WO2016027373A1 - Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus - Google Patents

Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus Download PDF

Info

Publication number
WO2016027373A1
WO2016027373A1 PCT/JP2014/072016 JP2014072016W WO2016027373A1 WO 2016027373 A1 WO2016027373 A1 WO 2016027373A1 JP 2014072016 W JP2014072016 W JP 2014072016W WO 2016027373 A1 WO2016027373 A1 WO 2016027373A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting element
excitation light
excitation
Prior art date
Application number
PCT/JP2014/072016
Other languages
French (fr)
Japanese (ja)
Inventor
康彦 國井
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2014/072016 priority Critical patent/WO2016027373A1/en
Publication of WO2016027373A1 publication Critical patent/WO2016027373A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/657Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by moving light sources

Definitions

  • the present invention relates to a light source device using a semiconductor light emitting element, a vehicular lamp, and a chromaticity adjustment method for the light source device.
  • Patent Document 1 discloses an excitation light source that emits excitation light having an oscillation wavelength in a blue-violet region, and a light emitting unit that emits light by receiving excitation light emitted from the excitation light source. And an illumination device that increases the color temperature by using excitation light from an excitation light source as illumination light is described.
  • Patent Document 2 JP2013-161889A (Patent Document 2), two types of phosphors are used as a technique for adjusting the color of illumination light, and the first phosphor is changed by changing the wavelength of excitation light. Describes a light emitting device that changes the ratio of fluorescent light generated from the fluorescent light generated from the second fluorescent material.
  • the human eye changes its sensitivity to wavelengths in photopic and scotopic vision due to Purkinje's phenomenon, and the peak of sensitivity changes to the short wavelength side in the dark. Therefore, the chromaticity of the illumination light is adjusted according to the surrounding environment. It is desirable to do.
  • Patent Document 1 and Patent Document 2 do not consider changing chromaticity positively according to the surrounding environment.
  • Patent Document 2 describes a technique for adjusting color by adjusting the temperature of a light emitting element.
  • an increase in the temperature of the light emitting element causes a decrease in output of the light emitting element, and a wavelength change with respect to temperature is small. There is a problem.
  • An object of the present invention is to adjust the chromaticity of illumination light in a light source device or a vehicle lamp using a semiconductor light emitting element as excitation light, without causing a decrease in output of the light emitting element, depending on the surrounding environment.
  • the present invention includes a plurality of means for solving the above-described problems.
  • a light source device which is a semiconductor light emitting device that emits excitation light, a movable stage on which the semiconductor light emitting device is mounted, and a semiconductor A phosphor that emits fluorescent light by excitation light emitted from the light emitting element and a control device that controls the movement of the movable stage, the control device controls the incident angle of the excitation light to the phosphor of the semiconductor light emitting element, The fluorescent light emitted from the fluorescent material and the reflected light of the excitation light from the fluorescent material are mixed to form illumination light.
  • the color of the illumination light can be controlled by arbitrarily controlling the mixing ratio of the reflected light component of the excitation light on the phosphor surface and the fluorescence light emitted by the excitation light according to the incident angle of the excitation light to the phosphor.
  • the degree can be controlled arbitrarily.
  • FIG. 3 is a diagram illustrating a change in white chromaticity depending on an incident angle of excitation light in Example 1. It is an apparatus block diagram of the vehicle lamp in Example 1.
  • FIG. 5 is a diagram illustrating a configuration of a phosphor in Example 2. It is the figure which showed the transmittance
  • FIG. 6 is a diagram illustrating a change in white chromaticity in Example 2.
  • FIG. 6 is a diagram illustrating a configuration of an optical system of a vehicular lamp according to a third embodiment.
  • FIG. 1 is a diagram showing a configuration of an optical system of a vehicular lamp in the present embodiment.
  • the optical system of the vehicular lamp is a so-called projector-type lamp, and includes a semiconductor light emitting element 11, a condenser lens 12, a phosphor 13, a metal plate 14, a reflector 15, and a movable stage 300.
  • a laser diode (LD) is used for the semiconductor light emitting element 11 serving as a light source, and emits blue laser light as excitation light of the phosphor 13.
  • the condenser lens 12 is disposed on the emission side of the semiconductor light emitting element 11 and condenses the excitation light (blue laser light) 100 emitted from the semiconductor light emitting element 11 on the surface of the phosphor 13.
  • the phosphor 13 is formed in a partial region on the metal plate 14.
  • the phosphor 13 is a fluorescent material that emits yellow light when excited by the excitation light 100 emitted from the semiconductor light emitting element 11, and a scattering agent having a different refractive index is mixed therein to scatter incident light. Or let me. Therefore, when the phosphor 13 receives the excitation light 100, the phosphor 13 generates fluorescent light (yellow light), and the excitation light (blue light) scattered by the phosphor 13 is mixed. As a result, white light 200 is emitted from the phosphor 13. Is done. As a result, the phosphor 13 emits white light like a point light source having substantially the same size as the condensing spot of the excitation light.
  • the semiconductor light emitting element 11 is installed so that the excitation light 100 is incident on the phosphor 13 as p-polarized light.
  • the reflectance can be reduced by the relationship between the incident angle and the reflectance, and the absorption in the phosphor can be increased.
  • the metal plate 14 holds the phosphor 13 and has a mirror surface on the surface, so that the white light generated from the phosphor 13 is reflected to the reflector 15 side.
  • the reflector 15 is formed in a curved plate shape that opens to face the phosphor 13 and is disposed so as to face the phosphor 13.
  • One surface of the reflector 15 is a reflecting surface 15a that reflects the white light emitted from the phosphor 13 to one side.
  • the reflection surface 15a is formed in a free-form surface shape, for example, a shape based on a paraboloid, so as to obtain a desired light distribution.
  • the reflecting surface 15a is disposed so as to face the phosphor 13 so as to face the phosphor 13.
  • the white light emitted from the phosphor 13 is irradiated, for example, in front of the vehicle on which the vehicle lamp is installed.
  • FIG. 2 shows an example of a spectral spectrum of light emitted from the phosphor 13 when the phosphor 13 is irradiated with the excitation light 100.
  • a blue semiconductor laser having a wavelength of 440 nm is used as the excitation light, and the phosphor is a YAG phosphor ((Y, Gd) 3 (Al, Ga) that emits yellow light having a complementary color relationship with blue light with high efficiency. O12: Ce3 +) is used.
  • the peak appearing in the vicinity of 440 nm is a diffuse excitation light component, and the broad peak appearing at a wavelength of 440 nm or more is yellow fluorescent light.
  • the ratio of the two light emitting components determines the chromaticity of the generated white light.
  • the excitation light and the phosphor are not limited to this, and any combination that produces white light may be used. For example, blue and red phosphors may be used for the blue laser.
  • FIG. 3 is an example showing changes in diffuse excitation light and fluorescent light depending on the excitation light incident angle.
  • the angle of the excitation light (blue laser light) 100 with respect to the normal of the plane of the phosphor 13 in FIG. 1 is the laser light incident angle ⁇
  • the excitation diffused light increases as the laser light incident angle ⁇ increases. Increases, while the fluorescent light emitted from the phosphor decreases. This is because the ratio of the excitation light reflected by the phosphor film increases as the laser beam incident angle ⁇ increases, resulting in a decrease in the energy of the excitation light transmitted to the phosphor and a decrease in the output of the fluorescence light. . Therefore, when the ratio of the fluorescence light and the diffusion excitation light changes depending on the incident angle, the chromaticity of the white light generated by the fluorescence light and the diffusion excitation light also changes.
