JP6915598B2 - Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same. - Google Patents

Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same. Download PDF

Info

Publication number
JP6915598B2
JP6915598B2 JP2018160741A JP2018160741A JP6915598B2 JP 6915598 B2 JP6915598 B2 JP 6915598B2 JP 2018160741 A JP2018160741 A JP 2018160741A JP 2018160741 A JP2018160741 A JP 2018160741A JP 6915598 B2 JP6915598 B2 JP 6915598B2
Authority
JP
Japan
Prior art keywords
spherical silica
silica particles
positively charged
group
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018160741A
Other languages
Japanese (ja)
Other versions
JP2020033223A (en
Inventor
松村 和之
和之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018160741A priority Critical patent/JP6915598B2/en
Priority to PCT/JP2019/031408 priority patent/WO2020045037A1/en
Priority to TW108130820A priority patent/TWI804672B/en
Publication of JP2020033223A publication Critical patent/JP2020033223A/en
Application granted granted Critical
Publication of JP6915598B2 publication Critical patent/JP6915598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、正帯電型疎水性球状シリカ粒子、その製造方法及びそれを用いた正帯電トナー組成物に関する。 The present invention relates to positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.

電子写真現像法において、静電潜像を可視化して又は静電潜像を反転現像により可視化して高品質な画像を得ている。電子写真現像法に好適なトナーは、バインダーとしての熱可塑性樹脂に、着色剤としての染料又は顔料、帯電制御剤、離型剤としてのワックス及び磁性材料を混合して混練、粉砕、分級を行い、トナー粒子としたものである。また、トナー粒子に流動性を付与したり、クリーニング性を向上させたりするために、シリカや酸化チタン、あるいはアルミナ等の無機微粉末からなる外添剤をトナー粒子に添加するのが一般的である。
しかしながら、これらの無機微粉末は、一般的に親水性に富んでおり、トナーの流動性や帯電立ち上がり性が、周囲の環境条件(湿度)に影響されて変化する場合がある。
In the electrophotographic development method, a high-quality image is obtained by visualizing an electrostatic latent image or visualizing an electrostatic latent image by inversion development. Toner suitable for the electrophotographic development method is obtained by mixing a thermoplastic resin as a binder with a dye or pigment as a colorant, a charge control agent, a wax as a release agent, and a magnetic material, and kneading, pulverizing, and classifying the toner. , Toner particles. Further, in order to impart fluidity to the toner particles and improve the cleanability, it is common to add an external additive composed of inorganic fine powder such as silica, titanium oxide, or alumina to the toner particles. be.
However, these inorganic fine powders are generally highly hydrophilic, and the fluidity and charge rising property of the toner may change depending on the surrounding environmental conditions (humidity).

そこで、このような環境条件の影響を防ぐため、これらの無機微粉末の表面を疎水化剤で処理したり、無機微粉末の表面に帯電極性基を導入したりする方法が行われている。
それら方法の中で、特に正帯電トナー用外添剤として、シリカ微粉末等の金属酸化物をアミノシランカップリング剤等で表面処理したものを用いる方法が、特許文献1(特開昭52−135739号公報)及び特許文献2(特開昭56−123550号公報)に開示されている。このシラン処理方法によると、アミノシランカップリング剤の末端アミノ基により、強い正帯電性を示す現像剤が得られる。
Therefore, in order to prevent the influence of such environmental conditions, a method of treating the surface of these inorganic fine powders with a hydrophobic agent or introducing a charging polar group on the surface of the inorganic fine powders has been carried out.
Among these methods, a method of using a metal oxide such as silica fine powder surface-treated with an aminosilane coupling agent or the like as an external additive for a positively charged toner is described in Patent Document 1 (Japanese Patent Laid-Open No. 52-135739). No. 5) and Patent Document 2 (Japanese Unexamined Patent Publication No. 56-123550). According to this silane treatment method, a developer exhibiting strong positive chargeability can be obtained by the terminal amino group of the aminosilane coupling agent.

また、疎水性シリカ粒子に対して、正帯電制御剤と、疎水化剤との両方で表面処理し、それを現像剤の外添剤として用いる方法が、特許文献3(特開昭58−216252号公報)に開示されており、ケイ酸微粉末に対して、所定量の含窒素シランカップリング剤と、窒素原子を有するシリコーンオイルとで処理し、それを現像剤の外添剤として用いる方法が、特許文献4(特開昭63−73271号公報)及び特許文献5(特開昭63−73272号公報)に開示されている。これらの方法によると、正帯電制御剤の働きにより、強い正帯電性を示す現像剤が得られる。 Further, a method in which hydrophobic silica particles are surface-treated with both a positive charge control agent and a hydrophobic agent and used as an external additive for a developer is described in Patent Document 3 (Japanese Patent Laid-Open No. 58-216252). A method of treating fine silicic acid powder with a predetermined amount of a nitrogen-containing silane coupling agent and a silicone oil having a nitrogen atom, and using it as an external additive for a developer. Is disclosed in Patent Document 4 (Japanese Patent Laid-Open No. 63-73271) and Patent Document 5 (Japanese Patent Laid-Open No. 63-73272). According to these methods, a developer exhibiting strong positive charge property can be obtained by the action of the positive charge control agent.

また、負帯電性極性基と正帯電性極性基との両方の極性基を表面に結合した無機粒子を非磁性一成分現像用トナーの外添剤として用いる方法が、例えば特許文献6(特開平2−66564号公報)に開示されている。
この方法によると、帯電レベルの向上性、帯電立ち上がり性、流動性にそれぞれ優れた非磁性一成分現像用トナーが得られる。
Further, a method of using inorganic particles in which both polar groups of negatively charged polar groups and positively charged polar groups are bonded to the surface as an external agent for a non-magnetic one-component developing toner is described in, for example, Patent Document 6 (Japanese Patent Laid-Open No. It is disclosed in Japanese Patent Publication No. 2-66564).
According to this method, a non-magnetic one-component developing toner having excellent charge level improving property, charging rising property, and fluidity can be obtained.

また、特許文献7(特開平11−160907号公報)には、帯電の立ち上がり、耐久性の向上、および環境安定性を得るために、正帯電極性基と疎水性基とを有する乾式シリカ微粉末と、正帯電極性基を導入しシリコーンオイルで疎水化処理した湿式シリカ微粉末との併用が有効であることが開示されている。
さらに、特許文献8(特開平11−143111号公報)には、帯電の立ち上がり、耐久性の向上、および環境安定性を得るために、正帯電極性基および疎水性基を有する乾式シリカ微粉末と、正帯電極性基およびフッ素含有極性基を含有する湿式シリカ微粉末との併用が有効であることが開示されている。
さらに特許文献9(特開2007−108801公報)には、低印字率の印刷を実施した場合でも良好な画像濃度及びカブリ耐性を長期間にわたって得るために、正帯電極性基および疎水性基を有する乾式シリカ微粉末と、フッ素含有負帯電極性基を有し第4級アンモニウム塩型シラン化合物により表面処理された湿式シリカ微粉末とを外添剤として含有する正帯電トナーが有効であることが開示されている。
Further, in Patent Document 7 (Japanese Unexamined Patent Publication No. 11-160907), a dry silica fine powder having a positively charged polar group and a hydrophobic group is provided in order to increase charging, improve durability, and obtain environmental stability. And, it is disclosed that the combined use with the wet silica fine powder in which a positively charged polar group is introduced and hydrophobized with silicone oil is effective.
Further, Patent Document 8 (Japanese Unexamined Patent Publication No. 11-143111) describes a dry silica fine powder having a positively charged polar group and a hydrophobic group in order to obtain rising charge, improvement of durability, and environmental stability. , It is disclosed that the combined use with a wet silica fine powder containing a positively charged polar group and a fluorine-containing polar group is effective.
Further, Patent Document 9 (Japanese Unexamined Patent Publication No. 2007-108801) has a positively charged polar group and a hydrophobic group in order to obtain good image density and fog resistance for a long period of time even when printing with a low printing rate is performed. It is disclosed that a positively charged toner containing a dry silica fine powder and a wet silica fine powder having a fluorine-containing negatively charged polar group and surface-treated with a quaternary ammonium salt type silane compound as an external additive is effective. Has been done.

特開昭52−135739号公報Japanese Unexamined Patent Publication No. 52-135739 特開昭56−123550号公報Japanese Unexamined Patent Publication No. 56-123550 特開昭58−216252号公報Japanese Unexamined Patent Publication No. 58-216252 特開昭63−73271号公報Japanese Unexamined Patent Publication No. 63-73271 特開昭63−73272号公報Japanese Unexamined Patent Publication No. 63-73272 特開平2−66564号公報Japanese Unexamined Patent Publication No. 2-66564 特開平11−160907号公報Japanese Unexamined Patent Publication No. 11-160907 特開平11−143111号公報Japanese Unexamined Patent Publication No. 11-143111 特開2007−108801号公報JP-A-2007-108801

上記文献に見られるように、正帯電トナー用外添剤はアミノトリアルコキシシランなどのアミノシランカップリング剤でシリカを処理するのが一般的であるが、これらの正帯電型疎水性球状シリカ粒子をトナー外添剤として用いた場合、キャリアとの長期接触によりアミノシラン成分がシリカ表面から剥がれ、シリカの元々の負帯電性が発現し、正帯電性が低下するという問題があった。これは、シリカ表面のシラノール基とアミノトリアルコキシシラン等のアミノシランのアルコキシ基が反応する前に、アミノシランのアミノ基がシリカ表面のシラノール基と水素結合などで疑似結合するため、シリカとアミノシランのアルコキシ基とがSi−O−Si結合を形成できずに、単にシリカ表面に付着するだけのアミノシランが多いためと推定される。
従って、本発明は、トナーに所望の正帯電極性を付与することができ、これを長期にわたって安定維持することができる、即ち正帯電維持性に優れるトナー外添剤用のシリカ粒子及びこれを含むトナー組成物を提供することを目的とする。
As seen in the above literature, the external additive for positively charged toner is generally treated with an aminosilane coupling agent such as aminotrialkoxysilane, and these positively charged hydrophobic spherical silica particles are used. When used as a toner external additive, there is a problem that the aminosilane component is peeled off from the silica surface due to long-term contact with the carrier, the original negative charge property of silica is developed, and the positive charge property is lowered. This is because the amino group of aminosilane is quasi-bonded to the silanol group on the silica surface by a hydrogen bond or the like before the silanol group on the silica surface reacts with the alkoxy group of aminosilane such as aminotrialkoxysilane. It is presumed that there are many aminosilanes that simply adhere to the silica surface without forming a Si—O—Si bond with the group.
Therefore, the present invention includes silica particles for a toner external additive, which can impart a desired positive charge polarity to the toner and can stably maintain the positive charge polarity for a long period of time, that is, have excellent positive charge retention. It is an object of the present invention to provide a toner composition.

斯かる実情に鑑み本発明者は鋭意研究を行った結果、次の正帯電型疎水性球状シリカ粒子が、上記課題を解決できることを見出し、本発明を完成した。 As a result of diligent research in view of such circumstances, the present inventor has found that the following positively charged hydrophobic spherical silica particles can solve the above-mentioned problems, and completed the present invention.

即ち、本発明は、下記の正帯電型疎水性球状シリカ粒子、該シリカ粒子の製造方法及び該シリカ粒子を含む正帯電トナー組成物を提供するものである。 That is, the present invention provides the following positively charged hydrophobic spherical silica particles, a method for producing the silica particles, and a positively charged toner composition containing the silica particles.

