JP6917706B2 - Measurement method of adsorption pressure distribution - Google Patents
Measurement method of adsorption pressure distribution Download PDFInfo
- Publication number
- JP6917706B2 JP6917706B2 JP2016252406A JP2016252406A JP6917706B2 JP 6917706 B2 JP6917706 B2 JP 6917706B2 JP 2016252406 A JP2016252406 A JP 2016252406A JP 2016252406 A JP2016252406 A JP 2016252406A JP 6917706 B2 JP6917706 B2 JP 6917706B2
- Authority
- JP
- Japan
- Prior art keywords
- metal foil
- measuring
- magnet array
- support
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 title claims description 22
- 238000001179 sorption measurement Methods 0.000 title claims description 7
- 238000000691 measurement method Methods 0.000 title 1
- 239000002184 metal Substances 0.000 claims description 65
- 239000011888 foil Substances 0.000 claims description 60
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 description 29
- 239000000758 substrate Substances 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000011364 vaporized material Substances 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Description
本発明は、吸着圧力分布の測定方法に関し、より詳しくは、複数個の磁石を列設してなる磁石アレイによって金属箔を吸着したときの吸着圧力の分布を測定するものに関する。 The present invention relates to a method for measuring an adsorption pressure distribution, and more particularly to a method for measuring an attraction pressure distribution when a metal foil is adsorbed by a magnet array in which a plurality of magnets are arranged in a row.
例えば、有機ELデバイスを製造する方法の一つとして真空蒸着法が知られている。この真空蒸着法では、真空雰囲気の形成が可能な真空チャンバ内に、ガラス基板等の基板と蒸着(処理)範囲を規定するマスクプレートとを重ね合わせて配置し、蒸着源より蒸着物質を昇華または気化させ、この昇華または気化した蒸着物質をマスクプレート越しに基板の一方の面(即ち、成膜面)に付着、堆積させることで、各種の薄膜が所定のパターンで成膜される(例えば、特許文献1参照)。この場合、製品歩留まりを考慮して、数十μmの板厚を持つ金属箔からなるマスクプレートの下方に蒸着源を配置し、所謂デポアップ式で成膜することが通常である。このとき、所謂マスクボケを可及的に抑制しつつ所定のパターンで成膜するには、真空蒸着による成膜時、基板の一方の面にマスクプレートをその全面に亘って密着させていることが好ましい。 For example, a vacuum vapor deposition method is known as one of the methods for manufacturing an organic EL device. In this vacuum vapor deposition method, a substrate such as a glass substrate and a mask plate that defines a vapor deposition (processing) range are superposed and arranged in a vacuum chamber capable of forming a vacuum atmosphere, and the vaporized material is sublimated or sublimated from the vapor deposition source. By vaporizing and adhering and depositing this sublimated or vaporized vaporized material on one surface (that is, the film-forming surface) of the substrate through the mask plate, various thin films are formed in a predetermined pattern (for example,). See Patent Document 1). In this case, in consideration of the product yield, the vapor deposition source is usually arranged below the mask plate made of a metal foil having a plate thickness of several tens of μm, and the film is formed by a so-called depot-up method. At this time, in order to form a film with a predetermined pattern while suppressing so-called mask blur as much as possible, it is necessary that the mask plate is adhered to one surface of the substrate over the entire surface during the film formation by vacuum vapor deposition. preferable.
このことから、マスクプレートから基板に向かう方向を上として、基板とマスクプレートとを上下方向で位置合わせして重ね、基板上にタッチプレートを介して保持手段を配置することで当該基板を挟み込むようにしてタッチプレートにマスクプレートを保持させることが知られており、保持手段として、少なくとも1方向に間隔を存して複数個の棒状の磁石を列設してなる磁石アレイを用いることが知られている。 From this, the substrate and the mask plate are vertically aligned and overlapped with the direction from the mask plate toward the substrate facing up, and the holding means is arranged on the substrate via the touch plate so as to sandwich the substrate. It is known that the mask plate is held by the touch plate, and as the holding means, it is known to use a magnet array in which a plurality of rod-shaped magnets are arranged in a row at intervals in at least one direction. ing.