  • FIG. 4 is an example showing white chromaticity change depending on the incident angle of excitation light.
  • the chromaticity of the white light generated on the straight line connecting the chromaticities of the fluorescent light and the diffuse excitation light is shifted according to the ratio of the fluorescent light and the diffusion excitation light depending on the incident angle.
  • the chromaticity on the black body radiation line can be realized when the incident angle of the excitation light is around 60 degrees, and the color temperature which is the chromaticity of the white light by changing the incident angle of the excitation light. Can be controlled to be higher or lower.
  • FIG. 5 shows an apparatus block diagram of the vehicular lamp according to the present embodiment.
  • a sensor unit 400 measures the ambient environment of the vehicular lamp and senses, for example, whether it is a bright place at daytime or a dark place at night. Based on the detection signal of the sensor unit 400, the calculation unit 500 calculates, for example, the chromaticity of the illumination light corresponding to the sensitivity to the wavelengths in the photopic and scotopic vision of the human eye, and corresponds to the chromaticity.
  • the incident angle of the excitation light is calculated from, for example, white chromaticity change characteristics according to the incident angle of the excitation light shown in FIG. 4 measured in advance.
  • the angle controller 600 drives the excitation light source gonio stage 700 according to the calculated incident angle to irradiate the phosphor with excitation light at a desired incident angle.
  • the gonio stage is a moving stage that moves in an arc around a point on the normal line from the center of the stage, and corresponds to the movable stage 300 shown in FIG. That is, as a control device that controls the movement of the movable stage, it has a sensor unit, a calculation unit, and an angle control unit.
  • the sensor unit measures the brightness of the surrounding environment, and the calculation unit uses the measurement results to Calculate the chromaticity of the illumination light according to the environment, calculate the incident angle of the excitation light corresponding to the chromaticity, drive the movable stage according to the incident angle calculated by the angle control unit, and at the desired incident angle
  • the phosphor is irradiated with excitation light.
  • the vehicular lamp has been described.
  • the present invention is not limited to this, and for example, the present invention can be applied to a light source device having a configuration excluding the reflector 15 in FIG.
  • the mixing ratio of the reflected light component of the excitation light on the phosphor surface and the fluorescence light emitted by the excitation light is controlled by controlling the incident angle of the excitation light to the phosphor.
  • the incident angle of the excitation light to the phosphor it is possible to arbitrarily control the chromaticity of the illumination light without causing a decrease in the output of the light emitting element.
  • FIG. 6 is a structural example of the phosphor in this embodiment.
  • the phosphor film is divided into two layers in the thickness direction using two different phosphors, and the first-layer phosphor 13a and the second-layer phosphor 13b are formed on the metal plate.
  • the amount of attenuation is expressed by the following equation (1) according to Lambert-Beer's law that formulates the absorption of light through the substance, and the amount of light I after passing with respect to the amount of light before incidence I 0 .
  • is an absorption coefficient
  • d is a passing distance.
  • FIG. 8 is an example showing the refraction angle and the passing distance in the phosphor film according to the incident angle of the phosphor.
  • the incident angle is ⁇ i
  • the refraction angle is ⁇ r
  • the refractive index n1 of air and the refractive index n2 of the phosphor are expressed by the following relational expression (2).
  • the refraction angle ⁇ r is smaller than the incident angle ⁇ i.
  • the light passing distance in the material changes due to the change in the refraction angle depending on the incident angle of the light and the refractive index of the material, and FIG. 8 shows the phosphor of the light beam up to about 1.2 times the film thickness depending on the incident angle of the light. It shows that the membrane passage distance becomes longer.
  • FIG. 9 shows a schematic diagram for explaining the result.
  • the refraction angle ⁇ r is also small, so the distance d1 that passes through the first-layer phosphor 13a is shortened, and the emission ratio from the second-layer phosphor 13b is reduced. Increase.
  • FIG. 9B when the incident angle ⁇ i ′ is large, the refraction angle ⁇ r ′ is also large, so the distance d1 ′ that passes through the first-layer phosphor 13a is long and the excitation light is 1 The amount absorbed by the layer increases. As a result, the amount of light emitted from the second-layer phosphor 13b is reduced.
  • the first layer phosphor 13a is composed of a yellow phosphor and the second layer phosphor 13b is a red phosphor
  • the incident angle of the excitation light is large
  • the blue light of the excitation light and the first layer phosphor 13a In addition to the above-described blue light and yellow light, when the incident angle of the excitation light is small, the color temperature obtained by adding the red light from the second-layer phosphor 13b is realized. Low white light can be realized.
  • FIG. 10 is a diagram showing a change in white chromaticity according to the present embodiment.
  • the white chromaticity range required for the vehicular lamp is defined by the chromaticity standard indicated by the dotted line.
  • the chromaticity adjustment of white light only changes the ratio of the excitation light and the monochromatic fluorescent light, and thus changes linearly, and there are cases where it deviates from the chromaticity standard.
  • the white light chromaticity adjustment in this embodiment has the characteristics shown by the dotted line in FIG. 10 for the two layers of the phosphor. The phosphor is divided into two layers, the excitation light, the first layer of fluorescent light, and the two layers.
  • the ratio of the three fluorescent lights of the eyes is changed, it is possible to adjust the chromaticity of the white light two-dimensionally. As a result, there is an effect that the chromaticity adjustment range of white light within the chromaticity standard can be increased.
  • the chromaticity change curve of arbitrary white light can be realized by using three layers or more layers of phosphors instead of two layers, but the penetration of excitation light into the layers decreases as the number of layers increases. Therefore, the contribution of the fluorescent light to the multilayering is small. Further, instead of changing the phosphor in the layer direction, the phosphor may be changed in the excitation light incident surface direction.
  • FIG. 11 is a diagram showing a configuration of an optical system of the vehicular lamp according to the present embodiment.
  • Each component in the present embodiment is denoted by the same reference numeral as that in FIG. 1 of the first embodiment, and has the same function, and thus the description thereof is omitted.
  • the difference from FIG. 1 is the direction in which the excitation light (blue laser light) 100 emitted from the semiconductor light emitting element 11 is condensed on the surface of the phosphor 13.
  • the semiconductor light emitting element 11 is arranged on the irradiation direction side of the white light emitted from the phosphor 13 by the reflecting surface 15a of the reflector 15 with respect to the phosphor. Then, as shown in FIG.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments are described in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The purpose of the present invention is to adjust the chromaticity of illumination light without causing a decrease in output from a light-emitting element according to the surrounding environment, in a light source apparatus or a vehicle lamp which uses the semiconductor light-emitting element as a source for excitation light. For that purpose, the light source apparatus has: a semiconductor light-emitting element emitting excitation light; a movable stage on which the semiconductor light-emitting element is mounted; a phosphor emitting fluorescent light by the excitation light emitted from the semiconductor light-emitting element; and a control unit for controlling the movement of the movable stage. The control unit controls the incident angle of light from the semiconductor light-emitting element with respect to the phosphor, and arbitrarily controls the mixing ratio of the fluorescent light emitted from the phosphor and the excitation light to the light reflected by the phosphor, thereby arbitrarily controlling the chromaticity of illumination light.

