JP6916481B2 - Device - Google Patents

Device Download PDF

Info

Publication number
JP6916481B2
JP6916481B2 JP2019022485A JP2019022485A JP6916481B2 JP 6916481 B2 JP6916481 B2 JP 6916481B2 JP 2019022485 A JP2019022485 A JP 2019022485A JP 2019022485 A JP2019022485 A JP 2019022485A JP 6916481 B2 JP6916481 B2 JP 6916481B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
frequency
regulated power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022485A
Other languages
Japanese (ja)
Other versions
JP2019071141A (en
Inventor
邦男 中山
邦男 中山
Original Assignee
邦男 中山
邦男 中山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014214768A external-priority patent/JP2016081432A/en
Application filed by 邦男 中山, 邦男 中山 filed Critical 邦男 中山
Priority to JP2019022485A priority Critical patent/JP6916481B2/en
Publication of JP2019071141A publication Critical patent/JP2019071141A/en
Application granted granted Critical
Publication of JP6916481B2 publication Critical patent/JP6916481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

本発明は、電圧変動の少ない安定化電源による電源供給および負荷接続方法に関するものである。 The present invention relates to a power supply and load connection method using a regulated power supply with little voltage fluctuation.

オーディオアンプ、CDプレーヤーなどの電子機器を動作させるために電源は必須であり、かつ安定動作を確保するために、トランス、整流及び平滑回路、スイッチング電源により、商用AC電圧を所定のDC電圧に変換した後、あるいは代わりにバッテリーを使用する場合もあるが、機器の構成回路として、必要とされる電圧毎に安定化電源回路を用いることは良く行われている。一般的に、IC化された簡便な三端子レギュレーターなどを用いる場合(図1)、DC-DCコンバーターを用いる場合、さらにより安定性を求める場合にはオペアンプとトランジスター等を組み合わせた安定化電源回路(図2の2安定化電源)を用いる場合もある。 A power supply is indispensable for operating electronic devices such as audio amplifiers and CD players, and in order to ensure stable operation, a transformer, rectifier and smoothing circuit, and switching power supply are used to convert commercial AC voltage to a predetermined DC voltage. After that, or instead, a battery may be used, but it is common practice to use a regulated power supply circuit for each required voltage as a component circuit of the device. Generally, when using a simple IC-based three-terminal regulator (Fig. 1), when using a DC-DC converter, or when seeking even greater stability, a regulated power supply circuit that combines an operational amplifier and a transistor, etc. (2 stabilized power supply in FIG. 2) may be used.

しかし、図1及び図2の2安定化電源に示す例のように従来の安定化電源回路は電源回路自身と後段の負荷回路の安定動作の為、出力に図1の例では101、図2の例では202のコンデンサー接続されている。これは図1、図2に示す電源がバイパスコンデンサーを伴った回路を負荷として動作させるのが目的であるため、容量負荷を前提とした設計となっていることによる。 However, as shown in the examples shown in 2 stabilized power supplies of FIGS. 1 and 2, the output of the conventional stabilized power supply circuit is 101 in the example of FIG. 1 and FIG. 2 because of the stable operation of the power supply circuit itself and the load circuit in the subsequent stage. In the example of, 202 capacitors are connected. This is because the power supply shown in FIGS. 1 and 2 is designed on the premise of a capacitive load because the purpose is to operate a circuit with a bypass capacitor as a load.

図3はオペアンプのボード線図のゲインのみを簡略化してあらわしたもので、30のゲイン特性A(破線)は一般的なオペアンプを表すものであり、図2の例で使用されるオペアンプ210と考えてよい。図2のコンデンサー202の接続によってトランジスター211を介したものであるものの容量負荷となるため、一般的に図3で示す32のユニティゲイン周波数Aは33へ制限され、位相余裕がなくなり、発振しやすくなることは良く知られている現象である。これを改善する手法として、図2で示す201の位相補償コンデンサーをネガティブフィードバック抵抗220に付加することによって位相余裕を改善し、オペアンプ210の動作を安定させることもありふれた既知の方法である。 FIG. 3 shows only the gain of the board diagram of the operational amplifier in a simplified manner, and the gain characteristic A (broken line) of 30 represents a general operational amplifier, and the operational amplifier 210 used in the example of FIG. You can think about it. Since the connection of the capacitor 202 of FIG. 2 causes a capacitive load even though it is via the transistor 211, the unity gain frequency A of 32 shown in FIG. 3 is generally limited to 33, there is no phase margin, and oscillation is easy. Becoming is a well-known phenomenon. As a method for improving this, it is a well-known method that the phase margin is improved by adding the phase compensation capacitor 201 shown in FIG. 2 to the negative feedback resistor 220 to stabilize the operation of the operational amplifier 210.

