溝部の底面に励起光源を配置する透過方式においては、励起光束φ2の入射側と蛍光光と励起光の一部が混色され出射する光出射面にも反射防止膜を設けることより、反射損出を低減している。なお、これらの例では、その他構成上の差はなく、同様な構成で同様な効果が得られることは言うまでもない。 As described above, as the light source device of the present invention, the visible light illumination unit 10 is a semiconductor light source element LED (Light Emitting Diode) or LASER which is one or a plurality of solid light sources described later as an excitation light source 12 in order to obtain white light. (Light Amplification by Stimulated Emission of Radiation) was used to excite a phosphor 19 that emits yellow or green and red, and the light obtained by exciting the excitation light was mixed with the excitation light to obtain a desired white light. Further, as shown in FIG. 2B, in the embodiment, the light is irradiated from the emission direction of the mixed color, and the fluorescent light and the excitation light are reflected by the reflecting surfaces 17 and 20 and emitted in a desired direction. The method (hereinafter referred to as "reflection method") has been described. However, the present invention is not limited thereto, and as shown in FIGS. 8 and 10, in the transmission method in which the excitation light source is arranged on the bottom surface of the groove in which the phosphor 19 is arranged, the excitation light beam φ2 is on the incident side. Reflection loss is reduced by providing an antireflection film on the light emitting surface where a part of the fluorescent light and the excitation light are mixed and emitted. In these examples, there is no other difference in configuration, and it goes without saying that the same effect can be obtained with the same configuration.

(実施例2)
<プロジェクタ>
以下、図3を参照にしながら本発明の他の実施例としての光源ユニットを光源として採用した車両用のプロジェクタについて述べる。なおこの図はプロジェクタの全体構成を示しており、特に、映像信号に応じた光強度変調を、いわゆる、透過型液晶パネルにより行なう方式について説明する。同図において各色光の光路に配置されている要素を区別するために符号の後ろに色光を示すR,G,Bを添えて示し区別の必要がない場合には色光の添え字を省略する。加えて偏光方向を明確にするために同図においては右手系の直交座標系を用いて以降説明する。即ち、光軸101をZ軸としZ軸に直交する面内で図3の紙面に平行な軸をY軸とし、図の紙面裏から表に向かう軸をX軸としY軸に平行な面をY方向、X軸に平行な方向をX方向と記載する。更に偏光方向を区別するために偏光方向がX方向の偏光光をX偏光光と偏光方向がY方向の偏光光をY偏光光と以下記載する。
(Example 2)
<Projector>
Hereinafter, a projector for a vehicle that employs a light source unit as another embodiment of the present invention as a light source will be described with reference to FIG. Note that this figure shows the overall configuration of the projector, and in particular, a method of performing light intensity modulation according to a video signal by a so-called transmissive liquid crystal panel will be described. In the figure, in order to distinguish the elements arranged in the optical path of each colored light, R, G, and B indicating the colored light are added after the reference numerals, and the subscripts of the colored light are omitted when it is not necessary to distinguish them. In addition, in order to clarify the polarization direction, the right-handed Cartesian coordinate system will be used in the figure below. That is, the optical axis 101 is the Z axis, the axis parallel to the paper surface of FIG. 3 in the plane orthogonal to the Z axis is the Y axis, the axis from the back surface to the front side of the figure is the X axis, and the plane parallel to the Y axis is the X axis. The Y direction and the direction parallel to the X axis are referred to as the X direction. Further, in order to distinguish the polarization direction, the polarized light having the polarization direction of X is referred to as X-polarized light and the polarized light having the polarization direction of Y is referred to as Y-polarized light.