Description

光源装置、車両用灯具および光源装置の色度調整方法LIGHT SOURCE DEVICE, VEHICLE LIGHT, AND Chromaticity Adjustment Method for Light Source Device
 本発明は、半導体発光素子を用いた光源装置、車両用灯具および光源装置の色度調整方法に関する。 The present invention relates to a light source device using a semiconductor light emitting element, a vehicular lamp, and a chromaticity adjustment method for the light source device.
 近年の光源装置や自動車用ヘッドライトなどの車両用灯具では、光源の消費エネルギー低減のため、発光ダイオード(LED)やレーザーダイオード(LD)を用いた製品が提案され、一部実用化されている。特にLD光源の場合、光変換効率が高くまた発光面積が小さいので、光源装置や車両用灯具の小型化のため有利となる。LD光源を用いる車両用灯具では、LD素子から蛍光体へ励起光(例えば青色レーザー光)を照射し、蛍光体が励起されて発する蛍光光(例えば黄色光)と励起光とを混色させて可視光(例えば白色光)を出射させる構成となっている。 In recent years, in vehicle lamps such as light source devices and headlights for automobiles, products using light emitting diodes (LEDs) and laser diodes (LDs) have been proposed and partially put into practical use in order to reduce energy consumption of the light sources. . Particularly in the case of an LD light source, the light conversion efficiency is high and the light emitting area is small, which is advantageous for downsizing the light source device and the vehicle lamp. In a vehicular lamp that uses an LD light source, excitation light (for example, blue laser light) is irradiated from a LD element to a phosphor, and the fluorescent light (for example, yellow light) emitted by excitation of the phosphor is mixed with the excitation light to be visible. Light (for example, white light) is emitted.
 例えば、特開2012-99281号公報(特許文献1)には、青紫色領域の発振波長を有する励起光を出射する励起光源と、励起光源から出射された励起光を受けて発光する発光部とを備え、励起光源からの励起光を照明光として使用することで、色温度を高める照明装置が記載されている。 For example, Japanese Patent Laid-Open No. 2012-99281 (Patent Document 1) discloses an excitation light source that emits excitation light having an oscillation wavelength in a blue-violet region, and a light emitting unit that emits light by receiving excitation light emitted from the excitation light source. And an illumination device that increases the color temperature by using excitation light from an excitation light source as illumination light is described.
 また、特開2013-161889号公報(特許文献2)では、照明光の色みを調整する技術として2種類の蛍光体を使用し、励起光の波長を変化させることで、第1の蛍光体から発生させる蛍光光と第2の蛍光体から発生させる蛍光光との比率を変える発光装置が記載されている。 In JP2013-161889A (Patent Document 2), two types of phosphors are used as a technique for adjusting the color of illumination light, and the first phosphor is changed by changing the wavelength of excitation light. Describes a light emitting device that changes the ratio of fluorescent light generated from the fluorescent light generated from the second fluorescent material.
特開2012-99281号公報JP 2012-99281 A 特開2013-161889号公報JP 2013-161889 A
 人間の目はプルキニエ現象により明所視と暗所視では波長に対する感度が変化し、暗所においては短波長側へ感度のピークが変化するため、周囲環境に応じて照明光の色度を調整することが望ましい。 The human eye changes its sensitivity to wavelengths in photopic and scotopic vision due to Purkinje's phenomenon, and the peak of sensitivity changes to the short wavelength side in the dark. Therefore, the chromaticity of the illumination light is adjusted according to the surrounding environment. It is desirable to do.
 しかし、特許文献1や特許文献2では、周囲環境に応じて積極的に色度を変えることについて考慮されていない。また、特許文献2では、発光素子の温度を調整することで色みを調整する技術が記載されているが、発光素子の温度上昇は発光素子の出力低下を招き、さらに温度に対する波長変化は小さいという課題がある。 However, Patent Document 1 and Patent Document 2 do not consider changing chromaticity positively according to the surrounding environment. Patent Document 2 describes a technique for adjusting color by adjusting the temperature of a light emitting element. However, an increase in the temperature of the light emitting element causes a decrease in output of the light emitting element, and a wavelength change with respect to temperature is small. There is a problem.
 本発明の目的は、半導体発光素子を励起光として用いる光源装置や車両用灯具において、周囲環境に応じて、発光素子の出力低下を招くことなく、照明光の色度を調整することである。 An object of the present invention is to adjust the chromaticity of illumination light in a light source device or a vehicle lamp using a semiconductor light emitting element as excitation light, without causing a decrease in output of the light emitting element, depending on the surrounding environment.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、光源装置であって、励起光を出射する半導体発光素子と、半導体発光素子を搭載する可動ステージと、半導体発光素子から出射された励起光により蛍光光を出射する蛍光体と、可動ステージの移動を制御する制御装置を有し、制御装置は半導体発光素子の蛍光体に対する励起光の入射角を制御し、蛍光体から出射された蛍光光と励起光の蛍光体からの反射光とを混色させて照明光とするように構成する。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above-described problems. For example, a light source device, which is a semiconductor light emitting device that emits excitation light, a movable stage on which the semiconductor light emitting device is mounted, and a semiconductor A phosphor that emits fluorescent light by excitation light emitted from the light emitting element and a control device that controls the movement of the movable stage, the control device controls the incident angle of the excitation light to the phosphor of the semiconductor light emitting element, The fluorescent light emitted from the fluorescent material and the reflected light of the excitation light from the fluorescent material are mixed to form illumination light.
 本発明によれば、蛍光体への励起光入射角により、励起光の蛍光体表面での反射光成分と励起光によって発せられる蛍光光の混合比率を任意に制御することで、照明光の色度を任意に制御することが可能となる。 According to the present invention, the color of the illumination light can be controlled by arbitrarily controlling the mixing ratio of the reflected light component of the excitation light on the phosphor surface and the fluorescence light emitted by the excitation light according to the incident angle of the excitation light to the phosphor. The degree can be controlled arbitrarily.
実施例1における車両用灯具の光学系の構成を示す図である。It is a figure which shows the structure of the optical system of the vehicle lamp in Example 1. FIG. 実施例1における励起光を蛍光体へ照射した際に蛍光体から放出される光の分光スペクトルである。It is a spectrum of the light emitted from the phosphor when the phosphor is irradiated with the excitation light in Example 1. 実施例1における励起光入射角による拡散励起光と蛍光光の変化を示す図である。It is a figure which shows the change of the diffuse excitation light by the excitation light incident angle in Example 1, and fluorescence light. 実施例1における励起光の入射角による白色の色度変化を表した図である。FIG. 3 is a diagram illustrating a change in white chromaticity depending on an incident angle of excitation light in Example 1. 実施例1における車両用灯具の装置ブロック図である。It is an apparatus block diagram of the vehicle lamp in Example 1. FIG. 実施例2における蛍光体の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a phosphor in Example 2. 実施例2における蛍光体膜の厚みに対する透過率変化を示した図である。It is the figure which showed the transmittance | permeability change with respect to the thickness of the fluorescent substance film in Example 2. FIG. 実施例2における蛍光体の入射角による蛍光体膜における屈折角と通過距離を表した図である。It is a figure showing the refraction angle and passage distance in the fluorescent substance film by the incident angle of the fluorescent substance in Example 2. 実施例2における蛍光体の入射角による蛍光体膜における屈折角と通過距離を説明する模式図である。It is a schematic diagram explaining the refraction angle and passage distance in a fluorescent substance film by the incident angle of the fluorescent substance in Example 2. FIG. 実施例2における白色の色度変化を表した図である。6 is a diagram illustrating a change in white chromaticity in Example 2. FIG. 実施例3における車両用灯具の光学系の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an optical system of a vehicular lamp according to a third embodiment.