ただし、図2で201の位相補償コンデンサーによって、図3で示すオペアンプの最大ゲインが34で示すように低く制限されることが知られている。 However, it is known that the phase compensation capacitor 201 in FIG. 2 limits the maximum gain of the operational amplifier shown in FIG. 3 to a low value as shown by 34.

したがって、元のオペアンプ210の特性を図3で30のゲイン特性Aとすれば、図2のような安定化電源回路に組み込むことで31のゲイン特性Bへと制限されることがわかる。尚、上記段落0004及び段落0005で説明した内容は図1の10三端子レギュレーターICの内部の説明にも当てはまる。 Therefore, if the characteristic of the original operational amplifier 210 is the gain characteristic A of 30 in FIG. 3, it can be seen that it is limited to the gain characteristic B of 31 by incorporating it into the regulated power supply circuit as shown in FIG. The contents described in paragraphs 0004 and 0005 also apply to the internal description of the 10-three-terminal regulator IC of FIG.

一方、電源回路の出力特性の優劣を示すパラメーターに出力インピーダンスがある、インピーダンスの低いほうが負荷変動に強い優秀な電源とされる。具体的には上述したオペアンプ210でネガティブフィードバック量が多く取れることと、図2の202コンデンサーの内部インピーダンスが低いことが求められる。 On the other hand, the output impedance is a parameter that indicates the superiority or inferiority of the output characteristics of the power supply circuit, and the lower the impedance, the better the power supply that is resistant to load fluctuations. Specifically, it is required that the operational amplifier 210 described above can obtain a large amount of negative feedback and that the internal impedance of the 202 capacitor shown in FIG. 2 is low.

図2の2安定化電源回路の電圧出力22に20負荷回路を接続する、例に示した負荷回路はオペアンプ1個の回路であるが、複数の回路やトランジスター等で組んだ回路の電源供給端子でも構わない。これに23の電源端子になるべく近接する形で203バイパスコンデンサーを接続するのが一般的な電源と負荷回路の接続の方法である。 The load circuit shown in the example in which a 20-load circuit is connected to the voltage output 22 of the 2 regulated power supply circuit in FIG. 2 is a circuit of one operational amplifier, but the power supply terminal of a circuit composed of a plurality of circuits or transistors or the like. But it doesn't matter. A general method of connecting a power supply and a load circuit is to connect a 203 bypass capacitor to the power supply terminal of 23 as close as possible.

ここで203バイパスコンデンサーの役割は20負荷回路が例えばオペアンプで構成され、オペアンプのゲイン特性が図3の30ゲイン特性Aのような特性であった場合、かつ203バイパスコンデンサーがない場合、電源インピーダンスが十分に低くなく、20負荷回路が動作することによって23電源端子の電圧が変動する。この電源変動によって30負荷回路が図3の32ユニティゲイン周波数A付近で特性の乱れが生じ、位相余裕が減少し発振を起こすなどの異常動作状態に陥ることがある。そこで203バイパスコンデンサーを接続し、インピーダンスを低下させ、電源電圧変動を低減し、ひいては20負荷回路の特性の乱れを防ぎ、安定動作せしめることを目的とする。 Here, the role of the 203 bypass capacitor is that when the 20-load circuit is composed of, for example, an operational amplifier and the gain characteristic of the operational amplifier is as shown in the 30 gain characteristic A of FIG. 3, and there is no 203 bypass capacitor, the power supply impedance is high. It is not low enough, and the voltage of the 23 power supply terminals fluctuates due to the operation of the 20-load circuit. Due to this power supply fluctuation, the characteristics of the 30-load circuit are disturbed in the vicinity of the 32 unity gain frequency A in FIG. 3, the phase margin is reduced, and an abnormal operation state such as oscillation may occur. Therefore, it is an object of connecting a 203 bypass capacitor to lower the impedance, reduce the fluctuation of the power supply voltage, prevent the disturbance of the characteristics of the 20-load circuit, and ensure stable operation.