図3においてプロジェクタの光学系は照明光学系100と光分離光学系30、リレー光学系40、3つのフィールドレンズ29(29R、29G、29B)と3つの透過型の液晶パネル60(60R、60G、60B)と光合成手段である光合成プリズム200と投写手段である投写レンズ300を備えている。液晶パネル60は光入射側に入射側偏光板50(50R、50G、50B)を備え、光出射側に出射側偏光板80(80R、80G、80B)を備えている。これらの光学素子は基体550に装着されて光学ユニット500を構成する。また、光学ユニット500は、液晶パネル60を駆動する駆動回路570、液晶パネル60などを冷却する冷却用ファン580、各回路に電力を供給する電源回路560と共に図示されない筐体に搭載され、プロジェクタを構成する。 In FIG. 3, the optical systems of the projector are an illumination optical system 100, an optical separation optical system 30, a relay optical system 40, three field lenses 29 (29R, 29G, 29B), and three transmissive liquid crystal panels 60 (60R, 60G, 60B), a photosynthetic prism 200 as a photosynthetic means, and a projection lens 300 as a projection means are provided. The liquid crystal panel 60 is provided with an incident side polarizing plate 50 (50R, 50G, 50B) on the light incident side and an emitting side polarizing plate 80 (80R, 80G, 80B) on the light emitting side. These optical elements are mounted on the substrate 550 to form the optical unit 500. Further, the optical unit 500 is mounted in a housing (not shown) together with a drive circuit 570 for driving the liquid crystal panel 60, a cooling fan 580 for cooling the liquid crystal panel 60, and a power supply circuit 560 for supplying electric power to each circuit. Constitute.

以下、上述したプロジェクタを構成する各部の詳細を説明する。映像表示素子である液晶パネル60を均一に照射する照明光学系100は、上述した略白色光を出射する固体発光素子から成る可視光照明ユニット10とオプチカルインテグレータを構成する第一および第二のレンズアレイ21、22と偏光変換素子25と集光レンズ(重畳レンズ)27とを含んで構成される。 Hereinafter, details of each part constituting the above-mentioned projector will be described. The illumination optical system 100 that uniformly illuminates the liquid crystal panel 60, which is an image display element, includes the visible light illumination unit 10 including the solid-state light emitting element that emits substantially white light described above, and the first and second lenses constituting the optical integrator. It includes arrays 21 and 22, a polarization conversion element 25, and a condenser lens (superimposed lens) 27.

上記照明光学系100からの略白色光を3原色光に光分解する光分解光学系30は2つのダイクロイックミラー31、32と光路の方向を変える反射ミラー33を含んでいる。また、リレー光学系40はフィールドレンズである第1リレーレンズ41とリレーレンズである第2リレーレンズ42と光路折り返しミラー45、46を含んで構成されている。 The photodecomposition optical system 30 that photo-resolves the substantially white light from the illumination optical system 100 into three primary color lights includes two dichroic mirrors 31 and 32 and a reflection mirror 33 that changes the direction of the optical path. Further, the relay optical system 40 includes a first relay lens 41 which is a field lens, a second relay lens 42 which is a relay lens, and optical path folding mirrors 45 and 46.

このような構成において、固体発光素子から成る光源ユニット10からは図3に破線で示す光軸101に略平行な光束が射出される。そして、光源ユニット10から出射された光は、偏光変換インテグレータに入射する。この偏光変換インテグレータは第1のアレイレンズ21と第2のアレイレンズ22からなる均一照明を実現するオプチカルインテグレータと、光の偏光方向を所定の偏光方向に揃えて直線偏光光に変換するための偏光ビームスプリッタアレイからなる偏光変換素子25とを含んでいる。即ち、上述した偏光変換インテグレータでは、上記第2のアレイレンズ22からの光は、偏光変換素子25により、所定の偏光方向、例えば直線偏光光のX偏光に揃えられる。 In such a configuration, a light source unit 10 composed of a solid-state light emitting element emits a light flux substantially parallel to the optical axis 101 shown by a broken line in FIG. Then, the light emitted from the light source unit 10 is incident on the polarization conversion integrator. This polarization conversion integrator includes an optical integrator that realizes uniform illumination consisting of a first array lens 21 and a second array lens 22, and polarization for aligning the polarization directions of light with a predetermined polarization direction and converting the light into linearly polarized light. It includes a polarization conversion element 25 composed of a beam splitter array. That is, in the above-mentioned polarization conversion integrator, the light from the second array lens 22 is aligned with a predetermined polarization direction, for example, X-polarized light of linearly polarized light by the polarization conversion element 25.

