JP6918287B2 - 音響振動による流体処理装置及び流体処理方法 - Google Patents

音響振動による流体処理装置及び流体処理方法 Download PDF

Info

Publication number
JP6918287B2
JP6918287B2 JP2016198424A JP2016198424A JP6918287B2 JP 6918287 B2 JP6918287 B2 JP 6918287B2 JP 2016198424 A JP2016198424 A JP 2016198424A JP 2016198424 A JP2016198424 A JP 2016198424A JP 6918287 B2 JP6918287 B2 JP 6918287B2
Authority
JP
Japan
Prior art keywords
vibration
fluid
frequency
scale
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016198424A
Other languages
English (en)
Other versions
JP2018059686A (ja
Inventor
千真 梅木
千真 梅木
大谷 裕一
裕一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016198424A priority Critical patent/JP6918287B2/ja
Publication of JP2018059686A publication Critical patent/JP2018059686A/ja
Application granted granted Critical
Publication of JP6918287B2 publication Critical patent/JP6918287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、流体におけるスケールの析出、付着の防止、抑制、あるいは除去を目的とし、各種流体設備を停止せずに連続的に運用でき、化学薬品を使用せず、又は、化学薬品の使用を大幅に低減し、物理的手段によって行う音響振動による流体処理装置及び流体処理方法に関する。
配管の内壁や熱交換器の表面に、流体中のカルシウムやシリカ等の無機物質や、スライム等の有機物質が付着して生じるスケール障害は、配管の閉塞や熱効率の低下を引き起こし、水や油、その他流体を使用する多くの設備において、非常に大きな問題となっている。一般に、クーリングタワーやボイラー等では、化学薬品添加によってスケール障害を抑制する措置が取られているが、化学薬品による水質汚染の発生に加え、大きな経済的損失を余儀なくされている。また、温泉設備や地熱発電設備に目を向けると、一般的な用廃水と比較して無機物質を多量に含む地熱水の利用においては、スケール対策が最大の課題であり、熱利用や地熱発電の普及において、大きな妨げとなっていた。
物理的手段による流体処理装置の内、超音波を利用するスケール防止、除去装置が多数考案されている。(例えば、特許文献1:特開2015−123425号公報)。一般に超音波は、ホモジナイザーや洗浄機に用いられており、強力な音圧によってスケールが防除されることは容易に想像でき、実際に超音波照射によってスケール析出が防止されることが実験的にも確かめられている。(例えば、非特許文献1:「超音波照射による伝熱面へのスケール析出防止」安田啓司他、化学工学論文集、第30巻 第4号(2004)p549−550)しかし、超音波を利用したスケール防除方法は、広く一般に利用されるまでには至っていない)。
一方、特許文献2(特開2010−110667号公報)では、物理的手段による流体処理装置の内、電磁処理を利用するスケール防止、除去する処理装置について記載されている。
特開2015−123425号公報 特開2010−110667号公報
「超音波照射による伝熱面へのスケール析出防止」安田啓司他、化学工学論文集、第30巻 第4号(2004)p549−550
前記の通り、超音波を利用したスケール防除方法は、広く一般に利用されるまでには至っていない。その理由は次に示す通りである。
(1)装置の耐久性:超音波発生部は通常ランジュバン素子が用いられており、反射波や使用環境の影響で比較的簡単に破損する。また、実際の用廃水や地熱水中での長時間運転では、超音波発生部以外にも、例えば電極接合部等の破損が避けられない。
(2)消費エネルギー:超音波発生のために多大な電力を消費する。
(3)局所的作用:超音波が直接照射される箇所に対して、局所的にしかスケール防除効果が作用しない。
(4)材料侵食:キャビテーションの発生により、配管等の金属材料そのものが侵食される。
本発明の課題は、従来の超音波処理法とは異なり、可聴音域、あるいはそれ以下の低周波数域の音響振動を利用することで、従来生じていた、配管等の内壁へのスケール等の付着を防止、抑制することが実用レベルで可能な音響振動による流体処理装置及び流体処理方法を提供することである。
請求項1に係る発明は、内部を液状の流体が流動する設備の内壁表面上に、振動数が10Hz以上から1,000Hz以下の範囲であり、前記流体に対応した固有の固有振動モードの力学的共振振動の音響振動を、前記固有振動モードの内で異なる固有振動モードを切り替えながら付与する振動装置を有することを特徴とする流体処理装置である。請求項2に係る発明は、電磁処理を併用することで、スケール等の付着、スライム等の付着を防止、又は抑制効果を高めるための電磁処理装置を設けた請求項1記載の流体処理装置である。請求項3に係る発明は、前記固有振動モードを振動計、又はマイクロフォンによって探査できる機構が備えられ、それによって探査特定した振動数を記憶し、プログラムして駆動される機構が備えられたことを特徴とする請求項1又は2記載の流体処理装置である。 請求項4に係る発明は、内部を液状の流体が流動する設備の内壁表面上に、振動数が10Hz以上から1,000Hz以下の範囲であり、前記流体に対応した固有の固有振動モードの力学的共振振動の音響振動を、前記固有振動モードの内で異なる固有振動モードを切り替えながら付与することを特徴とする流体処理方法である。請求項5に係る発明は、電磁処理を併用することで、スケール等の付着、スライム等の付着を防止、又は抑制効果を高める請求項4記載の流体処理方法である。請求項6に係る発明は、前記固有振動モードを振動計、又はマイクロフォンによって探査し、それによって探査特定した振動数を記憶し、プログラムして駆動することを特徴とする請求項4又は5記載の流体処理方法である。
実証実験系を示す斜視図である。 振動スピーカー取付座(振動伝達部)を示す図である 取付座と振動スピーカーの写真である。 実証実験結果を示すしゃしんである。 模擬スケール付着実験系を示す概念図である。 模擬スケール付着実験結果を示すグラフである。 水中クラドニ図形実験系を示す正面断面概念図である。 水中でのクラドニ図形を示す写真である。
本発明の実施の形態による流体処理装置は、内部を用廃水や油等の流体が流動する配管や熱交換器等の設備に、低周波を含む音響振動を付与するための手段を設けたことを特徴とする流体処理装置である。
本発明の実施の形態による流体処理装置は、内部を用廃水や油等の流体が流動する配管や熱交換器等の設備に、前記設備の内壁表面上に、前記流体に対応した固有の固有振動モードの力学的共振振動を付与するための手段を設けたことを特徴とする流体処理装置である。