一方では、上述に於いて30負荷回路を通過する信号が図3の32ユニティゲイン付近以上の帯域を持たなければ203バイパスコンデンサーがなくとも、30負荷回路が正常な動作を保つことができる。 On the other hand, if the signal passing through the 30-load circuit in the above does not have a band of about 32 unity gain or more in FIG. 3, the 30-load circuit can maintain normal operation even without the 203 bypass capacitor.

ここで図4にコンデンサーの内部インピーダンス特性を示す。一般的なコンデンサーの値として図2の202を数百uF、203を1uF以下とすればそれぞれ、図4の40及び41に対応しているとみてよい。図4の40インピーダンス特性1に示すように容量の大きい方は低域側にインピーダンスの低いピークが存在し、容量の低い方は41インピーダンス特性2のように40よりも高周波領域にインピーダンスの低いピークが存在する。かつ、41のピークは40のそれよりもインピーダンスが高い、しかも40と41に共通してコンデンサーの内部インピーダンス特性は周波数に対してV字型の特性を持っているのが特徴である。これらはコンデンサーの構造の違い、例えばセラミックコンデンサー、フィルムコンデンサー、ケミカルコンデンサー等で内部インピーダンスに差はあるもののこのV字の特徴は共通である。 Here, FIG. 4 shows the internal impedance characteristics of the capacitor. As a general capacitor value, if 202 in FIG. 2 is several hundred uF and 203 is 1 uF or less, it can be considered that they correspond to 40 and 41 in FIG. 4, respectively. As shown in 40 impedance characteristic 1 of FIG. 4, the one with a large capacitance has a peak with a low impedance on the low frequency side, and the one with a low capacitance has a peak with a low impedance in a higher frequency region than 40 as in 41 impedance characteristic 2. Exists. Moreover, the peak of 41 has a higher impedance than that of 40, and the internal impedance characteristic of the capacitor common to 40 and 41 is characterized by having a V-shaped characteristic with respect to the frequency. These are different in the structure of the capacitor, for example, ceramic capacitor, film capacitor, chemical capacitor, etc., although there is a difference in internal impedance, this V-shaped feature is common.

そこで図5に図2の電圧出力22の出力インピーダンスを示す。本来、電圧出力22から電源端子までの配線によるインピーダンスと負荷回路20の影響を考慮しなければならないが、本発明の趣旨から省略しても差し支えないので割愛する。ここで電圧出力22の出力インピーダンスは210オペアンプと211トランジスターと212電圧リファレンスと220、221抵抗からなり、電圧出力22を抵抗220と221で分圧した値を電圧リファレンス212の基準電圧との比較した差分をフィードバックし、電圧出力22を安定化させる回路に201と202コンデンサーを備えた図3に示す31ゲインB特性を具えた図2の2安定化電源に203のバイパスコンデンサーを加味した特性となる。したがって、電圧出力22のインピーダンスは図5の50インピーダンス特性Aとなる。 Therefore, FIG. 5 shows the output impedance of the voltage output 22 of FIG. Originally, it is necessary to consider the impedance due to the wiring from the voltage output 22 to the power supply terminal and the influence of the load circuit 20, but it may be omitted from the gist of the present invention and is omitted here. Here, the output impedance of the voltage output 22 is composed of a 210 operational amplifier, a 211 transistor, a 212 voltage reference, a 220, and a 221 resistor, and the value obtained by dividing the voltage output 22 by the resistors 220 and 221 is compared with the reference voltage of the voltage reference 212. The circuit that feeds back the difference and stabilizes the voltage output 22 is equipped with 201 and 202 capacitors. The characteristic is that the 2 stabilized power supply of FIG. 2 having the 31 gain B characteristic shown in FIG. 3 and the bypass capacitor of 203 are added. .. Therefore, the impedance of the voltage output 22 has the 50 impedance characteristic A of FIG.