そして、第1のアレイレンズ21の各レンズセルの投影像は、それぞれ集光レンズ27、フィールドレンズ29G、29B、リレー光学系40、フィールドレンズ29Rにより各液晶パネル60上に重ね合わせられる。このようにして、固体光源からの偏光方向がランダムな光を所定偏光方向(ここではX偏光光)に揃えながら、液晶パネルを均一に照明する。 Then, the projected image of each lens cell of the first array lens 21 is superposed on each liquid crystal panel 60 by the condenser lens 27, the field lenses 29G and 29B, the relay optical system 40, and the field lens 29R, respectively. In this way, the liquid crystal panel is uniformly illuminated while aligning the light from the solid-state light source with a random polarization direction in a predetermined polarization direction (here, X-polarized light).

一方、光分離光学系30は照明光学系100から射出された略白色光をB光(青色帯域の光)と、G光(緑色帯域の光)とR光(赤色帯域の光)に分離して、それぞれ対応する液晶パネル60(60R、60G、60B)に向かうそれぞれの光路(B光路、G光路、R光路)に導光する。即ち、ダイクロイックミラー31により反射したB光は反射ミラー33で反射してフィールドレンズ29B、入射側偏光版50Bを通過してB光用の液晶パネル60Bに入射する(B光路)。また、G光およびR光はダイクロイックミラー31を透過し、ダイクロイックミラー32によりG光とR光に分離される。G光はダイクロミラー32を反射してフィールドレンズ29G、入射側偏光版50Gを通じて、G光用液晶パネル60Gに入射する(G光路)。R光はイクロミラー32を透過してリレー光学系40に入射する。リレー光学系40に入射したR光はフィールドレンズの第1リレーレンズ41によって反射ミラー45を経由して、第2リレーレンズ42の近傍に集光(収束)し、フィールドレンズ29Rに向けて発散する。そしてフィールドレンズ29Rで光軸にほぼ平行とされ入射側偏光板50Rを通過してR光用の液晶パネル60Rに入射する(R光路)。 On the other hand, the optical separation optical system 30 separates substantially white light emitted from the illumination optical system 100 into B light (blue band light), G light (green band light), and R light (red band light). Then, light is guided to each optical path (B optical path, G optical path, R optical path) toward the corresponding liquid crystal panel 60 (60R, 60G, 60B). That is, the B light reflected by the dichroic mirror 31 is reflected by the reflection mirror 33, passes through the field lens 29B and the incident side polarizing plate 50B, and is incident on the liquid crystal panel 60B for B light (B optical path). Further, the G light and the R light pass through the dichroic mirror 31 and are separated into the G light and the R light by the dichroic mirror 32. The G light reflects off the dichroic mirror 32 and enters the G light liquid crystal panel 60G through the field lens 29G and the incident side polarizing plate 50G (G optical path). The R light passes through the icromirror 32 and enters the relay optical system 40. The R light incident on the relay optical system 40 is focused (converged) in the vicinity of the second relay lens 42 via the reflection mirror 45 by the first relay lens 41 of the field lens and diverged toward the field lens 29R. .. Then, the field lens 29R is made substantially parallel to the optical axis, passes through the incident side polarizing plate 50R, and is incident on the liquid crystal panel 60R for R light (R optical path).

光強度変調部を構成する各液晶パネル60(60R、60G、60B)は駆動回路570で駆動されX方向を透過軸とする入射側偏光板50(50R、50G、50B)により偏光度が高められ、光分離光学系30から入射するX偏光の色光をカラー映像に応じて変調してY偏光の光学像を形成する。 Each liquid crystal panel 60 (60R, 60G, 60B) constituting the light intensity modulator is driven by a drive circuit 570, and the degree of polarization is enhanced by an incident side polarizing plate 50 (50R, 50G, 50B) having a transmission axis in the X direction. , The X-polarized color light incident from the optical separation optical system 30 is modulated according to the color image to form a Y-polarized optical image.