ここで、上記磁石アレイによって金属箔(マスクプレート)を吸着保持した場合、金属箔内部の磁束密度が略常時飽和しているので、各磁石の磁極付近では吸着圧力が発生するが、隣り合う磁石の間の中央位置では、吸着圧力が殆ど発生していないような吸着圧力の分布となる。また、磁石アレイを構成する各磁石の個体差により吸着圧力に差ができる場合もある。そして、例えば、吸着圧力が殆ど発生していないような箇所では、金属箔と基板との間にギャップが生じる。このため、上記成膜に用いると、マスクプレートと基板との間のギャップによっては、マスクボケが発生して製品歩留まりを低下させてしまう。そこで、例えば、磁石アレイを構成する各磁石の配列を最適化できるように、磁石アレイによって金属箔を吸着したときの吸着圧力の分布を測定する方法の開発が望まれていた。 Here, when the metal foil (mask plate) is attracted and held by the magnet array, the magnetic flux density inside the metal foil is almost always saturated, so that an adsorption pressure is generated near the magnetic poles of each magnet, but adjacent magnets. At the central position between the two, the adsorption pressure is distributed so that almost no adsorption pressure is generated. In addition, the suction pressure may differ due to the individual difference of each magnet constituting the magnet array. Then, for example, in a place where almost no suction pressure is generated, a gap is generated between the metal foil and the substrate. Therefore, when used for the above-mentioned film formation, mask blurring occurs depending on the gap between the mask plate and the substrate, and the product yield is lowered. Therefore, for example, it has been desired to develop a method for measuring the distribution of the suction pressure when the metal foil is sucked by the magnet array so that the arrangement of each magnet constituting the magnet array can be optimized.
本発明は、以上の点に鑑み、複数個の磁石を列設してなる磁石アレイによって金属箔を吸着したときの吸着圧力の分布を測定することができる吸着圧力分布の測定方法を提供することをその課題とする。 In view of the above points, the present invention provides a method for measuring the suction pressure distribution, which can measure the distribution of the suction pressure when the metal foil is sucked by the magnet array in which a plurality of magnets are arranged in a row. Is the subject.
上記課題を解決するために、複数個の磁石を列設してなる磁石アレイによって金属箔を吸着したときの吸着圧力の分布を測定するための本発明の吸着圧力分布の測定方法は、磁石アレイ上に、支持体を介して金属箔を設置することで、各磁石からの磁力で支持体上面に金属箔を吸着保持させる工程と、支持体から金属箔に向けて気体圧力を付与し、金属箔に対しその下面の所定範囲全体に亘って同等の抗力を作用させる工程と、抗力が作用する金属箔の範囲にてこの金属箔の変位量を測定し、この測定した変位量から吸着圧力の分布を得る工程とを含むことを特徴とする。 In order to solve the above problems, the method for measuring the attraction pressure distribution of the present invention for measuring the distribution of the attraction pressure when the metal foil is attracted by the magnet array in which a plurality of magnets are arranged in a row is a magnet array. above, by installing the metal foil through the support, the gas pressure was applied toward adsorbing hold the metal foil to the support upper surface by the magnetic force from the magnet, from the support to the metal foil, metal The displacement amount of the metal foil is measured in the step of applying the same resistance force to the foil over the entire predetermined range of the lower surface thereof and in the range of the metal foil on which the resistance force acts, and the suction pressure is calculated from the measured displacement amount. It is characterized by including a step of obtaining a distribution.
