JP6915235B2 - Patina processing method - Google Patents

Patina processing method Download PDF

Info

Publication number
JP6915235B2
JP6915235B2 JP2016125718A JP2016125718A JP6915235B2 JP 6915235 B2 JP6915235 B2 JP 6915235B2 JP 2016125718 A JP2016125718 A JP 2016125718A JP 2016125718 A JP2016125718 A JP 2016125718A JP 6915235 B2 JP6915235 B2 JP 6915235B2
Authority
JP
Japan
Prior art keywords
patina
added
water
copper
dichloromethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016125718A
Other languages
Japanese (ja)
Other versions
JP2017226904A (en
Inventor
若子 佐藤
若子 佐藤
卓美 杉
卓美 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016125718A priority Critical patent/JP6915235B2/en
Publication of JP2017226904A publication Critical patent/JP2017226904A/en
Application granted granted Critical
Publication of JP6915235B2 publication Critical patent/JP6915235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、銅系部材に発生した緑青を除去する、或いは緑青の発生を防止する緑青処理剤及び緑青処理方法に関する。
本発明はまた、レジオネラに対しより即効性が高く、細菌、カビに対しても効果を示し、より広範囲な微生物に対しスライムコントロール効果と殺菌性を発揮すると共に、銅に対する防食効果をも有し、また、鉄系部材の腐食を促進することがない水処理剤及び水処理方法に関する。
The present invention relates to a patina treatment agent and a patina treatment method for removing patina generated in a copper-based member or preventing patina generation.
The present invention also has a higher immediate effect on Legionella, an effect on bacteria and molds, a slime control effect and a bactericidal effect on a wider range of microorganisms, and an anticorrosive effect on copper. Also, the present invention relates to a water treatment agent and a water treatment method that do not promote corrosion of iron-based members.

冷却水系、ボイラ水系、スクラバー水系、紙パルプ水系、膜処理水系などの水系等に接触する銅系部材には、腐食、孔食の問題がある。銅系部材の腐食、孔食の要因として、緑青やスライムが挙げられる。 Copper-based members that come into contact with water systems such as cooling water systems, boiler water systems, scrubber water systems, pulp and paper water systems, and film-treated water systems have problems of corrosion and pitting corrosion. Patina and slime are examples of causes of corrosion and pitting corrosion of copper-based members.

従来、銅系部材の緑青除去剤として、ヒドラジンが報告されている(特許文献1)が、ヒドラジンは発癌性が疑われる物質であり、また、PRTR対象物質でもあり、その使用は好ましくない。 Conventionally, hydrazine has been reported as a patina removing agent for copper-based members (Patent Document 1), but hydrazine is a substance suspected to be carcinogenic and is also a PRTR target substance, and its use is not preferable.

ヒドラジンを用いない緑青除去剤としてチオグリコール酸又はその塩とアゾール系銅防食剤を併用するものが報告されている(特許文献2)。また、カルボヒドラジドとアゾール系銅防食剤との併用も報告されている(特許文献3)。これらは、いずれも二剤を併用するものであるため、薬剤管理、薬注制御の面で問題がある。 As a patina remover that does not use hydrazine, a combination of thioglycolic acid or a salt thereof and an azole-based copper anticorrosive agent has been reported (Patent Document 2). In addition, the combined use of carbohydrazide and an azole-based copper anticorrosive agent has also been reported (Patent Document 3). Since both of these are used in combination with two drugs, there are problems in terms of drug management and drug injection control.

一方、従来、スライムコントロール剤として用いられている代表的な薬剤としては、次亜塩素酸ナトリム(NaClO)をはじめとする無機ハロゲン化合物があるが、これらはその高い腐食性に問題があり、例えば、レジオネラ等の殺菌に用いる場合、腐食を抑制するために濃度管理を厳密に行う必要がある。また、防食剤の併用が必要であり、防食剤としてはベンゾトリアゾール等のアゾール系化合物が用いられている。 On the other hand, as a typical drug conventionally used as a slime control agent, there are inorganic halogen compounds such as sodium hypochlorite (NaClO), but these have a problem in their high corrosiveness, for example. , When used for sterilization of Legionella, etc., it is necessary to strictly control the concentration in order to suppress corrosion. Further, it is necessary to use an anticorrosive agent in combination, and an azole compound such as benzotriazole is used as the anticorrosive agent.