ここで、前記力学的共振振動の振動数とは異なる振動数の他の力学的共振振動を1又は2以上付与するための手段を設けたことを特徴とする。
本発明の実施の形態による流体処理装置は、低周波を含む音響振動を発生させる振動装置と、それを駆動する周波数発生装置、及び電源装置を備え、配管や熱交換器等の設備、及び/又は、用廃水や油等の流体自体に音響等の振動を伝達する振動伝達部を備え、流体を含む設備系の共振現象、及び/又は、流体中を伝播する音響等の疎密波によって、配管等の内壁表面上に、固有振動モードの力学的共振振動を発生させ、同振動を凝縮体の性質を利用して広範囲に伝達し、スケール等の付着、スライム等の付着を防止、又は抑制させた流体処理装置である。
ここで、前記振動装置が、機械振動を発生させる機械振動発生部、又は音響スピーカーである。前記低周波を含む音響振動の振動数は、0.1Hz以上から20,000Hz以下の範囲が好ましい。低周波を含む音響振動の振動数が、0.1Hz未満であると、実用利用に適する固有振動数に該当し難くなり、低周波を含む音響振動の振動数が、20,000Hzを超えると、音響スピーカーで振動を発生させることが困難になる。
また、前記低周波を含む音響振動の振動数は、10Hz以上から1,000Hz以下の範囲がより好ましい。低周波を含む音響振動の振動数が、10Hz以上の場合、実用利用に適する固有振動数に該当する確率が高まり、低周波を含む音響振動の振動数が、1,000Hz以下の場合、振動の振幅が大きくなり、スケール等の付着防止効果が著しく増加する。好適な使用方法は、前記振動数の範囲内で、振幅の大きい、低モードの共振振動数から2つ以上のモードを選択して、それを切り換えて利用することである。
前記固有振動モードを振動計、又はマイクロフォンによって探査できる機構が備えられ、それによって探査特定した振動数を記憶し、プログラムして駆動される機構が備えられている。
更に、電磁処理、及び/又は薬品処理とが併用されて、スケール等の付着、スライム等の付着防止、又は抑制効果を高めた流体処理装置とする。
更に、本発明の実施の形態による流体処理装置は、前記低周波を含む音響振動を利用し、材料加工、食品加工等、各種流体の性状変化を生じさせることを特徴とする流体処理装置である。
本発明の実施の形態による流体処理方法は、内部を用廃水や油等の流体が流動する配管や熱交換器等の設備に、前記設備の内壁表面上に、前記流体に対応した固有の固有振動モードの力学的共振振動を付与するための手段を設けたことを特徴とする流体処理方法である。