 以下、本発明の実施例について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施例における車両用灯具の光学系の構成を示す図である。車両用灯具の光学系は、いわゆるプロジェクタ型の灯具であり、半導体発光素子11と、集光レンズ12と、蛍光体13と、金属プレート14と、リフレクタ15と、可動ステージ300を備えている。光源となる半導体発光素子11にはレーザーダイオード(LD)を用いており、蛍光体13の励起光としての青色のレーザー光を出射する。集光レンズ12は、半導体発光素子11の出射側に配置され、半導体発光素子11から出射された励起光(青色レーザー光)100を、蛍光体13の表面に集光させる。 FIG. 1 is a diagram showing a configuration of an optical system of a vehicular lamp in the present embodiment. The optical system of the vehicular lamp is a so-called projector-type lamp, and includes a semiconductor light emitting element 11, a condenser lens 12, a phosphor 13, a metal plate 14, a reflector 15, and a movable stage 300. A laser diode (LD) is used for the semiconductor light emitting element 11 serving as a light source, and emits blue laser light as excitation light of the phosphor 13. The condenser lens 12 is disposed on the emission side of the semiconductor light emitting element 11 and condenses the excitation light (blue laser light) 100 emitted from the semiconductor light emitting element 11 on the surface of the phosphor 13.
 蛍光体13は、金属プレート14上の一部領域に形成されている。この蛍光体13は、半導体発光素子11から出射された励起光100を受けると励起されて黄色光を発する蛍光材料であり、また、入射光を散乱させるため内部に屈折率の異なる散乱剤を混合させたりしている。そのため、蛍光体13が励起光100を受けると蛍光光(黄色光)を発生するとともに、蛍光体13で散乱した励起光(青色光)が混色される結果、蛍光体13から白色光200が出射される。これにより、蛍光体13は、励起光の集光スポットと略同サイズの点光源のごとく白色光を出射する。また半導体発光素子11は、蛍光体13に対して励起光100がp偏光として入射するように設置される。これにより、入射角と反射率の関係で、反射率が小さくでき、蛍光体での吸収を増やすことが出来る。 The phosphor 13 is formed in a partial region on the metal plate 14. The phosphor 13 is a fluorescent material that emits yellow light when excited by the excitation light 100 emitted from the semiconductor light emitting element 11, and a scattering agent having a different refractive index is mixed therein to scatter incident light. Or let me. Therefore, when the phosphor 13 receives the excitation light 100, the phosphor 13 generates fluorescent light (yellow light), and the excitation light (blue light) scattered by the phosphor 13 is mixed. As a result, white light 200 is emitted from the phosphor 13. Is done. As a result, the phosphor 13 emits white light like a point light source having substantially the same size as the condensing spot of the excitation light. In addition, the semiconductor light emitting element 11 is installed so that the excitation light 100 is incident on the phosphor 13 as p-polarized light. Thereby, the reflectance can be reduced by the relationship between the incident angle and the reflectance, and the absorption in the phosphor can be increased.
 金属プレート14は蛍光体13を保持するとともに、表面が鏡面となっており、蛍光体13から発生された白色光をリフレクタ15側に反射するようにしている。 The metal plate 14 holds the phosphor 13 and has a mirror surface on the surface, so that the white light generated from the phosphor 13 is reflected to the reflector 15 side.
 リフレクタ15は、蛍光体13に対向して開口する湾曲板状に形成され、蛍光体13を臨むように配設されている。このリフレクタ15の片面は、蛍光体13から出射された白色光を片方へ反射させる反射面15aとなっている。反射面15aは、所望の配光分布を得られるよう自由曲面形状、例えば放物面が基調とされた形状に形成されている。この反射面15aは、蛍光体13に対向して蛍光体13を臨むように配設されており、この蛍光体13から出射された白色光を、例えば車両用灯具が設置された車両前方に照射させる。 The reflector 15 is formed in a curved plate shape that opens to face the phosphor 13 and is disposed so as to face the phosphor 13. One surface of the reflector 15 is a reflecting surface 15a that reflects the white light emitted from the phosphor 13 to one side. The reflection surface 15a is formed in a free-form surface shape, for example, a shape based on a paraboloid, so as to obtain a desired light distribution. The reflecting surface 15a is disposed so as to face the phosphor 13 so as to face the phosphor 13. The white light emitted from the phosphor 13 is irradiated, for example, in front of the vehicle on which the vehicle lamp is installed. Let
 図2は、励起光100を蛍光体13へ照射した際に、蛍光体13から放出された光の分光スペクトルの例である。励起光として、波長440nmの青色半導体レーザーを使用し、蛍光体としては、青色光の補色の関係にある黄色光を高効率に発光するYAG蛍光体((Y,Gd)3(Al,Ga)O12:Ce3+)を使用している。図2において、440nm付近に現れているピークは拡散励起光成分であり、また440nm以上の波長に現れているブロードなピークは黄色蛍光光である。この二つの発光成分の比率によって、生成される白色光の色度が決まる。ここで励起光と蛍光体は、これに限定されるものではなく、白色光を生み出す組み合わせであればよい。例えば、青色レーザに赤と緑の蛍光体でもよい。 FIG. 2 shows an example of a spectral spectrum of light emitted from the phosphor 13 when the phosphor 13 is irradiated with the excitation light 100. A blue semiconductor laser having a wavelength of 440 nm is used as the excitation light, and the phosphor is a YAG phosphor ((Y, Gd) 3 (Al, Ga) that emits yellow light having a complementary color relationship with blue light with high efficiency. O12: Ce3 +) is used. In FIG. 2, the peak appearing in the vicinity of 440 nm is a diffuse excitation light component, and the broad peak appearing at a wavelength of 440 nm or more is yellow fluorescent light. The ratio of the two light emitting components determines the chromaticity of the generated white light. Here, the excitation light and the phosphor are not limited to this, and any combination that produces white light may be used. For example, blue and red phosphors may be used for the blue laser.
 図3は、励起光入射角による拡散励起光と蛍光光の変化を示す例である。図1における蛍光体13の平面の垂線に対する励起光(青色レーザー光)100の角度をレーザー光入射角θとすると、図3に示すように、レーザー光入射角θが大きくなるにつれて、励起拡散光が増加するのに対して、蛍光体から放出される蛍光光は減少して行く。これは、レーザー光入射角θが大きくなるほど蛍光体膜によって反射される励起光の割合が増える為、結果として蛍光体に伝わる励起光のエネルギーが減少し、蛍光光の出力が低下するためである。よって、入射角によって蛍光光と拡散励起光の比率が変わることで、蛍光光と拡散励起光によって生成される白色光の色度にも変化が発生する。 FIG. 3 is an example showing changes in diffuse excitation light and fluorescent light depending on the excitation light incident angle. Assuming that the angle of the excitation light (blue laser light) 100 with respect to the normal of the plane of the phosphor 13 in FIG. 1 is the laser light incident angle θ, as shown in FIG. 3, the excitation diffused light increases as the laser light incident angle θ increases. Increases, while the fluorescent light emitted from the phosphor decreases. This is because the ratio of the excitation light reflected by the phosphor film increases as the laser beam incident angle θ increases, resulting in a decrease in the energy of the excitation light transmitted to the phosphor and a decrease in the output of the fluorescence light. . Therefore, when the ratio of the fluorescence light and the diffusion excitation light changes depending on the incident angle, the chromaticity of the white light generated by the fluorescence light and the diffusion excitation light also changes.