イソチアゾリン化合物は、スライムコントロールやレジオネラ殺菌に広く使用されているが、イソチアゾリン化合物は殺菌において即効性に欠ける問題がある(非特許文献1)。また、イソチアゾリン化合物は金属に対する腐食性もあるために、一般的に防食剤の併用が必要である。 Isothiazolin compounds are widely used for slime control and Legionella sterilization, but isothiazolin compounds have a problem of lacking immediate effect in sterilization (Non-Patent Document 1). In addition, since the isothiazolin compound is also corrosive to metals, it is generally necessary to use an anticorrosive agent in combination.

また、後段に生物を用いた排水処理設備がある場合、スライムコントロール剤の効果が高いほど、後段の活性汚泥に悪影響を及ぼすことも問題となる。 In addition, when there is a wastewater treatment facility using organisms in the latter stage, the higher the effect of the slime control agent, the more adversely it affects the activated sludge in the latter stage.

このように、従来においては、以下の問題があった。
(1) 防食剤は、スライムコントロール能力がなく、一方で、スライムコントロール剤や殺菌剤は腐食の問題がある。このため、金属、特に銅系部材が用いられている設備中の殺菌・スライムコントロールを行う際には、厳密な濃度管理、防食剤の添加などが必要となる。
(2) 腐食性の弱いスライムコントロール剤や殺菌剤は即効性に欠ける。
(3) レジオネラ等の殺菌には通常迅速な殺菌処理が求められるが、腐食性が弱い薬剤では迅速な殺菌処理を行えない。
(4) スライムコントロール・殺菌処理を行った排水は、通常、排水処理施設で処理されるが、スライムコントロール剤や殺菌剤が高濃度に残留している排水が活性汚泥処理槽に流れ込むと活性汚泥が阻害を受ける。
As described above, in the past, there have been the following problems.
(1) Anticorrosive agents do not have slime control ability, while slime control agents and fungicides have a problem of corrosion. For this reason, strict concentration control and addition of anticorrosive agents are required when sterilizing and slime control in equipment using metals, especially copper-based members.
(2) Slime control agents and fungicides that are weakly corrosive lack immediate effect.
(3) Rapid sterilization is usually required for sterilization of Legionella and the like, but rapid sterilization cannot be performed with chemicals that are weakly corrosive.
(4) Wastewater that has undergone slime control / sterilization treatment is usually treated at a wastewater treatment facility, but when wastewater containing a high concentration of slime control agent or fungicide flows into the activated sludge treatment tank, activated sludge Is hindered.

なお、防食効果と殺菌効果を併せ持つ薬剤として、ダイマー型ピリジニウム化合物(特許文献4)、ビス型四級アンモニウム塩(特許文献5)が報告されているが、より広範囲な微生物に対して即効性のあるスライムコントロール効果と殺菌性を発揮すると共に、より防食性に優れた薬剤が望まれている。
また、次亜塩素酸ナトリムなどの即効性に優れた無機系酸化剤と、イソチアゾリン化合物、ジクロログリオキシド、ジブロモニトロエタノールなどの持続性に優れた有機系殺菌剤(スライムコントロール剤)とを併用する水系の殺菌方法が提案されているが(特許文献6)、この場合も、金属腐食を抑制するための濃度管理が必要となる。
Dimer-type pyridinium compounds (Patent Document 4) and bis-type quaternary ammonium salts (Patent Document 5) have been reported as agents having both anticorrosive and bactericidal effects, but they have immediate effects on a wider range of microorganisms. A drug that exhibits a certain slime control effect and bactericidal property and has more excellent anticorrosion property is desired.
In addition, an inorganic oxidant having excellent immediate effect such as sodium hypochlorous acid and an organic bactericidal agent (slime control agent) having excellent durability such as isothiazoline compound, dichloroglioxide, and dibromonitroethanol are used in combination. An aqueous sterilization method has been proposed (Patent Document 6), but in this case as well, concentration control for suppressing metal corrosion is required.