[1]
体積基準の粒度分布における1次粒子のメジアン径(D50)が5〜250nmであり、D90/D10比が3以下であり、かつ平均円形度が0.8〜1である正帯電型疎水性球状シリカ粒子であって、
表面に下式(I)で表される有機ケイ素化合物が結合した正帯電型疎水性球状シリカ粒子。

Figure 0006915598
(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。) [1]
A positively charged hydrophobic sphere having a median diameter (D50) of 5 to 250 nm, a D90 / D10 ratio of 3 or less, and an average circularity of 0.8 to 1 in a volume-based particle size distribution. Silica particles
Positively charged hydrophobic spherical silica particles having an organosilicon compound represented by the following formula (I) bonded to the surface.
Figure 0006915598
(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)

[2]
更に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物で表面処理された、請求項1に記載の正帯電型疎水性球状シリカ粒子。
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
[2]
The positively charged hydrophobic sphere according to claim 1, further surface-treated with a silica compound represented by the following formula (III), a monofunctional silane compound represented by the following formula (IV), or a mixture thereof. Silica particles.
R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

[3]
下記工程(A2)〜(A4)を含む[1]又は[2]に記載の正帯電型疎水性球状シリカ粒子の製造方法。

工程(A2):親水性球状シリカ粒子分散体に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、親水性球状シリカ粒子分散体のSi原子1モルに対し0.01〜0.1モル添加し、該親水性球状シリカ粒子の表面にR4 3SiO1/2単位を導入し疎水性球状シリカ粒子分散体を得る工程
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)

工程(A3):工程(A2)で得られた疎水性球状シリカ粒子分散体の分散媒をケトン系溶媒に置換し、疎水性球状シリカ粒子のケトン系溶媒分散体を得る工程

工程(A4):工程(A3)で得られた疎水性球状シリカ粒子のケトン系溶媒分散体に、下式(I)で表される有機ケイ素化合物を添加し、該疎水性球状シリカ粒子表面のシラノール基をフェニルアミノ化する工程

Figure 0006915598
(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。) [3]
The method for producing positively charged hydrophobic spherical silica particles according to [1] or [2], which comprises the following steps (A2) to (A4).

Step (A2): A hydrophilic spherical silica particle dispersion is mixed with a silazane compound represented by the following formula (III), a monofunctional silane compound represented by the following formula (IV), or a mixture thereof. 0.01 to 0.1 mol is added to 1 mol of Si atom of the particle dispersion, and 1/2 unit of R 4 3 SiO is introduced on the surface of the hydrophilic spherical silica particles to obtain a hydrophobic spherical silica particle dispersion. Step R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

Step (A3): A step of substituting the dispersion medium of the hydrophobic spherical silica particle dispersion obtained in the step (A2) with a ketone solvent to obtain a ketone solvent dispersion of the hydrophobic spherical silica particles.

Step (A4): An organosilicon compound represented by the following formula (I) is added to the ketone solvent dispersion of the hydrophobic spherical silica particles obtained in the step (A3), and the surface of the hydrophobic spherical silica particles is surfaced. Step of phenylaminoing silanol groups
Figure 0006915598
(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)

[4]
親水性球状シリカ粒子分散体が下記工程(A1)により製造されるものである[3]に記載の正帯電型疎水性球状シリカ粒子の製造方法。

工程(A1):下式(II)で表される4官能性シラン化合物、その部分加水分解縮合物またはこれらの混合物を、塩基性物質の存在下、親水性溶媒及び水を含む混合液中で加水分解、縮合することによって親水性球状シリカ粒子分散体を得る工程
Si(OR34 (II)
(式中、R3は、同一または異なる炭素原子数1〜6の一価炭化水素基を表す。)
[4]
The method for producing positively charged hydrophobic spherical silica particles according to [3], wherein the hydrophilic spherical silica particle dispersion is produced by the following step (A1).

Step (A1): A tetrafunctional silane compound represented by the following formula (II), a partially hydrolyzed condensate thereof, or a mixture thereof is placed in a mixed solution containing a hydrophilic solvent and water in the presence of a basic substance. Step of obtaining hydrophilic spherical silica particle dispersion by hydrolysis and condensation Si (OR 3 ) 4 (II)
(In the formula, R 3 represents a monovalent hydrocarbon group having the same or different carbon atoms 1 to 6).

[5]
更に、下記工程(A5)を含む[3]又は[4]に記載の正帯電型疎水性球状シリカ粒子の製造方法。

工程(A5):工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、フェニルアミノ化球状シリカ粒子のSi原子1モルに対し0.01〜0.3モル添加し、該フェニルアミノ化球状シリカ粒子の表面に残存するシラノール基と反応させる工程
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
[5]
Further, the method for producing positively charged hydrophobic spherical silica particles according to [3] or [4], which comprises the following step (A5).

Step (A5): The silazan compound represented by the following formula (III), the monofunctional silane compound represented by the following formula (IV), or the monofunctional silane compound represented by the following formula (IV) is added to the phenylaminoized spherical silica particle dispersion obtained in the step (A4). A step of adding 0.01 to 0.3 mol of these mixtures to 1 mol of Si atoms of the phenylaminoized spherical silica particles and reacting them with the silanol groups remaining on the surface of the phenylaminoized spherical silica particles R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

[6]
[1]又は[2]に記載の正帯電型疎水性球状シリカ粒子を含む正帯電トナー組成物。
[6]
A positively charged toner composition containing the positively charged hydrophobic spherical silica particles according to [1] or [2].

本発明の正帯電型疎水性球状シリカ粒子は、帯電の立ち上がりが早く、経時の正帯電維持性にも優れている。また、本発明の正帯電型疎水性球状シリカ粒子を含むトナー組成物は、流動性、印刷特性に優れ、さらにこれらの特性は周囲の環境条件の変化による影響も少ない。 The positively charged hydrophobic spherical silica particles of the present invention have a rapid rise in charging and are also excellent in maintaining positive charging over time. Further, the toner composition containing the positively charged hydrophobic spherical silica particles of the present invention is excellent in fluidity and printing characteristics, and these characteristics are less affected by changes in surrounding environmental conditions.

以下、本発明の正帯電型疎水性球状シリカ粒子について詳細に説明する。
本発明の正帯電型疎水性球状シリカ粒子は、体積基準の粒度分布における1次粒子のメジアン径(D50)が5〜250nmであり、D90/D10比が3以下であり、かつ平均円形度が0.8〜1である正帯電型疎水性球状シリカ粒子であって、表面に下式(I)で表される有機ケイ素化合物が結合した正帯電型疎水性球状シリカ粒子である。

Figure 0006915598

(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。) Hereinafter, the positively charged hydrophobic spherical silica particles of the present invention will be described in detail.
In the positively charged hydrophobic spherical silica particles of the present invention, the median diameter (D50) of the primary particles in the volume-based particle size distribution is 5 to 250 nm, the D90 / D10 ratio is 3 or less, and the average circularity is Positively charged hydrophobic spherical silica particles having a size of 0.8 to 1 and having an organosilicon compound represented by the following formula (I) bonded to the surface thereof.
Figure 0006915598

(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)

1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状のアルキル基、炭素原子数3〜10の分岐状のアルキル基もしくは炭素原子数3〜10の環状のアルキル基を表す。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、デシル基等が例示される。これらの中でも、水素原子及び立体障害の小さいメチル基がシリカ表面との反応を阻害しないために特に好ましい。 R 1 and R 2 are independently hydrogen atoms, linear alkyl groups having 1 to 10 carbon atoms, branched alkyl groups having 3 to 10 carbon atoms, or cyclic alkyl groups having 3 to 10 carbon atoms. Represents the alkyl group of. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group and decyl. Groups and the like are exemplified. Among these, a hydrogen atom and a methyl group having less steric hindrance are particularly preferable because they do not inhibit the reaction with the silica surface.

式(I)で表される有機ケイ素化合物の具体例としては、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2−メトキシ−2−メチル−1−フェニル−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2−エトキシ−2−メチル−1−フェニル−1−アザ−2−シラシクロペンタン等が挙げられる。式(I)で表される有機ケイ素化合物として特に好ましいのは2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンである。 Specific examples of the organic silicon compound represented by the formula (I) include 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane and 2-methoxy-2-methyl-1-phenyl-1. -Aza-2-silacyclopentane, 2,2-diethoxy-1-phenyl-1-aza-2-silacyclopentane, 2-ethoxy-2-methyl-1-phenyl-1-aza-2-silacyclopentane And so on. Particularly preferred as the organosilicon compound represented by the formula (I) is 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane.

本発明の正帯電型疎水性球状シリカ粒子は、体積基準の粒度分布における1次粒子のメジアン径(D50:粒径の小さい側から累積50%となる粒子径)が5〜250nmであり、好ましくは10〜200nmである。D50が5nmよりも小さいと粒子の凝集が激しく、全体のゲル化や製造装置内部への付着を引き起こし、うまく取り出せない場合がある。またD50が250nmよりも大きいと良好な正帯電性を付与できない場合があり好ましくない。 The positively charged hydrophobic spherical silica particles of the present invention preferably have a median diameter (D50: particle diameter that accumulates 50% from the smaller particle size side) of the primary particles in a volume-based particle size distribution of 5 to 250 nm. Is 10 to 200 nm. If D50 is smaller than 5 nm, the particles agglomerate violently, causing gelation of the whole and adhesion to the inside of the manufacturing apparatus, and it may not be taken out well. Further, if D50 is larger than 250 nm, good positive chargeability may not be imparted, which is not preferable.

本発明の正帯電型疎水性球状シリカ粒子は、体積基準の粒度分布において、粒径の小さい側から累積10%となる粒子径をD10、累積90%となる粒子径をD90としたとき、D90/D10比が3以下であることから、その粒度分布が狭いことを特徴とするものである。このような粒度分布が狭い粒子であると、流動性を制御することが容易になる点で好ましい。D90/D10比は2.9以下であることがより好ましい。
なお、本発明において、体積基準の粒度分布はレーザー光を用いた動的光散乱法によって測定したものである。
In the volume-based particle size distribution, the positively charged hydrophobic spherical silica particles of the present invention are D90, where D10 is the particle size that is cumulative 10% from the smaller particle size side, and D90 is the particle size that is 90% cumulative. Since the / D10 ratio is 3 or less, the particle size distribution is narrow. It is preferable that the particles have such a narrow particle size distribution because the fluidity can be easily controlled. The D90 / D10 ratio is more preferably 2.9 or less.
In the present invention, the volume-based particle size distribution is measured by a dynamic light scattering method using a laser beam.

また、本発明において、円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)を指し、具体的には電子顕微鏡(倍率:10万倍)によって得られた形状を基に算出し、シリカ粒子10個の円形度を平均したものを「平均円形度」とする。
本発明の正帯電型疎水性球状シリカ粒子の平均円形度は0.8〜1であり、特に0.92〜1が好ましい。また、本発明において「球状」とは、真球だけでなく、若干歪んだ球も含む。なおこのような粒子の形状は、粒子を二次元に投影した時の円形度で評価する。
Further, in the present invention, the circularity refers to (perimeter of a circle equal to the particle area) / (perimeter of particles), and specifically is based on a shape obtained by an electron microscope (magnification: 100,000 times). The average circularity of 10 silica particles is defined as "average circularity".
The average circularity of the positively charged hydrophobic spherical silica particles of the present invention is 0.8 to 1, and 0.92 to 1 is particularly preferable. Further, in the present invention, the "sphere" includes not only a true sphere but also a slightly distorted sphere. The shape of such particles is evaluated by the circularity when the particles are projected two-dimensionally.