インピーダンス特性Aを見て明らかのように低域のインピーダンスは図2の210オペアンプのフィードバック回路の働きである程度低いものの全体的な周波数に対するインピーダンスの特徴がコンデンサーの特性に依存していることがわかる。従来、各周波数に於けるインピーダンスの更なる低減を目的として、内部インピーダンスの低いことを特徴とするコンデンサーや容量の異なるコンデンサーを複数接続することである程度、目的に寄与することができた。しかし、設置スペース、コストも問題となり、コンデンサーを複数搭載するのは自ずと限界がある。また、上述したコンデンサーのインピーダンス特性に依存することは逃れられず、周波数によって一様でない電源回路となる欠点があった。 As is clear from the impedance characteristic A, the impedance in the low frequency range is low to some extent due to the function of the feedback circuit of the 210 operational amplifier in FIG. 2, but the impedance characteristic with respect to the overall frequency depends on the characteristic of the capacitor. Conventionally, for the purpose of further reducing the impedance at each frequency, it has been possible to contribute to the purpose to some extent by connecting a plurality of capacitors characterized by low internal impedance and capacitors having different capacities. However, installation space and cost are also issues, and there is naturally a limit to mounting multiple capacitors. Further, it cannot be avoided that it depends on the impedance characteristics of the capacitor described above, and there is a drawback that the power supply circuit is not uniform depending on the frequency.

これまでの説明ではDC-DCコンバーターには触れてこなかったが、そもそもスイッチングノイズを発生させる回路であるためスイッチングノイズ除去の為、出力にはコンデンサーが接続されており、出力インピーダンスが、コンデンサーの内部インピーダンスにある程度依存することは明白なので詳細説明は省略する。 In the explanation so far, we have not touched on the DC-DC converter, but since it is a circuit that generates switching noise in the first place, a capacitor is connected to the output to eliminate switching noise, and the output impedance is inside the capacitor. Since it is clear that it depends on impedance to some extent, detailed description thereof will be omitted.

さて、オーディオアンプの音質に限らず、電源の負荷となる装置の動作性能は電源の安定性に依存するところが大きく、安定化電源の特性、安定化電源の出力コンデンサーの特性に依存するところが大きい、上述のように安定化電源の特性自身も出力コンデンサー由来の特性劣化を生じている。従来の回路手法ではこれを免れる方法はなかった。 By the way, not only the sound quality of the audio amplifier, but also the operating performance of the device that is the load of the power supply largely depends on the stability of the power supply, and it largely depends on the characteristics of the regulated power supply and the characteristics of the output capacitor of the regulated power supply. As described above, the characteristics of the regulated power supply itself also deteriorate due to the output capacitors. There was no way to avoid this with the conventional circuit method.

この改善策として、安定化電源回路の出力から負荷回路までの接続経路にバイパスコンデンサーなどの一切のコンデンサーを接続しない方法を提供することである。従来技術では特開2012−104014号による発明があるが、デジタル回路負荷による高速パルス変化に対応する電源出力の安定化回路の発明であってこれから説明する本発明とは方式と目的が異なる。 As a remedy for this, it is provided a method of not connecting any capacitor such as a bypass capacitor in the connection path from the output of the regulated power supply circuit to the load circuit. Although there is an invention according to Japanese Patent Application Laid-Open No. 2012-104014 in the prior art, it is an invention of a power output stabilizing circuit corresponding to a high-speed pulse change due to a digital circuit load, and the method and purpose are different from the present invention described below.

そしてオーディオアンプ以外の用途でも、安定化電源の安定化品質をより高めることの要求があった。 In addition to audio amplifiers, there has been a demand for higher stabilization quality of regulated power supplies.

特開2012−104014号公報Japanese Unexamined Patent Publication No. 2012-104014

谷本 茂著 「オペアンプ実践技術」誠文堂新光社出版 1980年Shigeru Tanimoto, "Practical Technology for Operational Amplifiers", published by Seibundo Shinkosha, 1980

解決しようとする問題点は、安定化電源回路の出力インピーダンス特性が出力に接続されるコンデンサーと負荷回路に接続されたバイパスコンデンサー(容量負荷)による影響を受けることである。 The problem to be solved is that the output impedance characteristic of the regulated power supply circuit is affected by the capacitor connected to the output and the bypass capacitor (capacitive load) connected to the load circuit.

本発明は、出力コンデンサーを廃する安定化電源回路とバイパスコンデンサーを廃する負荷回路とを組み合わせて動作させることである。 The present invention is to operate a regulated power supply circuit that eliminates an output capacitor and a load circuit that eliminates a bypass capacitor in combination.