上述したようにして形成された各色光のY偏光の光学像は、出射偏光板80(80R、80G、80B)に入射する。入射側偏光版80R、80G、80BはY方向を透過軸とする偏光版でこれにより不要な偏光成分(ここではX偏光光)が除去され、コントラストが向上する。以上述べた方法で形成された各色光の光学像は光合成手段である合成プリズム200に入射して合成されカラー映像を得て投写レンズ300により例えば走行路面上に拡大投写される。 The Y-polarized optical image of each color light formed as described above is incident on the exit polarizing plate 80 (80R, 80G, 80B). The incident-side polarized plates 80R, 80G, and 80B are polarized plates having a transmission axis in the Y direction, whereby unnecessary polarization components (here, X-polarized light) are removed and the contrast is improved. The optical image of each color light formed by the above method is incident on a synthetic prism 200, which is a photosynthetic means, and is synthesized to obtain a color image, which is magnified and projected by a projection lens 300, for example, on a traveling road surface.

<プロジェクタ用光源ユニット>
図4は、本発明の実施形態の1つである固体光源装置の他の構成として、特に、上記車両用のプロジェクタの光源ユニット10としての原理を説明するための図である。当該ユニット10は固体素子の発光源である青色帯域(B色)の光を発光する半導体レーザ素子または発光ダイオードを略円板状の基板上に複数配列した半導体レーザ素子群110と、上記半導体レーザ素子群110のレーザ光出射面に対向して略45度の角度で傾斜して配置された例えば放物面を備えた反射鏡(リフレクタ)130と、当該反射鏡の焦点(F)近傍において回転する円盤(ホイール)部材140と、その部材を所望の回転速度で回転駆動する駆動手段、例えば電動モータ150を備えている。
<Light source unit for projector>
FIG. 4 is a diagram for explaining the principle of the light source unit 10 of the projector for a vehicle as another configuration of the solid-state light source device which is one of the embodiments of the present invention. The unit 10 includes a semiconductor laser element group 110 in which a plurality of semiconductor laser elements or light emitting diodes that emit light in the blue band (B color), which is a light emitting source of a solid element, are arranged on a substantially disk-shaped substrate, and the semiconductor laser. A reflector 130 having, for example, a parabolic surface, which is arranged at an angle of about 45 degrees facing the laser light emitting surface of the element group 110, and rotates in the vicinity of the focal point (F) of the reflecting mirror. It includes a disk (wheel) member 140, and a driving means for rotationally driving the member at a desired rotational speed, for example, an electric motor 150.

図5を基に、本願発明の第2の実施例としての光源ユニットについて説明する。第一の反射鏡(リフレクタ)130を第二の反射鏡(リフレクタ)130’よりも小径として構成したもので、第一の反射鏡(リフレクタ)130から白色光を得ることができる。円盤(ホイール)部材140の外周部には半導体レーザ素子群110からの励起光が入射する。上記焦点Fの近傍から発光する蛍光光が反射鏡(リフレクタ)130の反射面131に到達しない光を反射するための球面リフレクタ149を設ける。このような球面リフレクタ149によれば上記焦点Fの近傍から発光する蛍光光のほぼ全部を反射鏡(リフレクタ)130を介して出力することが可能となることから光の利用効率を高めることができ、また、その基材142’の出射側表面(上面)には図9および図10に示した断面がすり鉢状の微細な凹部を設けることで蛍光体19からの出射光の出射方向を制御でき、後段の照明光学系(図示せず)の光捕捉率を高めることでエネルギー変換効率を向上する。 A light source unit as a second embodiment of the present invention will be described with reference to FIG. The first reflector (reflector) 130 is configured to have a smaller diameter than the second reflector (reflector) 130', and white light can be obtained from the first reflector (reflector) 130. Excitation light from the semiconductor laser element group 110 is incident on the outer peripheral portion of the disk (wheel) member 140. A spherical reflector 149 is provided to reflect the light emitted from the vicinity of the focal point F so that the fluorescent light does not reach the reflecting surface 131 of the reflecting mirror (reflector) 130. According to such a spherical reflector 149, almost all of the fluorescent light emitted from the vicinity of the focal point F can be output via the reflector 130, so that the light utilization efficiency can be improved. Further, the emission direction of the emitted light from the phosphor 19 can be controlled by providing a fine recess having a mortar-shaped cross section shown in FIGS. 9 and 10 on the emitting side surface (upper surface) of the base material 142'. , The energy conversion efficiency is improved by increasing the light capture rate of the illumination optical system (not shown) in the subsequent stage.