本発明の正帯電型疎水性球状シリカ粒子は、更に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物で表面処理されたものであることが好ましい。
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
The positively charged hydrophobic spherical silica particles of the present invention were further surface-treated with a silazane compound represented by the following formula (III), a monofunctional silane compound represented by the following formula (IV), or a mixture thereof. It is preferable that the material is one.
R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

上式(III)および(IV)中、R4は、好ましくは炭素原子数1〜4、特に好ましくは炭素原子数1〜2の1価炭化水素基である。R4で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等が挙げられ、好ましくは、メチル基、エチル基及びプロピル基であり、特に好ましくは、メチル基及びエチル基である。また、これらの1価炭化水素基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the above formulas (III) and (IV), R 4 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 4 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group and a butyl group, and preferably a methyl group, an ethyl group and a propyl group. It is particularly preferable that it is a methyl group and an ethyl group. Further, a part or all of hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom and bromine atom, preferably fluorine atom.

Xで表される加水分解性基としては、例えば、ヒドロキシ基、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等が挙げられ、好ましくは、アルコキシ基及びアミノ基であり、より好ましくはアルコキシ基であり、メトキシ基及びエトキシ基が特に好ましい。 Examples of the hydrolyzable group represented by X include a hydroxy group, a chlorine atom, an alkoxy group, an amino group, an acyloxy group and the like, preferably an alkoxy group and an amino group, and more preferably an alkoxy group. Yes, methoxy and ethoxy groups are particularly preferred.

上式(III)で表されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、好ましくはヘキサメチルジシラザンである。上式(IV)で表される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシルオキシシラン等が挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン及びトリメチルシリルジエチルアミンであり、特に好ましくは、トリメチルシラノール及びトリメチルメトキシシランである。 Examples of the silazane compound represented by the above formula (III) include hexamethyldisilazane and hexaethyldisilazane, and hexamethyldisilazane is preferable. Examples of the monofunctional silane compound represented by the above formula (IV) include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; and monos such as trimethylmethoxysilane and trimethylethoxysilane. Alkoxysilanes; monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; monoacyloxysilanes such as trimethylacetoxysilanes, preferably trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine, and particularly preferably trimethylsilanol and trimethyl. It is methoxysilane.

本発明の正帯電型疎水性球状シリカ粒子の疎水性の評価手法としては、特に限定されるものではないが、例えば、疎水化度(メタノールウェッタビリティー)を好適に用いることができる。本発明の正帯電型疎水性球状シリカ粒子は、下記の手順で測定した場合の疎水化度が60%以上のものが好ましく、65%以上のものがより好ましい。この値が60%以上であると、得られるシリカ粒子に良好な耐環境性を付与でき、該シリカ粒子を静電荷現像用トナーとして応用する場合、良好な帯電安定性が得られる。 The method for evaluating the hydrophobicity of the positively charged hydrophobic spherical silica particles of the present invention is not particularly limited, but for example, the degree of hydrophobicity (methanol wettability) can be preferably used. The positively charged hydrophobic spherical silica particles of the present invention preferably have a degree of hydrophobicity of 60% or more, more preferably 65% or more, as measured by the following procedure. When this value is 60% or more, good environmental resistance can be imparted to the obtained silica particles, and when the silica particles are applied as a toner for electrostatic charge development, good charge stability can be obtained.

ここで、疎水化度は、下記の手順で求めることができる。
1)試料0.2gを200mlビーカーに秤取し純水50mlを加える。
2)電磁攪拌しながら、液面下へメタノールを加える。
3)液面上に試料が認められなくなった点を終点とする。
4)要したメタノール量から次式により疎水化度を算出する。

疎水化度(%)=[x/(50+x)]×100
x:メタノール量(ml)
Here, the degree of hydrophobicity can be determined by the following procedure.
1) Weigh 0.2 g of the sample into a 200 ml beaker and add 50 ml of pure water.
2) Add methanol below the liquid surface while stirring electromagnetically.
3) The end point is the point where no sample is found on the liquid surface.
4) Calculate the degree of hydrophobization from the required amount of methanol by the following formula.

Degree of hydrophobization (%) = [x / (50 + x)] x 100
x: Amount of methanol (ml)

次に、本発明の正帯電型疎水性球状シリカ粒子の製造方法について詳細に説明する。 Next, the method for producing the positively charged hydrophobic spherical silica particles of the present invention will be described in detail.

本発明の正帯電型疎水性球状シリカ粒子は、例えば、次の工程(A2)〜(A4)を経ることによって得ることができる。また、工程(A2)の原料である親水性球状シリカ粒子分散体は、例えば工程(A1)により得ることができる。
工程(A1):親水性球状シリカ粒子分散体を得る合成工程
工程(A2):1官能性シラン化合物による表面処理工程
工程(A3):分散媒置換工程
工程(A4):疎水性球状シリカ粒子の表面をフェニルアミノ化する工程

以下、各工程を順に追って説明する。
The positively charged hydrophobic spherical silica particles of the present invention can be obtained, for example, by going through the following steps (A2) to (A4). Further, the hydrophilic spherical silica particle dispersion which is the raw material of the step (A2) can be obtained by, for example, the step (A1).
Step (A1): Synthesis step to obtain hydrophilic spherical silica particle dispersion Step (A2): Surface treatment step with 1 functional silane compound Step (A3): Dispersion medium replacement step Step (A4): Hydrophobic spherical silica particles Step to phenylaminoize the surface

Hereinafter, each step will be described in order.

工程(A1):親水性球状シリカ粒子分散体を得る合成工程
本工程は、下式(II)で表される4官能性シラン化合物、その部分加水分解縮合物またはこれらの混合物を、塩基性物質の存在下、親水性溶媒及び水を含む混合液中で加水分解、縮合することによって親水性球状シリカ粒子分散体を得る合成工程である。
Si(OR34 (II)
(式中、R3は、同一または異なる炭素原子数1〜6の一価炭化水素基を表す。)
Step (A1): Synthesis step to obtain a hydrophilic spherical silica particle dispersion In this step, a tetrafunctional silane compound represented by the following formula (II), a partially hydrolyzed condensate thereof, or a mixture thereof is used as a basic substance. This is a synthetic step of obtaining a hydrophilic spherical silica particle dispersion by hydrolyzing and condensing in a mixed solution containing a hydrophilic solvent and water in the presence of.
Si (OR 3 ) 4 (II)
(In the formula, R 3 represents a monovalent hydrocarbon group having the same or different carbon atoms 1 to 6).

上式(II)中、R3は、炭素原子数1〜6の1価炭化水素基であるが、炭素原子数1〜4のものが好ましく、特に炭素原子数1〜2のものが好ましい。R3で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基及びブチル基であり、特に好ましくは、メチル基及びエチル基である。 In the above formula (II), R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably one having 1 to 4 carbon atoms, and particularly preferably one having 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group and the like, and preferably a methyl group, an ethyl group, a propyl group and a butyl group. Yes, particularly preferably a methyl group and an ethyl group.

上式(II)で表される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン及びテトラフェノキシシラン等が挙げられ、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン及びテトラブトキシシランであり、特に好ましくは、テトラメトキシシラン及びテトラエトキシシランである。また、上式(II)で表される4官能性シラン化合物の加水分解縮合物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。 Examples of the tetrafunctional silane compound represented by the above formula (II) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and tetraphenoxysilanes, which are preferable. , Tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane, with particular preference being tetramethoxysilane and tetraethoxysilane. Examples of the hydrolyzed condensate of the tetrafunctional silane compound represented by the above formula (II) include methyl silicate and ethyl silicate.

塩基性物質としては、例えばアンモニア、ジメチルアミン、ジエチルアミン等が挙げられ、好ましくは、アンモニア及びジエチルアミンであり、特に好ましくはアンモニアである。これらの塩基性物質は、所要量を水に溶解したものが使用できる。 Examples of the basic substance include ammonia, dimethylamine, diethylamine and the like, preferably ammonia and diethylamine, and particularly preferably ammonia. As these basic substances, those in which the required amount is dissolved in water can be used.

親水性溶媒としては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、t−ブタノール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;ジエチレングリコール、ジプロピレングリコール等のグリコール類等を挙げることができる。 Examples of the hydrophilic solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and t-butanol; ethers such as tetrahydrofuran and dioxane; glycols such as diethylene glycol and dipropylene glycol. ..

本工程において使用される水の量は、一般式(II)で表される4官能性シラン化合物および/またはその部分加水分解縮合物のヒドロカルビルオキシ基の合計1モルに対して0.5〜5モルであることが好ましく、0.6〜2モルであることがより好ましく、0.7〜1モルであることが特に好ましい。
水に対する親水性溶媒の比率は、疎水化された球状シリカ粒子と混合溶媒との親和性および製造の容易性の点から、質量比で0.5〜10であることが好ましく、3〜9であることがより好ましく、5〜8であることが特に好ましい。
塩基性物質の量は、一般式(II)で表される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.01〜2モルであることが好ましく、0.02〜0.5モルであることがより好ましく、0.04〜0.12モルであることが特に好ましい。
The amount of water used in this step is 0.5 to 5 with respect to a total of 1 mol of hydrocarbyloxy groups of the tetrafunctional silane compound represented by the general formula (II) and / or its partially hydrolyzed condensate. It is preferably mol, more preferably 0.6 to 2 mol, and particularly preferably 0.7 to 1 mol.
The ratio of the hydrophilic solvent to water is preferably 0.5 to 10 by mass ratio from the viewpoint of the affinity between the hydrophobic spherical silica particles and the mixed solvent and the ease of production, and is preferably 3 to 9. It is more preferable to have it, and it is particularly preferable to have 5 to 8.
The amount of the basic substance is 0.01 to 2 mol with respect to 1 mol of the total of the hydrocarbyloxy groups of the tetrafunctional silane compound represented by the general formula (II) and / or its partially hydrolyzed condensation product. It is preferably 0.02 to 0.5 mol, more preferably 0.04 to 0.12 mol, and particularly preferably 0.04 to 0.12 mol.

本工程における加水分解縮合の反応条件は、反応温度20〜120℃、反応時間1〜8時間が好ましく、反応温度20〜100℃、反応時間1〜6時間がより好ましい。 The reaction conditions for hydrolysis condensation in this step are preferably a reaction temperature of 20 to 120 ° C. and a reaction time of 1 to 8 hours, more preferably a reaction temperature of 20 to 100 ° C. and a reaction time of 1 to 6 hours.

工程(A1)で得られる親水性球状シリカ粒子分散体中のシリカ粒子の濃度は2〜20質量%が好ましく、特に3〜10質量%が好ましい。 The concentration of silica particles in the hydrophilic spherical silica particle dispersion obtained in the step (A1) is preferably 2 to 20% by mass, particularly preferably 3 to 10% by mass.

また、上述の工程(A1)に代えて、(A2)工程に付す親水性球状シリカ粒子分散体として、市販品を用いてもよい。市販品としては、親水性球状シリカ粒子が上述したアルコール類等の親水性溶媒に分散している親水性球状シリカ粒子分散体を用いることができる。市販品を用いる場合は、(A2)工程に付す際に、適当なシリカ粒子濃度となるように、親水性溶媒の添加又は留去を行ない、市販の親水性球状シリカ粒子分散体を希釈又は濃縮して用いてもよい。この場合のシリカ粒子濃度としては、上述した工程(A1)で得られる親水性球状シリカ粒子分散体中のシリカ粒子濃度と同様、2〜20質量%が好ましい。 Further, instead of the above-mentioned step (A1), a commercially available product may be used as the hydrophilic spherical silica particle dispersion to be subjected to the step (A2). As a commercially available product, a hydrophilic spherical silica particle dispersion in which hydrophilic spherical silica particles are dispersed in a hydrophilic solvent such as the above-mentioned alcohols can be used. When a commercially available product is used, a hydrophilic solvent is added or distilled off so that the silica particle concentration becomes appropriate when the product is subjected to the step (A2), and the commercially available hydrophilic spherical silica particle dispersion is diluted or concentrated. May be used. In this case, the silica particle concentration is preferably 2 to 20% by mass, which is the same as the silica particle concentration in the hydrophilic spherical silica particle dispersion obtained in the above-mentioned step (A1).

工程(A2):1官能性シラン化合物による表面処理工程
本工程は、工程(A1)で得られた親水性球状シリカ粒子分散体に下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、親水性球状シリカ粒子分散体のSi原子1モルに対し0.01〜0.1モル添加し、該親水性球状シリカ粒子の表面の少なくとも一部にR4 3SiO1/2単位を導入し疎水性球状シリカ粒子分散体を得る工程である。

4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
Step (A2): Surface treatment step with one functional silane compound In this step, the hydrophilic spherical silica particle dispersion obtained in step (A1) is mixed with the silazane compound represented by the following formula (III) and the following formula (IV). ) Is added to 1 mol of Si atom of the hydrophilic spherical silica particle dispersion, and 0.01 to 0.1 mol of the monofunctional silane compound represented by) is added to the surface of the hydrophilic spherical silica particles. This is a step of introducing at least a part of R 4 3 SiO 1/2 unit to obtain a hydrophobic spherical silica particle dispersion.

R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

上式(III)および(IV)中、R4は、好ましくは炭素原子数1〜4、特に好ましくは炭素原子数1〜2の1価炭化水素基である。R4で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等が挙げられ、好ましくは、メチル基、エチル基及びプロピル基であり、特に好ましくは、メチル基及びエチル基である。また、これらの1価炭化水素基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the above formulas (III) and (IV), R 4 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 4 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group and a butyl group, and preferably a methyl group, an ethyl group and a propyl group. It is particularly preferable that it is a methyl group and an ethyl group. Further, a part or all of hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom and bromine atom, preferably fluorine atom.

Xで表される加水分解性基としては、例えば、ヒドロキシ基、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等が挙げられ、好ましくは、アルコキシ基及びアミノ基であり、より好ましくはアルコキシ基であり、メトキシ基及びエトキシ基が特に好ましい。 Examples of the hydrolyzable group represented by X include a hydroxy group, a chlorine atom, an alkoxy group, an amino group, an acyloxy group and the like, preferably an alkoxy group and an amino group, and more preferably an alkoxy group. Yes, methoxy and ethoxy groups are particularly preferred.

上式(III)で表されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、好ましくはヘキサメチルジシラザンである。上式(IV)で表される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシルオキシシラン等が挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン及びトリメチルシリルジエチルアミンであり、特に好ましくは、トリメチルシラノール及びトリメチルメトキシシランである。 Examples of the silazane compound represented by the above formula (III) include hexamethyldisilazane and hexaethyldisilazane, and hexamethyldisilazane is preferable. Examples of the monofunctional silane compound represented by the above formula (IV) include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; and monos such as trimethylmethoxysilane and trimethylethoxysilane. Alkoxysilanes; monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; monoacyloxysilanes such as trimethylacetoxysilanes, preferably trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine, and particularly preferably trimethylsilanol and trimethyl. It is methoxysilane.

上式(III)および(IV)で表される化合物の使用量は、親水性球状シリカ粒子のSi原子(工程(A1)により親水性球状シリカ粒子分散体を得る場合は、上式(II)由来のSi原子)1モルに対して0.01〜0.1モル、好ましくは0.03〜0.08モルである。該使用量が0.01モルより少ないと分散媒から水を留去し、ケトン系溶媒系に置換したときにシリカ粒子がうまく分散せず、沈降する場合もあり好ましくない。また該使用量が0.1モルより多いと後の工程のアミノシラン処理がうまく行かない場合があり好ましくない。 The amount of the compounds represented by the above formulas (III) and (IV) to be used is the above formula (II) when the Si atom of the hydrophilic spherical silica particles (when the hydrophilic spherical silica particle dispersion is obtained by the step (A1)). It is 0.01 to 0.1 mol, preferably 0.03 to 0.08 mol, per 1 mol of the derived Si atom). If the amount used is less than 0.01 mol, water is distilled off from the dispersion medium, and when the silica particles are replaced with a ketone solvent system, the silica particles do not disperse well and may precipitate, which is not preferable. Further, if the amount used is more than 0.1 mol, the aminosilane treatment in the subsequent step may not be successful, which is not preferable.

本工程(A2)では、親水性球状シリカ粒子分散体に、上式(III)で表されるシラザン化合物、上式(IV)で表される1官能性シラン化合物又はこれらの混合物を添加し、次の反応条件で1官能性シラン化合物による表面処理反応を行う。本工程(A2)における表面処理の反応条件は、反応温度40〜60℃、反応時間1〜10時間が好ましく、反応温度50〜60℃、反応時間2〜8時間がより好ましい。 In this step (A2), a silazane compound represented by the above formula (III), a monofunctional silane compound represented by the above formula (IV), or a mixture thereof is added to the hydrophilic spherical silica particle dispersion. A surface treatment reaction with a monofunctional silane compound is carried out under the following reaction conditions. The reaction conditions for the surface treatment in this step (A2) are preferably a reaction temperature of 40 to 60 ° C. and a reaction time of 1 to 10 hours, more preferably a reaction temperature of 50 to 60 ° C. and a reaction time of 2 to 8 hours.

工程(A3):分散媒置換工程
本工程は、工程(A2)で得られた疎水性球状シリカ粒子分散体中の水、親水性有機溶媒および縮合によって生じたアルコール等の揮発性副生成物等から構成される分散媒をケトン系溶媒に置換する工程である。
Step (A3): Dispersion medium replacement step This step includes water in the hydrophobic spherical silica particle dispersion obtained in step (A2), a hydrophilic organic solvent, and volatile by-products such as alcohol generated by condensation. This is a step of replacing the dispersion medium composed of the above with a ketone solvent.

ケトン系溶媒の具体例としては、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等が挙げられ、好ましくはメチルイソブチルケトンである。 Specific examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and the like, and methyl isobutyl ketone is preferable.

ケトン系溶媒の添加量は、シリカ粒子の凝集抑制、次工程のアミノシラン処理における反応系の濃度の観点から、工程(A2)で得られた疎水性球状シリカ粒子に対して好ましくは重量比で0.5〜5倍量、より好ましくは1〜2倍量用いるのがよい。 The amount of the ketone solvent added is preferably 0 by weight with respect to the hydrophobic spherical silica particles obtained in the step (A2) from the viewpoint of suppressing aggregation of the silica particles and the concentration of the reaction system in the aminosilane treatment in the next step. It is preferable to use 5 to 5 times the amount, more preferably 1 to 2 times the amount.

疎水性球状シリカ粒子分散体中の親水性有機溶媒、水、および縮合によって生じたアルコール等の揮発性副生成物をケトン系溶媒に置換する方法としては、濃縮(大気圧または減圧)、フィルターを用いた限外ろ過などの方法が挙げられる。工程(A2)で得られた疎水性球状シリカ粒子分散体に含まれる親水性有機溶媒および水よりも沸点の高いケトン系溶媒を工程(A2)で得られた疎水性球状シリカ粒子分散体に添加し、濃縮する方法が好ましい。 As a method for replacing volatile by-products such as hydrophilic organic solvent, water, and alcohol produced by condensation in the hydrophobic spherical silica particle dispersion with a ketone solvent, concentration (atmospheric pressure or reduced pressure) and a filter are used. Examples include the method used for ultrafiltration. The hydrophilic organic solvent contained in the hydrophobic spherical silica particle dispersion obtained in the step (A2) and the ketone solvent having a boiling point higher than that of water are added to the hydrophobic spherical silica particle dispersion obtained in the step (A2). The method of concentrating is preferable.

工程(A4):疎水性球状シリカ粒子の表面をフェニルアミノ化する工程
本工程は、工程(A3)で得られた疎水性球状シリカ粒子のケトン系溶媒分散体に下式(I)で表される有機ケイ素化合物を添加し、該疎水性球状シリカ粒子表面のシラノール基の少なくとも一部をフェニルアミノ化する工程である。

Figure 0006915598
(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。) Step (A4): Step of phenylaminoizing the surface of the hydrophobic spherical silica particles This step is represented by the following formula (I) in the ketone solvent dispersion of the hydrophobic spherical silica particles obtained in the step (A3). This is a step of adding an organosilicon compound to phenylaminoify at least a part of silanol groups on the surface of the hydrophobic spherical silica particles.
Figure 0006915598
(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)

1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状のアルキル基、炭素原子数3〜10の分岐状のアルキル基もしくは炭素原子数3〜10の環状のアルキル基を表す。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、デシル基等が例示される。これらの中でも、水素原子及び立体障害の小さいメチル基がシリカ表面との反応を阻害しないために特に好ましい。 R 1 and R 2 are independently hydrogen atoms, linear alkyl groups having 1 to 10 carbon atoms, branched alkyl groups having 3 to 10 carbon atoms, or cyclic alkyl groups having 3 to 10 carbon atoms. Represents the alkyl group of. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group and decyl. Groups and the like are exemplified. Among these, a hydrogen atom and a methyl group having less steric hindrance are particularly preferable because they do not inhibit the reaction with the silica surface.

式(I)で表される有機ケイ素化合物の具体例としては、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2−メトキシ−2−メチル−1−フェニル−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2−エトキシ−2−メチル−1−フェニル−1−アザ−2−シラシクロペンタン等が挙げられる。特に好ましいのは2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンである。 Specific examples of the organic silicon compound represented by the formula (I) include 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane and 2-methoxy-2-methyl-1-phenyl-1. -Aza-2-silacyclopentane, 2,2-diethoxy-1-phenyl-1-aza-2-silacyclopentane, 2-ethoxy-2-methyl-1-phenyl-1-aza-2-silacyclopentane And so on. Particularly preferred is 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane.

上式(I)で表される有機ケイ素化合物で疎水性球状シリカの表面を処理することにより、正帯電型疎水性球状シリカ粒子を得ることができる。 By treating the surface of the hydrophobic spherical silica with the organosilicon compound represented by the above formula (I), positively charged hydrophobic spherical silica particles can be obtained.

表面処理工程は疎水性球状シリカ粒子がケトン系溶媒中に分散している中に上式(I)で表される有機ケイ素化合物を添加して処理する方法が好ましい。上式(I)で表される有機ケイ素化合物はそのまま使用してもよいし、上記ケトン溶媒に希釈した形で添加してもよい。 The surface treatment step is preferably a method of adding the organosilicon compound represented by the above formula (I) to the treatment in which the hydrophobic spherical silica particles are dispersed in the ketone solvent. The organosilicon compound represented by the above formula (I) may be used as it is, or may be added in a diluted form to the above-mentioned ketone solvent.

上式(I)で表される有機ケイ素化合物の添加量は疎水性球状シリカ粒子に対して、好ましくは1〜30質量%であり、特に好ましくは5〜20質量%である。このような範囲であると、シリカ粒子に良好な正帯電性が得られる。 The amount of the organosilicon compound represented by the above formula (I) added is preferably 1 to 30% by mass, particularly preferably 5 to 20% by mass, based on the hydrophobic spherical silica particles. Within such a range, good positive chargeability can be obtained for the silica particles.

上式(I)で表される有機ケイ素化合物を添加後、反応温度20〜120℃、反応時間1〜8時間で反応させることが好ましく、反応温度20〜100℃、反応時間1〜6時間で反応させることがより好ましい。 After adding the organosilicon compound represented by the above formula (I), the reaction is preferably carried out at a reaction temperature of 20 to 120 ° C. and a reaction time of 1 to 8 hours, preferably at a reaction temperature of 20 to 100 ° C. and a reaction time of 1 to 6 hours. It is more preferable to react.

本発明の正帯電型疎水性球状シリカ粒子は、更に下記の工程(A5)を経て製造されることが好ましい。
工程(A5):工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、該フェニルアミノ化球状シリカ粒子のSi原子1モルに対し0.01〜0.3モル添加し、該フェニルアミノ化球状シリカ粒子の表面に残存するシラノール基と反応させる工程
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
The positively charged hydrophobic spherical silica particles of the present invention are preferably produced through the following step (A5).
Step (A5): The silazan compound represented by the following formula (III), the monofunctional silane compound represented by the following formula (IV), or the monofunctional silane compound represented by the following formula (IV) is added to the phenylaminoized spherical silica particle dispersion obtained in the step (A4). A step of adding 0.01 to 0.3 mol of these mixtures to 1 mol of Si atoms of the phenylaminoized spherical silica particles and reacting them with silanol groups remaining on the surface of the phenylaminoized spherical silica particles R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

工程(A5)における上式(III)および(IV)で表される化合物は、上記工程(A2)で説明したものと同様である。本工程では、上記工程(A4)後のシリカ粒子表面に残存するシラノール基を更にトリオルガノシリル化することにより、得られるシリカ粒子は高度に疎水化し流動性を向上させ、残存シラノール基がプロトンを放出することによるシリカアニオンの形成を抑制させることができる。 The compounds represented by the above formulas (III) and (IV) in the step (A5) are the same as those described in the above step (A2). In this step, the silanol groups remaining on the surface of the silica particles after the above step (A4) are further triorganosilylated to make the obtained silica particles highly hydrophobic and improve the fluidity, and the residual silanol groups form protons. The formation of silica anion due to release can be suppressed.

上式(III)および(IV)で表される化合物の使用量は、上記工程(A4)で得られるフェニルアミノ化球状シリカ粒子のSi原子1モルに対して好ましくは0.01〜0.3モル、より好ましくは0.03〜0.2モルである。このような範囲であれば、良好な正帯電性、環境帯電特性、流動性が得られる。 The amount of the compound represented by the above formulas (III) and (IV) to be used is preferably 0.01 to 0.3 with respect to 1 mol of Si atom of the phenylaminoized spherical silica particles obtained in the above step (A4). It is mol, more preferably 0.03 to 0.2 mol. Within such a range, good positive chargeability, environmental chargeability, and fluidity can be obtained.

本工程(A5)では、工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、上式(III)で表されるシラザン化合物、上式(IV)で表される1官能性シラン化合物又はこれらの混合物を添加し、次の反応条件で1官能性シラン化合物による表面処理反応を行う。本工程(A5)における表面処理の反応条件は、反応温度40〜110℃、反応時間1〜10時間が好ましく、反応温度60〜100℃、反応時間2〜5時間がより好ましい。 In this step (A5), the phenylaminoized spherical silica particle dispersion obtained in step (A4) is mixed with the silazane compound represented by the above formula (III) and the monofunctional silane represented by the above formula (IV). A compound or a mixture thereof is added, and a surface treatment reaction with a monofunctional silane compound is carried out under the following reaction conditions. The reaction conditions for the surface treatment in this step (A5) are preferably a reaction temperature of 40 to 110 ° C. and a reaction time of 1 to 10 hours, more preferably a reaction temperature of 60 to 100 ° C. and a reaction time of 2 to 5 hours.

反応後は正帯電型疎水性球状シリカ粒子の分散体から分散媒およびアルコール等の揮発性副生成物を適宜除去することにより正帯電型疎水性球状シリカ粒子を得ることができる。 After the reaction, positively charged hydrophobic spherical silica particles can be obtained by appropriately removing volatile by-products such as a dispersion medium and alcohol from the dispersion of positively charged hydrophobic spherical silica particles.

次に、本発明の正帯電トナー組成物について詳細に説明する。
本発明の正帯電トナー組成物は、上述した本発明の正帯電型疎水性球状シリカ粒子をトナー外添剤として含む。この正帯電型疎水性球状シリカ粒子をトナー外添剤として使用する場合の配合量は、通常、トナー100質量部に対して、0.1〜3質量部が好ましく、さらに好ましくは0.3〜2質量部である。このような範囲であれば、トナーへ安定的に正帯電性を付与できる。
Next, the positively charged toner composition of the present invention will be described in detail.
The positively charged toner composition of the present invention contains the above-mentioned positively charged hydrophobic spherical silica particles of the present invention as a toner external agent. When the positively charged hydrophobic spherical silica particles are used as a toner external additive, the blending amount is usually preferably 0.1 to 3 parts by mass, more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the toner. 2 parts by mass. Within such a range, positive chargeability can be stably imparted to the toner.

本発明の正帯電トナー組成物に含まれるトナー粒子としては、結着樹脂と着色剤を主成分として構成される公知のものが使用できる。また、必要に応じて他の外添剤が添加されていてもよい。 As the toner particles contained in the positively charged toner composition of the present invention, known toner particles composed mainly of a binder resin and a colorant can be used. In addition, other external additives may be added as needed.

本発明の正帯電トナー組成物は、トナー組成物の一般的な製造方法により製造することができる。例えば、結着樹脂、着色剤及びその他の添加剤を溶融混合し、粉砕し、分級することにより得られたトナー粒子に、本発明の正帯電型疎水性球状シリカ粒子を混合する方法が挙げられる。 The positively charged toner composition of the present invention can be produced by a general method for producing a toner composition. For example, a method of mixing the positively charged hydrophobic spherical silica particles of the present invention with the toner particles obtained by melt-mixing, pulverizing, and classifying a binder resin, a colorant, and other additives can be mentioned. ..

以下、実施例および比較例を用いて本発明を具体的に説明する。なお、下記の実施例は、本発明を何ら制限するものではない。実施例及び比較例で得られたシリカ粒子の粒度分布測定および粒子の形状観察は下記の条件で行い、結果を表1に示した。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The following examples do not limit the present invention in any way. The particle size distribution measurement and particle shape observation of the silica particles obtained in Examples and Comparative Examples were performed under the following conditions, and the results are shown in Table 1.

[粒度分布]
シリカ粒子が0.5質量%となるようにシリカ粒子分散体をメタノールで希釈し、超音波を10分間照射した際の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、UPA−EX150)により測定し、得られた体積基準の粒度分布を基に、メジアン径およびD90/D10比を算出した。
[Particle size distribution]
The particle size distribution when the silica particle dispersion is diluted with methanol so that the silica particles are 0.5% by mass and irradiated with ultrasonic waves for 10 minutes is measured by the dynamic light scattering method / laser Doppler method nanotrack particle size distribution measuring device. (UPA-EX150, manufactured by Nikkiso Co., Ltd.) was measured, and the median diameter and the D90 / D10 ratio were calculated based on the obtained volume-based particle size distribution.

[粒子の形状]
電子顕微鏡(日立製作所製、S−4700型、倍率:10万倍)を用いてシリカ粒子の観察を行い、形状を確認した。粒子を二次元に投影した時の円形度を(粒子面積と等しい円の周囲長)/(粒子周囲長)として求め、シリカ粒子10個の円形度の平均値を平均円形度とした。
[Particle shape]
The shape of the silica particles was confirmed by observing the silica particles using an electron microscope (manufactured by Hitachi, Ltd., S-4700 type, magnification: 100,000 times). The circularity when the particles were projected two-dimensionally was determined as (perimeter of a circle equal to the particle area) / (perimeter of the particles), and the average value of the circularity of 10 silica particles was defined as the average circularity.

[合成例1]2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンの合成
蒸留釜内にN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業(株)製、商品名KBM−573)255g(1.0モル)及びナトリウムメトキシドのメタノール溶液(28質量%ナトリウムメトキシド)2.0gを添加し、発生するアルコールを留去しながら蒸留することで、沸点173〜175℃/0.4kPaの無色透明留分を156g得た(収率70%)。
[Synthesis Example 1] Synthesis of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) in a distillation pot. Product name KBM-573) 255 g (1.0 mol) and 2.0 g of a methanol solution of sodium methoxide (28 mass% sodium methoxide) are added, and distillation is performed while distilling off the generated alcohol to obtain a boiling point of 173. 156 g of a colorless transparent distillate at ~ 175 ° C./0.4 kPa was obtained (yield 70%).

得られた留分の質量スペクトル、1H−NMRスペクトル(重クロロホルム溶媒)及びIRスペクトルを測定した結果より、得られた化合物は2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンであることが確認された。 From the results of measuring the mass spectrum of the obtained fraction, 1 H-NMR spectrum (deuterated chloroform solvent) and IR spectrum, the obtained compound was 2,2-dimethoxy-1-phenyl-1-aza-2-sila. It was confirmed to be cyclopentane.

[実施例1]
・工程(A1):親水性球状シリカ粒子分散体を得る合成工程
攪拌機、滴下ロート及び温度計を備えた3リットルのガラス製反応器に、メタノール793.0g、水32.1g及び28%アンモニア水40.6gを入れて混合した。この溶液を34℃となるように調整し、攪拌しながらテトラメトキシシラン646.5g(4.25モル)及び5.4%アンモニア水160.9gの滴下を同時に開始し、共に3時間かけて滴下した。滴下終了後、さらに0.5時間攪拌を継続して加水分解縮合を行うことにより、親水性球状シリカ粒子の分散体1,662gを得た。
[Example 1]
Step (A1): Synthesis step to obtain hydrophilic spherical silica particle dispersion In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 793.0 g of methanol, 32.1 g of water and 28% aqueous ammonia. 40.6 g was added and mixed. The solution was adjusted to 34 ° C., and 466.5 g (4.25 mol) of tetramethoxysilane and 160.9 g of 5.4% aqueous ammonia were simultaneously started to be added dropwise with stirring, and both were added dropwise over 3 hours. did. After completion of the dropping, the mixture was further stirred for 0.5 hours to carry out hydrolysis condensation to obtain 1,662 g of a dispersion of hydrophilic spherical silica particles.

・工程(A2):1官能性シラン化合物による表面処理工程
上記工程(A1)で得られた親水性球状シリカ粒子の分散体600g(シリカ含有量15質量%、90g(1.5モル))を攪拌機、滴下ロート及び温度計を備えた3リットルのガラス製反応器に入れ、25℃でヘキサメチルジシラザン12.8g(0.08モル)を添加混合した。この溶液を60℃に加熱し3時間反応させ、親水性球状シリカ粒子表面のシリル化を行った。
Step (A2): Surface Treatment Step with 1 Functional Silane Compound 600 g (silica content 15% by mass, 90 g (1.5 mol)) of the dispersion of hydrophilic spherical silica particles obtained in the above step (A1). The mixture was placed in a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, and 12.8 g (0.08 mol) of hexamethyldisilazane was added and mixed at 25 ° C. This solution was heated to 60 ° C. and reacted for 3 hours to silylate the surface of hydrophilic spherical silica particles.

・工程(A3):分散媒置換工程
上記工程(A2)後の反応容器にメチルイソブチルケトン1,200gを添加した。ガラス製反応容器にエステルアダプターと冷却管を取付け、80〜110℃に加熱し、5時間かけてメタノール及び水の混合物1,210gを濃縮により除き、疎水性球状シリカ粒子ケトン系溶媒分散体を592g(シリカ含有量15.2質量%、90g(1.5モル))を得た。
-Step (A3): Dispersion medium replacement step 1,200 g of methyl isobutyl ketone was added to the reaction vessel after the above step (A2). An ester adapter and a cooling tube are attached to a glass reaction vessel, heated to 80 to 110 ° C., and 1,210 g of a mixture of methanol and water is removed by concentration over 5 hours to remove 592 g of a hydrophobic spherical silica particle ketone solvent dispersion. (Silica content 15.2% by mass, 90 g (1.5 mol)) was obtained.

・工程(A4):疎水性球状シリカ粒子の表面をフェニルアミノ化する工程
上記工程(A3)で得られた疎水性球状シリカ粒子ケトン系溶媒分散体200g(シリカ含有量30.4g、0.51モル)を攪拌機、滴下ロート及び温度計を備えた0.5リットルのガラス製反応器に仕込み、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン1.52g(0.007モル、5質量%(対シリカ質量))を滴下ロートから滴下した。100℃に加熱し3時間反応を行った。3時間反応後の反応液のガスクロマトグラフィー分析から2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンのピークの消失を確認した。
Step (A4): Step of phenylaminoizing the surface of the hydrophobic spherical silica particles 200 g of the hydrophobic spherical silica particles ketone solvent dispersion obtained in the above step (A3) (silica content 30.4 g, 0.51). (Mol) was placed in a 0.5 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, and 1.52 g (0.) of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane. 007 mol, 5% by mass (based on silica mass)) was added dropwise from the dropping funnel. The mixture was heated to 100 ° C. and reacted for 3 hours. Gas chromatography analysis of the reaction solution after the reaction for 3 hours confirmed the disappearance of the peak of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane.

・工程(A5):1官能性シラン化合物による再表面処理工程
上記工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、更に滴下ロートからヘキサメチルジシラザン16.1g(0.10モル)を添加し、100℃の反応温度で3時間反応させ、フェニルアミノ化球状シリカ粒子表面のシリル化を行った。その後分散媒を減圧下で留去してフェニルアミノ化疎水性球状シリカ粒子32gを得た。
Step (A5): Resurface treatment step with 1 functional silane compound To the phenylaminoized spherical silica particle dispersion obtained in the above step (A4), 16.1 g (0.10) of hexamethyldisilazane from the dropping funnel was further added. Mol) was added and the reaction was carried out at a reaction temperature of 100 ° C. for 3 hours to silylate the surface of the phenylaminoized spherical silica particles. Then, the dispersion medium was distilled off under reduced pressure to obtain 32 g of phenylaminated hydrophobic spherical silica particles.

[実施例2]
実施例1の工程(A4)において、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンの量を3.1g(0.014モル、10質量%(対シリカ質量)に変更した以外は実施例1と同様に行い、フェニルアミノ化疎水性球状シリカ粒子33gを得た。
[Example 2]
In the step (A4) of Example 1, the amount of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane was reduced to 3.1 g (0.014 mol, 10% by mass (based on silica mass)). The same procedure as in Example 1 was carried out except for the change, and 33 g of phenylaminoated hydrophobic spherical silica particles were obtained.

[実施例3]
・工程(A1):親水性球状シリカ粒子分散体を得る合成工程
攪拌機、滴下ロート及び温度計を備えた3リットルのガラス製反応器にメタノール623.7g、水41.4g及び28%アンモニア水49.8gを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン1163.7g(7.66モル)及び5.4%アンモニア水418.1gの滴下を同時に開始し、前者は6時間、そして後者は4時間かけて滴下した。滴下終了後、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性球状シリカ粒子の分散体2,295gを得た。
[Example 3]
Step (A1): Synthesis step to obtain hydrophilic spherical silica particle dispersion In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 41.4 g of water and 28% aqueous ammonia 49. 8.8 g was added and mixed. The solution was adjusted to 35 ° C. and the dropping of 1163.7 g (7.66 mol) of tetramethoxysilane and 418.1 g of 5.4% aqueous ammonia was started simultaneously with stirring, the former for 6 hours, and then. The latter was added dropwise over 4 hours. After completion of the dropping, the mixture was further hydrolyzed for 0.5 hour to obtain 2,295 g of a dispersion of hydrophilic spherical silica particles.

・工程(A2):1官能性シラン化合物による表面処理工程
上記(A1)で得られた分散体600g(シリカ含有量20質量%、120g(2モル))を攪拌機、滴下ロート及び温度計を備えた5リットルのガラス製反応器に入れ、25℃でヘキサメチルジシラザン9.7g(0.06モル)を添加混合した。この溶液を60℃に加熱し3時間反応させ、親水性球状シリカ粒子表面のシリル化を行った。
Step (A2): Surface treatment step with 1 functional silane compound 600 g (silica content 20% by mass, 120 g (2 mol)) of the dispersion obtained in the above (A1) is provided with a stirrer, a dropping funnel and a thermometer. The mixture was placed in a 5 liter glass reactor, and 9.7 g (0.06 mol) of hexamethyldisilazane was added and mixed at 25 ° C. This solution was heated to 60 ° C. and reacted for 3 hours to silylate the surface of hydrophilic spherical silica particles.

・工程(A3):分散媒置換工程
上記工程(A2)後の反応容器にメチルイソブチルケトン1,600gを添加した。ガラス製反応容器にエステルアダプターと冷却管を取付け、80〜110℃に加熱し、5時間かけてメタノール及び水の混合物1,457gを濃縮により除き、疎水性球状シリカ粒子ケトン系溶媒分散体を751g(シリカ含有量16質量%、120g(2モル))を得た。
-Step (A3): Dispersion medium replacement step 1,600 g of methyl isobutyl ketone was added to the reaction vessel after the above step (A2). An ester adapter and a cooling tube are attached to a glass reaction vessel, heated to 80 to 110 ° C., and 1,457 g of a mixture of methanol and water is removed by concentration over 5 hours to remove 751 g of a hydrophobic spherical silica particle ketone solvent dispersion. (Silica content 16% by mass, 120 g (2 mol)) was obtained.

・工程(A4):疎水性球状シリカ粒子の表面をフェニルアミノ化する工程
上記工程(A3)で得られた疎水性球状シリカ粒子ケトン系溶媒分散体200g(シリカ含有量32g、0.53モル)を攪拌機、滴下ロート及び温度計を備えた0.5リットルのガラス製反応器に仕込み、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン1.60g(0.007モル、5質量%(対シリカ質量))を滴下ロートから滴下した。100℃に加熱し3時間反応を行った。3時間反応後の反応液のガスクロマトグラフィー分析から2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンのピークの消失を確認した。
Step (A4): Step of phenylaminoizing the surface of the hydrophobic spherical silica particles 200 g of the hydrophobic spherical silica particles ketone solvent dispersion obtained in the above step (A3) (silica content 32 g, 0.53 mol). Into a 0.5 liter glass reactor equipped with a stirrer, dropping funnel and thermometer, 1.60 g (0.007 mol) of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane. 5, 5% by mass (mass with respect to silica)) was added dropwise from the dropping funnel. The mixture was heated to 100 ° C. and reacted for 3 hours. Gas chromatography analysis of the reaction solution after the reaction for 3 hours confirmed the disappearance of the peak of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane.

・工程(A5):1官能性シラン化合物による再表面処理工程
上記工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、更に滴下ロートからヘキサメチルジシラザン12.9g(0.08モル)を添加し、100℃の反応温度で3時間反応させ、フェニルアミノ化球状シリカ粒子表面のシリル化を行った。その後分散媒を減圧下で留去してフェニルアミノ化疎水性球状シリカ粒子33gを得た。
Step (A5): Resurface treatment step with 1 functional silane compound To the phenylaminoized spherical silica particle dispersion obtained in the above step (A4), 12.9 g (0.08) of hexamethyldisilazane from the dropping funnel was further added. Mol) was added and the reaction was carried out at a reaction temperature of 100 ° C. for 3 hours to silylate the surface of the phenylaminoized spherical silica particles. Then, the dispersion medium was distilled off under reduced pressure to obtain 33 g of phenylaminated hydrophobic spherical silica particles.

[実施例4]
実施例1において、工程(A5)を行わず、工程(A4)終了後、分散媒を減圧下で留去してフェニルアミノ化疎水性球状シリカ粒子29gを得た。
[Example 4]
In Example 1, the step (A5) was not performed, and after the step (A4) was completed, the dispersion medium was distilled off under reduced pressure to obtain 29 g of phenylaminoated hydrophobic spherical silica particles.

[実施例5]
工程(A1)に代えて、市販の親水性球状シリカ粒子分散体(日産化学工業(株)製IPA−ST−L、粒子径45nm、30質量%イソプロピルアルコール分散体)を用いた。
[Example 5]
Instead of the step (A1), a commercially available hydrophilic spherical silica particle dispersion (IPA-ST-L manufactured by Nissan Chemical Industry Co., Ltd., particle diameter 45 nm, 30 mass% isopropyl alcohol dispersion) was used.

・工程(A2):1官能性シラン化合物による表面処理工程
上記IPA−ST−Lを350g(シリカ含有量30質量%、90g(1.5モル))及びイソプロピルアルコール250gを攪拌機、滴下ロート及び温度計を備えた3リットルのガラス製反応器に入れ、25℃でヘキサメチルジシラザン12.8g(0.08モル)を添加混合した。この溶液を60℃に加熱し3時間反応させ、親水性球状シリカ粒子表面のシリル化を行った。
Step (A2): Surface treatment step with 1 functional silane compound 350 g (silica content 30% by mass, 90 g (1.5 mol)) of IPA-ST-L and 250 g of isopropyl alcohol with a stirrer, dropping funnel and temperature. The mixture was placed in a 3 liter glass reactor equipped with a meter, and 12.8 g (0.08 mol) of hexamethyldisilazane was added and mixed at 25 ° C. This solution was heated to 60 ° C. and reacted for 3 hours to silylate the surface of hydrophilic spherical silica particles.

・工程(A3):分散媒置換工程
上記工程(A2)後の反応容器にメチルイソブチルケトン1,200gを添加した。ガラス製反応容器にエステルアダプターと冷却管を取付け、80〜110℃に加熱し、5時間かけてイソプロピルアルコール1,220gを濃縮により除き、疎水性球状シリカ粒子ケトン系溶媒分散体を575g(シリカ含有量15.6質量%、90g(1.5モル))を得た。
-Step (A3): Dispersion medium replacement step 1,200 g of methyl isobutyl ketone was added to the reaction vessel after the above step (A2). An ester adapter and a cooling tube are attached to a glass reaction vessel, heated to 80 to 110 ° C., 1,220 g of isopropyl alcohol is removed by concentration over 5 hours, and 575 g (silica-containing) of a hydrophobic spherical silica particle ketone solvent dispersion is added. Amount of 15.6% by mass, 90 g (1.5 mol)) was obtained.

・工程(A4):疎水性球状シリカ粒子の表面をフェニルアミノ化する工程
上記工程(A3)で得られた疎水性球状シリカ粒子ケトン系溶媒分散体200g(シリカ含有量30.4g、0.51モル)を攪拌機、滴下ロート、温度計を備えた0.5リットルのガラス製反応器に仕込み、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン1.52g(0.007モル、5質量%(対シリカ質量))を滴下ロートから滴下した。100℃に加熱し3時間反応を行った。3時間反応後の反応液のガスクロマトグラフィー分析から2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンのピークの消失を確認した。
Step (A4): Step of phenylaminoizing the surface of the hydrophobic spherical silica particles 200 g of the hydrophobic spherical silica particles ketone solvent dispersion obtained in the above step (A3) (silica content 30.4 g, 0.51). Mol) was placed in a 0.5 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, and 1.52 g (0. 007 mol, 5% by mass (based on silica mass)) was added dropwise from the dropping funnel. The mixture was heated to 100 ° C. and reacted for 3 hours. Gas chromatography analysis of the reaction solution after the reaction for 3 hours confirmed the disappearance of the peak of 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane.

・工程(A5):1官能性シラン化合物による再表面処理工程
上記工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、更に滴下ロートからヘキサメチルジシラザン16.1g(0.10モル)を添加し、100℃の反応温度で3時間反応させ、フェニルアミノ化球状シリカ粒子表面のシリル化を行った。その後分散媒を減圧下で留去してフェニルアミノ化疎水性球状シリカ粒子33gを得た。
Step (A5): Resurface treatment step with 1 functional silane compound To the phenylaminoized spherical silica particle dispersion obtained in the above step (A4), 16.1 g (0.10) of hexamethyldisilazane from the dropping funnel was further added. Mol) was added and the reaction was carried out at a reaction temperature of 100 ° C. for 3 hours to silylate the surface of the phenylaminoized spherical silica particles. Then, the dispersion medium was distilled off under reduced pressure to obtain 33 g of phenylaminated hydrophobic spherical silica particles.

[比較例1]
実施例1の工程(A4)において、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンをN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業(株)製、商品名KBM−573)1.8g(0.007モル、5質量%(対シリカ質量))とした以外は実施例1の工程(A1)〜工程(A4)と同様に球状シリカ粒子の合成を行った。工程(A4)において100℃で3時間反応後、反応液のガスクロマトグラフィー分析を行ったところ、N−フェニル−3−アミノプロピルトリメトキシシランの残存(13%)が見られた。その後、実施例1の工程(A5)と同様にして再表面処理工程を行い、最後に分散媒を減圧下で留去してフェニルアミノ化疎水性球状シリカ粒子32gを得た。
[Comparative Example 1]
In the step (A4) of Example 1, 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane was added to N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Industry Co., Ltd.). Synthetic spherical silica particles were synthesized in the same manner as in Steps (A1) to (A4) of Example 1 except that the product name was KBM-573) 1.8 g (0.007 mol, 5% by mass (% by mass of silica)). went. After the reaction at 100 ° C. for 3 hours in the step (A4), gas chromatography analysis of the reaction solution revealed that residual (13%) of N-phenyl-3-aminopropyltrimethoxysilane was observed. Then, a resurface treatment step was carried out in the same manner as in the step (A5) of Example 1, and finally, the dispersion medium was distilled off under reduced pressure to obtain 32 g of phenylaminoated hydrophobic spherical silica particles.

[比較例2]
実施例1の工程(A4)において、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタンを3−アミノプロピルトリメトキシシラン(信越化学工業(株)製、商品名KBM−903)1.2g(0.007モル、5質量%(対シリカ質量))とした以外は実施例1の工程(A1)〜工程(A4)と同様に球状シリカ粒子の合成を行った。工程(A4)において100℃で3時間反応後の反応液のガスクロマトグラフィー分析にて3−アミノプロピルトリメトキシシランのピークの消失を確認した。その後、実施例1の工程(A5)と同様にして再表面処理工程を行い、最後に分散媒を減圧下で留去してアミノ化疎水性球状シリカ粒子33gを得た。
[Comparative Example 2]
In the step (A4) of Example 1, 2,2-dimethoxy-1-phenyl-1-aza-2-silacyclopentane was added to 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-). 903) Spherical silica particles were synthesized in the same manner as in Steps (A1) to (A4) of Example 1 except that 1.2 g (0.007 mol, 5% by mass (based on silica mass)) was used. In the step (A4), the disappearance of the peak of 3-aminopropyltrimethoxysilane was confirmed by gas chromatography analysis of the reaction solution after the reaction at 100 ° C. for 3 hours. Then, a resurface treatment step was carried out in the same manner as in the step (A5) of Example 1, and finally the dispersion medium was distilled off under reduced pressure to obtain 33 g of aminoated hydrophobic spherical silica particles.

Figure 0006915598
Figure 0006915598

上記実施例及び比較例で合成したシリカ粒子を用いてトナーを作製し、トナー帯電量の測定、画像特性及び像流れ(カブリ性)の評価を行った。
[トナー帯電量]
スチレン/アクリル樹脂を粉砕分級して得た平均粒径8.2μmのモデルトナー1g、標準キャリアP-01(日本画像学会配布)19g及び上記実施例および比較例で作製した正帯電型疎水性球状シリカ粒子をそれぞれ0.01g量りとった。このようにして調製されたサンプルを、日本画像学会標準のトナーの帯電量測定基準(日本画像学会誌、37、461(1998))にしたがって調湿、混合を行い、混合時間を変えた時のトナー帯電量を測定した。なお、混合にはペイントコンディショナー(東洋精機製)を用い、トナー帯電量測定にはブローオフ帯電量測定装置(東芝ケミカル製、商品名:TB203)を用いた。調湿と測定は、温度23±3℃、湿度55±10%で行った。それらの結果を表2に示す。
Toner was prepared using the silica particles synthesized in the above Examples and Comparative Examples, and the toner charge amount was measured, the image characteristics and the image flow (fog property) were evaluated.
[Toner charge amount]
1 g of model toner having an average particle size of 8.2 μm obtained by pulverizing and classifying styrene / acrylic resin, 19 g of standard carrier P-01 (distributed by the Imaging Society of Japan), and positively charged hydrophobic spheres produced in the above Examples and Comparative Examples. 0.01 g of each silica particle was weighed. When the sample prepared in this way was humidity-controlled and mixed according to the standard toner charge measurement standard of the Imaging Society of Japan (Journal of the Imaging Society of Japan, 37, 461 (1998)) and the mixing time was changed. The amount of toner charged was measured. A paint conditioner (manufactured by Toyo Seiki Co., Ltd.) was used for mixing, and a blow-off charge amount measuring device (manufactured by Toshiba Chemical Co., Ltd., trade name: TB203) was used for measuring the toner charge amount. Humidity control and measurement were performed at a temperature of 23 ± 3 ° C. and a humidity of 55 ± 10%. The results are shown in Table 2.

また、以下の配合組成となるように、スチレン/アクリル樹脂と、磁性粉と、電荷制御剤と、ワックスとを、二軸押出機にて溶融混練した。これを冷却した後、粉砕および分級を行い、平均粒子径が8μmのトナー粒子を得た。
トナーの配合組成
スチレン/アクリル樹脂 100質量部
磁性粉(BL−200;チタン工業(株)製) 75質量部
電荷制御剤(TP−415;保土ヶ谷化学(株)製) 4質量部
ワックス(ビスコールTS−200;三洋化成工業(株)製) 4質量部
また、得られたトナー粒子の粒度分布を測定し、5〜13μmの粒子径の範囲内に、全体の80重量%以上が分布していることを確認した。
このトナー100質量部に対し、上記正帯電型疎水性球状シリカ粒子(実施例1〜5、比較例1〜2)0.5質量部を外添して正帯電トナーを作製した。そして、京セラ製ページプリンタ(FS−3750)を用い、正帯電トナーの画像特性および像流れ(カブリ性)を評価した。なお、耐刷印字パターンとしては、2%印字原稿を使用した。
その結果を表3に示す。
Further, the styrene / acrylic resin, the magnetic powder, the charge control agent, and the wax were melt-kneaded by a twin-screw extruder so as to have the following compounding composition. After cooling this, it was pulverized and classified to obtain toner particles having an average particle diameter of 8 μm.
Toner composition 100 parts by mass of styrene / acrylic resin Magnetic powder (BL-200; manufactured by Titanium Kogyo Co., Ltd.) 75 parts by mass Charge control agent (TP-415; manufactured by Hodogaya Chemical Co., Ltd.) 4 parts by mass Wax (Viscol TS) -200; manufactured by Sanyo Kasei Kogyo Co., Ltd. 4 parts by mass In addition, the particle size distribution of the obtained toner particles was measured, and 80% by mass or more of the total was distributed within the particle size range of 5 to 13 μm. It was confirmed.
0.5 parts by mass of the positively charged hydrophobic spherical silica particles (Examples 1 to 5 and Comparative Examples 1 and 2) were externally added to 100 parts by mass of the toner to prepare a positively charged toner. Then, using a Kyocera page printer (FS-3750), the image characteristics and image flow (fog property) of the positively charged toner were evaluated. A 2% printed original was used as the print-resistant printing pattern.
The results are shown in Table 3.

[画像特性]
得られた正帯電トナーを用いて、京セラ製ページプリンタ(FS−3750)により20万枚実印字し、以下の基準から、初期画像特性、印刷後の画像特性、および高温高湿条件での画像特性の評価を行った。
初期画像特性(表3において「初期」と表記)は、通常環境(20℃、65%RH)にて、画像評価パターンを印字して初期画像とし、画像評価パターンであるソリッド画像濃度を、マクベス反射濃度計を用いて測定し評価した。
また、印刷後の画像特性(表3において「20万枚」と表記)は、通常環境(20℃、65%RH)にて、20万枚印刷後の画像特性を初期画像特性と同様に測定して、評価した。
さらに、高温高湿条件での画像特性(表3において「高温高湿」と表記)は、高温高湿条件(33℃、85%RH)にて、画像評価パターンを印字し、画像特性を初期画像特性同様に測定して、評価した。

評価基準
◎:画像濃度が、1.35以上の値である。
○:画像濃度が、1.3 以上1.35未満の値である。
△:画像濃度が、1.2 以上1.3 未満の値である。
×:画像濃度が、1.2 未満の値である。
[Image characteristics]
Using the obtained positively charged toner, 200,000 sheets were actually printed by a Kyocera page printer (FS-3750), and based on the following criteria, the initial image characteristics, the image characteristics after printing, and the image under high temperature and high humidity conditions. The characteristics were evaluated.
The initial image characteristics (denoted as "initial" in Table 3) are the initial image by printing an image evaluation pattern in a normal environment (20 ° C., 65% RH), and the solid image density which is the image evaluation pattern is set to Macbeth. It was measured and evaluated using a reflection densitometer.
For the image characteristics after printing (denoted as "200,000 sheets" in Table 3), the image characteristics after printing 200,000 sheets are measured in the same manner as the initial image characteristics in a normal environment (20 ° C., 65% RH). And evaluated.
Further, for the image characteristics under high temperature and high humidity conditions (denoted as "high temperature and high humidity" in Table 3), the image evaluation pattern is printed under the high temperature and high humidity conditions (33 ° C., 85% RH) to initialize the image characteristics. It was measured and evaluated in the same manner as the image characteristics.