本発明によれば、磁石アレイによって支持体上の金属箔を吸着保持し、金属箔の自重から抗力としての気体圧力を徐々に昇圧していき、この気体圧力と、磁石アレイによる吸着圧力との差が負から正に転じるところで、金属箔に上下方向の変位として現れることを利用し、このときの変位量を金属箔の面内全体に亘って測定すれば、磁石アレイによる吸着圧力の分布を測定することができる。この場合、金属箔の変位量の測定には、光学式や超音波式等の非接触の変位計が利用でき、このような変位計は、金属箔の一方の面内で互いに直交する2方向をX軸方向及びY軸方向とし、起点位置から変位計を金属箔に対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査できるものに設置すればよい。 According to the present invention, the metal foil on the support is attracted and held by the magnet array, and the gas pressure as a resistance force is gradually increased from the weight of the metal foil itself, and this gas pressure and the attraction pressure by the magnet array are combined. Utilizing the fact that the difference changes from negative to positive and appears as a vertical displacement on the metal foil, if the amount of displacement at this time is measured over the entire in-plane of the metal foil, the distribution of the attraction pressure by the magnet array can be obtained. Can be measured. In this case, a non-contact displacement meter such as an optical type or an ultrasonic type can be used to measure the displacement amount of the metal foil, and such a displacement meter has two directions orthogonal to each other in one surface of the metal foil. Is set to the X-axis direction and the Y-axis direction, and the displacement meter may be installed so as to be able to scan relative to the metal foil in at least one direction of the X-axis direction and the Y-axis direction from the starting point position.
なお、本発明においては、前記支持体として、上面に窪み部が凹設された基台と、窪み部を覆うように基台の上面に設けられた多孔質板とを備えるものを用い、窪み部に気体を供給することで、金属箔に対し多孔質板の各孔を通して気体圧力を付与するように構成しておけば、金属箔に対しその下面全面に亘って同等の気体圧力を作用させる構成を実現できる。 In the present invention, the support is provided with a base having a recessed portion on the upper surface and a porous plate provided on the upper surface of the base so as to cover the recessed portion. If a gas is supplied to the portion to apply a gas pressure to the metal foil through each hole of the porous plate, the same gas pressure is applied to the entire lower surface of the metal foil. The configuration can be realized.
以下、図面を参照して、本発明の磁場強度測定方法の実施形態を説明する。以下においては、磁石アレイから金属箔に向かう方向をZ軸方向の上として、Z軸に直交する金属箔の面内で互いに直交する2方向をX軸方向及びY軸方向とする。 Hereinafter, embodiments of the magnetic field strength measuring method of the present invention will be described with reference to the drawings. In the following, the direction from the magnet array to the metal foil is above the Z-axis direction, and the two directions orthogonal to each other in the plane of the metal foil orthogonal to the Z-axis are the X-axis direction and the Y-axis direction.