以上の説明では、反射鏡(リフレクタ)からその焦点F近傍に集光される励起光に対して、基材上に形成した蛍光面と反射拡散面または透過拡散面とを経時的に順次切り替えて円盤上の基材の表面を複数のセグメントに分け回転させることで、放熱効果の向上と蛍光体に与えるダメージを軽減できる。しかしながら本発明はこれに限定されることなく、例えば、一枚の矩形形状の矩形形状の基材の表面蛍光体面と反射拡散面または透過拡散面を形成しこれを特定周期または不特定周期に振動または焦点Fに対する相対位置を変化させ得る構造とすることで、蛍光体の一点に励起光が集光することで蛍光体に与えるダメージを軽減できる。 In the above description, the fluorescence surface formed on the substrate and the reflection / diffusion surface or transmission / diffusion surface are sequentially switched over time with respect to the excitation light focused from the reflector in the vicinity of the focal point F. By dividing the surface of the base material on the disk into a plurality of segments and rotating them, the heat dissipation effect can be improved and the damage to the phosphor can be reduced. However, the present invention is not limited to this, and for example, a surface phosphor surface of a rectangular rectangular base material and a reflection / diffusion surface or a transmission / diffusion surface are formed and vibrated in a specific period or an unspecified period. Alternatively, by adopting a structure capable of changing the relative position with respect to the focal point F, it is possible to reduce the damage given to the phosphor by condensing the excitation light at one point of the phosphor.

図6は反射鏡(リフレクタ)として全反射面と集光レンズとを1つの部材により構成した、いわゆる、全反射レンズ135を利用した構成が示されている。かかる構成によれば、光軸付近の励起光(青色レーザ光線)は、集光レンズ136を通過し、他方、光軸から離れた位置の励起光(青色レーザ光線)は全反射部137で全反射し、いずれの光線も円盤(ホイール)部材140上の一点に集光され、その後、青色光のまま反射拡散または、黄色光に変換され拡散される。そして、円盤(ホイール)部材140の一点から拡散された青色光および黄色光のうち光軸近傍の光線は、再び、集光レンズ136を透過し、いずれの光線も光軸に平行な光線となり、更に、分離ミラー120で反射されてプロジェクタの照明光学形100に入射する。なお、全反射部137にはその表面に反射膜を形成しても良く、また、その表面形状も上記反射鏡(リフレクタ)と同様に、上述した放物面や楕円面など曲面を有する反射鏡(面)とすることが望ましい。即ち、かかる構成によっても上記と同様に、白色の照明光が得られ色による焦点移動(軸上色収差)の影響も実用上問題のないレベルまで抑えることができる。 FIG. 6 shows a configuration using a so-called total reflection lens 135, in which a total reflection surface and a condenser lens are formed of one member as a reflector. According to this configuration, the excitation light (blue laser beam) near the optical axis passes through the condenser lens 136, while the excitation light (blue laser beam) at a position away from the optical axis is completely reflected by the total reflection unit 137. It is reflected, and any light beam is focused on one point on the disk (wheel) member 140, and then reflected and diffused as blue light or converted to yellow light and diffused. Then, among the blue light and yellow light diffused from one point of the disk (wheel) member 140, the light rays near the optical axis pass through the condenser lens 136 again, and all the light rays become light rays parallel to the optical axis. Further, it is reflected by the separation mirror 120 and incident on the illumination optical type 100 of the projector. A reflective film may be formed on the surface of the total reflection portion 137, and the surface shape of the total reflection portion 137 is the same as that of the reflector, which has a curved surface such as a paraboloid or an ellipsoid. (Surface) is desirable. That is, even with such a configuration, white illumination light can be obtained and the influence of focal movement (axial chromatic aberration) due to color can be suppressed to a level where there is no practical problem.