Evaluation Criteria ⊚: The image density is a value of 1.35 or more.
◯: The image density is a value of 1.3 or more and less than 1.35.
Δ: The image density is a value of 1.2 or more and less than 1.3.
X: The image density is a value less than 1.2.

[カブリ性]
得られた正帯電トナーを用いて、画像特性の評価と同様に、京セラ製ページプリンタ(FS−3750)により20万枚実印字し、以下の基準から、初期カブリ性、印刷後のカブリ性、および高温高湿条件でのカブリ性(地肌カブリ)の評価を行った。

評価基準
○:カブリを全く生じていない。
△:ややカブリを生じている。
×:顕著なカブリを生じている。
[Fog]
Using the obtained positively charged toner, 200,000 sheets were actually printed by a Kyocera page printer (FS-3750) in the same manner as in the evaluation of image characteristics. And the fog property (skin fog) under high temperature and high humidity conditions was evaluated.

Evaluation criteria ○: No fog has occurred.
Δ: Slight fog has occurred.
X: Significant fog is occurring.

Figure 0006915598
Figure 0006915598

Figure 0006915598
Figure 0006915598

以上の結果から、本発明の正帯電型疎水性球状シリカ粒子を用いることにより、トナーに所望の正帯電極性と帯電量を付与し、これを長期にわたって安定維持できることがわかった。 From the above results, it was found that by using the positively charged hydrophobic spherical silica particles of the present invention, the desired positively charged polarity and the amount of charge can be imparted to the toner, and this can be stably maintained for a long period of time.

Claims (6)

体積基準の粒度分布における1次粒子のメジアン径(D50)が5〜250nmであり、D90/D10比が3以下であり、かつ平均円形度が0.8〜1である正帯電型疎水性球状シリカ粒子であって、
表面に下式(I)で表される有機ケイ素化合物が結合した正帯電型疎水性球状シリカ粒子。
Figure 0006915598
(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。)
A positively charged hydrophobic sphere having a median diameter (D50) of 5 to 250 nm, a D90 / D10 ratio of 3 or less, and an average circularity of 0.8 to 1 in a volume-based particle size distribution. Silica particles
Positively charged hydrophobic spherical silica particles having an organosilicon compound represented by the following formula (I) bonded to the surface.
Figure 0006915598
(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)
更に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物で表面処理された、請求項1に記載の正帯電型疎水性球状シリカ粒子。
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
The positively charged hydrophobic sphere according to claim 1, further surface-treated with a silica compound represented by the following formula (III), a monofunctional silane compound represented by the following formula (IV), or a mixture thereof. Silica particles.
R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)
下記工程(A2)〜(A4)を含む請求項1又は2に記載の正帯電型疎水性球状シリカ粒子の製造方法。
工程(A2):親水性球状シリカ粒子分散体に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、親水性球状シリカ粒子分散体のSi原子1モルに対し0.01〜0.1モル添加し、該親水性球状シリカ粒子の表面にR4 3SiO1/2単位を導入し疎水性球状シリカ粒子分散体を得る工程
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)

工程(A3):工程(A2)で得られた疎水性球状シリカ粒子分散体の分散媒をケトン系溶媒に置換し、疎水性球状シリカ粒子のケトン系溶媒分散体を得る工程

工程(A4):工程(A3)で得られた疎水性球状シリカ粒子のケトン系溶媒分散体に、下式(I)で表される有機ケイ素化合物を添加し、該疎水性球状シリカ粒子表面のシラノール基をフェニルアミノ化する工程
Figure 0006915598
(式中、R1及びR2は、独立に、水素原子、又は、炭素原子数1〜10の直鎖状、分岐状もしくは環状のアルキル基を表す。nは0または1である。)
The method for producing positively charged hydrophobic spherical silica particles according to claim 1 or 2, which comprises the following steps (A2) to (A4).
Step (A2): A hydrophilic spherical silica particle dispersion is mixed with a silazane compound represented by the following formula (III), a monofunctional silane compound represented by the following formula (IV), or a mixture thereof. 0.01 to 0.1 mol is added to 1 mol of Si atom of the particle dispersion, and 1/2 unit of R 4 3 SiO is introduced on the surface of the hydrophilic spherical silica particles to obtain a hydrophobic spherical silica particle dispersion. Step R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)

Step (A3): A step of substituting the dispersion medium of the hydrophobic spherical silica particle dispersion obtained in the step (A2) with a ketone solvent to obtain a ketone solvent dispersion of the hydrophobic spherical silica particles.

Step (A4): An organosilicon compound represented by the following formula (I) is added to the ketone solvent dispersion of the hydrophobic spherical silica particles obtained in the step (A3), and the surface of the hydrophobic spherical silica particles is surfaced. Step of phenylaminoing silanol groups
Figure 0006915598
(In the formula, R 1 and R 2 independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. N is 0 or 1.)
親水性球状シリカ粒子分散体が下記工程(A1)により製造されるものである請求項3に記載の正帯電型疎水性球状シリカ粒子の製造方法。

工程(A1):下式(II)で表される4官能性シラン化合物、その部分加水分解縮合物またはこれらの混合物を、塩基性物質の存在下、親水性溶媒及び水を含む混合液中で加水分解、縮合することによって親水性球状シリカ粒子分散体を得る工程
Si(OR34 (II)
(式中、R3は、同一または異なる炭素原子数1〜6の一価炭化水素基を表す。)
The method for producing positively charged hydrophobic spherical silica particles according to claim 3, wherein the hydrophilic spherical silica particle dispersion is produced by the following step (A1).

Step (A1): A tetrafunctional silane compound represented by the following formula (II), a partially hydrolyzed condensate thereof, or a mixture thereof is placed in a mixed solution containing a hydrophilic solvent and water in the presence of a basic substance. Step of obtaining hydrophilic spherical silica particle dispersion by hydrolysis and condensation Si (OR 3 ) 4 (II)
(In the formula, R 3 represents a monovalent hydrocarbon group having the same or different carbon atoms 1 to 6).
更に、下記工程(A5)を含む請求項3又は4に記載の正帯電型疎水性球状シリカ粒子の製造方法。

工程(A5):工程(A4)で得られたフェニルアミノ化球状シリカ粒子分散体に、下式(III)で表されるシラザン化合物、下式(IV)で表される1官能性シラン化合物又はこれらの混合物を、該フェニルアミノ化球状シリカ粒子のSi原子1モルに対し0.01〜0.3モル添加し、該フェニルアミノ化球状シリカ粒子の表面に残存するシラノール基と反応させる工程
4 3SiNHSiR4 3 (III)
4 3SiX (IV)
(式中、R4は、同一または異なる置換または非置換の炭素原子数1〜6の一価炭化水素基を表し、Xは水酸基または加水分解性基を表す。)
The method for producing positively charged hydrophobic spherical silica particles according to claim 3 or 4, further comprising the following step (A5).

Step (A5): The silazan compound represented by the following formula (III), the monofunctional silane compound represented by the following formula (IV), or the monofunctional silane compound represented by the following formula (IV) is added to the phenylaminoized spherical silica particle dispersion obtained in the step (A4). A step of adding 0.01 to 0.3 mol of these mixtures to 1 mol of Si atoms of the phenylaminoized spherical silica particles and reacting them with silanol groups remaining on the surface of the phenylaminoized spherical silica particles R 4 3 SiNHSiR 4 3 (III)
R 4 3 SiX (IV)
(In the formula, R 4 represents a monovalent hydrocarbon group having the same or different substituted or unsubstituted carbon atoms 1 to 6, and X represents a hydroxyl group or a hydrolyzable group.)
請求項1又は2に記載の正帯電型疎水性球状シリカ粒子を含む正帯電トナー組成物。 A positively charged toner composition containing the positively charged hydrophobic spherical silica particles according to claim 1 or 2.
JP2018160741A 2018-08-29 2018-08-29 Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same. Active JP6915598B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018160741A JP6915598B2 (en) 2018-08-29 2018-08-29 Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
PCT/JP2019/031408 WO2020045037A1 (en) 2018-08-29 2019-08-08 Positive charge type hydrophobic spherical silica particles, method for producing same and positively charged toner composition using same
TW108130820A TWI804672B (en) 2018-08-29 2019-08-28 Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160741A JP6915598B2 (en) 2018-08-29 2018-08-29 Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.

Publications (2)

Publication Number Publication Date
JP2020033223A JP2020033223A (en) 2020-03-05
JP6915598B2 true JP6915598B2 (en) 2021-08-04

Family

ID=69643120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160741A Active JP6915598B2 (en) 2018-08-29 2018-08-29 Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.

Country Status (3)

Country Link
JP (1) JP6915598B2 (en)
TW (1) TWI804672B (en)
WO (1) WO2020045037A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475907B2 (en) * 2020-03-16 2024-04-30 キヤノン株式会社 toner
CN117177941A (en) * 2022-01-13 2023-12-05 日产化学株式会社 Silica sol having particle size distribution and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988936B2 (en) * 2003-05-13 2007-10-10 信越化学工業株式会社 Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
DE102004063762A1 (en) * 2004-12-29 2006-07-13 Wacker Chemie Ag Reactive silica suspensions
DE102007012578A1 (en) * 2006-09-01 2008-03-06 Bühler PARTEC GmbH Cationically stabilized aqueous silica dispersion, process for their preparation and their use
EP2247984A1 (en) * 2008-02-26 2010-11-10 Canon Kabushiki Kaisha Toner
KR20090104410A (en) * 2008-03-31 2009-10-06 삼성정밀화학 주식회사 Toner using resin being insoluble in organic solvents and method for preparing the same
JP2011185998A (en) * 2010-03-04 2011-09-22 Morimura Chemicals Ltd Electrostatic image-developing toner and electric charge-controlling particle for external addition
CN103907063B (en) * 2011-08-25 2018-09-14 森村化学株式会社 Add outside with charge control agent composition and electrostatic image-developing toner
US9897932B2 (en) * 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner
JP6873649B2 (en) * 2016-10-04 2021-05-19 キヤノン株式会社 Manufacturing method of toner particles
JP2018072534A (en) * 2016-10-28 2018-05-10 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development

Also Published As

Publication number Publication date
WO2020045037A1 (en) 2020-03-05
TW202009615A (en) 2020-03-01
TWI804672B (en) 2023-06-11
JP2020033223A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
US7144628B2 (en) Spherical silica-titania-based fine particles surface-treated with silane, production process therefor, and external additive for electrostatically charged image developing toner using same
JP3927741B2 (en) Toner external additive for electrostatic image development
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2630946B2 (en) Fluidity improver for positively chargeable resin powder
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP6962296B2 (en) Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP6915598B2 (en) Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP2614454B2 (en) Fluidity improver for positively chargeable resin powder
JP3767788B2 (en) Toner external additive for electrostatic image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP3856744B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150