 図4は、励起光の入射角による白色の色度変化を表した例である。入射角による蛍光光と拡散励起光の比率によって、図4に示すように、蛍光光と拡散励起光それぞれの色度を結ぶ直線上において生成される白色光の色度が移動する。図4において、励起光の入射角が60度付近で黒体放射ライン上の色度を実現することができ、また励起光の入射角を変化させることで、白色光の色度である色温度を高くしたり、低くしたり制御することが可能となる。 FIG. 4 is an example showing white chromaticity change depending on the incident angle of excitation light. As shown in FIG. 4, the chromaticity of the white light generated on the straight line connecting the chromaticities of the fluorescent light and the diffuse excitation light is shifted according to the ratio of the fluorescent light and the diffusion excitation light depending on the incident angle. In FIG. 4, the chromaticity on the black body radiation line can be realized when the incident angle of the excitation light is around 60 degrees, and the color temperature which is the chromaticity of the white light by changing the incident angle of the excitation light. Can be controlled to be higher or lower.
 図5に、本実施例の車両用灯具の装置ブロック図を示す。400は、車両用灯具の周囲環境を測定するセンサー部であって、例えば、昼の明るい場所であるのか、夜の暗い場所であるのかを感知する。センサー部400の検出信号によって演算部500では、例えば、前記した人間の目の明所視と暗所視での波長に対する感度に対応した照明光の色度を算出し、その色度に対応した励起光の入射角を、例えば、あらかじめ測定した図4に示す励起光の入射角による白色の色度変化特性から算出する。次に、角度制御部600で、算出した入射角に応じて励起光源ゴニオステージ700を駆動して所望の入射角で励起光を蛍光体に照射する。ここで、ゴニオステージとは、ステージの中央から法線上にある一点を中心として、弧を描くように移動する移動ステージであり、図1に示す可動ステージ300に対応する。すなわち、可動ステージの移動を制御する制御装置として、センサー部と、演算部と、角度制御部を有し、センサー部で周囲環境の明るさを測定し、演算部で測定結果をもとに周囲環境に応じた照明光の色度を算出し、その色度に対応した励起光の入射角を算出し、角度制御部で算出した入射角に応じて可動ステージを駆動して所望の入射角で励起光を蛍光体に照射するように構成する。 FIG. 5 shows an apparatus block diagram of the vehicular lamp according to the present embodiment. A sensor unit 400 measures the ambient environment of the vehicular lamp and senses, for example, whether it is a bright place at daytime or a dark place at night. Based on the detection signal of the sensor unit 400, the calculation unit 500 calculates, for example, the chromaticity of the illumination light corresponding to the sensitivity to the wavelengths in the photopic and scotopic vision of the human eye, and corresponds to the chromaticity. The incident angle of the excitation light is calculated from, for example, white chromaticity change characteristics according to the incident angle of the excitation light shown in FIG. 4 measured in advance. Next, the angle controller 600 drives the excitation light source gonio stage 700 according to the calculated incident angle to irradiate the phosphor with excitation light at a desired incident angle. Here, the gonio stage is a moving stage that moves in an arc around a point on the normal line from the center of the stage, and corresponds to the movable stage 300 shown in FIG. That is, as a control device that controls the movement of the movable stage, it has a sensor unit, a calculation unit, and an angle control unit. The sensor unit measures the brightness of the surrounding environment, and the calculation unit uses the measurement results to Calculate the chromaticity of the illumination light according to the environment, calculate the incident angle of the excitation light corresponding to the chromaticity, drive the movable stage according to the incident angle calculated by the angle control unit, and at the desired incident angle The phosphor is irradiated with excitation light.
 なお、本実施例では車両用灯具について説明したが、これに限定されるものではなく、例えば、図1において、リフレクタ15を除いた構成の光源装置にも適用できる。 In this embodiment, the vehicular lamp has been described. However, the present invention is not limited to this, and for example, the present invention can be applied to a light source device having a configuration excluding the reflector 15 in FIG.
 以上のように、本実施例によれば、蛍光体への励起光入射角を制御することにより、励起光の蛍光体表面での反射光成分と励起光によって発せられる蛍光光の混合比率を制御することができ、発光素子の出力低下を招くことなく、照明光の色度を任意に制御することが可能となる。 As described above, according to the present embodiment, the mixing ratio of the reflected light component of the excitation light on the phosphor surface and the fluorescence light emitted by the excitation light is controlled by controlling the incident angle of the excitation light to the phosphor. Thus, it is possible to arbitrarily control the chromaticity of the illumination light without causing a decrease in the output of the light emitting element.
 図6は、本実施例における蛍光体の構成例である。本実施例では蛍光体膜を2つの異なる蛍光体を用いて厚み方向に2層に分けて1層目蛍光体13a、2層目蛍光体13bを金属プレート14上に形成したものである。励起光が蛍光体膜へ入射した場合、励起光の強度は深さ方向に進むに従い減衰して行く。減衰量は光の物質通過における吸収を定式化したランベルト・ベールの法則により、入射前光量 I0 に対する通過後の光量 I は以下の式(1)によって表わされる。ここで、α:吸収係数、d:通過距離である。 FIG. 6 is a structural example of the phosphor in this embodiment. In this embodiment, the phosphor film is divided into two layers in the thickness direction using two different phosphors, and the first-layer phosphor 13a and the second-layer phosphor 13b are formed on the metal plate. When excitation light enters the phosphor film, the intensity of the excitation light attenuates as it proceeds in the depth direction. The amount of attenuation is expressed by the following equation (1) according to Lambert-Beer's law that formulates the absorption of light through the substance, and the amount of light I after passing with respect to the amount of light before incidence I 0 . Here, α is an absorption coefficient, and d is a passing distance.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図7は蛍光体膜の厚みによる透過率を実験結果からフィッティングした例であり、400nmの励起光は吸収係数α=0.027で減衰して行く。このため、図6の様な2層構成の蛍光体膜では、1層目の通過距離が長くなるほど2層目には励起光が届かなくなる為、発光に寄与する2層目の割合が小さくなる。 FIG. 7 is an example of fitting the transmittance depending on the thickness of the phosphor film from the experimental results, and the 400 nm excitation light attenuates with an absorption coefficient α = 0.027. For this reason, in the phosphor film having a two-layer structure as shown in FIG. 6, the longer the first layer passes, the more the excitation light does not reach the second layer, so the proportion of the second layer that contributes to light emission decreases. .