ここで、前記力学的共振振動の振動数とは異なる振動数の他の力学的共振振動を1又は2以上付与するための手段を設けたことを特徴とする。
本発明の実施の形態による流体処理方法は、流体を含む設備系の力学的共振現象を利用し、音響等の振動を印加することでスケール付着防止、又は抑制を行う流体処理方法であって、
低周波を含む音響振動を発生させる振動装置と、それを駆動する周波数発生装置、及び電源装置を備え、配管や熱交換器等の設備、及び/又は、用廃水や油等の流体自体に音響等の振動を伝達する振動伝達部を備え、流体を含む設備系の共振現象、及び/又は、流体中を伝播する音響等の疎密波によって、配管等の内壁表面上に、固有振動モードの力学的共振振動を発生させ、同振動を凝縮体の性質を利用して広範囲に伝達し、スケール等の付着、スライム等の付着を防止、又は抑制させる流体処理方法である。
ここで、前記振動装置が、機械振動を発生させる機械振動発生部、又は音響スピーカーとする。前記低周波を含む音響振動の振動数は、0.1Hz以上から20,000Hz以下の範囲が好ましい。低周波を含む音響振動の振動数が、0.1Hz未満であると、実用利用に適する固有振動数に該当し難くなるという問題点があり、低周波を含む音響振動の振動数が、20,000Hzを超えると、音響スピーカーで振動を発生させることが困難になるという問題点がある。
また、前記低周波を含む音響振動の振動数は、10Hz以上から1,000Hz以下の範囲である。低周波を含む音響振動の振動数が、10Hz未満であると、実用利用に適する固有振動数に該当する確率が低下するという問題点があり、低周波を含む音響振動の振動数が、1,000Hzを超えると、振動の振幅が小さくなり、スケール等の付着防止効果が著しく減少するという問題点がある。好適な使用方法は、前記振動数の範囲内で、振幅の大きい、低モードの共振振動数から2つ以上のモードを選択して、それを切り換えて利用することである。
前記固有振動モードを振動計、又はマイクロフォンによって探査できる機構が備えられ、それによって探査特定した振動数を記憶し、プログラムして駆動される機構が備えられている。
更に、電磁処理、及び/又は薬品処理とが併用されて、スケール等の付着、スライム等の付着防止、又は抑制効果を高めた流体処理方法とする。
また、本発明の実施の形態の流体処理方法は、低周波を含む音響振動を利用し、材料加工、食品加工等、各種流体の性状変化を生じさせることを特徴とする流体処理方法である。
更に、本発明の実施の形態による流体処理方法は、前記低周波を含む音響振動を利用し、材料加工、食品加工等、各種流体の性状変化を生じさせることを特徴とする流体処理方法である。
(実施例1)
固体の固有振動モードを可視化する、クラニド図形についての実施例について記載する。
さて、配管等の材料である金属やプラスチック等の固体は、空気と比較して密度が高く、音響等の振動を良く伝達する。配管系を流れる水や油等の流体自体も、同様に密度が高く、音響等の振動を良く伝達する。一般に、固体や液体のような凝縮体は、音響等の振動を遠方まで、極力減衰せずに伝達する性質がある。また、流体が流れている状態の配管系や熱交換器等には、力学的な共振振動数である固有振動モードを有しており、この振動モードは、配管系を構成する材料、形状及び状態、流体の流量等々に依存する。
固体の固有振動モードを可視化する現象として、「クラドニ図形」に関する実験が知られている。「クラドニ図形」とは、金属板等の板状の材料を振動させ、板の上に粒子を撒くことで、振動モードごとに板上に現れる図形である。物体が振動によって共振を起こすと、振動の節と腹が現れるが、振動数が大きくなると腹と節の数が増え、それぞれの振動数が低い方から順番に1次モード、2次モードという。物体によりこれらのモードが現れる振動数は異なり、各モードの振動数を固有振動数という。さて、板が共振振動している状態で、粉体等の粒子を板上に撒くと、振幅が大きな腹からは跳ね除けられ、振動していない節に集まり、所謂「クラドニ図形」が現れる。
発明者は、水中に板状の金属板を配置し、その上にガラスビーズ粒子を撒き、凝縮体である液体中でも、粒子によるクラドニ図形が現れ、振動モードによって容易にその形を変え得ることを確認した。実験系を図7(水中クラドニ図形実験系)に、実験結果を図8(水中でのクラドニ図形)に示す。
図7の水中クラドニ図形実験系は、アクリルBOX21と、前記アクリルBOX21の底部に配置された振動スピーカー31と、前記振動スピーカー31を駆動する低周波発生器41と、アンプ42とで構成されている。前記アクリルBOX21内には、水が投入されており、底部にステンレス板が配置され、その上にはガラスビーズが、配置されている。
流体中におけるスケール形成の過程は複雑であるが、付着対象物である配管材等の表面の性状や状態に強い影響を受けることは疑いない。よって、配管材等の被付着物体が大きく振動している場合には、スケール形成にも影響すると推定される。発明者による前記実験によって、流体中にある固体表面上の粒子が、振動により容易に移動することが確認されたが、これは当然、スケール結晶粒子にも当てはまる。
そこで発明者は、流体が流れる配管等の設備系に対して、異なる固有振動モードを切り換えながら、振動を印加することで、被付着物体表面上に析出したスケール結晶粒子が、常時力学的に表面上を引きずられることになり、その結果、スケール形成が防止、又は抑制されると予想した。
図5に、模擬スケール付着実験系を示す。恒温水槽20内に、水を投入し、恒温水槽20の底部に、振動スピーカー30を配置し、パソコン40にて、前記振動スピーカー30を駆動している。
前記のように、スケール形成が防止、又は抑制される事を確認するために、代表的なスケール物質の一つであるCaCO3の析出過程を再現し、模擬スケール付着実験を行った。カルシウムスケール性を有する水の模擬水として、10mM KCl水溶液1Lに対しCaCl2・2H2O:1.300g, Na2CO3:1.500g/L(CaCO3に換算し1,000mg/L)を添加した水溶液を用意した。また、試料として、20mm × 10mm寸法のマイクロセラミックヒーター(坂口電熱株式会社製/MS-1)に、18mm × 10mm × 0.2mmの銅板を両面テープで貼り付けた、局所加熱装置を用意した。尚、銅板の表面は、#400のサンドペーパーで磨き細かい傷を付け、スケールが付着し易いように加工している。上記模擬水:200mLをビーカーに入れ、これを20℃の恒温水槽に浸し、模擬水中に局所加熱ができる上記試料を挿入する。セラミックヒーターに30Vの交流電圧を印加すると、銅板表面は模擬水中で約70℃で安定化する。このように模擬水を局所的に加熱すると、以下の反応式に従って銅板表面にCaCO3が析出する。


CaCl2 + 2NaHCO3
→ 2NaCl + Ca(OH3)2

→(加熱) CO2 + H2O
+2NaCl + CaCO3

本試料を、24時間通電、加熱を行った後、試料を真空デシケータ内で完全に乾燥させ、これを電子天びんで秤量し、銅板表面へのCaCO3付着量を測定した。
本系に対する音響振動の影響を評価するため、振動スピーカー(ハンファQセルズジャパン株式会社/HS-BUS002)を恒温水槽の外側に接触させ、実験系に音響振動を印加した。音響振動の信号は、パソコンの周波数作成ソフトウェア(Audacity ver. 2.1.2)によって作成し、また、本実験系の固有共振振動数は、印加する音響振動の振動数を徐々に変化させながら、実験系及び液面の振動が極大となる振動数を、目視確認することで選定した。
因みに、固体の固有振動モードに関する問題は、非線形現象であり、計算で求めることは非常に難しいが、実際の固有振動モードは、上記の方法で比較的簡単に確認することができる。この方法で確認した固有共振振動数を、低周波数側から2点、91Hz、121Hzを選定し、これを各5秒間ずつ、交互に出力するよう上記ソフトウェアにプログラムし、出力20Wで、音響振動を実験系へ連続的に印加した。本実験系を図5(模擬スケール付着実験系)に示す。
さて、発明者は、水系のスケール付着防止法として、特開2005−288436、特開2010−110667に開示する、水系の電磁処理法を提唱し、既に実用利用している。本実験では、電磁処理との複合効果も同時に確認するため、以下の4条件
(1)未処理、
(2)電磁処理、
(3)音響振動、
(4)電磁処理+音響振動のハイブリッド処理の比較を行った。
(2)、及び(4)の電磁処理については、発明者が特開2005−199274において提唱した、机上試験方法によって、当該模擬水の電磁処理適合周波数を8kHz、出力電流4Aを選定し、静置状態にて1min.の電磁処理を行った。
本実験結果を図6(模擬スケール付着実験結果)に示す。
(1)未処理の場合、銅板表面に5.15mg(片側のみの平均値)のCaCO3スケールが析出・付着しているのに対して、(2)事前に電磁処理を行った試料は3.07mg、(3)本発明で提案する音響振動印加では1.05mgと、スケール付着量が大きく抑制されていることがわかる。また、(4)電磁処理と音響振動のハイブリッド処理の場合、同スケール付着量は僅か0.03mgと、非常に良くスケール付着が抑制されることが明らかになった。尚、本グラフには示していないが、固有共振振動数から外れた振動数であっても、振動によって一定程度のスケール付着抑制効果が認められた。
電磁処理に関しては、スケール付着の防止、又は抑制効果に加え、スケールの軟化が生じることが確認されている。(例えば、「交流電磁場処理による排水管のスケール防止効果」梅木千真他、用水と廃水、42巻2号、(2007)、p58−64)従って(4)の結果は、電磁処理によって軟化したスケールが、音響振動により、付着が大幅に抑制されたものと推定できる。
(実施例2)
先の実施例1の実験結果を受け、発明者は、実際の温泉設備(山梨県北杜市)のスケールに対して、実証実験を行った。
図1は、実証実験系の図である。液体処理装置10は、振動装置1と、ヨークコイル3と、
前記振動装置1と、ヨークコイル3を駆動する周波数発生装置2とで構成されている。
配管5,51には、温泉水6が注入され、排水7で温泉水が、排出されている。
ここで、振動装置1は、振動伝達部4に固定されている。
表1に、当該温泉設備の水質分析結果を示す。尚、成分分析は吸光光度計を用いた比色法により行った。
Figure 0006918287
表1に示す通り、本温泉水は全硬度(特にMg)が高く、カルシウム、マグネシウムスケールを生じやすい性質である。本温泉設備の温泉排水に図1に示す実証実験設備を3セット同時に設置し、(1)未処理、(2)電磁処理、(3)音響振動+電磁処理のハイブリッド処理の各効果について、2ヶ月間の実証実験を行った。因みに、(2)、及び(3)に係る電磁処理については、発明者が提案した特開2010−110667による方法であり、また、当該温泉水と電磁処理との適合性については、同じく発明者が提案した特開2005−199274に示す方法で確認し、本温泉水に対しては、周波数8kHz、出力電流5Aの交流電流を特殊フェライト製のヨークコイルに印加している。また、(3)に係る音響振動は、音響振動の振動数を徐々に変化させながら、温泉水を通水中のポリカーボネート配管に印加し、配管の振動が極大となる振動数を、振動計にて確認することで選定した。本実験系においては、低周波数側から48Hz、72Hzを選定し、これを図1(実証実験系)に示す振動スピーカーによって、各10秒間ずつ交互に、出力10Wにて、連続的に印加した。
尚、振動スピーカー取付座(振動伝達部)の構造を図2(振動スピーカー取付座(振動伝達部))に、取付座の写真を図3(取付座と振動スピーカーの写真)に示すが、実際の構造はここに示したものに限定する必要はなく、要するに、配管系と流体に対して効率よく振動を伝達できればよい。
図4(実証実験結果)は、2ヶ月間温泉排水を通水した後の配管の断面写真である。左列は排水出口付近の塩化ビニール製配管、右列は入口付近のポリカーボネート製配管であり、上段から(1)未処理、(2)電磁処理、(3)ハイブリッド処理を行った結果である。(1)未処理の場合、硬質なスケールが配管の全面に渡りびっしりと付着している。それに対して、(2)従来技術である電磁処理を行った場合、配管の上部側にはほとんどスケールが付着しておらず、配管の下部側に軟化したスケールが堆積している。一方、本発明に含まれる(3)ハイブリッド処理を行った場合、配管の全面に渡ってほとんどスケールの付着、及び残留が見られず、非常に良好なスケール付着防止効果が確認された。
前記2ヶ月間の実証試験後のポリカーボネート製配管を硝酸洗浄し、同配管の洗浄前後の質量比較から、単位表面積当りのスケール付着量を定量した結果を表2に示す。本発明を適用することで、スケール付着量を未処理時と比較し、20%程度まで大幅に低減できることを確認した。
Figure 0006918287
本発明によれば、従来の超音波処理法とは異なり、可聴音域、あるいはそれ以下の低周波数域の音響振動を利用することで、従来の問題点を解決し、実用利用に耐える音響振動による流体処理装置及び流体処理方法を提供することができる。更には、小さな入力エネルギーに対して、大きな力学的振動を、流体表面に、広範囲に作用させることができることから、反応効率を高めた反応槽等、各種材料加工や、食品加工等へ応用することもでき、流体処理、及び加工関連の産業の発展に寄与することができる。
1 振動装置
2 周波数発生装置
3 ヨークコイル
4 振動伝達部
5、51 配管
6 温泉水
7 排水
8 模擬水
9 試料
10 流体処理装置
20 恒温水槽
21 アクリルボックス
30、31 振動スピーカー
40 パソコン
41 低周波発生器
42 アンプ

Claims (6)

  1. 内部を液状の流体が流動する設備の内壁表面上に、振動数が10Hz以上から1,000Hz以下の範囲であり、前記流体に対応した固有の固有振動モードの力学的共振振動の音響振動を、前記固有振動モードの内で異なる固有振動モードを切り替えながら付与する振動装置を有することを特徴とする流体処理装置。
  2. 電磁処理を併用することで、スケール等の付着、スライム等の付着を防止、又は抑制効果を高めるための電磁処理装置を設けた請求項1記載の流体処理装置。
  3. 前記固有振動モードを振動計、又はマイクロフォンによって探査できる機構が備えられ、それによって探査特定した振動数を記憶し、プログラムして駆動される機構が備えられたことを特徴とする請求項1又は2記載の流体処理装置。
  4. 内部を液状の流体が流動する設備の内壁表面上に、振動数が10Hz以上から1,000Hz以下の範囲であり、前記流体に対応した固有の固有振動モードの力学的共振振動の音響振動を、前記固有振動モードの内で異なる固有振動モードを切り替えながら付与することを特徴とする流体処理方法。
  5. 電磁処理を併用することで、スケール等の付着、スライム等の付着を防止、又は抑制効果を高める請求項4記載の流体処理方法。
  6. 前記固有振動モードを振動計、又はマイクロフォンによって探査し、それによって探査特定した振動数を記憶し、プログラムして駆動することを特徴とする請求項4又は5記載の流体処理方法。
JP2016198424A 2016-10-06 2016-10-06 音響振動による流体処理装置及び流体処理方法 Active JP6918287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198424A JP6918287B2 (ja) 2016-10-06 2016-10-06 音響振動による流体処理装置及び流体処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198424A JP6918287B2 (ja) 2016-10-06 2016-10-06 音響振動による流体処理装置及び流体処理方法

Publications (2)

Publication Number Publication Date
JP2018059686A JP2018059686A (ja) 2018-04-12
JP6918287B2 true JP6918287B2 (ja) 2021-08-11

Family

ID=61908796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198424A Active JP6918287B2 (ja) 2016-10-06 2016-10-06 音響振動による流体処理装置及び流体処理方法

Country Status (1)

Country Link
JP (1) JP6918287B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405632A (zh) * 2018-12-04 2019-03-01 张富阳 微电脑全自动音乐水垢清洗机

Also Published As

Publication number Publication date
JP2018059686A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
Pečnik et al. Scale deposit removal by means of ultrasonic cavitation
Aarts et al. Enhancement of liquid flow through a porous medium by ultrasonic radiation
KR101304121B1 (ko) 수처리 및 가온 장치
NO171539B (no) Fremgangsmaate for fraskilling av stoffer som inneholdes ien vaeske, samt anordning for utfoerelse av fremgangsmaaten
DE502007003105D1 (de) Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit
CN202630407U (zh) 一种带超声波除垢、杀菌功能的热泵热水器
JP6918287B2 (ja) 音響振動による流体処理装置及び流体処理方法
KR20120094586A (ko) 충격파에 의한 배관세척장치
Blel et al. Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 2: Effects on cleaning efficiency
Srathonghuam et al. Vibration analysis and development of a submersible ultrasonic transducer for an application in the inhibitory activity of pathogenic bacteria
RU2110489C1 (ru) Способ удаления отложений сульфатов щелочноземельных металлов
JP6511197B2 (ja) 洗浄装置および洗浄方法
US20180238646A1 (en) Methods For Negating Deposits Using Cavitation Induced Shock Waves
Kunanz et al. Scale removal with ultrasonic waves
Awad et al. Ultrasonic cleaning
Mandrone An ultrasonic prototype to remedy pipes clogging: experimental effects on drains used for landslide mitigation
JPS6023794A (ja) 熱交換装置
Da Silva et al. A new ultrasonic reactor for CaCO3 antiscaling in pipelines and equipment
Arnold et al. Dissolution amplification by resonance and cavitational stimulation at ultrasonic and megasonic frequencies
Long et al. Impacts of ultrasound on oxide removal–An attempt towards acid-free cleaning
JP2005279431A (ja) 流体の活性化方法
KR920006055A (ko) 파편상 파쇄물 및 유동성재료의 재생방법 및 그 장치
Khmelev et al. Development and application of piezoelectric transducer with the enlarged radiation surface for wastewater treatment
RU2422371C2 (ru) Способ снижения временной жесткости воды в потоке и кавитационный реактор для его осуществления
Qian et al. Study on characteristics of ultrasonic descaling and heat transfer enhancement in sewage source heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6918287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150