例えば本発明の回路をオーディオアンプに用いた場合、従来よりも広帯域で電源変動が極めて少ない、安定した電圧供給により、広帯域で安定した信号増幅動作が可能となり、低音から高音まで可聴全帯域にわたって高音質再生が可能となる。 For example, when the circuit of the present invention is used for an audio amplifier, stable voltage supply in a wide band with extremely little power fluctuation than before enables stable signal amplification operation in a wide band, and is high over the entire audible band from bass to treble. Sound quality reproduction is possible.

図1は三端子レギュレーターICの回路を示した説明図である。FIG. 1 is an explanatory diagram showing a circuit of a three-terminal regulator IC. 図2は一般的な安定化電源と負荷回路との接続を示した説明図である。FIG. 2 is an explanatory diagram showing a connection between a general regulated power supply and a load circuit. 図3はオペアンプ特性のボード線図の内ゲインを示した説明図である。FIG. 3 is an explanatory diagram showing the gain in the Bode diagram of the operational amplifier characteristics. 図4はコンデンサーの内部インピーダンス特性を示した説明図である。FIG. 4 is an explanatory diagram showing the internal impedance characteristics of the capacitor. 図5は図2と図6の安定化電源回路の出力インピーダンス特性を示した説明図である。FIG. 5 is an explanatory diagram showing the output impedance characteristics of the regulated power supply circuits of FIGS. 2 and 6. 図6は本発明の安定化電源と負荷回路との接続方法を示した説明図である。FIG. 6 is an explanatory diagram showing a method of connecting the stabilized power supply and the load circuit of the present invention.

出力コンデンサーを廃する安定化電源回路とバイパスコンデンサーを廃する負荷回路とを組み合わせることに、既存の市販部品を組み合わせることで実現した。 This was achieved by combining an existing commercially available component with a stabilized power supply circuit that eliminates the output capacitor and a load circuit that eliminates the bypass capacitor.

図6は、本発明回路の1実施例の回路図であって、負荷回路60がプラスとマイナス2電源の場合を示している。 FIG. 6 is a circuit diagram of an embodiment of the circuit of the present invention, showing a case where the load circuit 60 has a positive and negative power supply.

オペアンプ610は図3に示す36ゲイン特性Cのように、35折点周波数Bがオーディオ帯域と同等かそれを超えるアンプを採用する。オペアンプ610は抵抗器620、621とともにプラス側の電圧V3を生成する。電圧リファレンス612のリファレンス電圧Vrを非反転入力に接続してV3=(1+R2/R1)・Vrなる電圧を得る。この時、オペアンプ610の電源端子に接続する電源電圧はV1>V3>V2であってオペアンプ610の動作に於いて出力が飽和しないことが条件である。 As shown in FIG. 3, the operational amplifier 610 employs an amplifier whose 35-fold point frequency B is equal to or exceeds the audio band, as shown in FIG. The operational amplifier 610, together with the resistors 620 and 621, produces a positive voltage V3. The reference voltage Vr of the voltage reference 612 is connected to the non-inverting input to obtain a voltage of V3 = (1 + R2 / R1) · Vr. At this time, the power supply voltage connected to the power supply terminal of the operational amplifier 610 is V1> V3> V2, and it is a condition that the output is not saturated in the operation of the operational amplifier 610.

同様にオペアンプ611は図3に示す36ゲイン特性Cのように、35折点周波数Bがオーディオ帯域と同等かそれを超えるアンプを採用する。オペアンプ611は抵抗器622、623とともにマイナス側の電圧V6を生成する。電圧リファレンス612のリファレンス電圧Vrを反転アンプ入力抵抗622のオペアンプ入力側と反対側へ接続してV6=−(R4/R3)・Vrなる電圧を得る。この時、オペアンプ611の電源端子602,603に接続する電源電圧はV4>V6>V5であってオペアンプ611の動作に於いて出力が飽和しないことが条件である。 Similarly, the operational amplifier 611 employs an amplifier whose 35-fold point frequency B is equal to or exceeds the audio band, as shown in the 36 gain characteristic C shown in FIG. The operational amplifier 611 generates a negative voltage V6 together with the resistors 622 and 623. The reference voltage Vr of the voltage reference 612 is connected to the side opposite to the operational amplifier input side of the inverting amplifier input resistance 622 to obtain a voltage of V6 = − (R4 / R3) · Vr. At this time, the power supply voltage connected to the power supply terminals 602 and 603 of the operational amplifier 611 is V4> V6> V5, and it is a condition that the output is not saturated in the operation of the operational amplifier 611.

図6では負荷回路60はオペアンプ1個の回路を示しているが複数個の回路やトランジスター等で組んだ回路でもよい。 Although the load circuit 60 shows a circuit of one operational amplifier in FIG. 6, it may be a circuit composed of a plurality of circuits, transistors, or the like.

また、負荷回路60の最大消費電流はオペアンプ610、611の最大出力電流と同等かそれ以下でなければならない。 Further, the maximum current consumption of the load circuit 60 must be equal to or less than the maximum output current of the operational amplifiers 610 and 611.

さらに、負荷回路60の動作可能な周波数は安定化電源回路66,67のおよそユニティゲインB以下でなければならない(図3の37)。この条件を満たすためにローパスフィルター65を負荷回路60よりも前段に挿入しこの条件を満たしても良い。 Further, the operable frequency of the load circuit 60 must be approximately unity gain B or less of the regulated power supply circuits 66 and 67 (37 in FIG. 3). In order to satisfy this condition, the low-pass filter 65 may be inserted before the load circuit 60 to satisfy this condition.

段落0026から段落0030の設計手順と条件を満たしたのち、安定化電源回路66の出力を負荷回路60の電源端子61へ、安定化電源回路67の出力を負荷回路60の電源端子62へそれぞれバイパスコンデンサーを一切付加することなく接続することで本発明の出力コンデンサーを廃する安定化電源回路とバイパスコンデンサーを廃する負荷回路との組み合わせ動作回路が実現する。 After satisfying the design procedures and conditions of paragraphs 0026 to 0030, the output of the regulated power supply circuit 66 is bypassed to the power supply terminal 61 of the load circuit 60, and the output of the regulated power supply circuit 67 is bypassed to the power supply terminal 62 of the load circuit 60. By connecting without adding any capacitors, a combined operation circuit of a regulated power supply circuit that eliminates the output capacitor of the present invention and a load circuit that eliminates the bypass capacitor is realized.

尚、電源インピーダンスの上昇を防ぐ上で安定化電源回路66、67の出力と負荷回路60の電源端子61、62までの配線長はなるべく最短であることは言うまでもない。 Needless to say, the wiring length between the output of the regulated power supply circuits 66 and 67 and the power supply terminals 61 and 62 of the load circuit 60 is as short as possible in order to prevent an increase in the power supply impedance.

また、図6は負荷回路60がプラスとマイナス2電源の場合を示しているが、単電源回路の場合であっても差し支えなく、回路は容易に考えられるので単電源接続の説明は省略する。 Further, although FIG. 6 shows a case where the load circuit 60 has a plus and minus two power supplies, it does not matter even if it is a single power supply circuit, and the circuit can be easily considered, so the description of the single power supply connection will be omitted.

さらに、安定化電源回路66を非反転回路、67を反転回路として説明したが、612の電圧リファレンスの出力電圧にもよるが、反転回路、非反転回路、バッファー回路接続など特にこだわりはない。 Further, although the regulated power supply circuit 66 has been described as a non-inverting circuit and 67 as an inverting circuit, the inverting circuit, the non-inverting circuit, the buffer circuit connection, etc. are not particularly particular, although it depends on the output voltage of the voltage reference of 612.

同様に612の電圧リファレンスの回路形式に関してもこだわりはない。 Similarly, there is no particular preference regarding the circuit format of the 612 voltage reference.

例えばオーディオアンプを負荷として適応する場合には、図3の36ゲイン特性Cに示すように35折点周波数Bがオーディオ帯域の最大周波数を超えるオペアンプを安定化電源回路として用い、その出力を負荷回路の電源端子に直接接続する形態をとる。ここで負荷回路はオペアンプ1個の回路でも、複数個の回路やトランジスター等で組んだ回路でもよい。この時、安定化電源回路として使うオペアンプの出力から負荷回路の電源端子までの接続経路にはコンデンサーを一切接続しない。また、電源に使用するオペアンプの最大出力電流容量は負荷回路に想定される最大消費電流と同等かそれ以上のオペアンプを使う。同様に安定化電源に使用するオペアンプのユニティゲイン周波数は負荷回路に使うアンプのユニティゲイン周波数と同等かそれ以上のものを使う。この時、通過する信号にローパスフィルターのようなもので帯域制限がかかっている場合、安定化電源に使用するオペアンプのユニティゲイン周波数は負荷回路を通過する周波数帯域の上限かそれ以上のものを使うことで安定化電源回路と負荷回路は安定動作し、コンデンサーの特性に依存しない、少なくともオーディオ帯域に於いて安定化電源出力インピーダンスが従来方式の安定化電源よりも低く、周波数によるインピーダンスの凹凸のない電圧の安定した電源供給と電源負荷方法が構築できる。 For example, when an audio amplifier is applied as a load, an operational amplifier whose 35-fold point frequency B exceeds the maximum frequency of the audio band is used as a regulated power supply circuit as shown in 36 gain characteristic C in FIG. 3, and its output is used as a load circuit. It takes the form of connecting directly to the power supply terminal of. Here, the load circuit may be a circuit with one operational amplifier, a circuit composed of a plurality of circuits, transistors, or the like. At this time, no capacitor is connected to the connection path from the output of the operational amplifier used as the regulated power supply circuit to the power supply terminal of the load circuit. In addition, the maximum output current capacity of the operational amplifier used for the power supply is equal to or greater than the maximum current consumption assumed for the load circuit. Similarly, the unity gain frequency of the operational amplifier used for the regulated power supply should be equal to or higher than the unity gain frequency of the amplifier used for the load circuit. At this time, if the passing signal is band-limited by something like a low-pass filter, the unity gain frequency of the operational amplifier used for the regulated power supply should be the upper limit of the frequency band passing through the load circuit or higher. As a result, the regulated power supply circuit and load circuit operate stably, and the regulated power supply output impedance is lower than that of the conventional regulated power supply, at least in the audio band, regardless of the characteristics of the capacitor, and there is no unevenness of impedance due to frequency. A stable power supply and power supply method can be constructed.

安定化電源回路の制御可能な帯域に対して負荷となる回路の通過信号帯域を同等かそれ以上の帯域のアンプを安定化電源回路に用いる。または、通過信号の帯域をローパスフィルター等で制限して安定化電源回路の制御可能な帯域以内にすることで実現できる。 An amplifier having a band equal to or higher than the pass signal band of the circuit that is a load with respect to the controllable band of the regulated power supply circuit is used for the regulated power supply circuit. Alternatively, it can be realized by limiting the band of the passing signal with a low-pass filter or the like so that it is within the controllable band of the regulated power supply circuit.

60 負荷回路
65 ローパスフィルター
66 プラス側安定化電源
67 マイナス側安定化電源
612 電圧リファレンス
60 Load circuit 65 Low-pass filter 66 Positive side regulated power supply 67 Negative side regulated power supply 612 Voltage reference

Claims (1)