図1を参照して、Msは、金属箔の面内における変位量を測定し得る測定装置である。測定装置Msは、測定部1と、後述の測定対象物に対して測定部1をX軸方向及びY軸方向に相対移動可能な移動部2とで構成されている。移動部2は、水平に設置される支持台21上にX軸方向に沿って敷設された2本のレール22,22に摺動自在に係合するスライダ(図示せず)を有する門型のフレーム23を備え、フレーム23が図示省略のモータにより所定のピッチでX軸方向に進退できるようになっている。また、フレーム23には、Y軸方向にのびる送りねじ24が設けられ、送りねじ24には支持台25の取付部(図示せず)が螺合し、支持台25が図示省略のモータにより所定のピッチでY軸方向に進退できるようになっている。そして、支持台25に測定部1が配置されている。測定部1は、投光素子と受光素子とを有する光学式の変位センサで構成されている。なお、このような変位センサ自体は公知のものが利用できるため、その変位量の測定方法を含め、これ以上の詳細な説明は省略する。
With reference to FIG. 1, Ms is a measuring device capable of measuring the amount of displacement of the metal foil in the plane. The measuring device Ms is composed of a
両レール22,22の間で測定部1の下方に位置させて、かつ、後述の棒状の磁石の各々がY軸方向に一致するように位相決めした姿勢で磁石アレイ3を備える測定対象物が設置される。図2に示すように、測定対象物は、磁石アレイ3に加えて支持体4と金属箔5とを含む。磁石アレイ3は、板状のヨーク31と、ヨーク31の上面に、同一形状で同種のY軸方向に長手の棒状磁石32をX軸方向に等間隔でかつ上側の磁極を交互に変えて列設して構成されている。磁石アレイ3上には支持体4が設置される。支持体4は、透磁率が小さい金属材料から選択され、例えば、オーステナイト系ステンレスが用いられる。支持体4は、上面に窪み部41aが凹設された基台41と、窪み部41aを覆うように基台41の上面に取り付けられ、窪み部41aに連通する複数の孔42aを有する多孔質板42とで構成される。また、基台41の側面には、窪み部41aに連通する2個の気体導入口43が開設され、特に図示して説明しないが、気体導入口43に接続された供給管を介して窒素や圧縮空気等の気体を窪み部41aに供給できるようにしている。この場合、気体導入口43は、窪み部41aに供給される気体が均等に分布するように複数箇所設けるようにしてもよく、また、多孔質板42の各孔42aから同等の気体圧力を金属箔5に作用させるために、窪み部41a内に、気体導入口43から供給される気体を分散させる分散板(図示せず)を設けてもよい。
A measurement object having a
多孔質板42の各孔42aは、金属箔5に対して気体圧力を付与するときに、磁石アレイ3によって吸着保持される金属箔5の範囲全体に亘って同等の気体圧力(抗力)を作用させるように開設されていれば、特に制限はない。更に、多孔質板42の上面は、金属箔5を吸着保持したときに、金属箔5の平坦度を所定範囲に担保できるように加工されている。金属箔5は、常温付近で熱膨張率が小さい材質で、かつ、例えば数十μm〜数百μmの範囲の板厚を持つものであり、例えば、インバー製のものが用いられる。この場合、金属箔5は、多孔質板42の輪郭より大きくなるように設定される。以下に、磁石アレイ3の吸着圧力の分布の測定方法を具体的に説明する。
When a gas pressure is applied to the
先ず、測定対象物をセットする。この場合、図外の組付台上に磁石アレイ3をそのヨーク31側を鉛直方向下側にして設置する。次に、磁石アレイ3上に支持体4を重ね合わせて設置した後、支持体4上に金属箔5を設置する、これにより、磁石アレイ3の磁力によって支持体4の多孔質板42の上面に金属箔5が吸着保持され、測定対象物が準備される。測定対象物が準備されると、両レール22,22の間で測定部1の下方に位置させて、かつ、棒状磁石32の各々がY軸方向に一致するように位相決めした姿勢で測定対象物を設置する。
First, the object to be measured is set. In this case, the
測定対象物が設置されると、気体導入口43から窪み部41a内に気体を供給する。これにより、多孔質板42の各孔42aを通して金属箔5に対し気体圧力が付与され、磁石アレイ3の磁力で吸着される金属箔5の範囲全体に亘って同等の気体圧力が作用する。ここで、当初の気体圧力は、例えば金属箔5の材質(密度)及び厚さから、金属箔5が平坦に保持されるように適宜設定される。この状態で、例えば、金属箔5のいずれかの隅部を起点位置とし、この起点位置から移動部2により測定部1をX軸方向及びY軸方向に走査し、そのときの金属箔5上面における変位量のデータを取得する。このとき、比較的磁力が局所的に強い箇所が存在すると、この箇所では、金属箔5が多孔質板42へと強く吸着されて下方に撓むことで変位量が多くなる。