 図8は蛍光体の入射角による蛍光体膜における屈折角と通過距離を表わした例である。入射角をθi、屈折角をθrとし、空気の屈折率n1、蛍光体の屈折率n2とすると以下の関係式(2)で表わされる。 FIG. 8 is an example showing the refraction angle and the passing distance in the phosphor film according to the incident angle of the phosphor. When the incident angle is θi, the refraction angle is θr, the refractive index n1 of air and the refractive index n2 of the phosphor are expressed by the following relational expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、空気の屈折率n1は1、YAG蛍光体の屈折率n2は1.83であるので、屈折角θrは入射角θiよりも小さくなる。また、光の入射角度と物質の屈折率によって、屈折角が変化することで物質における光の通過距離が変わり、図8は光の入射角度により膜厚の約1.2倍まで光線の蛍光体膜通過距離は長くなることを示している。 Here, since the refractive index n1 of air is 1 and the refractive index n2 of the YAG phosphor is 1.83, the refraction angle θr is smaller than the incident angle θi. Further, the light passing distance in the material changes due to the change in the refraction angle depending on the incident angle of the light and the refractive index of the material, and FIG. 8 shows the phosphor of the light beam up to about 1.2 times the film thickness depending on the incident angle of the light. It shows that the membrane passage distance becomes longer.
 その結果を説明するための模式図を図9に示す。図9(A)の励起光入射角θiが小さい場合には、屈折角θrも小さい為、1層目蛍光体13aを通過する距離d1が短くなり、2層目蛍光体13bからの発光割合が増える。逆に、図9(B)に示すように、入射角θi‘が大きい場合には屈折角θr’も大きくなる為、1層目蛍光体13aを通過する距離d1‘が長くなり励起光が1層目で吸収されてしまう量が増える。その結果、2層目蛍光体13bからの発光量は小さくなる。そのため、1層目蛍光体13aを黄色蛍光体、2層目蛍光体13bを赤色蛍光体により構成することで、励起光の入射角が大きい時には、励起光の青色光と1層目蛍光体13aの黄色光により色温度の高い白色光を実現するとともに、励起光の入射角が小さい時には、前述の青色光と黄色光に加えて、2層目蛍光体13bからの赤色光を加えた色温度の低い白色光を実現することが可能となる。 FIG. 9 shows a schematic diagram for explaining the result. When the excitation light incident angle θi in FIG. 9A is small, the refraction angle θr is also small, so the distance d1 that passes through the first-layer phosphor 13a is shortened, and the emission ratio from the second-layer phosphor 13b is reduced. Increase. On the other hand, as shown in FIG. 9B, when the incident angle θi ′ is large, the refraction angle θr ′ is also large, so the distance d1 ′ that passes through the first-layer phosphor 13a is long and the excitation light is 1 The amount absorbed by the layer increases. As a result, the amount of light emitted from the second-layer phosphor 13b is reduced. Therefore, when the first layer phosphor 13a is composed of a yellow phosphor and the second layer phosphor 13b is a red phosphor, when the incident angle of the excitation light is large, the blue light of the excitation light and the first layer phosphor 13a In addition to the above-described blue light and yellow light, when the incident angle of the excitation light is small, the color temperature obtained by adding the red light from the second-layer phosphor 13b is realized. Low white light can be realized.
 図10は、本実施例による白色の色度変化を表した図である。図10において、車両用灯具に要求される白色の色度範囲は、点線で示す色度規格で規定されている。実施例1の蛍光体が単層の場合は、白色光の色度調整は励起光と単色の蛍光光の比率が変わるのみであるので直線的に変化し、色度規格を外れる場合が存在する。しかし、本実施例での白色光の色度調整は、図10における蛍光体2層時の点線で示す特性となり、蛍光体を2層として、励起光と1層目の蛍光光、および2層目の蛍光光の3者の比率を変えるので、2次元的に白色光の色度調整を行うことが可能となる。その結果、色度規格内での白色光の色度調整範囲を大きくとることが出来るという効果がある。なお、蛍光体を2層ではなく、3層やさらに多層とすることで任意の白色光の色度変化曲線を実現可能であるが、多層になるに従い、その層への励起光の侵入は減少するので、多層化に対する蛍光光の寄与度は小さい。また、層方向で蛍光体を変えるのではなく、励起光入射面方向で蛍光体を変えても良い。 FIG. 10 is a diagram showing a change in white chromaticity according to the present embodiment. In FIG. 10, the white chromaticity range required for the vehicular lamp is defined by the chromaticity standard indicated by the dotted line. In the case where the phosphor of Example 1 is a single layer, the chromaticity adjustment of white light only changes the ratio of the excitation light and the monochromatic fluorescent light, and thus changes linearly, and there are cases where it deviates from the chromaticity standard. . However, the white light chromaticity adjustment in this embodiment has the characteristics shown by the dotted line in FIG. 10 for the two layers of the phosphor. The phosphor is divided into two layers, the excitation light, the first layer of fluorescent light, and the two layers. Since the ratio of the three fluorescent lights of the eyes is changed, it is possible to adjust the chromaticity of the white light two-dimensionally. As a result, there is an effect that the chromaticity adjustment range of white light within the chromaticity standard can be increased. Note that the chromaticity change curve of arbitrary white light can be realized by using three layers or more layers of phosphors instead of two layers, but the penetration of excitation light into the layers decreases as the number of layers increases. Therefore, the contribution of the fluorescent light to the multilayering is small. Further, instead of changing the phosphor in the layer direction, the phosphor may be changed in the excitation light incident surface direction.
 図11は、本実施例の車両用灯具の光学系の構成を示す図である。本実施例における各構成は実施例1の図1と同じ符号を付し、同様の機能を有するので個々の説明は省略する。図1と異なる点は、蛍光体13の表面に半導体発光素子11から出射された励起光(青色レーザー光)100を集光させる方向である。すなわち、図1では、半導体発光素子11を、蛍光体に対して、リフレクタ15の反射面15aによる蛍光体13から出射された白色光の照射方向側に配置しているのに対し、本実施例では、図11に示すように、白色光の照射方向とは逆の方向に配置している。この構成により、図1では、白色光の照射光を避けるために半導体発光素子11を厚さ方向に逃げて配置する必要があったので装置として厚くする必要があった。しかし、本実施例では、厚さ方向に逃げる必要がないので、装置として薄く構成できるという効果がある。 FIG. 11 is a diagram showing a configuration of an optical system of the vehicular lamp according to the present embodiment. Each component in the present embodiment is denoted by the same reference numeral as that in FIG. 1 of the first embodiment, and has the same function, and thus the description thereof is omitted. The difference from FIG. 1 is the direction in which the excitation light (blue laser light) 100 emitted from the semiconductor light emitting element 11 is condensed on the surface of the phosphor 13. In other words, in FIG. 1, the semiconductor light emitting element 11 is arranged on the irradiation direction side of the white light emitted from the phosphor 13 by the reflecting surface 15a of the reflector 15 with respect to the phosphor. Then, as shown in FIG. 11, it arrange | positions in the direction opposite to the irradiation direction of white light. With this configuration, in FIG. 1, in order to avoid the irradiation light of the white light, it is necessary to dispose the semiconductor light emitting element 11 in the thickness direction, and thus it is necessary to increase the thickness of the device. However, in this embodiment, since it is not necessary to escape in the thickness direction, there is an effect that the apparatus can be thinly configured.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments are described in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
11:半導体発光素子、12:集光レンズ、13:蛍光体、
13a:1層目蛍光体、13b:1層目蛍光体、14:金属プレート、15:リフレクタ、
15a:反射面、100:励起光、200:白色光、300:可動ステージ、
400:センサー部、500:演算部、600:角度制御部、
700:励起光源ゴニオステージ
11: Semiconductor light emitting element, 12: Condensing lens, 13: Phosphor
13a: first layer phosphor, 13b: first layer phosphor, 14: metal plate, 15: reflector,
15a: reflecting surface, 100: excitation light, 200: white light, 300: movable stage,
400: sensor unit, 500: calculation unit, 600: angle control unit,
700: Excitation light source gonio stage