直流電圧をドロッパ―方式によって変換した出力電圧を出力する誤差増幅器を含む第1A first including an error amplifier that outputs an output voltage obtained by converting a DC voltage by a dropper method.
半導体装置を備える安定化電源回路であって、前記誤差増幅器が予め定められた規準電圧A regulated power supply circuit including a semiconductor device, wherein the error amplifier has a predetermined reference voltage.
と負帰還回路によって帰還された前記出力電圧を比較し、前記規準電圧と前記出力電圧とAnd the output voltage fed by the negative feedback circuit are compared, and the reference voltage and the output voltage are compared with each other.
の比較誤差を無くすように前記出力電圧を調整して前記出力電圧を出力する安定化電源回A regulated power supply that outputs the output voltage by adjusting the output voltage so as to eliminate the comparison error of
路と、Road and
前記安定化電源回路の負荷回路であって、オペアンプ、トランジスター等を含む第2半The second half of the load circuit of the regulated power supply circuit, which includes an operational amplifier, a transistor, and the like.
導体装置を備えるアンプ回路を含む負荷回路とを備え、With a load circuit including an amplifier circuit with a conductor device,
前記安定化電源回路は、前記第1半導体装置と、前記第2半導体装置とを接続する接続The regulated power supply circuit is a connection for connecting the first semiconductor device and the second semiconductor device.
系統にバイパスコンデンサーを設けずに、前記負荷回路へ電力を供給する接続形態であり、It is a connection form that supplies power to the load circuit without providing a bypass capacitor in the system.
前記誤差増幅器のゲイン特性をボード線図に示した場合に、低域側のゲインが一定値でWhen the gain characteristics of the error amplifier are shown in the Bode diagram, the gain on the low frequency side is a constant value.
示される第1の線と、高域側のゲインが周波数の増加に伴い単調に減少することを示す第The first line shown and the first line showing that the gain on the high frequency side decreases monotonically as the frequency increases.
2の線とが交わる点に係る折点周波数が、オーディオ帯域の最大周波数を超えていて、The folding point frequency at the intersection of the two lines exceeds the maximum frequency of the audio band,
前記誤差増幅器のユニティゲイン周波数は、前記アンプ回路のユニティゲイン周波数のThe unity gain frequency of the error amplifier is the unity gain frequency of the amplifier circuit.
上限と同等か同等以上の周波数特性を有するHas frequency characteristics equal to or higher than the upper limit
ことを特徴とする装置。A device characterized by that.
JP2019022485A 2014-10-21 2019-02-12 Device Active JP6916481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022485A JP6916481B2 (en) 2014-10-21 2019-02-12 Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214768A JP2016081432A (en) 2014-10-21 2014-10-21 Stabilized power supply circuit and power load connection method
JP2019022485A JP6916481B2 (en) 2014-10-21 2019-02-12 Device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014214768A Division JP2016081432A (en) 2014-10-21 2014-10-21 Stabilized power supply circuit and power load connection method

Publications (2)

Publication Number Publication Date
JP2019071141A JP2019071141A (en) 2019-05-09
JP6916481B2 true JP6916481B2 (en) 2021-08-11

Family

ID=66440683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022485A Active JP6916481B2 (en) 2014-10-21 2019-02-12 Device

Country Status (1)

Country Link
JP (1) JP6916481B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122745A (en) * 1975-04-21 1976-10-27 Toshiba Corp Dc constant-voltage power source circuit
JPS60126811U (en) * 1984-01-31 1985-08-26 日本電気ホームエレクトロニクス株式会社 Partial feedback shunt regulator power supply
EP1376294A1 (en) * 2002-06-28 2004-01-02 Motorola, Inc. Low drop-out voltage regulator and method
US8872492B2 (en) * 2010-04-29 2014-10-28 Qualcomm Incorporated On-chip low voltage capacitor-less low dropout regulator with Q-control

Also Published As

Publication number Publication date
JP2019071141A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP5331508B2 (en) Voltage regulator
JP6038516B2 (en) Voltage regulator
US8981747B2 (en) Regulator
JP5993886B2 (en) Noise filter
KR101551643B1 (en) High psrr ldo over wide frequency range without external capacitor
JP2011113567A (en) Low-dropout linear regulator (ldo), method for providing ldo and method for operating ldo
KR102528632B1 (en) Voltage regulator
TWI639909B (en) Voltage regulator
KR20080045268A (en) Low drop out voltage regurator
JP2020194269A (en) Voltage regulator
JP6457887B2 (en) Voltage regulator
JP2008244623A (en) Semiconductor integrated circuit
US20090121690A1 (en) Voltage regulator
JP6916481B2 (en) Device
JP4344646B2 (en) Power circuit
JP6864177B2 (en) apparatus
JP6461510B2 (en) Power supply circuit for audio amplifier, electronic device, and method for supplying power supply voltage to audio amplifier
JP4814747B2 (en) Constant voltage circuit
JP2014164702A (en) Voltage regulator
JP2016081432A (en) Stabilized power supply circuit and power load connection method
TWI513161B (en) Dual-path error amplifier and dc-dc converter
US20160087602A1 (en) Adaptive feedback for power distribution network impedance barrier suppression
CN118739450A (en) Charging device, charging method, storage medium, and program product
JP2005333796A (en) Switching power supply circuit and semiconductor integrating the same
JP2014171334A (en) Power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210420

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6916481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250