When the object to be measured is installed, gas is supplied from the
次に、気体導入口43から窪み部41a内に供給される気体圧力を所定値だけ高くし、上記と同様にして、起点位置から移動部2により測定部1をX軸方向及びY軸方向に走査し、そのときの金属箔5上面における変位量のデータを取得する。このとき、比較的磁力が局所的に弱い箇所があると、この箇所では、磁力より気体圧力の抗力が勝って金属箔5が上方に撓むことで逆方向の変位量が多くなる。そして、気体圧力を更に高くし、金属箔5上面における変位量のデータを取得することを繰り返せば、磁石アレイ3のX軸方向及びY軸方向の吸着圧力の分布が詳細に測定できる。
Next, the gas pressure supplied from the
以上説明したように、本実施形態によれば、磁石アレイ3によって支持体4上の金属箔5を吸着保持し、金属箔5の自重から気体圧力を徐々に昇圧していき、この気体圧力と、磁石アレイ3による吸着圧力との差が負から正に転じるところで、金属箔5に上下方向の変位として現れることを利用し、このときの変位量を金属箔5の面内全体に亘って測定することで、磁石アレイ3の磁石列設方向及びこれに直交する方向での磁石アレイ3による吸着圧力の分布を測定することができる。
As described above, according to the present embodiment, the
以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではなく、本発明の技術思想を逸脱しない範囲であれば、適宜変形が可能である。上記実施形態では、磁場強度の分布が測定される磁石アレイ3として、棒状磁石32をX軸方向に列設したものを例に説明したが、これに限定されるものではなく、磁石片の複数個をランダムに配置、または、X軸方向及びY軸方向に規則正しく列設したものでも、本発明を適用して吸着圧力の分布を測定することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above, and can be appropriately modified as long as it does not deviate from the technical idea of the present invention. In the above embodiment, as the
また、上記実施形態では、支持体4を基台41と多孔質板42とで構成したものを例に説明したが、金属箔5の所定範囲に同等の気体圧力を付与できるものであれば、これに限定されるものではない。更に、上記実施形態では、測定装置Msは測定部1として、光学式の変位センサを用いるものを例に説明したが、これに限定されるものではなく、超音波式等の非接触の変位計であれば、その形態は問わない。また、測定装置Msは移動部2として、直交2軸で測定部1を移動できるものを例に説明したが、金属箔5の全面に亘って走査できるものであれば、特に限定されるものではなく、例えば多関節型ロボットを用いることができる。更に、また、上記実施形態では、磁石アレイ3を鉛直方向下側に設置した状態で測定するものを例に説明したが、金属箔5が鉛直方向下側になる状態で測定することもできる。
Further, in the above embodiment, the
更に、上記実施形態では、金属箔5を用いるものを例に説明したが、これに限定されるものではなく、例えば、真空蒸着法により基板に成膜するときに使用される箔状のマスクプレートを用い、本発明を適用して吸着圧力の分布を測定することができる。この場合、特に図示して説明しないが、マスクプレートにはその板厚方向に貫通する複数個の透孔が開設されているため、気体圧力が抜けないように、支持体4と金属箔5との間に、例えばポリイミドからなる薄膜状の樹脂を介在させるようにすればよい。
Further, in the above embodiment, the case where the
3…磁石アレイ、32…磁石アレイを構成する磁石、4…支持体、41…基台、41a…窪み部、42…多孔質板、42a…孔、5…金属箔。
3 ... Magnet array, 32 ... Magnets constituting the magnet array, 4 ... Support, 41 ... Base, 41a ... Recessed portion, 42 ... Porous plate, 42a ... Hole, 5 ... Metal leaf.
Claims (2)
磁石アレイ上に、支持体を介して金属箔を設置することで、各磁石からの磁力で支持体上面に金属箔を吸着保持させる工程と、
支持体から金属箔に向けて気体圧力を付与し、金属箔に対しその下面の所定範囲全体に亘って同等の抗力を作用させる工程と、
抗力が作用する金属箔の範囲にてこの金属箔の変位量を測定し、この測定した変位量から吸着圧力の分布を得る工程とを含むことを特徴とする測定方法。 It is a method of measuring the suction pressure distribution for measuring the distribution of the suction pressure when the metal foil is sucked by the magnet array in which a plurality of magnets are arranged in a row.