Claims (11)

  1. 励起光を出射する半導体発光素子と、
    該半導体発光素子を搭載する可動ステージと、
    該半導体発光素子から出射された励起光により蛍光光を出射する蛍光体と、
    前記可動ステージの移動を制御する制御装置を有し、
    前記制御装置は、前記半導体発光素子の蛍光体に対する励起光の入射角を制御し、前記蛍光体から出射された蛍光光と前記励起光の蛍光体からの反射光とを混色させて照明光とすることを特徴とする光源装置。
    A semiconductor light emitting element that emits excitation light; and
    A movable stage on which the semiconductor light emitting element is mounted;
    A phosphor that emits fluorescent light by excitation light emitted from the semiconductor light emitting element;
    A control device for controlling the movement of the movable stage;
    The control device controls the incident angle of the excitation light to the phosphor of the semiconductor light emitting element, and mixes the fluorescence light emitted from the phosphor and the reflected light of the excitation light from the phosphor to generate illumination light. And a light source device.
  2. 請求項1に記載の光源装置であって、
    前記制御装置は、周囲環境に応じて前記可動ステージの移動を制御することを特徴とする光源装置。
    The light source device according to claim 1,
    The light source device, wherein the control device controls movement of the movable stage according to an ambient environment.
  3. 請求項1に記載の光源装置であって、
    前記制御装置は、センサー部と、演算部と、角度制御部を有し、
    前記センサー部で周囲環境の明るさを測定し、
    前記演算部で前記測定結果をもとに周囲環境に応じた照明光の色度を算出し、その色度に対応した励起光の入射角を算出し、
    前記角度制御部で前記算出した入射角に応じて前記可動ステージを駆動して所望の入射角で励起光を蛍光体に照射することを特徴とする光源装置。
    The light source device according to claim 1,
    The control device includes a sensor unit, a calculation unit, and an angle control unit,
    Measure the brightness of the surrounding environment with the sensor unit,
    Calculate the chromaticity of the illumination light according to the surrounding environment based on the measurement result in the calculation unit, calculate the incident angle of the excitation light corresponding to the chromaticity,
    A light source device characterized in that the angle control unit drives the movable stage according to the calculated incident angle to irradiate the phosphor with excitation light at a desired incident angle.
  4. 請求項1から3のいずれか1項に記載の光源装置であって、
    前記半導体発光素子はレーザーダイオードであり、前記蛍光体への入射光がp偏光状態で入射するように設置されていることを特徴とする光源装置。
    The light source device according to any one of claims 1 to 3,
    The semiconductor light emitting element is a laser diode, and is installed so that incident light on the phosphor is incident in a p-polarized state.
  5. 請求項1から4のいずれか1項に記載の光源装置であって、
    前記蛍光体は複数の種類の蛍光体を層状に形成したもので構成したことを特徴とする光源装置。
    The light source device according to any one of claims 1 to 4,
    2. The light source device according to claim 1, wherein the phosphor is formed by laminating a plurality of types of phosphors.
  6. 励起光を出射する半導体発光素子と、
    該半導体発光素子を搭載する可動ステージと、
    該半導体発光素子から出射された励起光により蛍光光を出射する蛍光体と、
    該蛍光体から出射された蛍光光と前記励起光の蛍光体からの反射光を受けて反射させて照明光を出射するリフレクタと、
    前記可動ステージの移動を制御する制御装置を有し、
    前記制御装置は、前記半導体発光素子の蛍光体に対する励起光の入射角を制御することを特徴とする車両用灯具。
    A semiconductor light emitting element that emits excitation light; and
    A movable stage on which the semiconductor light emitting element is mounted;
    A phosphor that emits fluorescent light by excitation light emitted from the semiconductor light emitting element;
    A reflector that receives and reflects the fluorescent light emitted from the phosphor and the reflected light from the phosphor of the excitation light, and emits illumination light;
    A control device for controlling the movement of the movable stage;
    The vehicular lamp characterized in that the control device controls an incident angle of excitation light to a phosphor of the semiconductor light emitting element.
  7. 請求項6に記載の車両用灯具であって、
    前記制御装置は、周囲環境に応じて前記可動ステージの移動を制御することを特徴とする車両用灯具。
    The vehicular lamp according to claim 6,
    The vehicle lamp according to claim 1, wherein the control device controls movement of the movable stage in accordance with an ambient environment.
  8. 請求項6に記載の車両用灯具であって、
    前記制御装置は、センサー部と、演算部と、角度制御部を有し、
    前記センサー部で周囲環境の明るさを測定し、
    前記演算部で前記測定結果をもとに周囲環境に応じた照明光の色度を算出し、その色度に対応した励起光の入射角を算出し、
    前記角度制御部で前記算出した入射角に応じて前記可動ステージを駆動して所望の入射角で励起光を蛍光体に照射することを特徴とする車両用灯具。
    The vehicular lamp according to claim 6,
    The control device includes a sensor unit, a calculation unit, and an angle control unit,
    Measure the brightness of the surrounding environment with the sensor unit,
    Calculate the chromaticity of the illumination light according to the surrounding environment based on the measurement result in the calculation unit, calculate the incident angle of the excitation light corresponding to the chromaticity,
    A vehicular lamp, wherein the angle control unit drives the movable stage according to the calculated incident angle to irradiate the phosphor with excitation light at a desired incident angle.
  9. 請求項6から8のいずれか1項に記載の車両用灯具であって、
    前記半導体発光素子はレーザーダイオードであり、前記蛍光体への入射光がp偏光状態で入射するように設置されていることを特徴とする車両用灯具。
    The vehicular lamp according to any one of claims 6 to 8,
    The vehicular lamp, wherein the semiconductor light emitting element is a laser diode, and is installed so that incident light on the phosphor is incident in a p-polarized state.
  10. 請求項6から9のいずれか1項に記載の車両用灯具であって、
    前記蛍光体は複数の種類の蛍光体を層状に形成したもので構成したことを特徴とする車両用灯具。
    The vehicular lamp according to any one of claims 6 to 9,
    A vehicular lamp characterized in that the phosphor is composed of a plurality of types of phosphors formed in layers.
  11. 励起光を出射する半導体発光素子と、該半導体発光素子から出射された励起光により蛍光光を出射する蛍光体を有し、前記蛍光体から出射された蛍光光と前記励起光の蛍光体からの反射光とを混色させて照明光とする光源装置の色度調整方法であって、
    前記半導体発光素子の蛍光体に対する励起光の入射角を制御することで前記励起光の蛍光体での反射光と前記励起光によって発せられる蛍光光の混合比率を制御して、前記照明光の色度調整を行うことを特徴とする光源装置の色度調整方法。
    A semiconductor light-emitting element that emits excitation light; and a phosphor that emits fluorescent light by the excitation light emitted from the semiconductor light-emitting element, the fluorescent light emitted from the phosphor and the phosphor of the excitation light from the phosphor A method for adjusting the chromaticity of a light source device that mixes reflected light with illumination light to produce illumination light,
    The color of the illumination light is controlled by controlling the incident angle of the excitation light to the phosphor of the semiconductor light emitting device to control the mixing ratio of the reflected light of the excitation light to the phosphor and the fluorescence light emitted by the excitation light. A chromaticity adjustment method for a light source device, wherein the chromaticity adjustment is performed.
PCT/JP2014/072016 2014-08-22 2014-08-22 Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus WO2016027373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072016 WO2016027373A1 (en) 2014-08-22 2014-08-22 Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072016 WO2016027373A1 (en) 2014-08-22 2014-08-22 Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus

Publications (1)

Publication Number Publication Date
WO2016027373A1 true WO2016027373A1 (en) 2016-02-25

Family

ID=55350350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072016 WO2016027373A1 (en) 2014-08-22 2014-08-22 Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus

Country Status (1)

Country Link
WO (1) WO2016027373A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077639A (en) * 2018-11-07 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Lighting device preferably enabling adjustment of color position or having adjusted color position, use of lighting device, and method for adjusting color position of lighting device
JP2021193667A (en) * 2017-04-25 2021-12-23 マクセル株式会社 Solid-state light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106341A (en) * 2005-10-17 2007-04-26 Toyota Motor Corp Headlamp device
JP2011134619A (en) * 2009-12-25 2011-07-07 Stanley Electric Co Ltd Light source device and lighting system
JP2011187361A (en) * 2010-03-10 2011-09-22 Toshiba Corp Light emitting device, display device, emitter, and method for manufacturing emitter
JP2012190628A (en) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd Light source device, and lighting device
JP2012221633A (en) * 2011-04-05 2012-11-12 Sharp Corp Lighting device and headlamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106341A (en) * 2005-10-17 2007-04-26 Toyota Motor Corp Headlamp device
JP2011134619A (en) * 2009-12-25 2011-07-07 Stanley Electric Co Ltd Light source device and lighting system
JP2011187361A (en) * 2010-03-10 2011-09-22 Toshiba Corp Light emitting device, display device, emitter, and method for manufacturing emitter
JP2012190628A (en) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd Light source device, and lighting device
JP2012221633A (en) * 2011-04-05 2012-11-12 Sharp Corp Lighting device and headlamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193667A (en) * 2017-04-25 2021-12-23 マクセル株式会社 Solid-state light source device
JP7228010B2 (en) 2017-04-25 2023-02-22 マクセル株式会社 solid state light source
JP2020077639A (en) * 2018-11-07 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Lighting device preferably enabling adjustment of color position or having adjusted color position, use of lighting device, and method for adjusting color position of lighting device
JP7396864B2 (en) 2018-11-07 2023-12-12 ショット アクチエンゲゼルシャフト A lighting device, preferably with adjustable or adjusted color position, and use of the lighting device and method for adjusting the color position of a lighting device

Similar Documents

Publication Publication Date Title
JP7051950B2 (en) Lighting equipment and projection equipment
US9233639B2 (en) Light-emitting device and vehicle headlight
KR101766710B1 (en) Light Emitting Device and Projection System Adopting same
US9261259B2 (en) Laser-beam utilization device and vehicle headlight
US9803832B2 (en) Lighting device with a phosphor body spaced apart from a light source
US10203079B2 (en) Lighting apparatus with conversion device
JP5445923B2 (en) Vehicle lighting
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
CN108474544B (en) Lighting device
US8672523B2 (en) Light emitter with predefined angular color point distribution
US20150345729A1 (en) Illumination apparatus for vehicle
US9435513B2 (en) Light source device having optical members for changing one or more characteristics of excitation light from an excitation light source
JP6072902B2 (en) Vehicle lighting
US20160102828A1 (en) Lamp for vehicle
JP6956587B2 (en) Lighting device
CN109690179A (en) Lighting apparatus
WO2016027373A1 (en) Light source apparatus, vehicle lamp, and chromacity adjustment method for light source apparatus
KR101682764B1 (en) Head lamp arrangement for generating variable light distribution
RU2657242C2 (en) Lighting device and method of reducing uncomfortable glare
CN106969305B (en) Adjustable light source device and lighting device
KR20160054984A (en) Lamp for vehicles
JP2010137729A (en) Infrared projector for vehicle
JPWO2017203977A1 (en) Light emitting device and lighting device
JP6509570B2 (en) Lamp
KR101959806B1 (en) Automotive lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14900118

Country of ref document: EP

Kind code of ref document: A1