特開昭61−272392号公報Japanese Unexamined Patent Publication No. 61-272392 特開2008−248303号公報Japanese Unexamined Patent Publication No. 2008-248303 特開2012−12698号公報Japanese Unexamined Patent Publication No. 2012-12698 特開2001−310191号公報Japanese Unexamined Patent Publication No. 2001-310191 特開2003−290778号公報Japanese Unexamined Patent Publication No. 2003-290778 特開2015−117216号公報Japanese Unexamined Patent Publication No. 2015-117216

抗レジオネラ用空調水処理剤協議会 研究報告書 抗レジオネラ用空調水処理剤に用いられる有機系殺菌剤のレジオネラ属菌に対する殺菌性能 2000年5月 日本防菌防黴学会27回年次大会Research Report of the Council of Air-Conditioning Water Treatment Agents for Anti-Legionella The bactericidal performance of organic fungicides used in anti-Legionella air-conditioning water treatment agents against Legionella spp. May 2000 Japan Antibacterial and Antifungal Society 27th Annual Meeting

本発明は、一剤で銅系部材に発生した緑青を効果的に除去し、また、緑青の発生を効果的に防止することができる緑青処理剤及び緑青処理方法を提供することを課題とする。
本発明はまた、レジオネラに対しより即効性が高く、細菌、カビに対しても効果を示し、より広範囲な微生物に対しスライムコントロール効果と殺菌性を発揮すると共に、銅に対する防食効果をも有し、また、鉄系部材の腐食を促進することがない水処理剤及び水処理方法を提供することを特徴とする。
An object of the present invention is to provide a patina treatment agent and a patina treatment method capable of effectively removing the patina generated in a copper-based member with a single agent and effectively preventing the generation of patina. ..
The present invention also has a higher immediate effect on Legionella, an effect on bacteria and molds, a slime control effect and a bactericidal effect on a wider range of microorganisms, and an anticorrosive effect on copper. Further, it is characterized by providing a water treatment agent and a water treatment method that do not promote corrosion of iron-based members.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ジクロログリオキシムが上記課題を解決することができることが分かり、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of diligent studies to solve the above problems, the present inventors have found that dichloromethane can solve the above problems, and have completed the present invention.
That is, the gist of the present invention is as follows.

[1] 銅系部材に発生した緑青を除去する、或いは緑青の発生を防止する緑青処理剤であって、ジクロログリオキシムを含むことを特徴とする緑青処理剤。 [1] A patina treatment agent that removes patina generated in a copper-based member or prevents the generation of patina, and is characterized by containing dichloromethane.

[2] [1]において、ジクロログリオキシムとアゾール系銅用防食剤とを含むことを特徴とする緑青処理剤。 [2] The patina treatment agent according to [1], which contains dichloromethane and an azole-based copper anticorrosive agent.

[3] 銅系部材に発生した緑青を除去する、或いは緑青の発生を防止する緑青処理方法であって、ジクロログリオキシムを用いることを特徴とする緑青処理方法。 [3] A patina treatment method for removing patina generated on a copper-based member or preventing patina generation, which comprises using dichloromethane.

[4] [3]において、ジクロログリオキシムとアゾール系銅用防食剤を用いることを特徴とする緑青処理方法。 [4] The patina treatment method according to [3], which comprises using dichloromethane and an azole-based copper anticorrosive agent.

[5] [3]又は[4]において、水系に接する銅系部材の緑青処理方法であって、該水系にジクロログリオキシムを10〜100mg/Lの濃度となるように添加することを特徴とする緑青処理方法。 [5] The method for treating copper-based members in contact with an aqueous system according to [3] or [4], which comprises adding dichloromethane to the aqueous system at a concentration of 10 to 100 mg / L. Patina processing method.

[6] [5]において、前記水系に更にアゾール系銅用防食剤を0.1〜10mg/Lの濃度となるように添加することを特徴とする緑青処理方法。 [6] The patina treatment method according to [5], wherein an azole-based anticorrosive agent for copper is further added to the water system so as to have a concentration of 0.1 to 10 mg / L.