On a magnet array, by installing the metal foil via a support, adsorbing hold the metal foil to the support upper surface by the magnetic force from the magnet,
A step of applying a gas pressure from the support toward the metal foil and exerting an equivalent drag force on the metal foil over a predetermined range of the lower surface thereof.
A measuring method comprising a step of measuring the displacement amount of the metal leaf in the range of the metal foil on which the drag force acts, and obtaining the distribution of the suction pressure from the measured displacement amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252406A JP6917706B2 (en) | 2016-12-27 | 2016-12-27 | Measurement method of adsorption pressure distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252406A JP6917706B2 (en) | 2016-12-27 | 2016-12-27 | Measurement method of adsorption pressure distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018105722A JP2018105722A (en) | 2018-07-05 |
JP6917706B2 true JP6917706B2 (en) | 2021-08-11 |
Family
ID=62784618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016252406A Active JP6917706B2 (en) | 2016-12-27 | 2016-12-27 | Measurement method of adsorption pressure distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6917706B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5570537A (en) * | 1978-11-22 | 1980-05-28 | Inoue Japax Res Inc | Magnet chuck |
JPH06201808A (en) * | 1992-12-26 | 1994-07-22 | Daido Steel Co Ltd | Detecting apparatus for magnetic force of raw material of magnet |
JP5448375B2 (en) * | 2008-06-18 | 2014-03-19 | 株式会社セイホー | Magnetic attractive force measuring device and magnetic attractive force measuring method |
JP5665336B2 (en) * | 2009-04-06 | 2015-02-04 | キヤノン株式会社 | Substrate holding device and lithography apparatus using the same |
-
2016
- 2016-12-27 JP JP2016252406A patent/JP6917706B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018105722A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4375232B2 (en) | Mask deposition method | |
US20190244842A1 (en) | Position And Temperature Monitoring Of ALD Platen Susceptor | |
KR102091560B1 (en) | Substrate holding device, film forming device and substrate holding method | |
KR102162790B1 (en) | Welding device for mask frame assembly | |
CN107109621A (en) | The fixing of supporting substrate carrier and mask carrier is arranged, for the equipment of sedimentary on substrate and for the method for the substrate carrier and mask carrier that are directed at supporting substrate during for layer deposition in the processing chamber | |
WO2010106958A1 (en) | Positioning method and vapor deposition method | |
KR20160015214A (en) | Actively-aligned fine metal mask | |
CN109154062A (en) | It is used for transmission the device and method of carrier or substrate | |
JP2014225669A5 (en) | Substrate holder, lithographic apparatus, and manufacturing method of substrate holder | |
JP2008147293A (en) | Substrate supporting apparatus, substrate supporting method, substrate working apparatus, substrate working method, and manufacturing method of display device component | |
US9048460B2 (en) | Deposition apparatus and method for manufacturing organic light emitting display apparatus by using the same | |
JP6917706B2 (en) | Measurement method of adsorption pressure distribution | |
KR101390063B1 (en) | Leveling apparatus and atomic force microscope including the same | |
JP6814879B2 (en) | Devices, systems and methods for aligning substrates | |
JP4774025B2 (en) | Adsorption device, transfer device | |
TWI731102B (en) | Device for positioning an integrated circuit wafer and equipment for inspecting an integrated circuit wafer comprising such a positioning device | |
JP6927860B2 (en) | Suction force measuring device and suction force measuring method | |
JP2019113341A (en) | Gap measurement method | |
JPH0556013B2 (en) | ||
JP2018162985A (en) | Evaluation method and measurement device | |
KR20190007044A (en) | Multiple miniature pick-up elements for component stacking and / or pick-and-place processes | |
KR101921983B1 (en) | Gap measurement method | |
JP2002530866A (en) | Substrate transfer and holding device | |
KR20170003133U (en) | Aligner and aligning method using electrostatic chuck | |
JP2019019369A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6917706 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |