JP6915964B2 - Non-aqueous electrolyte for lithium-ion secondary batteries - Google Patents

Non-aqueous electrolyte for lithium-ion secondary batteries Download PDF

Info

Publication number
JP6915964B2
JP6915964B2 JP2016037600A JP2016037600A JP6915964B2 JP 6915964 B2 JP6915964 B2 JP 6915964B2 JP 2016037600 A JP2016037600 A JP 2016037600A JP 2016037600 A JP2016037600 A JP 2016037600A JP 6915964 B2 JP6915964 B2 JP 6915964B2
Authority
JP
Japan
Prior art keywords
lithium
carbonate
ion secondary
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037600A
Other languages
Japanese (ja)
Other versions
JP2017157327A (en
Inventor
寧 太陸
太陸 寧
佐藤 正昭
正昭 佐藤
和行 清水
和行 清水
宏大 新田
宏大 新田
孝太郎 加藤
孝太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyama Pure Chemical Industries Ltd filed Critical Tomiyama Pure Chemical Industries Ltd
Priority to JP2016037600A priority Critical patent/JP6915964B2/en
Publication of JP2017157327A publication Critical patent/JP2017157327A/en
Application granted granted Critical
Publication of JP6915964B2 publication Critical patent/JP6915964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウムイオン二次電池などの蓄電デバイス用非水電解液及び蓄電デバイスに関する。 The present invention relates to a non-aqueous electrolyte solution for a power storage device such as a lithium ion secondary battery and a power storage device.

近年、携帯電話、スマートフォン、ノートパソコンなどに代表される携帯用電子端末等の種々の携帯電子機器の普及に伴い、それらの電源として二次電池は重要な役割を果たしている。これらの二次電池としては、鉛蓄電池、ニッケル・カドミウム電池等の水溶液系電池、非水電解液電池が挙げられるが、なかでも、リチウム等を吸蔵、放出できる正極及び負極と非水電解液とからなる非水電解液二次電池は、高電圧で高エネルギー密度を有し、安全性に優れ、環境問題などの点で、他の二次電池と比較して様々な利点を有している。 In recent years, with the spread of various portable electronic devices such as portable electronic terminals represented by mobile phones, smartphones, notebook computers, etc., secondary batteries play an important role as their power sources. Examples of these secondary batteries include lead storage batteries, aqueous batteries such as nickel-cadmium batteries, and non-aqueous electrolyte batteries. Among them, positive electrode and negative electrodes capable of storing and discharging lithium and the like and non-aqueous electrolyte batteries. The non-aqueous electrolyte secondary battery composed of the above has various advantages over other secondary batteries in terms of high voltage, high energy density, excellent safety, environmental problems, and the like. ..

現在実用化されている非水電解液二次電池としては、例えば、正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質としてリチウムをドープ・脱ドープ可能な材料を用いたリチウムイオン二次電池が挙げられる。リチウムイオン二次電池の負極活物質では、優れたサイクル特性を有する材料としては、炭素材料が挙げられる。炭素材料のなかでも、黒鉛材料は単位体積あたりのエネルギー密度を向上できる材料として期待されている。 As the non-aqueous electrolyte secondary battery currently in practical use, for example, a composite oxide of lithium and a transition metal is used as the positive electrode active material, and a material capable of doping and dedoping lithium is used as the negative electrode active material. A lithium ion secondary battery can be mentioned. In the negative electrode active material of a lithium ion secondary battery, a carbon material can be mentioned as a material having excellent cycle characteristics. Among carbon materials, graphite material is expected as a material that can improve the energy density per unit volume.

また、リチウムイオン二次電池の特性向上のため、負極/正極の特性のみならず、リチウムイオンの移送を担う非水電解液の特性の向上が求められている。かかる非水電解液としては、非プロトン性有機溶媒に、LiBF、LiPF、LiClO、LiN(SOCF)、LiN(SOCFCF)などのリチウム塩を混合した非水溶液が用いられている(非特許文献1)。非プロトン性有機溶媒の代表例として、カーボネート類が知られており、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの各種のカーボネート化合物の使用が提案されている(特許文献1、2)。
一方、非水電解液の電解質としては、前記LiBF、LiPFが溶解された非水電解液は、リチウムイオンの移送を表す導電率が高く、かつLiBF、LiPFの酸化分解電圧が高いために高電圧において安定であることが知られており、リチウムイオン二次電池の有する高電圧、高エネルギー密度という特性を引き出すことに寄与している。
Further, in order to improve the characteristics of the lithium ion secondary battery, it is required to improve not only the characteristics of the negative electrode / positive electrode but also the characteristics of the non-aqueous electrolytic solution responsible for the transfer of lithium ions. As such a non-aqueous electrolyte solution, a lithium salt such as LiBF 4 , LiPF 6 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 CF 2 CF 3 ) 2 was mixed with an aprotic organic solvent. A non-aqueous solution is used (Non-Patent Document 1). Carbonates are known as typical examples of aprotic organic solvents, and the use of various carbonate compounds such as ethylene carbonate, propylene carbonate, and dimethyl carbonate has been proposed (Patent Documents 1 and 2).
On the other hand, as the electrolyte of the non-aqueous electrolyte solution, the non-aqueous electrolyte solution in which the LiBF 4 and LiPF 6 are dissolved has a high conductivity representing the transfer of lithium ions and a high oxidative decomposition voltage of the LiBF 4 and LiPF 6. Therefore, it is known to be stable at high voltage, which contributes to bring out the characteristics of high voltage and high energy density of lithium ion secondary batteries.

一方、リチウムイオン二次電池などの非水電解液二次電池を各電源として使用するに当たっては、非水電解液に対しては、その電気抵抗を低下させてリチウムイオンの伝導性を高め、また、充電、放電を繰り返した後も、電池容量の低下を抑制し、高容量を維持する、所謂サイクル特性を高める高寿命化が求められている。
かかる目的を達成するため、非水電解液について、従来から、電解質であるリチウム塩の構造を特定化することや、特定の化合物を添加することが種々提案されている。例えば、特許文献3には、非水電解液中に、特定構造を有するビニルスルホン誘導体を添加することや、特許文献4には、特定の構造を有する二官能酸リチウム塩以外のリチウム塩であって、ホウ素原子を有さないリチウム塩を添加することが知られている。
しかし、従来の非水電解液は、コストの点も含めて必ずしも十分に満足できものではなく、蓄電デバイス用の非水電解液には、そのためのさらなる改良が求められている。
On the other hand, when a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is used as each power source, the electrical resistance of the non-aqueous electrolyte is reduced to increase the conductivity of lithium ions. There is a demand for a long life that suppresses a decrease in battery capacity and maintains a high capacity even after repeated charging and discharging, so-called cycle characteristics are enhanced.
In order to achieve such an object, various proposals have been made conventionally for the non-aqueous electrolyte solution to specify the structure of the lithium salt which is an electrolyte and to add a specific compound. For example, in Patent Document 3, a vinyl sulfonic derivative having a specific structure is added to a non-aqueous electrolytic solution, and in Patent Document 4, a lithium salt other than a difunctional acid lithium salt having a specific structure is used. Therefore, it is known to add a lithium salt having no boron atom.
However, the conventional non-aqueous electrolytic solution is not always sufficiently satisfactory in terms of cost, and the non-aqueous electrolytic solution for a power storage device is required to be further improved for that purpose.

特開平4−184872号公報Japanese Unexamined Patent Publication No. 4-184872 特開平10−27625号公報Japanese Unexamined Patent Publication No. 10-27625 特開平11−329494号公報Japanese Unexamined Patent Publication No. 11-329494 特開平2014−22334号公報Japanese Unexamined Patent Publication No. 2014-22334

本発明は、非水電解液中における電解質の溶解性を高めて、非水電解液の電気抵抗を低下させるとともに、多数回の充電、放電を繰り返した後も、高容量を維持する、所謂サイクル特性を高めたリチウムイオン二次電池などの蓄電デバイス用の非水電解液、及び、該非水電解液を使用した蓄電デバイスの提供を目的にする。 The present invention enhances the solubility of the electrolyte in the non-aqueous electrolyte solution, reduces the electrical resistance of the non-aqueous electrolyte solution, and maintains a high capacity even after repeated charging and discharging a large number of times, a so-called cycle. An object of the present invention is to provide a non-aqueous electrolyte solution for a power storage device such as a lithium ion secondary battery having improved characteristics, and a power storage device using the non-water electrolyte solution.

本発明者らは、上記目的を達成するべく種々研研究を重ねたところ、下記を要旨とする本発明に到達した。
(1)正極活物質がリチウム含有遷移金属複合酸化物を含み、かつ負極活物質が炭素材料を含む(ケイ素、スズを含まない)リチウムイオン二次電池用非水電解液であって、
非水溶媒に電解質を溶解してなり、前記電解質が前記非水溶媒に溶解するリチウム塩であり、かつ、四ホウ酸若しくはその塩、又はメタホウ酸若しくはその塩からなるホウ酸化合物と、下記の式(1)で表される2つのスルホン酸基を有する環状若しくは鎖状のジスルホン酸塩若しくはエステルからなるスルホン酸化合物と、を含有することを特徴とするリチウムイオン二次電池用非水電解液。
−O−(O=) S−C(R )−S(=O) −O−M (1)
(式(1)中、R 及びR は、水素原子、ハロゲン原子、炭素数が1〜6を有するアルキル基、炭素数が2〜6を有するアルケニル基、又は炭素数が1〜6を有するアルコキシ基である。M 及びM はアルカリ金属又は炭素数が1〜6を有するアルキル基である。)
As a result of conducting various research studies in order to achieve the above object, the present inventors have arrived at the present invention whose gist is as follows.
(1) A non-aqueous electrolytic solution for a lithium ion secondary battery in which the positive electrode active material contains a lithium-containing transition metal composite oxide and the negative electrode active material contains a carbon material (excluding silicon and tin).
Aqueous Ri Na by dissolving an electrolyte in a solvent, before Symbol electrolyte is lithium salt dissolved in the nonaqueous solvent, and boric acid compound consisting of tetraborate or a salt thereof, or a metaborate or a salt thereof, Non-water for a lithium ion secondary battery, which contains a sulfonic acid compound composed of a cyclic or chain disulfonate or an ester having two sulfonic acid groups represented by the following formula (1). Electrolyte.
M 1- O- (O =) 2 SC (R 1 R 2 ) -S (= O) 2- O-M 2 (1)
(In the formula (1), R 1 and R 2 have a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 2 to 6 carbon atoms, or an alkenyl group having 1 to 6 carbon atoms. Alkoxy groups having. M 1 and M 2 are alkali metals or alkyl groups having 1 to 6 carbon atoms.)

(2前記非水電解液中、前記ホウ酸化合物を0.01〜1質量%含有し、かつ、前記スルホン酸化合物を0.01〜3質量%含有する上記(1)に記載のリチウムイオン二次電池用非水電解液。
(3)上記(1)又は(2)に記載の非水電解液を備えるリチウムイオン二次電池。
(2) in the nonaqueous electrolytic solution, wherein the boric acid compound contained 0.01 wt%, and lithium ions according to the sulfonic acid compound in the (1) containing 0.01 to 3 wt% Non-aqueous electrolyte for secondary batteries.
(3) A lithium ion secondary battery comprising the non-aqueous electrolytic solution according to (1) or (2) above.

)下記式(2)で表される層状岩塩構造型のリチウム含有遷移金属複合化合物を正極活物質とする上記()に記載のリチウムイオン二次電池。
Li(NiCoMn)O (2)
(式中、xは0.2≦x≦0.9であって、yは0≦y≦0.5であり、zは0≦z≦0.9である。)
)前記式(2)において、xが0.5より大きく、かつyが0.3より小さい上記()に記載のリチウムイオン二次電池。
( 4 ) The lithium ion secondary battery according to (3 ) above, wherein a layered rock salt structure type lithium-containing transition metal composite compound represented by the following formula (2) is used as a positive electrode active material.
Li (Ni x Co y Mn z ) O 2 (2)
(In the formula, x is 0.2 ≦ x ≦ 0.9, y is 0 ≦ y ≦ 0.5, and z is 0 ≦ z ≦ 0.9.)
( 5 ) The lithium ion secondary battery according to (4 ) above, wherein x is larger than 0.5 and y is smaller than 0.3 in the above formula (2).

本発明による非水電解液は、非水電解液におけるリチウム電解質の溶解性を高めて、非水電解液の電気抵抗を低下させるだけでなく、充電、放電を繰り返した後も、高容量を維持し所謂サイクル特性を高める。このため、良好な初期特性、サイクル特性に優れたリチウムイオン二次電池などの蓄電デバイス用の非水電解液が提供される。 The non-aqueous electrolyte solution according to the present invention not only enhances the solubility of the lithium electrolyte in the non-aqueous electrolyte solution and lowers the electrical resistance of the non-aqueous electrolyte solution, but also maintains a high capacity even after repeated charging and discharging. It enhances the so-called cycle characteristics. Therefore, a non-aqueous electrolyte solution for a power storage device such as a lithium ion secondary battery having good initial characteristics and excellent cycle characteristics is provided.

以下、本発明の非水電解液及びこれを使用した蓄電デバイスについて詳細に説明する。
<非水溶媒>
本発明の非水電解液で使用する非水溶媒は、種々のものを用いることができる。例えば、非プロトン性極性溶媒が好ましい。その具体例は、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートになどの環状カーボネート;γープチロラクトン及びγーバレロラクトンなどのラクトン;スルホランなどの環状スルホン;テトラヒドロフラン及びジオキサンなどの環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロビルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート及びメチルトリフルオロエチルカーボネートなどの鎖状カーボネート;アセトニトリルなどのニトリル;ジメチルエーテルなどの鎖状エーテル;プロピオン酸メチルなどの鎖状カルボン酸エステル;ジメトキシエタンなどの鎖状グリコールエーテル;1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル(CFHCFCHOCFCFH)、1,1,2,2−テトラフルオロエチル−2,2,3,3,3−ペンタフルオロプロピルエーテル(CFCFCHOCFCFH)、エトキシ−2,2,2−トリフルオロエトキシ−エタン(CFCHOCHCHOCHCH)等のフッ素置換エーテルが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
Hereinafter, the non-aqueous electrolytic solution of the present invention and the power storage device using the same will be described in detail.
<Non-aqueous solvent>
Various non-aqueous solvents can be used as the non-aqueous solvent used in the non-aqueous electrolytic solution of the present invention. For example, an aprotic polar solvent is preferred. Specific examples thereof include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, trifluoromethylethylene carbonate, and fluoroethylene carbonate. And cyclic carbonates such as 4,5-difluoroethylene carbonate; lactones such as γ petitrolactone and γ-valerolactone; cyclic sulfones such as sulfolane; cyclic ethers such as tetrahydrofuran and dioxane; ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, methylpropyl carbonate. , Methylisoprovir carbonate, dipropyl carbonate, methylbutyl carbonate, dibutyl carbonate, ethylpropyl carbonate and chain carbonates such as methyltrifluoroethyl carbonate; nitriles such as acetonitrile; chain ethers such as dimethyl ether; chains such as methyl propionate. Cyril carboxylic acid ester; Chain glycol ether such as dimethoxyethane; 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (CF 2 HCF 2 CH 2 OCF 2 CF 2 H) ), 1,1,2,2-tetrafluoroethyl-2,2,3,3,3-pentafluoropropyl ether (CF 3 CF 2 CH 2 OCF 2 CF 2 H), ethoxy-2,2,2- Examples thereof include fluorine-substituted ethers such as trifluoroethoxy-ethane (CF 3 CH 2 OCH 2 CH 2 OCH 2 CH 3). These can be used alone or in combination of two or more.

非水溶媒としては、イオン伝導性の観点から、環状カーボネート、鎖状カーボネートなどのカーボネート系溶媒を用いることがより好ましい。カーボネート系溶媒として、環状カーボネートと鎖状カーボネートを組合せて用いることがさらに好ましい。環状カーボネートとしては、上記のなかでも、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネートが好ましい。鎖状カーボネートとしては、上記のなかでも、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートが好ましい。カーボネート系溶媒を用いる場合、電池物性改善の点から、必要に応じて、ニトリル系化合物、スルホン系等の別の非水溶媒をさらに添加することができる。 As the non-aqueous solvent, it is more preferable to use a carbonate-based solvent such as a cyclic carbonate or a chain carbonate from the viewpoint of ionic conductivity. It is more preferable to use a combination of cyclic carbonate and chain carbonate as the carbonate solvent. Among the above, the cyclic carbonate is preferably ethylene carbonate, propylene carbonate or fluoroethylene carbonate. Among the above, ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate are preferable as the chain carbonate. When a carbonate solvent is used, another non-aqueous solvent such as a nitrile compound or a sulfone solvent can be further added, if necessary, from the viewpoint of improving the physical characteristics of the battery.

非水溶媒として、本発明では、特に、鎖状炭酸エステル、飽和環状炭酸エステル、及び不飽和環状炭酸エステルを含有するのが好ましい。かかる3種の炭酸エステルを含有する場合には、本発明の効果を発揮する以上特に好ましい。本発明で使用される非水溶媒は、非水電解液中で、鎖状炭酸エステル、飽和環状炭酸エステル、及び不飽和環状炭酸エステルが、それぞれ、30〜80質量%、10〜50質量%、及び0.01〜5質量%含まれることが好ましく、なかでも、それぞれ、50〜70質量%、20〜30質量%、及び0.1〜2質量%含まれることがより好ましい。 In the present invention, as the non-aqueous solvent, it is particularly preferable to contain a chain carbonate ester, a saturated cyclic carbonate, and an unsaturated cyclic carbonate. When these three types of carbonic acid esters are contained, it is particularly preferable as long as the effects of the present invention are exhibited. The non-aqueous solvent used in the present invention contains 30 to 80% by mass and 10 to 50% by mass, respectively, of the chain carbonate, the saturated cyclic carbonate, and the unsaturated cyclic carbonate in the non-aqueous electrolyte. And 0.01 to 5% by mass, and more preferably 50 to 70% by mass, 20 to 30% by mass, and 0.1 to 2% by mass, respectively.

上記鎖状炭酸エステルが30質量%よりも小さい場合には、電解液の粘度が上昇し、加えて、低温で凝固してしまうため、充分な特性が得られなくなり、逆に80質量%よりの大きい場合には、リチウム塩の解離度/溶解度が低下し電解液のイオン電導度が低下してしまう。飽和環状炭酸エステルが10質量%よりも小さい場合には、リチウム塩の解離度/溶解度が低下し、電解液のイオン電導度が低下し、逆に50質量%よりの大きい場合には、電解液の粘度が上昇し、加えて、低温で凝固してしまうため、充分な特性が得られなくなる。
また、不飽和環状炭酸エステルが0.01質量%よりも小さい場合には、負極表面に良好な被膜が形成されなくなるためサイクル特性が低下し、逆に5質量%より大きい場合には、例えば、高温保存時に電解液がガス発生しやすい状態となり、電池内の圧力が上昇するなど実用上好ましくない状態になる。
When the chain carbonate is smaller than 30% by mass, the viscosity of the electrolytic solution increases, and in addition, it solidifies at a low temperature, so that sufficient characteristics cannot be obtained, and conversely, it is more than 80% by mass. If it is large, the dissociation / solubility of the lithium salt will decrease, and the ionic conductivity of the electrolytic solution will decrease. When the saturated cyclic carbonate is smaller than 10% by mass, the dissociation / solubility of the lithium salt is lowered, the ionic conductivity of the electrolytic solution is lowered, and conversely, when it is larger than 50% by mass, the electrolytic solution is used. In addition, the viscosity of the compound increases, and in addition, it solidifies at a low temperature, so that sufficient characteristics cannot be obtained.
Further, when the unsaturated cyclic carbonate is smaller than 0.01% by mass, a good film is not formed on the surface of the negative electrode, so that the cycle characteristics are deteriorated. On the contrary, when it is larger than 5% by mass, for example, When stored at a high temperature, the electrolytic solution tends to generate gas, and the pressure inside the battery rises, which is not preferable for practical use.

本発明で使用される鎖状炭酸エステルとしては、例えば、総炭素数が3〜9の鎖状カーボネートが挙げられる。具体的にはジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、ジ−n−ブチルカーボネート、ジ−t−ブチルカーボネート、n−ブチルイソブチルカーボネート、n−ブチル−t−ブチルカーボネート、イソブチル−t−ブチルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート、n−ブチル−n−プロピルカーボネート、イソブチル−n−プロピルカーボネート、t−ブチル−n−プロピルカーボネート、n−ブチルイソプロピルカーボネート、イソブチルイソプロピルカーボネート、t−ブチルイソプロピルカーボネート等を挙げることができる。これらのなかで、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましいが、特に限定されるものではない。またこれら鎖状炭酸エステルは2種類以上混合してもよい。 Examples of the chain carbonate used in the present invention include chain carbonates having a total carbon number of 3 to 9. Specifically, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, di-n-butyl carbonate, di-t-butyl carbonate, n-butylisobutyl carbonate, n-Butyl-t-butyl carbonate, isobutyl-t-butyl carbonate, ethylmethyl carbonate, methyl-n-propyl carbonate, n-butylmethyl carbonate, isobutylmethyl carbonate, t-butylmethyl carbonate, ethyl-n-propyl carbonate, n-Butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate, n-butyl-n-propyl carbonate, isobutyl-n-propyl carbonate, t-butyl-n-propyl carbonate, n-butyl isopropyl carbonate, isobutyl isopropyl carbonate , T-Butylisopropylcarbonate and the like. Of these, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable, but are not particularly limited. Further, two or more kinds of these chain carbonic acid esters may be mixed.

本発明で使用される飽和環状炭酸エステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート等が挙げられる。このなかで、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネートがより好ましく、プロピレンカーボネートを使用することにより、幅広い温度範囲にて安定した非水電解液を提供することができる。これら飽和環状炭酸エステルは2種類以上混合してもよい。 Examples of the saturated cyclic carbonate used in the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate and the like. Among these, ethylene carbonate, propylene carbonate, and fluoroethylene carbonate are more preferable, and by using propylene carbonate, a stable non-aqueous electrolytic solution can be provided in a wide temperature range. Two or more kinds of these saturated cyclic carbonates may be mixed.

また、本発明で使用される不飽和環状炭酸エステルとしては、下記の一般式(I)で表されるビニレンカーボネート誘導体が挙げられる。

Figure 0006915964
Further, examples of the unsaturated cyclic carbonate used in the present invention include a vinylene carbonate derivative represented by the following general formula (I).
Figure 0006915964

上記一般式(I)において、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、又は炭素数が1〜12のハロゲン原子を含んでいてもよいアルキル基である。なかでも、R及びRが水素((I)の化合物がビニレンカーボネートである)が好ましい。 In the above general formula (I), R 1 and R 2 are alkyl groups which may independently contain a hydrogen atom, a halogen atom, or a halogen atom having 1 to 12 carbon atoms. Of these, hydrogen with R 1 and R 2 (the compound of (I) is vinylene carbonate) is preferable.

上記ビニレンカーボネート誘導体の具体例として、以下の化合物を挙げられる。ビニレンカーボネート、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどであるが、これらに限定されるものではない。 Specific examples of the vinylene carbonate derivative include the following compounds. Vinylene carbonate, fluorovinylene carbonate, methylvinylene carbonate, fluoromethylvinylene carbonate, ethylvinylene carbonate, propylvinylene carbonate, butylvinylene carbonate, dimethylvinylene carbonate, diethylvinylene carbonate, dipropylvinylene carbonate, etc., but are limited to these. It's not a thing.

これらの化合物のなかでも、ビニレンカーボネートが効果的であり、かつコスト的にも有利である。なお、上記ビニレンカーボネート誘導体に関しては、少なくとも1種であり、単独又は、混合していることも可能である。
また、本発明で使用される別の不飽和環状炭酸エステルとしては、下記の一般式(II)で表されるアルケニルエチレンカーボネートが挙げられる。
Among these compounds, vinylene carbonate is effective and cost-effective. The vinylene carbonate derivative is at least one kind, and may be used alone or in combination.
Further, as another unsaturated cyclic carbonate used in the present invention, alkenylethylene carbonate represented by the following general formula (II) can be mentioned.

Figure 0006915964
Figure 0006915964

上記式(II)において、R〜Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数が1〜12のハロゲン原子を含んでいてもよい炭化水素基、又は炭素数が2〜12のアルケニル基であり、その内少なくとも一つは炭素数が2〜12のアルケニル基である。なかでも、R〜Rのうちの一つがビニル基であり、残りが水素である場合((II)の化合物が4−ビニルエチレンカーボネート)が好ましい。 In the above formula (II), R 3 to R 6 each independently contain a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms, or a hydrocarbon group having 2 to 12 carbon atoms. There are 12 alkenyl groups, at least one of which is an alkenyl group having 2 to 12 carbon atoms. Among them, it is preferable that one of R 3 to R 6 is a vinyl group and the rest is hydrogen (the compound of (II) is 4-vinylethylene carbonate).

上記アルケニルエチレンカーボネートの具体例としては、4−ビニルエチレンカーボネート、4−ビニル−4−メチルエチレンカーボネート、4−ビニル−4−エチルエチレンカーボネート、4−ビニル−4−n−プロピルエチレンカーボネートなどの化合物を挙げられる。 Specific examples of the alkenylethylene carbonate include compounds such as 4-vinylethylene carbonate, 4-vinyl-4-methylethylene carbonate, 4-vinyl-4-ethylethylene carbonate, and 4-vinyl-4-n-propylethylene carbonate. Can be mentioned.

本発明で使用される非水溶媒には、上記の成分のほかに他の各種溶媒が含まれていてもよい。これらの他の各種溶媒として、例えば、環状カルボン酸エステル、総炭素数3〜9の鎖状エステル、総炭素数3〜6の鎖状エーテルなどが挙げられる。これらの他の各種溶媒は、非水電解液中、好ましくは0.2〜10質量%、特に好ましくは0.5〜5質量%含有される。 The non-aqueous solvent used in the present invention may contain various other solvents in addition to the above-mentioned components. Examples of these other various solvents include cyclic carboxylic acid esters, chain esters having a total carbon number of 3 to 9, and chain ethers having a total carbon number of 3 to 6. These other various solvents are preferably contained in the non-aqueous electrolytic solution in an amount of 0.2 to 10% by mass, particularly preferably 0.5 to 5% by mass.

環状カルボン酸エステル(総炭素数が3〜9のラクトン化合物)としては、例えばγ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン等を挙げることができる。これらのなかで、γ−ブチロラクトン、γ−バレロラクトンがより好ましいが、特に限定されるものではない。またこれら環状カルボン酸エステルは2種類以上混合してもよい。 Examples of the cyclic carboxylic acid ester (lactone compound having a total carbon number of 3 to 9) include γ-butyrolactone, γ-valerolactone, γ-caprolactone, and ε-caprolactone. Of these, γ-butyrolactone and γ-valerolactone are more preferable, but are not particularly limited. Further, two or more kinds of these cyclic carboxylic acid esters may be mixed.

また、総炭素数3〜9の鎖状エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチルを挙げることができる。これらのなかで、酢酸エチル、プロピオン酸メチル、プロピオン酸エチルが好ましい。 Examples of the chain ester having a total carbon number of 3 to 9 include methyl acetate, ethyl acetate, -n-propyl acetate, -isopropyl acetate, -n-butyl acetate, isobutyl acetate, -t-butyl acetate, and propionic acid. Examples thereof include methyl, ethyl propionate, -n-propyl propionate, -isopropyl propionate, -n-butyl propionate, isobutyl propionate, and -t-butyl propionate. Of these, ethyl acetate, methyl propionate, and ethyl propionate are preferable.

また、総炭素数3〜6の鎖状エーテルとしては、ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等を挙げることができる。これらのなかで、ジメトキシエタン、ジエトキシエタンがより好ましいができる。 Examples of the chain ether having a total carbon number of 3 to 6 include dimethoxymethane, dimethoxyethane, diethoxymethane, diethoxyethane, ethoxymethoxymethane, and ethoxymethoxyethane. Of these, dimethoxyethane and diethoxyethane are more preferable.

さらに、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼンなどを使用することができる。 Further, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene and the like can be used. ..

<リチウム塩>
本発明の非水電解液の溶質としては、リチウム塩が用いられる。リチウム塩については、上記非水溶媒に溶解しうるものであれば特に限定はされない。その具体例として例えば、以下の通りである。
(A)無機リチウム塩:
LiPF、LiAsF、LiBF等の無機フッ化物塩、LiClO、LiBrO、LiIO、等の過ハロゲン酸塩など。
(B)有機リチウム塩:
LiCFSO等の有機スルホン酸塩、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)等のパーフルオロアルキルスルホン酸イミド塩、LiC(CFSO等のパーフルオロアルキルスルホン酸メチド塩、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(C、LiPF(C、LiPF(n−C、LiPF(n−C、LiPF(n−C、LiPF(iso−C、LiPF(iso−C、LiPF(iso−C、LiB(CF、LiBF(CF、LiBF(CF、LiBF(CF)、LiB(C、LiBF(C、LiBF(C、LiBF(C)、LiB(n−C、LiBF(n−C、LiBF(n−C、LiBF(n−C)、LiB(iso−C、LiBF(iso−C、LiBF(iso−C、LiBF(iso−C)等の一部のフッ素をパーフルオロアルキル基で置換した無機フッ化物塩フルオロホスフェート、パーフルオロアルキルの含フッ素有機リチウム塩が挙げられる。
<Lithium salt>
A lithium salt is used as the solute of the non-aqueous electrolyte solution of the present invention. The lithium salt is not particularly limited as long as it can be dissolved in the above-mentioned non-aqueous solvent. Specific examples thereof are as follows.
(A) Inorganic lithium salt:
LiPF 6, LiAsF 6, inorganic fluoride salts LiBF 4 or the like, LiClO 4, LiBrO 4, LiIO 4, perhalogenate etc. like.
(B) Organolithium salt:
Organic sulfonates such as LiCF 3 SO 3 , perfluoro such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) Alkyl sulfonic acid imide salt, perfluoroalkyl sulfonic acid methide salt such as LiC (CF 3 SO 2 ) 3 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 2 ( C 2 F 5 ) 4 , LiPF 3 (C 2 F 5 ) 3 , LiPF (n-C 3 F 7 ) 5 , LiPF 2 (n-C 3 F 7 ) 4 , LiPF 3 (n-C 3 F 7 ) 3 , LiPF (iso-C 3 F 7 ) 5 , LiPF 2 (iso-C 3 F 7 ) 4 , LiPF 3 (iso-C 3 F 7 ) 3 , LiB (CF 3 ) 4 , LiBF (CF 3 ) 3 , LiBF 2 (CF 3 ) 2 , LiBF 3 (CF 3 ), LiB (C 2 F 5 ) 4 , LiBF (C 2 F 5 ) 3 , LiBF 2 (C 2 F 5 ) 2 , LiBF 3 (C 2 F) 5 ), LiB (n-C 3 F 7 ) 4 , LiBF (n-C 3 F 7 ) 3 , LiBF 2 (n-C 3 F 7 ) 2 , LiBF 3 (n-C 3 F 7 ), LiB ( Some fluorine such as iso-C 3 F 7 ) 4 , LiBF (iso-C 3 F 7 ) 3 , LiBF 2 (iso-C 3 F 7 ) 2 , LiBF 3 (iso-C 3 F 7) is added. Examples thereof include an inorganic fluoride salt fluorophosphate substituted with a fluoroalkyl group and a fluorine-containing organic lithium salt of perfluoroalkyl.

本発明では、上記のなかでも、LiPF、LiBF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)がより好ましい。またこれらリチウム塩は2種類以上混合してもよい。 In the present invention, among the above, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ) , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) is more preferred. Further, two or more kinds of these lithium salts may be mixed.

本発明の非水電解液の溶質である、リチウム塩の濃度は、好ましくは0.5〜3モル/リットル、特には、0.7〜2モル/リットルが好適である。この濃度が低すぎると、絶対的な濃度不足により非水電解液のイオン伝導率で不十分であり、濃度が濃すぎると、粘度上昇のためイオン伝導率が低下し、また低温での析出が起こりやすくなるなども問題も生じるため、非水電解液電池の性能が低下し好ましくない。 The concentration of the lithium salt, which is the solute of the non-aqueous electrolyte solution of the present invention, is preferably 0.5 to 3 mol / liter, and particularly preferably 0.7 to 2 mol / liter. If this concentration is too low, the ionic conductivity of the non-aqueous electrolyte solution will be insufficient due to an absolute lack of concentration, and if the concentration is too high, the ionic conductivity will decrease due to an increase in viscosity, and precipitation at low temperatures will occur. Since it is likely to occur and causes problems, the performance of the non-aqueous electrolyte battery is deteriorated, which is not preferable.

<添加物質>
本発明の非水電解液には、四ホウ酸若しくはその塩、又はメタホウ酸若しくはその塩からなるホウ酸化合物とスルホン酸塩若しくはエステル又はスルホン酸無水物とが添加される。
<ホウ酸化合物>
ホウ酸化合物としては、四ホウ酸(H)若しくはその塩、又はメタホウ酸(HBO)若しくはその塩からなるホウ酸化合物が被覆されている。四ホウ酸及びメタホウ酸は、無水物でも無水和物から多水和物でもよく、それらの結晶形も斜方晶、単斜晶、立方晶のいずれでもよい。まtが、メタホウ酸の三量体などホウ酸分子が会合した多量体項を有していてもよい。
<Additives>
To the non-aqueous electrolytic solution of the present invention, a boric acid compound composed of tetraboric acid or a salt thereof, or metaboric acid or a salt thereof, and a sulfonate or ester or a sulfonic acid anhydride are added.
<Boric acid compound>
As the boric acid compound, a boric acid compound composed of tetraboric acid (H 2 B 4 O 6 ) or a salt thereof, or metaboric acid (HBO 2 ) or a salt thereof is coated. The tetraboric acid and metaboric acid may be anhydrous, anhydrate to polyhydrate, and their crystal forms may be orthorhombic, monoclinic, or cubic. Also, t may have a multimer term in which boric acid molecules are associated, such as a trimer of metaboric acid.

四ホウ酸の塩及びメタホウ酸の塩としては、本発明の非水電解液で使用される非水溶媒に溶解な化合物が好ましい。溶解性がある限り、その塩の種類は問われない。例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属塩;カルシウム、マグネシウム、マンガン、鉄等の多価金属塩;テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等のアンモニウム塩;ジメチルイミダゾリウム、ジメチルイミダゾリウム、エチルメチルイミダゾリウム等のイミダゾリウム塩;メチルピリジウム、エチルピリジウム等のピリジウム塩などが使用できる。上記のなかでも、リチウム、ナトリウム、カリウムなどのアルカリ金属塩が好ましく、特にリチウム塩が好ましい。 As the salt of tetraborate and the salt of metaboric acid, a compound dissolved in a non-aqueous solvent used in the non-aqueous electrolyte solution of the present invention is preferable. The type of salt does not matter as long as it is soluble. For example, alkali metal salts such as lithium, sodium and potassium; polyvalent metal salts such as calcium, magnesium, manganese and iron; ammonium salts such as tetramethylammonium, tetraethylammonium, tetrapropylammonium and tetrabutylammonium; dimethylimidazolium, Imidazolium salts such as dimethylimidazolium and ethylmethylimidazolium; pyridium salts such as methylpyridium and ethylpyridium can be used. Among the above, alkali metal salts such as lithium, sodium and potassium are preferable, and lithium salts are particularly preferable.