[7] 銅系部材が接する水系のスライムコントロール、殺菌及び防食のための水処理剤であって、ジクロログリオキシムを含むことを特徴とする水処理剤。 [7] A water treatment agent for water-based slime control, sterilization, and anticorrosion that a copper-based member comes into contact with, which contains dichloroglycime.

[8] 銅系部材が接する水系のスライムコントロール、殺菌及び防食を行う水処理方法であって、該水系にジクロログリオキシムを添加することを特徴とする水処理方法。 [8] A water treatment method for performing slime control, sterilization, and anticorrosion of an aqueous system in contact with a copper-based member, which comprises adding dichloroglycime to the aqueous system.

[9] [8]において、該水系にジクロログリオキシムを1〜100mg/Lの濃度となるように添加することを特徴とする水処理方法。 [9] The water treatment method according to [8], which comprises adding dichloromethane to the water system at a concentration of 1 to 100 mg / L.

本発明の緑青処理剤及び緑青処理方法によれば、ジクロログリオキシムの一剤で銅系部材に発生した緑青を、銅系部材の母材に悪影響を及ぼすことなく効果的に除去して孔食を抑制することができ、また、除去した緑青の再付着を防止すると共に新たな緑青の発生を防止することができる。 According to the patina treatment agent and the patina treatment method of the present invention, the patina generated in the copper-based member by one agent of dichloroglycime is effectively removed without adversely affecting the base material of the copper-based member and pitting corrosion. It is possible to prevent the reattachment of the removed patina and prevent the generation of new patina.

また、本発明の水処理剤及び水処理方法によれば、以下のような効果が達成される。
1) 銅系部材を防食し、鉄系部材の腐食を促進しない濃度範囲において、広範な細菌やカビに対して高い殺菌、殺カビ効果を示す。
2) レジオネラに対して低濃度で高い即効性を示す。
3) 分解速度が速く、後段処理に悪影響を及ぼさない。
Further, according to the water treatment agent and the water treatment method of the present invention, the following effects are achieved.
1) It exhibits high bactericidal and mold-killing effects against a wide range of bacteria and molds in a concentration range that protects copper-based members and does not promote corrosion of iron-based members.
2) Shows high immediate effect at low concentration on Legionella.
3) The decomposition rate is high and does not adversely affect the post-stage processing.

実験例II−1の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-1. 実験例II−2の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-2. 実験例II−3の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-3. 実験例II−4の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-4. 実験例II−5の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-5. 実験例II−6の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-6. 実験例II−7の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-7. 実験例II−8の結果を示すグラフである。It is a graph which shows the result of Experimental Example II-8. 実験例IIIの結果を示すグラフである。It is a graph which shows the result of Experimental Example III.

以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.

[適用水系]
本発明の緑青処理剤及び緑青処理方法、並びに水処理剤及び水処理方法が適用される水系は、この水系に接して銅系部材が存在する水系であればよく、特に制限はないが、冷却水系、ボイラ水系、スクラバー水系、紙パルプ水系、膜処理水系などが挙げられる。
これらのうち、本発明は特に、滞留時間が短い系において、速効性と、分解性とを両立することができることから、スクラバー水系に有効に適用される。
[Applicable water system]
The water system to which the green-blue treatment agent and the green-blue treatment method of the present invention and the water treatment agent and the water treatment method are applied may be any water system in which a copper-based member is present in contact with the water system, and is not particularly limited, but cooling. Examples include water systems, boiler water systems, scrubber water systems, paper pulp water systems, and film-treated water systems.
Of these, the present invention is particularly effectively applied to scrubber water systems because it can achieve both fast-acting properties and degradability in a system having a short residence time.

[緑青処理剤・緑青処理方法]
本発明の緑青処理剤及び緑青処理方法は、ジクロログリオキシムを用いることを特徴とする。
[Patina treatment agent / patina treatment method]
The patina treatment agent and the patina treatment method of the present invention are characterized by using dichloromethane.

本発明の緑青処理剤及び緑青処理方法では、ジクロログリオキシムと共にアゾール系銅用防食剤を併用してもよく、アゾール系銅用防食剤の併用でより一層優れた緑青除去効果ないしは緑青発生防止効果を得ることができる。 In the patina treatment agent and the patina treatment method of the present invention, an azole-based copper anticorrosive agent may be used in combination with dichloroglioxime, and the combined use of the azole-based copper anticorrosive agent has a more excellent patina removing effect or patina generation prevention effect. Can be obtained.

この場合、ジクロログリオキシムと併用するアゾール系銅用防食剤としては、ベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾール、アミノトリアゾールなどを挙げることができ、これらは1種を単独で用いてもよく、2種以上を併用してもよい。 In this case, examples of the azole-based copper anticorrosive agent used in combination with dichloroglycime include benzotriazole, tolyltriazole, mercaptobenzothiazole, aminotriazole and the like, and one of these may be used alone or 2 Seeds or more may be used together.

水系へのジクロログリオキシムの添加濃度としては、水系の水質、アゾール系銅用防食剤の併用の有無などによっても異なるが、10〜100mg/L、特に20〜60mg/L程度とすることが好ましい。ジクロログリオキシムの添加濃度が少な過ぎるとジクロログリオキシムを用いたことによる十分な緑青の除去・発生防止効果を得ることができず、多過ぎても、効果は頭打ちとなる傾向があり、また溶媒である有機化合物由来のTOC、COD負荷が後段の排水処理で増加する点においても好ましくない。 The concentration of dichloromethane added to the water system varies depending on the water quality of the water system and the presence or absence of the azole copper anticorrosive agent in combination, but it is preferably 10 to 100 mg / L, particularly about 20 to 60 mg / L. .. If the concentration of dichloromethane added is too small, the effect of removing and preventing the occurrence of patina due to the use of dichloromethane cannot be obtained, and if the concentration is too large, the effect tends to level off, and the solvent tends to level off. It is also not preferable in that the TOC and COD loads derived from the organic compound are increased in the wastewater treatment in the subsequent stage.

アゾール系銅用防食剤を併用する場合、アゾール系銅用防食剤の添加濃度としては、0.1〜10mg/L、特に1〜2mg/Lの範囲とすることが、薬剤使用量を抑えた上で、良好な添加効果を得る上で好ましい。 When the azole-based copper anticorrosive agent is used in combination, the concentration of the azole-based copper anticorrosive agent added is in the range of 0.1 to 10 mg / L, particularly 1 to 2 mg / L, thereby suppressing the amount of the drug used. Above, it is preferable to obtain a good addition effect.

本発明により緑青処理を行うには、本発明の緑青処理剤を処理対象の水系に添加し、一定時間循環させる。このとき、ジクロログリオキシムの接触時間は30〜60分で十分であるが、それより長時間でもよい。 To perform the patina treatment according to the present invention, the patina treatment agent of the present invention is added to the water system to be treated and circulated for a certain period of time. At this time, the contact time of dichloromethane is 30 to 60 minutes, but it may be longer than that.

処理対象循環水系にジクロログリオキシムを添加する際、新たに循環水を調製してもよいし、しなくてもよい。また、循環水系を停止して添加し、その後循環を再開してもよいし、稼働中の循環水系に添加してもよい。また、連続的に添加してもよく、間欠的に添加してもよい。後述の水処理剤及び水処理方法についても同様である。 When adding dichloromethane to the circulating water system to be treated, circulating water may or may not be newly prepared. Further, the circulating water system may be stopped and added, and then the circulation may be restarted, or the circulating water system may be added to the operating circulating water system. Further, it may be added continuously or intermittently. The same applies to the water treatment agent and the water treatment method described later.

ジクロログリオキシムは、処理対象水質の水質に影響を受けず、純水から水道水レベル、それらが濃縮された高塩類濃度の水系のいずれの水系でも効果を発揮する。また、一般的な防食、スケール分散剤の存在は、ジクロログリオキシムの効果を妨げるものではないため、必要に応じてこれらを併用してもよい。更には、腐食性イオンの存在もジクロログリオキシムの効果を妨げるものではないことから、腐食性イオンが存在する水系に対しても、本発明の緑青処理剤は有効である。 Dichloroglycime is not affected by the water quality of the water to be treated, and is effective in any water system from pure water to tap water level and high salinity water system in which they are concentrated. Moreover, since the presence of a general anticorrosion and scale dispersant does not interfere with the effect of dichloromethane, these may be used in combination as necessary. Furthermore, since the presence of corrosive ions does not interfere with the effect of dichloroglycime, the patina treatment agent of the present invention is also effective for water systems in which corrosive ions are present.

また、ジクロログリオキシムは銅に対して防食能を有するため、母材への悪影響が少ない上に、ジクロログリオキシムは分解性もよく、効果発揮後は液中で速やかに分解するので、ブロー水を下流の排水処理へ送給しても排水処理に悪影響を及ぼすことがないという利点もある。 In addition, since dichloromethane has anticorrosion ability against copper, it has little adverse effect on the base material, and dichloromethane has good degradability, and after the effect is exhibited, it decomposes quickly in the liquid, so blow water. There is also an advantage that the wastewater treatment is not adversely affected even if the wastewater is sent to the downstream wastewater treatment.

アゾール系銅用防食剤を併用する場合、ジクロログリオキシムとアゾール系銅用防食剤は、別々に添加してもでもよく、同時に添加してもでもよい。また、一剤に配合されたものでもよい。 When the azole-based copper anticorrosive agent is used in combination, the dichloromethane and the azole-based copper anticorrosive agent may be added separately or at the same time. Further, it may be blended in one agent.

[水処理剤・水処理方法]
本発明の水処理剤及び水処理方法は、ジクロログリオキシムを用いることを特徴とする。
[Water treatment agent / water treatment method]
The water treatment agent and the water treatment method of the present invention are characterized by using dichloromethane.

水系へのジクロログリオキシムの添加濃度としては、水系の水質などによっても異なるが、1〜100mg/L、特に1〜5mg/L程度とすることが好ましい。ジクロログリオキシムの添加濃度が少な過ぎるとジクロログリオキシムを用いたことによる十分なスライムコントロール、殺菌及び防食効果を得ることができず、多過ぎても、効果は頭打ちとなる傾向があり、また溶媒由来の有機化合物が対象系内の生物の基質となったり、後段の排水処理のTOC、COD負荷を上げる点においても好ましくない。また、10mg/L以下の低濃度添加で十分な効果が得られる本発明の利点を有効に得る上でも高濃度添加は好ましくない。 The concentration of the dichloromethane added to the water system varies depending on the water quality of the water system and the like, but is preferably about 1 to 100 mg / L, particularly 1 to 5 mg / L. If the concentration of dichloromethane added is too low, sufficient slime control, bactericidal and anticorrosive effects due to the use of dichloromethane cannot be obtained, and if the concentration is too high, the effect tends to level off, and the solvent tends to level off. It is also not preferable in that the derived organic compound serves as a substrate for the organism in the target system and increases the TOC and COD loads of the wastewater treatment in the subsequent stage. Further, in order to effectively obtain the advantage of the present invention that a sufficient effect can be obtained by adding a low concentration of 10 mg / L or less, a high concentration addition is not preferable.

本発明の水処理剤の添加は連続添加であってもよく、間欠添加であってもよい。前述の緑青処理剤及び緑青処理方法の項で説明したように、ジクロログリオキシムは、処理対象水系の水質(純度や塩類濃度)、他の薬剤の存在の有無、腐食性イオンの存在の有無にかかわらず、その効果を有効に発揮させることができる。 The water treatment agent of the present invention may be added continuously or intermittently. As explained in the section of the patina treatment agent and the patina treatment method described above, dichloroglycime depends on the water quality (purity and salt concentration) of the water system to be treated, the presence or absence of other chemicals, and the presence or absence of corrosive ions. Regardless, the effect can be effectively exerted.

ジクロログリオキシムは、アゾール系銅用防食剤と併用してもよく、従って、本発明の水処理剤はジクロログリオキシムとアゾール系銅用防食剤を含むものであってもよく、アゾール系銅用防食剤の併用でより一層優れた銅の防食効果を得ることができる。 The dichloroglycime may be used in combination with an anticorrosive agent for azole-based copper. Therefore, the water treatment agent of the present invention may contain dichloroglioxime and an anticorrosive agent for azole-based copper, and is used for azole-based copper. An even better anticorrosive effect on copper can be obtained by using an anticorrosive agent in combination.

この場合、ジクロログリオキシムと併用するアゾール系銅用防食剤としては、ベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾール、アミノトリアゾールなどを挙げることができる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 In this case, examples of the azole-based copper anticorrosive agent used in combination with dichloroglycime include benzotriazole, tolyltriazole, mercaptobenzothiazole, and aminotriazole. One of these may be used alone, or two or more thereof may be used in combination.

アゾール系銅用防食剤を併用する場合、アゾール系銅用防食剤の添加濃度としては、0.1〜10mg/L、特に1〜2mg/Lの範囲とすることが、薬剤使用量を抑えた上で、良好な添加効果を得る上で好ましい。 When the azole-based copper anticorrosive agent is used in combination, the concentration of the azole-based copper anticorrosive agent added is in the range of 0.1 to 10 mg / L, particularly 1 to 2 mg / L, thereby suppressing the amount of the drug used. Above, it is preferable to obtain a good addition effect.

アゾール系銅用防食剤を併用する場合、ジクロログリオキシムとアゾール系銅用防食剤は、別々に添加してもでもよく、同時に添加してもでもよい。また、一剤に配合されたものでもよい。 When the azole-based copper anticorrosive agent is used in combination, the dichloromethane and the azole-based copper anticorrosive agent may be added separately or at the same time. Further, it may be blended in one agent.

前述の通り、ジクロログリオキシムは分解性がよく、水処理後に残留したジクロログリオキシムは速やかに分解するため後段処理に悪影響を及ぼすことがなく、特に生物処理に対しても悪影響を及ぼしにくいため、本発明の水処理剤が添加された水は、生物処理等で問題なく排水処理することができる。 As mentioned above, dichloroglycime has good degradability, and dichloroglycime remaining after water treatment decomposes rapidly, so that it does not adversely affect the subsequent treatment, and in particular, it does not have an adverse effect on biological treatment. The water to which the water treatment agent of the present invention is added can be treated as wastewater without any problem by biological treatment or the like.

本発明の水処理方法では、更に、ジクロログリオキシムと共に、他の薬剤、例えばスケール分散剤、他のスライムコントロール剤や殺菌剤、防食剤を併用添加してもよく、従って、本発明の水処理剤は、ジクロログリオキシムと共に、これらの他の薬剤を含むものであってもよい。 In the water treatment method of the present invention, other agents such as scale dispersant, other slime control agent, bactericide, and anticorrosive agent may be further added together with dichloroglycime, and therefore, the water treatment of the present invention. The agent may include these other agents along with the dichloroglycime.

以下に実施例及び比較例に代わる実験例を挙げて、本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Experimental Examples in place of Examples and Comparative Examples.

なお、以下の実験例において用いた野木町水の脱塩素処理水の水質は下記表1に示す通りである。 The water quality of the dechlorinated water of Nogi Town water used in the following experimental examples is as shown in Table 1 below.

Figure 0006915235
Figure 0006915235

また、この野木町水の脱塩素処理水に水質調整のために添加した塩化物イオン源としてはNaClを用い、硫酸イオン源としてはNaSOを用いた。 In addition, NaCl was used as the chloride ion source added to the dechlorinated treated water of Nogi Town water for water quality adjustment, and Na 2 SO 4 was used as the sulfate ion source.

[実験例I:緑青処理]
<実験例I−1>
純水中に硫酸銅(青緑色)粉末を添加し、表2に示す薬剤を表2に示す濃度となるように添加して(No.4では薬剤添加せず。)、緑青除去能を評価する実験を行った。
緑青除去能は、薬剤添加後の各試験液の色と硫酸銅粉末沈渣の褐変の有無を目視観察して評価した。結果を表2に示す。
[Experimental Example I: Patina treatment]
<Experimental Example I-1>
Copper sulfate (blue-green) powder was added to pure water, and the chemicals shown in Table 2 were added to the concentrations shown in Table 2 (no chemicals were added in No. 4) to evaluate the ability to remove green-blue. An experiment was conducted.
The patina removing ability was evaluated by visually observing the color of each test solution after the addition of the chemical and the presence or absence of browning of the copper sulfate powder sediment. The results are shown in Table 2.