図6に示す色分離ミラー120は、基材121の励起(青色レーザ)光源側にはP偏光光を透過し、S偏光光を反射する偏光分離膜が設けられており、その反対側の反射鏡(リフレクタ)側には青色光を透過し、黄色光を反射するダイクロイックコートが蒸着されている。P偏光に揃えられた青色レーザ光は、分離ミラーに入射し偏波分離コート面ダイクロイックコート面を透過して反射鏡(リフレクタ)に入射する。反射鏡(リフレクタ)に入射した励起光(青色レーザ光)は円盤(ホイール)部材の一点に集光され、一部の青色光は蛍光体を励起して黄色光を射出し、一部の青色光は偏光を90度回転されS偏光になって拡散される。その後、反射鏡(リフレクタ)で平行になり、黄色光とS偏光に揃えられた青色光は再度分離ミラー120に入射する。 The color separation mirror 120 shown in FIG. 6 is provided with a polarization separation film that transmits P-polarized light and reflects S-polarized light on the excitation (blue laser) light source side of the base material 121, and reflects on the opposite side. A dichroic coat that transmits blue light and reflects yellow light is deposited on the mirror (reflector) side. The blue laser light aligned with P-polarized light enters the separation mirror, passes through the polarization-separated coated surface dichroic coated surface, and is incident on the reflecting mirror (reflector). The excitation light (blue laser light) incident on the reflector is focused on one point on the disk (wheel) member, and some blue light excites the phosphor to emit yellow light, and some blue light. Light is polarized 90 degrees and becomes S-polarized light, which is diffused. After that, the light becomes parallel by the reflector and the blue light aligned with the yellow light and the S-polarized light is incident on the separation mirror 120 again.

一方、S偏光に揃えられた青色光はダイクロイックコート面を通過し、偏波分離コート面で反射し、プロジェクタの照明系に入射する。 On the other hand, the blue light aligned with the S polarization passes through the dichroic coated surface, is reflected by the polarization separation coated surface, and is incident on the illumination system of the projector.

なお、上記に述べた光源ユニットは、上述した車両のプロジェクタ用の光源ユニットに限られることなく、上述したヘッドライト装置1000の光源装置である可視光照明ユニット10としても採用することも可能である。それによれば、上記の光源ユニットと同様に、半導体光源素子LEDやLASERを用いて黄色または緑と赤色を発光する蛍光体19を励起して得られた光を、当該励起光と混色することで、所望の白色光が得ることができ、かつ、発光強度や放熱効果にも優れた固体光源装置を達成することが可能となる。また、当該光源ユニットは、車両用のプロジェクタにのみ限られず、その他、各種の映像をスクリーン等の面上に投射して表示する一般的なプロジェクタの光源として利用することが可能であることは、当業者であれば明らかであろう。 The light source unit described above is not limited to the light source unit for the projector of the vehicle described above, and can also be adopted as the visible light illumination unit 10 which is the light source device of the headlight device 1000 described above. .. According to this, similarly to the above-mentioned light source unit, light obtained by exciting a phosphor 19 that emits yellow or green and red using a semiconductor light source element LED or LASER is mixed with the excitation light. It is possible to realize a solid-state light source device capable of obtaining desired white light and having excellent light emission intensity and heat dissipation effect. Further, the light source unit is not limited to a projector for vehicles, and can be used as a light source for a general projector that projects and displays various images on a surface such as a screen. It will be obvious to those skilled in the art.

以上、本発明の種々の実施例になる光源および光源装置について述べた。しかしながら、本発明は、上述した実施例のみに限定されるものではなく、蛍光体の発光効率向上と照明光学系での利用効率を向上するための具体的な技術手段であるこのためある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The light source and the light source device according to various examples of the present invention have been described above. However, the present invention is not limited to the above-described examples, but is a specific technical means for improving the luminous efficiency of the phosphor and the utilization efficiency in the illumination optical system. Therefore, there is an example. It is also possible to add the configurations of other embodiments to the configurations of. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…車両、1000…ヘッドライト装置、10…可視光照明ユニット、12…励起光源、13…励起光(青色光束)、17…反射面、15、18…構造体、17、20…反射膜、19…蛍光体、23…バインダ、21、22…レンズアレイ、25…偏光変換素子、27…集光レンズ、29…フィールドレンズ、30…光分離光学系、31、32…ダイクロイックミラー、33…反射ミラー、40…リレーレンズ光学系、50…入射側偏光板、60…液晶パネル、80…出射側偏光板、100…照明光学系、200…光合成プリズム、300…投写レンズ、500…光学ユニット、550…基体、560…電源回路、570…駆動回路、580…冷却ファン外LEDコリメータユニット、51…プロジェクタレンズ、60…反射ミラー 1 ... Vehicle, 1000 ... Headlight device, 10 ... Visible light illumination unit, 12 ... Excitation light source, 13 ... Excitation light (blue light beam), 17 ... Reflective surface, 15, 18 ... Structure, 17, 20 ... Reflective film, 19 ... Phosphor, 23 ... Binder, 21, 22 ... Lens array, 25 ... Polarizing converter, 27 ... Condensing lens, 29 ... Field lens, 30 ... Optical separation optical system, 31, 32 ... Dicroic mirror, 33 ... Reflection Mirror, 40 ... Relay lens optical system, 50 ... Incident side polarizing plate, 60 ... Liquid crystal panel, 80 ... Exit side polarizing plate, 100 ... Illumination optical system, 200 ... Photosynthetic prism, 300 ... Projection lens, 500 ... Optical unit, 550 ... Base, 560 ... Power supply circuit, 570 ... Drive circuit, 580 ... Cooling fan outside LED collimator unit, 51 ... Projector lens, 60 ... Reflection mirror

Claims (2)

車両の一部に取り付けられて当該車両が走行する路面上に照明光を照射する車両用ヘッドライト装置であって、
光源装置を備え、
前記照明光を発生する前記光源装置は、蛍光体を塗布した蛍光体層と、前記蛍光体を励起する励起光源を備えており、
前記照明光を発生する前記光源装置を構成する前記蛍光体を塗布した構造体は、前記蛍光体層を設ける溝部分を有しており、前記溝部分の開口形状が断面方向の奥行き方向に向かって一部または全体が小さくなる断面形状とし、
前記励起光源からの励起光は、特定偏波の光を前記蛍光体層に対して40度から70度の範囲の入射角度で前記蛍光体層に照射するように構成され
前記蛍光体層は前記蛍光体とバインダを前記溝部分で焼成して形成し、前記励起光としてP偏光光を用い、
前記構造体と前記蛍光体層の接触面には可視光線に対する反射率が90%以上の反射膜を設け、前記蛍光体層の空気側界面には反射防止膜を形成して構成され、
前記構造体と、前記蛍光体をバインダと焼成して得られた前記蛍光体層と、前記反射膜との間に空気または真空の界面を設けた、ヘッドライト装置。
A vehicle headlight device that is attached to a part of a vehicle and irradiates the road surface on which the vehicle travels with illumination light.
Equipped with a light source device
The light source device that generates the illumination light includes a phosphor layer coated with a phosphor and an excitation light source that excites the phosphor.
The structure coated with the phosphor that constitutes the light source device that generates the illumination light has a groove portion for providing the phosphor layer, and the opening shape of the groove portion faces in the depth direction in the cross-sectional direction. The cross-sectional shape is such that part or all of it becomes smaller.
The excitation light from the excitation light source is configured to irradiate the phosphor layer with light having a specific polarization at an incident angle in the range of 40 degrees to 70 degrees with respect to the phosphor layer .
The phosphor layer is formed by firing the phosphor and the binder in the groove portion, and P-polarized light is used as the excitation light.
A reflective film having a reflectance of 90% or more with respect to visible light is provided on the contact surface between the structure and the phosphor layer, and an antireflection film is formed at the air-side interface of the phosphor layer.
A headlight device provided with an air or vacuum interface between the structure, the phosphor layer obtained by firing the phosphor with a binder, and the reflective film.
前記蛍光体としてYAG:Ce(屈折率1.82)を使用し、バインダとして前記蛍光体との屈折率差が0.2以下の部材を用いた、請求項1に記載のヘッドライト装置。 The headlight device according to claim 1, wherein YAG: Ce (refractive index 1.82) is used as the phosphor, and a member having a refractive index difference of 0.2 or less from the phosphor is used as a binder.
JP2019514923A 2017-04-25 2017-04-25 Headlight device Active JP6926200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021128480A JP7228010B2 (en) 2017-04-25 2021-08-04 solid state light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016400 WO2018198201A1 (en) 2017-04-25 2017-04-25 Solid light source device and headlight device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021128480A Division JP7228010B2 (en) 2017-04-25 2021-08-04 solid state light source