四ホウ酸若しくはその塩、又はメタホウ酸若しくはその塩の好ましい具体例としては、メタホウ酸リチウム、メタホウ酸マグネシウム、メタホウ酸カルシウム、メタホウ酸バリウム、四ホウ酸リチウム、四ホウ酸マグネシウム、四ホウ酸カルシウム、四ホウ酸バリウム、メタホウ酸テトラメチルアンモニウム、四ホウ酸テトラメチルアンモニウムなどが挙げられ。なかでも、メタホウ酸リチウム、メタホウ酸マグネシウム、メタホウ酸バリウム、四ホウ酸リチウム、四ホウ酸マグネシウム、又は四ホウ酸バリウムなどが好ましい。 Preferred specific examples of tetraboric acid or a salt thereof, or metaboric acid or a salt thereof, include lithium metaborate, magnesium metaborate, calcium metaborate, barium metaborate, lithium tetraborate, magnesium tetraborate, calcium tetraborate. , Barium borate, tetramethylammonium metaborate, tetramethylammonium tetraborate, etc. Of these, lithium metaborate, magnesium metaborate, barium metaborate, lithium tetraborate, magnesium tetraborate, barium tetraborate and the like are preferable.

<スルホン酸塩若しくはエステル又はスルホン酸無水物>
本発明における、スルホン酸塩若しくはエステル又はスルホン酸無水物は、鎖状又は環状のいずれでもよく、以下のものが例示される。
スルホン酸塩としては、本発明の非水電解液で使用される非水溶媒に溶解な化合物が好ましい。溶解性がある限り、その塩の種類は問われない。例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属塩;カルシウム、マグネシウム、マンガン、鉄等の多価金属塩;テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等のアンモニウム塩;ジメチルイミダゾリウム、ジメチルイミダゾリウム、エチルメチルイミダゾリウム等のイミダゾリウム塩;メチルピリジウム、エチルピリジウム等のピリジウム塩などが使用できる。なかでも、リチウム、ナトリウム、カリウムなどのアルカリ金属塩が好ましく、特にリチウム塩が好ましい。
<Sulfonate or ester or sulfonic acid anhydride>
The sulfonate or ester or sulfonic acid anhydride in the present invention may be either chain or cyclic, and the following are exemplified.
As the sulfonate, a compound dissolved in a non-aqueous solvent used in the non-aqueous electrolyte solution of the present invention is preferable. The type of salt does not matter as long as it is soluble. For example, alkali metal salts such as lithium, sodium and potassium; polyvalent metal salts such as calcium, magnesium, manganese and iron; ammonium salts such as tetramethylammonium, tetraethylammonium, tetrapropylammonium and tetrabutylammonium; dimethylimidazolium, Imidazolium salts such as dimethylimidazolium and ethylmethylimidazolium; pyridium salts such as methylpyridium and ethylpyridium can be used. Among them, alkali metal salts such as lithium, sodium and potassium are preferable, and lithium salts are particularly preferable.

スルホン酸塩としては、メタンスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、ヘキサフルオロメタンスルホン酸リチウム、1,3−プロパンスルホン酸リチウム、1,4−ブタンスルホン酸リチウム、1,1−メタンジスルホン酸ジリチウム、1,2−エタンジスルホン酸ジリチウム、1,3−プロパンジスルホン酸ジリチウム、1−メチル−1,3−プロパンジスルホン酸ジリチウム、1,4−ブタンジスルホン酸ジリチウム、メトキシメタンジスルホン酸ジリチウム、エトキシメタンジスルホン酸ジリチウム、1,1−メタンジスルホン酸ジナトリウム、1,2−エタンジスルホン酸ジナトリウム、1,3−プロパンジスルホン酸ジナトリウム、1,4−ブタンジスルホン酸ジナトリウム、メトキシメタンジスルホン酸ジナトリウム、エトキシメタンジスルホン酸ジナトリウム、1,1−メタンジスルホン酸マグネシウム、1,2−エタンジスルホン酸マグネシウム、1,3−プロパンジスルホン酸マグネシウム、1,4−ブタンジスルホン酸マグネシウム、アニリン−2,5−ジスルホン酸リチウム、4,4‘−ビフェニルジスルホン酸リチウム等が挙げられる。なかでも、1,1−メタンジスルホン酸ジリチウム、1,2−エタンジスルホン酸ジリチウム、1,3−プロパンジスルホン酸ジリチウム、1,4−ブタンジスルホン酸ジリチウム、メトキシメタンジスルホン酸ジリチウム、エトキシメタンジスルホン酸ジリチウム、又は1,1−プロペ−2−イルジスルホン酸ジリチウムが好ましい。 Examples of the sulfonate include lithium methanesulfonate, lithium trifluoromethanesulfonate, lithium hexafluoromethanesulfonate, lithium 1,3-propanesulfonate, lithium 1,4-butanesulfonate, and dilithium 1,1-methanedisulfonate. , 1,2-Dilithium ethanedisulfonate, Dilithium 1,3-propanedisulfonate, Dilithium 1-methyl-1,3-propanedisulfonate, Dilithium 1,4-butanedisulfonate, Dilithium methoxymethanedisulfonate, ethoxymethanedisulfone Dilithium acid, disodium 1,1-methanedisulfonate, disodium 1,2-ethanedisulfonate, disodium 1,3-propanedisulfonate, disodium 1,4-butanedisulfonate, disodium methoxymethanedisulfonate, Disodium ethoxymethanedisulfonate, magnesium 1,1-methanedisulfonate, magnesium 1,2-ethanedisulfonate, magnesium 1,3-propanedisulfonate, magnesium 1,4-butanedisulfonate, aniline-2,5-disulfone Examples thereof include lithium acid and lithium 4,4'-biphenyldisulfonate. Among them, dilithium 1,1-methanedisulfonate, dilithium 1,2-ethanedisulfonate, dilithium 1,3-propanedisulfonate, dilithium 1,4-butanedisulfonate, dilithium methoxymethanedisulfonate, dilithium ethoxymethanedisulfonate , Or dilithium 1,1-prope-2-yldisulfonate is preferred.

スルホン酸エステルとしては、1,3−プロパンスルトン、プロペンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンジスルホン酸ジメチル、メタンジスルホン酸ジエチル、メタンジスルホン酸ジプロピル、メタンジスルホン酸ビス(トリフルオロメチル)、メタンジスルホン酸ビス(トリメチルシリル)、メチレンメタンジスルホン酸、メタンジスルホン酸エチレン、メタンジスルホン酸プロピレン、エチレンジスルホン酸メチレン、エチレンジスルホン酸エチレン、エタンジスルホン酸ジメチル、エタンジスルホン酸ジエチル、エタンジスルホン酸ビス(トリフルオロメチル)、エタンジスルホン酸ビス(トリメチルシリル)、プロパンジスルホン酸ジメチル、プロパンジスルホン酸ジエチル、プロパンジスルホン酸メチレン、プロパンジスルホン酸エチレン、1,5−ナフタレンジスルホン酸ジメチル、ブタンジスルホン酸ジメチル、ブタンジスルホン酸ジエチル等が挙げられる。
なかでも、メタンジスルホン酸ジメチル、メタンジスルホン酸ジエチル、メタンジスルホン酸ビス(トリメチルシリル)、メチレンメタンジスルホン酸、メタンジスルホン酸エチレン、エチレンジスルホン酸メチレン、エタンジスルホン酸ビス(トリメチルシリル)、プロパンジスルホン酸メチレン、エタンジスルホン酸ジメチル、エタンジスルホン酸ジエチル、又はブタンジスルホン酸ジメチルが好ましい。
Examples of the sulfonic acid ester include 1,3-propanesulton, propensulton, 1,4-butanesulton, methyl methanesulfonate, ethyl methanesulfonate, dimethyl methanedisulfonate, diethyl methanedisulfonate, dipropyl methanedisulfonate, and methanedisulfonic acid. Bis (trifluoromethyl), bis (trimethylsilyl) methanedisulfonate, methylenemethanedisulfonic acid, ethylene methanedisulfonate, propylene methanedisulfonate, methylene ethylenedisulfonate, ethylene ethylenedisulfonate, dimethyl ethanedisulfonate, diethyl ethanedisulfonate, Bis ethanedisulfonate (trifluoromethyl), bis ethanedisulfonate (trimethylsilyl), dimethyl propanedisulfonate, diethyl propanedisulfonate, methylene propanedisulfonate, ethylene propanedisulfonate, dimethyl 1,5-naphthalenedisulfonate, butanedisulfonic acid Examples thereof include dimethyl and diethyl butanedisulfonate.
Among them, dimethyl methanedisulfonate, diethyl methanedisulfonate, bis (trimethylsilyl) methanedisulfonate, methylenemethanedisulfonic acid, ethylene methanedisulfonate, methylene ethylenedisulfonate, bis (trimethylsilyl) ethanedisulfonate, methylene propanodisulfonate, ethane. Dimethyl disulfonate, diethyl ethanedisulfonate, or dimethyl butanedisulfonate is preferred.

スルホン酸無水物としては、トリフルオロメタンスルホン酸無水物、1,2−エタンジスルホン酸無水物、1,3−プロパンジスルホン酸無水物、1,4−ブタンジスルホン酸無水物、1,2−ベンゼンジスルホン酸無水物、テトラフルオロ−1,2−エタンジスルホン酸無水物、ヘキサフルオロ−1,3−プロパンジスルホン酸無水物、オクタフルオロ−1,4−ブタンジスルホン酸無水物、3−フルオロ−1,2−ベンゼンジスルホン酸無水物、4−フルオロ−1,2−ベンゼンジスルホン酸無水物、3,4,5,6−テトラフルオロ−1,2−ベンゼンジスルホン酸無水物等が挙げられる。
なかでも、1,2−エタンジスルホン酸無水物、1,3−プロパンジスルホン酸無水物、1,4−ブタンジスルホン酸無水物、テトラフルオロ−1,2−エタンジスルホン酸無水物、ヘキサフルオロ−1,3−プロパンジスルホン酸無水物、又はオクタフルオロ−1,4−ブタンジスルホン酸無水物が好ましい。
Examples of the sulfonic acid anhydride include trifluoromethanesulfonic anhydride, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride, 1,4-butanedisulfonic anhydride, and 1,2-benzenedisulfone. Acid anhydride, tetrafluoro-1,2-ethanedisulfonic acid anhydride, hexafluoro-1,3-propanedisulfonic acid anhydride, octafluoro-1,4-butanedisulfonic acid anhydride, 3-fluoro-1,2 Examples thereof include −benzenedisulfonic anhydride, 4-fluoro-1,2-benzenedisulfonic anhydride, 3,4,5,6-tetrafluoro-1,2-benzenedisulfonic anhydride and the like.
Among them, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride, 1,4-butanedisulfonic anhydride, tetrafluoro-1,2-ethanedisulfonic anhydride, hexafluoro-1 , 3-Propane disulfonic anhydride or octafluoro-1,4-butane disulfonic anhydride is preferred.

本発明では、特に、下記の式(1)で表される2つのスルホン酸基を有する環状又は鎖状のジスルホン酸塩、エステル若しくは無水物が好ましい。
−O−(O=)S−C(R)−S(=O)−O−M (1)
上記式(1)中、R及びRは、水素原子、ハロゲン原子、炭素数が1〜6、好ましくは1〜4を有する、アルキル基、アルケニル基若しくはアルコキシ基である。R及びRは、一緒になって環を形成していてもよい。M及びMは、アルカリ金属、又は炭素数が1〜6、好ましくは1〜4を有するアルキル基である。アルキル基、アルケニル基、及びアルコキシ基は直鎖状でも分岐状でもよい。アルカリ金属は、リチウムが好ましい。M及びMは、一緒になって環を形成していてもよい。
In the present invention, cyclic or chain disulfonates, esters or anhydrides having two sulfonic acid groups represented by the following formula (1) are particularly preferable.
M 1- O- (O =) 2 SC (R 1 R 2 ) -S (= O) 2- O-M 2 (1)
In the above formula (1), R 1 and R 2 are an alkyl group, an alkenyl group or an alkoxy group having a hydrogen atom, a halogen atom and a carbon number of 1 to 6, preferably 1 to 4. R 1 and R 2 may be combined to form a ring. M 1 and M 2 are alkali metals or alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. The alkyl group, alkenyl group, and alkoxy group may be linear or branched. Lithium is preferable as the alkali metal. M 1 and M 2 may be combined to form a ring.

上記式(1)を有する2つのスルホン酸基を有する環状又は鎖状のジスルホン酸塩エステル若しくは塩としては、上記に例示したスルホン酸塩類、スルホン酸エステル類、及びスルホン酸無水物類のなかで、式(1)を満足する化合物が挙げられる。
なかでも、1,1−メタンジスルホン酸ジリチウム、1,2−エタンジスルホン酸ジリチウム、1,3−プロパンジスルホン酸ジリチウム、1,4−ブタンジスルホン酸ジリチウム、メトキシメタンジスルホン酸ジリチウム、エトキシメタンジスルホン酸ジリチウム、1,1−プロペ−2−イルジスルホン酸ジリチウム等のスルホン酸塩類、メタンジスルホン酸ジメチル、メタンジスルホン酸ジエチル、メタンジスルホン酸ビス(トリメチルシリル)、メチレンメタンジスルホン酸、メタンジスルホン酸エチレン、エチレンジスルホン酸メチレン、エタンジスルホン酸ビス(トリメチルシリル)、プロパンジスルホン酸メチレン、エタンジスルホン酸ジメチル、エタンジスルホン酸ジエチル、ブタンジスルホン酸ジメチル等のスルホン酸エステル類、1,2−エタンジスルホン酸無水物、1,3−プロパンジスルホン酸無水物、1,4−ブタンジスルホン酸無水物、テトラフルオロ−1,2−エタンジスルホン酸無水物、ヘキサフルオロ−1,3−プロパンジスルホン酸無水物、オクタフルオロ−1,4−ブタンジスルホン酸無水物等のスルホン酸無水物類が好ましい。
Examples of the cyclic or chain disulfonate ester or salt having two sulfonic acid groups having the above formula (1) include the sulfonates, sulfonic acid esters, and sulfonic acid anhydrides exemplified above. , A compound satisfying the formula (1) can be mentioned.
Among them, dilithium 1,1-methanedisulfonate, dilithium 1,2-ethanedisulfonate, dilithium 1,3-propanedisulfonate, dilithium 1,4-butanedisulfonate, dilithium methoxymethanedisulfonate, dilithium ethoxymethanedisulfonate , 1,1-Prope-2-Dilithium yldisulfonate and other sulfonates, dimethyl methanedisulfonate, diethyl methanedisulfonate, bis (trimethylsilyl) methanedisulfonate, methylenemethanedisulfonic acid, ethylene methanedisulfonate, ethylenedisulfonic acid Sulphonic acid esters such as methylene, bis (trimethylsilyl) ethanedisulfonate, methylene propanodisulfonate, dimethyl ethanedisulfonate, diethyl ethanedisulfonate, dimethyl butanedisulfonate, 1,2-ethanedisulfonic acid anhydride, 1,3- Propanedisulfonic acid anhydride, 1,4-butanedisulfonic acid anhydride, tetrafluoro-1,2-ethanedisulfonic acid anhydride, hexafluoro-1,3-propanedisulfonic acid anhydride, octafluoro-1,4-butane Sulfonic acid anhydrides such as disulfonic acid anhydride are preferred.

本発明の非水電解液における特定のホウ酸化合物の含有量は、好ましくは0.0001〜10質量%、さらに好ましくは0.001〜2質量%、特に好ましくは0.01〜1質量%である。含有量が0.0001質量%未満では、抵抗低減効果が少なくなってしまう。一方、10質量%を超えた場合では、被膜抵抗が高くなり、寿命性能が悪くなり、好ましくない。
一方、スルホン酸塩若しくはエステル又はスルホン酸無水物の含有量は、好ましくは0.0001〜10質量%、さらに好ましくは0.01〜3質量%、特に好ましくは0.01〜2質量%である。含有量が0.0001質量%未満では、抵抗低減効果が少なくなってしまう。10質量%を超えた場合では、被膜抵抗が高くなり、寿命性能が悪くなり、好ましくない。
The content of the specific boric acid compound in the non-aqueous electrolytic solution of the present invention is preferably 0.0001 to 10% by mass, more preferably 0.001 to 2% by mass, and particularly preferably 0.01 to 1% by mass. be. If the content is less than 0.0001% by mass, the resistance reducing effect is reduced. On the other hand, if it exceeds 10% by mass, the film resistance becomes high and the life performance deteriorates, which is not preferable.
On the other hand, the content of the sulfonate or ester or sulfonic acid anhydride is preferably 0.0001 to 10% by mass, more preferably 0.01 to 3% by mass, and particularly preferably 0.01 to 2% by mass. .. If the content is less than 0.0001% by mass, the resistance reducing effect is reduced. If it exceeds 10% by mass, the film resistance becomes high and the life performance deteriorates, which is not preferable.

<更なる添加物質>
本発明の非水電解液中には、蓄電デバイスの寿命性能や抵抗性能を改善する目的で、上記特定の添加物質以外に更なる添加物質が含有されていてもよい。更なる添加物質としては、含硫黄化合物(前記スルホン酸塩若しくはエステル又はスルホン酸無水物を除く)、カルボン酸化合物、及び含ホウ素化合物からなる群より選ばれる1種以上の化合物が使用できる。
上記含硫黄化合物としては、エチレンサルファイト、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン−2−オキシド(1,2−シクロヘキサンジオールサイクリックサルファイトともいう)、5−ビニル−ヘキサヒドロ1,3,2−ベンゾジオキサチオール−2−オキシド、1,4−ブタンジオールジメタンスルホネート、1,3−ブタンジオールジメタンスルホネート、メチレンメタンジスルホン酸、エチレンメタンジスルホン酸、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ジビニルスルホン、1,2−ビス(ビニルスルホ二ル)メタンが挙げられる。
<Additional additives>
The non-aqueous electrolytic solution of the present invention may contain additional additives in addition to the above-mentioned specific additives for the purpose of improving the life performance and resistance performance of the power storage device. As a further additive, one or more compounds selected from the group consisting of sulfur-containing compounds (excluding the above-mentioned sulfonates or esters or sulfonic acid anhydrides), carboxylic acid compounds, and boron-containing compounds can be used.
Examples of the sulfur-containing compound include ethylene sulfite, hexahydrobenzo [1,3,2] dioxathiolan-2-oxide (also referred to as 1,2-cyclohexanediol cyclic sulfite), and 5-vinyl-hexahydro 1,3. 2-benzodioxathiol-2-oxide, 1,4-butanediol dimethanesulfonate, 1,3-butanediol dimethanesulfonate, methylenemethanedisulfonic acid, ethylenemethanedisulfonic acid, N, N-dimethylmethanesulfonamide, Examples thereof include N, N-diethylmethanesulfonamide, divinylsulfone and 1,2-bis (vinylsulfonyl) methane.

上記カルボン酸化合物としては、シュウ酸リチウム、マロン酸リチウム、ジフルオロマロン酸リチウム、コハク酸リチウム、テトラフルオロコハク酸リチウム、アジピン酸リチウム、グルタル酸リチウム、アセトンジカルボン酸リチウム、2-オキソ酪酸リチウム、オキサル酢酸リチウム、2-オキソグルタル酸リチウム、アセト酢酸リチウム、3-オキソシクロブタンカルボン酸、3-オキソシクロペンタンカルボン酸、2-オキソ吉草酸リチウム、ピルビン酸リチウム、グリオキシル酸リチウム、 3,3-ジメチル-2-オキソ酪酸リチウム、2-ヒドロキシプロピオン酸リチウム、2-メチル乳酸リチウム、酒石酸リチウム、シアノ酢酸リチウム、2-メルカプトプロピオン酸リチウム、メチレンビス(チオグリコール酸)チオジこはく酸リチウム、3-(メチルチオ)プロピオン酸リチウム、3,3'-チオジプロピオン酸リチウム、ジチオジグリコール酸リチウム、2,2'-チオジグリコール酸リチウム、チアゾリジン-2,4-ジカルボン酸リチウム、又はアセチルチオ酢酸リチウムが挙げられる。 Examples of the carboxylic acid compound include lithium oxalate, lithium malonate, lithium difluoromalonate, lithium succinate, lithium tetrafluorosuccinate, lithium adipate, lithium glutarate, lithium acetone dicarboxylic acid, lithium 2-oxobutyrate, and oxal. Lithium acetate, lithium 2-oxoglutarate, lithium acetoacetate, 3-oxocyclobutanecarboxylic acid, 3-oxocyclopentanecarboxylic acid, lithium 2-oxovalerate, lithium pyruvate, lithium glyoxylate, 3,3-dimethyl-2 -Lithium oxobutyrate, lithium 2-hydroxypropionate, lithium 2-methyllactate, lithium tartrate, lithium cyanoacetate, lithium 2-mercaptopropionate, methylenebis (thioglycolic acid) lithium thiodisuccinate, 3- (methylthio) propionic acid Included are lithium, lithium 3,3'-thiodipropionate, lithium dithiodiglycolate, lithium 2,2'-thiodiglycolate, lithium thiazolidine-2,4-dicarboxylate, or lithium acetylthioacetate.

上記含ホウ素化合物としては、LiBF2(C24)、LiB(C242、LiBF2(CO2CH2CO2)、LiB(CO2CH2CO22、LiB(CO2CF2CO22、LiBF2(CO2CF2CO2)、LiBF3(CO2CH3)、LiBF3(CO2CF3)、LiBF2(CO2CH32、LiBF2(CO2CF32、LiBF(CO2CH33、LiBF(CO2CF33、LiB(CO2CH34、LiB(CO2CF34、Li227、又はLi22が挙げられる。
上記の更なる添加物質は、それぞれの1種を単独で用いてもよく、2種以上を併用してもよい。また、非水電解液が上記の更なる添加物質を含有する場合、添加物質によっても異なるが、非水電解液における上記の更なる添加物質の含有量は、0.01〜5質量%が好ましくは、0.1〜2質量%がより好ましい。
Examples of the boron-containing compound include LiBF 2 (C 2 O 4 ), LiB (C 2 O 4 ) 2 , LiBF 2 (CO 2 CH 2 CO 2 ), LiB (CO 2 CH 2 CO 2 ) 2 , and LiB (CO). 2 CF 2 CO 2 ) 2 , LiBF 2 (CO 2 CF 2 CO 2 ), LiBF 3 (CO 2 CH 3 ), LiBF 3 (CO 2 CF 3 ), LiBF 2 (CO 2 CH 3 ) 2 , LiBF 2 ( CO 2 CF 3 ) 2 , LiBF (CO 2 CH 3 ) 3 , LiBF (CO 2 CF 3 ) 3 , LiB (CO 2 CH 3 ) 4 , LiB (CO 2 CF 3 ) 4 , Li 2 B 2 O 7 , Alternatively, Li 2 B 2 O 4 can be mentioned.
As the above-mentioned additional additive, one kind of each may be used alone, or two or more kinds may be used in combination. When the non-aqueous electrolytic solution contains the above-mentioned additional additive, the content of the above-mentioned additional additive in the non-aqueous electrolytic solution is preferably 0.01 to 5% by mass, although it depends on the additive. Is more preferably 0.1 to 2% by mass.

<蓄電デバイス>
本発明の非水電解液は、リチウムイオン二次電池、電気二重層キャパシタ、正極又は負極の一方が電池で他方が二重層であるハイブリッド型電池などの種々の蓄電デバイスにて使用できる。以下は、その代表例のリチウムイオン二次電池について説明する。
負極を構成する負極活物質としては、リチウムイオンのド−プ・脱ド−プが可能な炭素材料、金属リチウム、リチウム含有合金、又はリチウムとの合金化が可能なシリコン、シリコン合金、スズ、スズ合金、リチウムイオンのド−プ・脱ド−プが可能な酸化スズ、酸化シリコン、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物、リチウムイオンのド−プ・脱ド−プが可能な遷移金属窒素化合物、あるいはこれらの混合物のいずれをも用いることができる。なお、負極は、銅製の箔やエキスパンドメタルなどの集電体上に、負極活物質が形成された構成が一般的である。負極活物質の集電体への接着性を向上させるために例えば、ポリフッ化ビニリデン系バインダー、ラテックス系のバインダーなどを含有してもよく、導電助剤としてカーボンブラック、アモルファスウイスカーカーボンなどを加えて使用してもよい。
<Power storage device>
The non-aqueous electrolyte solution of the present invention can be used in various power storage devices such as a lithium ion secondary battery, an electric double layer capacitor, and a hybrid battery in which one of the positive electrode or the negative electrode is a battery and the other is a double layer. The following describes a typical example of the lithium ion secondary battery.
The negative electrode active material constituting the negative electrode includes a carbon material capable of dope / dedope of lithium ions, metallic lithium, a lithium-containing alloy, or silicon, a silicon alloy, tin, which can be alloyed with lithium. Tin alloy, tin oxide capable of dope / removal of lithium ions, silicon oxide, transition metal oxide capable of dope / removal of lithium ions, dope / removal of lithium ions Either a transition metal nitrogen compound capable of dope, or a mixture thereof can be used. The negative electrode is generally configured such that a negative electrode active material is formed on a current collector such as a copper foil or an expanded metal. In order to improve the adhesiveness of the negative electrode active material to the current collector, for example, a polyvinylidene fluoride-based binder, a latex-based binder, or the like may be contained, and carbon black, amorphous whisker carbon, or the like may be added as a conductive auxiliary agent. You may use it.

負極活物質を構成する炭素材料としては、例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられる。炭素材料は、黒鉛化したものでもよい。炭素材料としては、特にX線回折法で測定した(002)面の面間隔(d002)が0.340nm以下の炭素材料が好ましく、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料が望ましい。このような炭素材料を使用すると、非水電解液電池のエネルギー密度を高くすることができる。 As the carbon material constituting the negative electrode active material, for example, thermally decomposed carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, calcined organic polymer compound (phenol resin, furan resin, etc.) are suitable. (Coke), carbon fiber, activated carbon, etc. The carbon material may be graphitized. As the carbon material, a carbon material having a (002) plane spacing (d002) of 0.340 nm or less measured by an X-ray diffraction method is particularly preferable, and graphite having a true density of 1.70 g / cm 3 or more or close to it. A highly crystalline carbon material having properties is desirable. When such a carbon material is used, the energy density of the non-aqueous electrolyte battery can be increased.

さらに、上記炭素材料中にホウ素を含有するものや、金、白金、銀、銅、Sn、Si等の金属で被覆したもの、あるいは非晶質炭素で被覆したもの等を使用することができる。これらの炭素材料は、1種又は2種以上を適宜組み合わせて使用してもよい。
また、リチウムとの合金化が可能なシリコン、シリコン合金、スズ、スズ合金、リチウムイオンのド−プ・脱ドープが可能な酸化スズ、酸化シリコン、リチウムイオンのドープ・脱ドープが可能な遷移金属酸化物を用いた場合は、いずれも上述の炭素質材料よりも重量あたりの理論容量が高く、好適な材料である。
Further, a material containing boron in the carbon material, a material coated with a metal such as gold, platinum, silver, copper, Sn, Si, or a material coated with amorphous carbon can be used. These carbon materials may be used alone or in combination of two or more as appropriate.
In addition, silicon, silicon alloys, tin, tin alloys that can be alloyed with lithium, tin oxide that can dope / dedope of lithium ions, silicon oxide, and transition metals that can dope / dedope of lithium ions. When oxides are used, they are suitable materials because they have a higher theoretical capacity per weight than the above-mentioned carbonaceous materials.

一方、正極を構成する正極活物質は、充放電が可能な種々の材料から形成できる。例えば、リチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
本発明において、正極活物質としては、下記式(2)で表される層状岩塩構造型のリチウム複合化合物が好まししい。
Li(NiCoMn)O (2)
但し、式(2)において、xは0.2≦x≦0.9であり、yは0≦y≦0.5であり、zは0≦x≦0.9である。
なかでも、正極活物質のNi含有量である、x(Ni/Ni(Ni+Co+Mn))は、モル比で、0.2〜0.8が好ましく、0.3〜0.7がより好ましい。また、正極活物質のCo含有量である、y(Co/(Ni+Co+Mn))は、モル比で、0.1〜0.5が好ましく、0.2〜0.4がより好ましい。また、正極活物質のMn含有量である、z(、Mn/(Ni+Co+Mn))は、モル比で、0.1〜0.5が好ましく、0.2〜0.4がより好ましい。
かかる正極活物質の好ましい例としては、LiNi6/10Mn4/10、LiNi7/10Mn3/10、LiNi1/3Co1/3Mn1/3、LiNi5/10Co2/10Mn3/10、LiNi6/10Co2/10Mn2/10、LiNi7/10Co1/10Mn2/10、LiNi8/10Co1/10Mn1/10が挙げられる。
On the other hand, the positive electrode active material constituting the positive electrode can be formed from various materials capable of charging and discharging. For example, lithium-containing transition metal oxides, lithium-containing transition metal composite oxides using one or more kinds of transition metals, transition metal oxides, transition metal sulfides, metal oxides, olivine-type metal lithium salts and the like can be mentioned.
In the present invention, as the positive electrode active material, a layered rock salt structure type lithium composite compound represented by the following formula (2) is preferable.
Li (Ni x Co y Mn z ) O 2 (2)
However, in the formula (2), x is 0.2 ≦ x ≦ 0.9, y is 0 ≦ y ≦ 0.5, and z is 0 ≦ x ≦ 0.9.
Among them, x (Ni / Ni (Ni + Co + Mn)), which is the Ni content of the positive electrode active material, is preferably 0.2 to 0.8, more preferably 0.3 to 0.7, in terms of molar ratio. The Co content of the positive electrode active material, y (Co / (Ni + Co + Mn)), is preferably 0.1 to 0.5, more preferably 0.2 to 0.4, in terms of molar ratio. The Mn content of the positive electrode active material, z (, Mn / (Ni + Co + Mn)), is preferably 0.1 to 0.5, more preferably 0.2 to 0.4, in terms of molar ratio.
Preferred examples of such positive electrode active material are LiNi 6/10 Mn 4/10 O 2 , LiNi 7/10 Mn 3/10 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 5 /. 10 Co 2/10 Mn 3/10 O 2 , LiNi 6/10 Co 2/10 Mn 2/10 O 2 , LiNi 7/10 Co 1/10 Mn 2/10 O 2 , LiNi 8/10 Co 1/10 Mn 1/10 O 2 can be mentioned.

また、本発明における別の好ましい正極活物質は、下記式(3)で表されるオリビン型リチウム複合化合物である。
LiMPO (3)
但し、式(1)において、Mは、Co、Ni、Mn及びFeからなる群から選択される少なくとも1種以上の元素であり、0<x≦2であり、好ましくは0.05≦x≦1.20が好ましい。
かかるオリビン型リチウム複合化合物の好ましい例としては、LiFePO、LiNiPO、LiMnPO等が挙げられる。
Further, another preferable positive electrode active material in the present invention is an olivine-type lithium composite compound represented by the following formula (3).
Li x MPO 4 (3)
However, in the formula (1), M is at least one element selected from the group consisting of Co, Ni, Mn and Fe, and has 0 <x ≦ 2, preferably 0.05 ≦ x ≦. 1.20 is preferred.
Preferred examples of such an olivine-type lithium composite compound include LiFePO 4 , LiNiPO 4 , LiMnPO 4, and the like.

また、上記の正極活物質の表面に、正極活物質を構成する主体となる物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては、カーボン、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
また、正極は、アルミニウム、チタン、若しくはステンレス製の箔、又はエキスパンドメタルなどの集電体上に、正極活物質が形成された構成が一般的である。正極活物質の集電体への接着性を向上させるために、例えば、ポリフッ化ビニリデン系バインダー、正極内の電子伝導性を向上させるためにカーボンブラック、アモルファスウィスカー、グラファイトなどを含有してもよい。
Further, it is also possible to use a substance having a composition different from that of the main substance constituting the positive electrode active material attached to the surface of the positive electrode active material. Surface adhering substances include carbon, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate. , Sulfates such as calcium sulfate and aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate can be mentioned.
Further, the positive electrode is generally composed of a positive electrode active material formed on a current collector such as a foil made of aluminum, titanium or stainless steel, or an expanded metal. In order to improve the adhesiveness of the positive electrode active material to the current collector, for example, a polyvinylidene fluoride-based binder, carbon black, amorphous whisker, graphite, etc. may be contained to improve the electron conductivity in the positive electrode. ..

セパレ−タは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜が好ましく、例えば、微多孔性高分子フィルムなどの多孔性膜が使用される。微多孔性高分子フィルムとしては、特に、多孔性ポリオレフィンフィルムが好ましく、さらに具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムなどが好ましい。さらにセパレ−タとして、高分子電解質を使用することもできる。高分子電解質としては、例えばリチウム塩を溶解した高分子物質や、電解液で膨潤させた高分子物質なども使用できるが、これらに限定されるものではない。
本発明の非水電解液は、該非水電解液により高分子物質を膨潤させて高分子電解質を得る目的で使用してもよく、また、多孔性ポリオレフィンフィルムと高分子電解質を併用した形のセパレータに非水電解液をしみこませてもよい。
本発明の非水電解液を使用したリチウムイオン二次電池の形状については特に限定されることはなく、円筒型、角型、アルミラミネート型、コイン型、ボタン型などの種々の形状にすることができる。
The separator is preferably a film that electrically insulates the positive electrode and the negative electrode and allows lithium ions to pass through, and for example, a porous film such as a microporous polymer film is used. As the microporous polymer film, a porous polyolefin film is particularly preferable, and more specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film is preferable. Further, a polymer electrolyte can be used as a separator. As the polymer electrolyte, for example, a polymer substance in which a lithium salt is dissolved, a polymer substance swollen with an electrolytic solution, and the like can be used, but the polymer electrolyte is not limited thereto.
The non-aqueous electrolyte solution of the present invention may be used for the purpose of swelling a polymer substance with the non-aqueous electrolyte solution to obtain a polymer electrolyte, or a separator in the form of a combination of a porous polyolefin film and a polymer electrolyte. May be impregnated with a non-aqueous electrolyte solution.
The shape of the lithium ion secondary battery using the non-aqueous electrolyte solution of the present invention is not particularly limited, and may be various shapes such as a cylindrical type, a square type, an aluminum laminated type, a coin type, and a button type. Can be done.

以下、実施例により、本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の範囲内での変更が可能である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples, and modifications can be made within the scope of the present invention.

<非水電解液1−1の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とフルオロエチレンカーボネート(FEC)の混合溶媒(体積混合比が30:68:2)に、リチウム塩としてLiPF6を1mol/リットルの濃度になるように加え、溶解させて非水電解液1-1を調製した。
<Preparation of non-aqueous electrolyte 1-1>
LiPF6 as a lithium salt was added to a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and fluoroethylene carbonate (FEC) (volume mixing ratio: 30:68: 2) at a concentration of 1 mol / liter. , To prepare a non-aqueous electrolyte solution 1-1.

<非水電解液1−2〜1−4の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とフルオロエチレンカーボネート(FEC)の混合溶媒(体積混合比が30:68:2)に、リチウム塩としてLiPF6を1mol/リットルの濃度になるように加え、四ホウ酸リチウムを0.1質量%加え溶解させた。
上記溶液に対して、それぞれ、プロペンスルトン、エチレンメタンジスルホン酸、1,3−プロパンジスルホン酸無水物、をいずれも1.0質量%加えて溶解させることにより非水電解液1-2、1−3、1−4を調製した。
<Preparation of non-aqueous electrolyte solution 1-2 to 1-4>
LiPF6 as a lithium salt was added to a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and fluoroethylene carbonate (FEC) (volume mixing ratio: 30:68: 2) at a concentration of 1 mol / liter. , Lithium tetraborate was added in an amount of 0.1% by volume and dissolved.
Non-aqueous electrolytes 1-2 and 1- are dissolved by adding 1.0% by mass of propensulton, ethylenemethanedisulfonic acid, and 1,3-propanedisulfonic acid anhydride to the above solutions, respectively. 3, 1-4 were prepared.

<非水電解液2−1〜2−3の調製>
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とフルオロエチレンカーボネート(FEC)の混合溶媒(体積混合比が30:68:2)に、リチウム塩としてLiPFを1mol/リットルの濃度になるように加え、四ホウ酸リチウムを0.1質量%、1,3−プロパンジスルホン酸無水物を0.5質量%加えて溶解させた。
上記溶液に対して、それぞれ、1,2−エタンジスルホン酸ジリチウム、1,3−プロパンジスルホン酸ジリチウム、1,4−ブタンジスルホン酸ジリチウムをいずれも0.5質量%加えて溶解させることにより非水電解液2-1、2−2、2−3を調製した。
<Preparation of non-aqueous electrolytes 2-1 to 2-3>
LiPF 6 as a lithium salt in a mixed solvent (volume mixing ratio of 30:68: 2) of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and fluoroethylene carbonate (FEC) at a concentration of 1 mol / liter. In addition, 0.1% by volume of lithium tetraborate and 0.5% by volume of 1,3-propanedisulfonic anhydride were added and dissolved.
Non-aqueous by adding 0.5% by mass of dilithium 1,2-ethanedisulfonate, dilithium 1,3-propanedisulfonate, and dilithium 1,4-butanedisulfonate to the above solutions, respectively, to dissolve them. Electrolyte 2-1, 2-2, 2-3 were prepared.

<実施例1〜3>
<正極の作製>
正極活物質として、Ni:Mn:Coの比率が5:3:2であるリチウム−ニッケル−マンガン−コバルト複合酸化物粉末91質量%と、結着剤であるポリフッ化ビニリデン5質量%と、導電剤であるアセチレンブラック4質量%とを混合してなる正極合材に、N−メチルピロリドンを加えてペースト状に調製し、これを厚さ18μmのアルミニウム箔集電体両面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延することによって正極を作製した。
<Examples 1 to 3>
<Preparation of positive electrode>
As the positive electrode active material, 91% by mass of the lithium-nickel-manganese-cobalt composite oxide powder having a Ni: Mn: Co ratio of 5: 3: 2, 5% by mass of polyvinylidene fluoride as a binder, and conductivity. N-Methylpyrrolidone is added to a positive electrode mixture made by mixing 4% by mass of acetylene black, which is an agent, to prepare a paste, which is applied to both sides of an aluminum foil current collector having a thickness of 18 μm, and a solvent is applied. After drying and removing, a positive electrode was prepared by rolling with a roll press.

<負極の作製>
人造黒鉛化性炭素粉末95.8質量%、バインダーであるスチレンブタジエンゴム(SBR)2.0質量%及びカルボキシメチルセルロース2.2質量%水溶液を混合し、分散媒に水を用いてスラリーを調製し、このスラリーを厚さ12μmの銅箔の両面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延することによって負極を作製した。
<Manufacturing of negative electrode>
95.8% by mass of artificial graphite-forming carbon powder, 2.0% by mass of styrene-butadiene rubber (SBR) as a solvent, and 2.2% by mass of carboxymethyl cellulose aqueous solution are mixed, and water is used as a dispersion medium to prepare a slurry. , This slurry was applied to both sides of a copper foil having a thickness of 12 μm, the solvent was dried and removed, and then rolled with a roll press to prepare a negative electrode.

<電池の作製>
上記で作製した正極と、上記で作製した負極とがセパレータ(東レバッテリセパレータフィルム燃化学社製、F23DHA)を介して巻回された扁平巻状電極群をケースに収納して、縦30mm×横30mm×厚さ2.0mmの直方体形状を有する電池セルを作製した。
上記で作製した電池セルを用いて以下のような手順でラミネート電池を作製した。
a.各種電解液を0.6g量り採り、電池セルの注液口に注液し、減圧したのち注液口を封口した。
b.封口した電池セルを45℃雰囲気下に保った状態で、4.4Vまで12mAで充電した後、3.0Vまで12mAで放電した。
c.3.0Vまで放電した電池セルの内部ガスを減圧除去し電池を作製した。
<Battery production>
The flat-wound electrode group in which the positive electrode produced above and the negative electrode produced above are wound via a separator (F23DHA, manufactured by Toray Battery Separator Film Co., Ltd.) is housed in a case and has a length of 30 mm and a width of 30 mm. A battery cell having a rectangular parallelepiped shape of 30 mm × thickness 2.0 mm was produced.
Using the battery cell produced above, a laminated battery was produced by the following procedure.
a. 0.6 g of various electrolytic solutions were weighed, injected into the injection port of the battery cell, depressurized, and then the injection port was closed.
b. The sealed battery cell was charged at 12 mA up to 4.4 V while being kept in an atmosphere of 45 ° C., and then discharged at 12 mA up to 3.0 V.
c. A battery was prepared by removing the internal gas of the battery cell discharged to 3.0 V under reduced pressure.

<電池評価>
上記で作製した電池について、以下のように充放電特性を測定した。
a.容量維持率
45℃雰囲気下にて1Cレートで4.35V充電した後、同雰囲気下で1Cレートで3.0V放電し、その放電容量値を初期容量値とした。次いで、同条件で、300回を繰り返し、300回目の放電容量値をサイクル後容量値とした。この初期容量値及びサイクル後容量値より下記式を用いて容量維持率を求めた。
容量維持率(%)=(サイクル後容量値/初期容量値)×100
<Battery evaluation>
The charge / discharge characteristics of the battery manufactured above were measured as follows.
a. Capacity retention rate After charging 4.35V at a 1C rate in an atmosphere of 45 ° C., a 3.0V discharge was performed at a 1C rate in the same atmosphere, and the discharge capacity value was used as the initial capacity value. Then, under the same conditions, 300 times were repeated, and the 300th discharge capacity value was used as the post-cycle capacity value. From this initial capacity value and the capacity value after the cycle, the capacity retention rate was calculated using the following formula.
Capacity retention rate (%) = (capacity value after cycle / initial capacity value) x 100

上記で作製した正極及び負極を用いて作製した電池セルに、非水電解液1−1〜1−4を注入し上記の電池作製手順を用いて、比較例1及び実施例1〜3のラミネート電池を作製した。
次に、45℃の雰囲気中、1Cレートで4.35Vまでの充電と3.0Vまでの放電を300回繰り返し、初期容量値と300回後のサイクル後放電容量値を測定し、容量維持率を求め、その結果を表1に示す。
Laminating Comparative Examples 1 and 1-3 using the above battery manufacturing procedure by injecting non-aqueous electrolytes 1-1 to 1-4 into the battery cells prepared using the positive and negative electrodes prepared above. A battery was manufactured.
Next, in an atmosphere of 45 ° C., charging up to 4.35V and discharging up to 3.0V at a 1C rate were repeated 300 times, and the initial capacity value and the discharge capacity value after the cycle after 300 times were measured, and the capacity retention rate was measured. The results are shown in Table 1.

Figure 0006915964
表1に示すように、実施例1〜3の電池は、比較例1に比べて、4.35Vの高電圧化においても良好な寿命特性が得ることができる。
Figure 0006915964
As shown in Table 1, the batteries of Examples 1 to 3 can obtain better life characteristics even at a high voltage of 4.35 V as compared with Comparative Example 1.

<実施例4〜6>
<正極の作製>
正極活物質として、Ni:Mn:Coの比率が6:2:2であるリチウム−ニッケル−マンガン−コバルト複合酸化物粉末90質量%と、結着剤であるポリフッ化ビニリデン6質量%と、導電剤であるアセチレンブラック4質量%とを混合してなる正極合材に、N−メチルピロリドンを加えてペースト状に調製し、これを厚さ18μmのアルミニウム箔集電体両面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延することによって正極を作製した。
<Examples 4 to 6>
<Preparation of positive electrode>
As the positive electrode active material, 90% by mass of the lithium-nickel-manganese-cobalt composite oxide powder having a Ni: Mn: Co ratio of 6: 2: 2, 6% by mass of polyvinylidene fluoride as a binder, and conductivity. N-Methylpyrrolidone is added to a positive electrode mixture made by mixing 4% by mass of acetylene black, which is an agent, to prepare a paste, which is applied to both sides of an aluminum foil current collector having a thickness of 18 μm, and a solvent is applied. After drying and removing, a positive electrode was prepared by rolling with a roll press.

<負極の作製>
人造黒鉛化性炭素粉末94.8質量%、バインダーであるスチレンブタジエンゴム(SBR)3.0質量%及びカルボキシメチルセルロース2.2質量%水溶液を混合し、分散媒に水を用いてスラリーを調製した。このスラリーを厚さ12μmの銅箔の両面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延することによって負極を作製した。
<Manufacturing of negative electrode>
94.8% by mass of artificial graphite-forming carbon powder, 3.0% by mass of styrene-butadiene rubber (SBR) as a binder, and 2.2% by mass of carboxymethyl cellulose aqueous solution were mixed, and water was used as a dispersion medium to prepare a slurry. .. This slurry was applied to both sides of a copper foil having a thickness of 12 μm, the solvent was dried and removed, and then rolled with a roll press to prepare a negative electrode.

<電池の作製>
アルミニウム集電体に正極合材を塗布してなる正極と、銅集電体に負極合材を塗布してなる負極とがセパレータを介して巻回された扁平巻状電極群をケースに収納して、幅30mm×高さ30mm×厚さ2.0mmの形状を有する電池セルを作製した。
上記で作製した電池セルを用いて以下のような手順でラミネート電池を作製した。
a.各種電解液を0.6g量り採り、電池セルの注液口に注液し、減圧したのち注液口を封口した。
b.封口した電池セルを45℃雰囲気下に保った状態で、4.3Vまで9mAで充電した後、3.0Vまで9mAで放電した。
c.3.0Vまで放電した電池セルの内部ガスを減圧除去し電池を作製した。
<Battery production>
A flat-wound electrode group in which a positive electrode formed by applying a positive electrode mixture to an aluminum current collector and a negative electrode formed by applying a negative electrode mixture to a copper current collector are wound via a separator is housed in a case. Therefore, a battery cell having a shape of width 30 mm × height 30 mm × thickness 2.0 mm was produced.
Using the battery cell produced above, a laminated battery was produced by the following procedure.
a. 0.6 g of various electrolytic solutions were weighed, injected into the injection port of the battery cell, depressurized, and then the injection port was closed.
b. The sealed battery cell was charged at 9 mA up to 4.3 V while being kept in an atmosphere of 45 ° C., and then discharged at 9 mA up to 3.0 V.
c. A battery was prepared by removing the internal gas of the battery cell discharged to 3.0 V under reduced pressure.

<電池評価>
上記で作製した電池について、以下のように充放電特性を測定した。
a.容量維持率
45℃雰囲気下にて1Cレートで4.2V充電した後、同雰囲気下で1Cレートで3.0V放電し、その放電容量値を初期容量値とした。次いで、同条件で、300回を繰り返し、300回目の放電容量値をサイクル後容量値とした。この初期容量値及びサイクル後容量値より下記式を用いて容量維持率を求めた。
容量維持率(%)=(サイクル後容量値/初期容量値)×100
b.体積変化率
25℃雰囲気下で電池を液体中に沈む電池の初期体積値を測定した。次いで、45℃雰囲気中、1Cレートで4.2Vまで充電した後、同雰囲気下で1Cレートで3.0Vまで放電し、1サイクルとした。同条件で、300回を繰り返した。300回を繰り返したのち、電池を前記初期体積値と同様の方法でサイクル後体積値を測定した。この初期体積値及びサイクル後体積値より下記式を用いて体積変化率を求めた。
体積変化率(%)=(サイクル後体積値/初期体積値)×100
<Battery evaluation>
The charge / discharge characteristics of the battery manufactured above were measured as follows.
a. Capacity retention rate After charging 4.2V at a 1C rate in an atmosphere of 45 ° C., a 3.0V discharge was performed at a 1C rate in the same atmosphere, and the discharge capacity value was used as the initial capacity value. Then, under the same conditions, 300 times were repeated, and the 300th discharge capacity value was used as the post-cycle capacity value. From this initial capacity value and the capacity value after the cycle, the capacity retention rate was calculated using the following formula.
Capacity retention rate (%) = (capacity value after cycle / initial capacity value) x 100
b. Volume change rate The initial volume value of the battery in which the battery was submerged in a liquid under an atmosphere of 25 ° C. was measured. Next, the battery was charged to 4.2 V at a 1 C rate in an atmosphere of 45 ° C., and then discharged to 3.0 V at a 1 C rate in the same atmosphere for one cycle. Under the same conditions, it was repeated 300 times. After repeating 300 times, the volume value of the battery was measured after the cycle in the same manner as the initial volume value. From this initial volume value and the volume value after the cycle, the volume change rate was calculated using the following formula.
Volume change rate (%) = (volume value after cycle / initial volume value) x 100

上記で作製した正極及び負極を用いて作製した電池セルに、非水電解液1−1および2−1〜2−3を注入し上記の電池作製手順を用いて、比較例2及び実施例4〜6のラミネート電池を作製した。
次に、45℃の雰囲気で1Cレートで4.2Vまでの充電と3.0Vまでの放電を300回繰り返し、初期容量値および初期体積値と300回後のサイクル後放電容量値およびサイクル後体積値を測定し、容量維持率および体積変化率を求め、その結果を表2に示す。
Comparative Examples 2 and 4 were used by injecting the non-aqueous electrolytes 1-1 and 2-1 to 2-3 into the battery cells prepared using the positive electrode and the negative electrode prepared above, and using the above battery manufacturing procedure. A laminated battery of ~ 6 was produced.
Next, charging up to 4.2 V and discharging up to 3.0 V at a 1 C rate in an atmosphere of 45 ° C. were repeated 300 times, and the initial capacitance value and the initial volume value and the post-cycle discharge capacity value and the post-cycle volume after 300 times were repeated. The values were measured to determine the capacity retention rate and volume change rate, and the results are shown in Table 2.

Figure 0006915964
Figure 0006915964

表2に示すように、実施例4〜6の電池は、比較例2に比べて、良好な寿命特性が得ることができるとともに、電池の体積変化も大幅に抑制することができる。すなわち、正極活物質中のNi含有量が多くても良好寿命特性が得ることができるとともに、電池の体積変化も大幅に抑制することができる。 As shown in Table 2, the batteries of Examples 4 to 6 can obtain better life characteristics and can significantly suppress the volume change of the batteries as compared with Comparative Example 2. That is, even if the Ni content in the positive electrode active material is high, good life characteristics can be obtained, and the volume change of the battery can be significantly suppressed.

発明の蓄電デバイス用非水電解液は、リチウムイオン二次電池などの蓄電デバイスに使用され、携帯電話、スマートフォン、ノートパソコなどの各種民生用機器の電源、産業機器用電源、蓄電池、自動車用電源などに広く使用される。 The non-aqueous electrolyte solution for a power storage device of the present invention is used for a power storage device such as a lithium ion secondary battery, and is used as a power source for various consumer devices such as mobile phones, smartphones, and notebook computers, a power source for industrial devices, a storage battery, and a power source for automobiles. Widely used for such purposes.

Claims (5)

正極活物質がリチウム含有遷移金属複合酸化物を含み、かつ負極活物質が炭素材料を含む(ケイ素、スズを含まない)リチウムイオン二次電池用非水電解液であって、
非水溶媒に電解質を溶解してなり、前記電解質が前記非水溶媒に溶解するリチウム塩であり、かつ、四ホウ酸若しくはその塩、又はメタホウ酸若しくはその塩からなるホウ酸化合物と、下記の式(1)で表される2つのスルホン酸基を有する環状若しくは鎖状のジスルホン酸塩若しくはエステルからなるスルホン酸化合物と、を含有することを特徴とするリチウムイオン二次電池用非水電解液。
−O−(O=)S−C(R)−S(=O)−O−M (1)
(式(1)中、R及びRは、水素原子、ハロゲン原子、炭素数が1〜6を有するアルキル基、炭素数が2〜6を有するアルケニル基、又は炭素数が1〜6を有するアルコキシ基である。M及びMはアルカリ金属又は炭素数が1〜6を有するアルキル基である。)
A non-aqueous electrolyte solution for a lithium ion secondary battery in which the positive electrode active material contains a lithium-containing transition metal composite oxide and the negative electrode active material contains a carbon material (excluding silicon and tin).
A boric acid compound obtained by dissolving an electrolyte in a non-aqueous solvent, wherein the electrolyte is a lithium salt dissolved in the non-aqueous solvent, and is composed of tetraboric acid or a salt thereof, or metaboric acid or a salt thereof, and the following. A non-aqueous electrolyte solution for a lithium ion secondary battery, which comprises a sulfonic acid compound composed of a cyclic or chain disulfonate or an ester having two sulfonic acid groups represented by the formula (1). ..
M 1- O- (O =) 2 SC (R 1 R 2 ) -S (= O) 2- O-M 2 (1)
(In the formula (1), R 1 and R 2 have a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 2 to 6 carbon atoms, or an alkenyl group having 1 to 6 carbon atoms. Alkoxy groups having. M 1 and M 2 are alkali metals or alkyl groups having 1 to 6 carbon atoms.)
前記非水電解液中、前記ホウ酸化合物を0.01〜1質量%含有し、かつ、前記スルホン酸化合物を0.01〜3質量%含有する請求項1に記載のリチウムイオン二次電池用非水電解液。 The lithium ion secondary battery according to claim 1, which contains 0.01 to 1% by mass of the boric acid compound and 0.01 to 3% by mass of the sulfonic acid compound in the non-aqueous electrolytic solution. Non-aqueous electrolyte. 請求項1又は2に記載の非水電解液を備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the non-aqueous electrolyte solution according to claim 1 or 2. 下記式(2)で表される層状岩塩構造型のリチウム含有遷移金属複合化合物を正極活物質とする請求項に記載のリチウムイオン二次電池。
Li(NiCoMn)O (2)
(式中、xは0.2≦x≦0.9であって、yは0≦y≦0.5であり、zは0≦z≦0.9である。)
The lithium ion secondary battery according to claim 3 , wherein a layered rock salt structure type lithium-containing transition metal composite compound represented by the following formula (2) is used as a positive electrode active material.
Li (Ni x Co y Mn z ) O 2 (2)
(In the formula, x is 0.2 ≦ x ≦ 0.9, y is 0 ≦ y ≦ 0.5, and z is 0 ≦ z ≦ 0.9.)
前記式(2)において、xが0.5より大きく、かつyが0.3より小さい請求項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 4 , wherein in the formula (2), x is larger than 0.5 and y is smaller than 0.3.
JP2016037600A 2016-02-29 2016-02-29 Non-aqueous electrolyte for lithium-ion secondary batteries Active JP6915964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037600A JP6915964B2 (en) 2016-02-29 2016-02-29 Non-aqueous electrolyte for lithium-ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037600A JP6915964B2 (en) 2016-02-29 2016-02-29 Non-aqueous electrolyte for lithium-ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2017157327A JP2017157327A (en) 2017-09-07
JP6915964B2 true JP6915964B2 (en) 2021-08-11

Family

ID=59810697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037600A Active JP6915964B2 (en) 2016-02-29 2016-02-29 Non-aqueous electrolyte for lithium-ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6915964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085334A (en) * 2017-11-01 2019-06-06 三井化学株式会社 Lithium disulfonate compound and additive for lithium secondary battery
US20190280334A1 (en) * 2018-03-12 2019-09-12 Tesla Motors Canada ULC Novel battery systems based on two-additive electrolyte systems including 1,2,6-oxodithiane-2,2,6,6-tetraoxide
JPWO2021192402A1 (en) 2020-03-25 2021-09-30

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524762B2 (en) * 1998-03-19 2004-05-10 三洋電機株式会社 Lithium secondary battery
JP4033074B2 (en) * 2002-08-29 2008-01-16 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP4803486B2 (en) * 2003-05-15 2011-10-26 株式会社Gsユアサ Non-aqueous electrolyte battery
JP4577482B2 (en) * 2004-02-06 2010-11-10 日本電気株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4899341B2 (en) * 2005-05-20 2012-03-21 日本電気株式会社 Secondary battery
JP5370630B2 (en) * 2006-10-26 2013-12-18 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6227864B2 (en) * 2012-11-12 2017-11-08 株式会社リコー Non-aqueous electrolyte storage element
US10283768B2 (en) * 2014-07-30 2019-05-07 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2016051600A (en) * 2014-08-29 2016-04-11 富山薬品工業株式会社 Nonaqueous electrolytic solution for power storage device

Also Published As

Publication number Publication date
JP2017157327A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP7421199B2 (en) Electrolytes and non-aqueous electrolytes for power storage devices
KR102030347B1 (en) Electrolyte for lithium secondary battery including additives,and lithium secondary battery
JP2017168347A (en) Nonaqueous electrolyte solution for power storage device
US20200243907A1 (en) Electrolyte and electrochemical device
JP2017152262A (en) Lithium ion secondary battery
JP5545292B2 (en) Electrolytic solution for power storage device and power storage device
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
KR100371403B1 (en) New electrolytes and lithium ion battery using the same
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP6915964B2 (en) Non-aqueous electrolyte for lithium-ion secondary batteries
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP2019169302A (en) Electrolyte for power storage device and nonaqueous electrolyte solution
JP7084607B2 (en) Non-aqueous electrolyte for power storage devices
JP7101965B2 (en) Non-aqueous electrolyte for power storage devices
JP7060777B2 (en) Non-aqueous electrolyte for power storage devices
JP6813956B2 (en) Non-aqueous electrolyte for power storage devices
JP5107118B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5080101B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
KR100371399B1 (en) New additives for electrolyte and lithium ion battery using the same
JP2016134300A (en) Non-aqueous electrolyte
JP2019169363A (en) Electrolyte for power storage device and nonaqueous electrolyte solution
KR20200039691A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210715

R150 Certificate of patent or registration of utility model

Ref document number: 6915964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250