Publications (2)

Publication Number Publication Date
JPWO2018198201A1 JPWO2018198201A1 (en) 2019-12-19
JP6926200B2 true JP6926200B2 (en) 2021-08-25

Family

ID=63919528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019514923A Active JP6926200B2 (en) 2017-04-25 2017-04-25 Headlight device
JP2021128480A Active JP7228010B2 (en) 2017-04-25 2021-08-04 solid state light source

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021128480A Active JP7228010B2 (en) 2017-04-25 2021-08-04 solid state light source

Country Status (2)

Country Link
JP (2) JP6926200B2 (en)
WO (1) WO2018198201A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671666B2 (en) * 2010-02-12 2015-02-18 日立マクセル株式会社 Solid light source device and projection display device
JP2012190628A (en) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd Light source device, and lighting device
JP5781367B2 (en) * 2011-05-20 2015-09-24 スタンレー電気株式会社 Light source device and lighting device
JP2015050124A (en) * 2013-09-03 2015-03-16 スタンレー電気株式会社 Light emitting device
WO2015111145A1 (en) * 2014-01-22 2015-07-30 日立マクセル株式会社 Light source device and image display device using same
WO2016027373A1 (en) * 2014-08-22 2016-02-25 日立マクセル株式会社 Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus
JP6631084B2 (en) * 2015-08-19 2020-01-15 セイコーエプソン株式会社 Method for manufacturing wavelength conversion element, wavelength conversion element, lighting device, and projector
JP6432559B2 (en) * 2016-05-17 2018-12-05 カシオ計算機株式会社 Phosphor device, lighting apparatus and projector apparatus

Also Published As

Publication number Publication date
WO2018198201A1 (en) 2018-11-01
JP2021193667A (en) 2021-12-23
JP7228010B2 (en) 2023-02-22
JPWO2018198201A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP5673247B2 (en) Light source device and projector
JP5601092B2 (en) Lighting device and projector
JP5679358B2 (en) Illumination device and projection display device using the same
JP2016099558A (en) Wavelength conversion element, light source unit, projector and manufacturing method of wavelength conversion element
US20150205189A1 (en) Fluorescent light emitting element and projector
JP2005347263A (en) Separate wavelength conversion in lighting device
JP2012108486A (en) Light source device and image display
JP2012185403A (en) Light emitting element and method for producing the same, light source device, and projector
JP7031567B2 (en) Light source optical system, light source device and image projection device
US10721446B2 (en) Wavelength conversion element, light source apparatus, and projector
US10539862B2 (en) Wavelength conversion element, wavelength converter, light source apparatus, and projector
JP6828460B2 (en) Lighting equipment and projector
CN108255004B (en) Light source device and image projection device
JP2017027903A (en) Illumination device and projector
JP5919476B2 (en) Light source device and video display device
US9876998B2 (en) Light source apparatus and projector
CN107436529B (en) Light source device and projection display device
JP6394076B2 (en) Light source device and projector
US11429015B2 (en) Light-emitting element, light source device and projector
JP2017015966A (en) Light source device and projector
JP2020204652A (en) Light source device and projection type display device
US10409149B2 (en) Phosphor wheel, light-emitting unit, and projector using same
JP2016145881A (en) Wavelength conversion element, illumination device, and projector
JP6926200B2 (en) Headlight device
JP2019028120A (en) Illumination device and projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6926200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111