Figure 0006915235
Figure 0006915235

表2より明らかなように、薬剤無添加の場合とカルボヒドラジド添加の場合には沈渣の褐変は起こらなかったが、ジクロログリオキシムを添加した場合には、褐変が認められ、緑青を改質して除去できることが確認された。 As is clear from Table 2, browning of the sediment did not occur when no drug was added and when carbhydrazide was added, but when dichloroglycime was added, browning was observed and the patina was modified. It was confirmed that it can be removed.

<実験例I−2>
(緑青テストピースの作成)
脱脂した銅テストピース(30mm×50mm×1mm)にカッターで傷を入れた後、野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ1000mg/L添加すると共に、ベンゾトリアゾール0.5mg/Lと、NaClOを残留塩素濃度として2mg/L as Cl添加した液1Lに入れて、30℃で、150r.p.mの撹拌下に7日間浸漬することで銅テストピースに緑青を発生させて緑青テストピースを作成した。
<Experimental Example I-2>
(Creation of patina test piece)
After scratching the degreased copper test piece (30 mm x 50 mm x 1 mm) with a cutter, add 1000 mg / L of chloride ion and sulfate ion to the dechlorinated water of Nogi Town water, and 0.5 mg of benzotriazole. / L and NaClO were placed in 1 L of a solution supplemented with 2 mg / La as Cl 2 as a residual chlorine concentration, and at 30 ° C., 150 r. p. A patina test piece was prepared by generating patina in the copper test piece by immersing the copper test piece under stirring for 7 days.

(緑青除去試験)
腐食しやすい環境における効果を評価するために、野木町水の脱塩素処理水に塩化物イオンと硫酸イオンを各々500mg/L添加した試験液300mg/Lに、上記の緑青テストピースを浸漬し、室温でスターラーによりゆるやかに撹拌した。ここへ、ジクロログリオキシム50mg/Lを添加し、目視により、緑青テストピースと試験液の変化を経時観察した。結果を表3に示す。
(Patina removal test)
In order to evaluate the effect in a corrosive environment, the above patina test piece was immersed in 300 mg / L of a test solution prepared by adding 500 mg / L of chloride ions and 500 mg / L of sulfate ions to dechlorinated treated water of Nogi Town water. The mixture was gently stirred with a stirrer at room temperature. 50 mg / L of dichloromethane was added thereto, and changes in the patina test piece and the test solution were visually observed over time. The results are shown in Table 3.

Figure 0006915235
Figure 0006915235

表3より、ジクロログリオキシムは、銅表面に生じた緑青を一剤のみで改質して除去可能であることが分かる。 From Table 3, it can be seen that dichloromethane can be removed by modifying the patina generated on the copper surface with only one agent.

<実験例I−3>
(緑青テストピースの作成)
脱脂した銅テストピース(30mm×50mm×1mm)にカッターで傷を入れた後、野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ1000mg/L添加すると共に、NaClOを残留塩素濃度として10mg/L as Cl添加した液1Lに入れて、30℃で、150r.p.mの撹拌下3日間浸漬することで、銅テストピースに緑青を発生させて緑青テストピースを作成した。
<Experimental Example I-3>
(Creation of patina test piece)
After scratching the degreased copper test piece (30 mm x 50 mm x 1 mm) with a cutter, add 1000 mg / L of chloride ion and sulfate ion to the dechlorinated water of Nogi Town water, respectively, and add NaClO to the residual chlorine concentration. In 1 L of a solution supplemented with 10 mg / Las Cl 2 , at 30 ° C., 150 r. p. By immersing the copper test piece for 3 days with stirring of m, patina was generated in the copper test piece to prepare a patina test piece.

(緑青除去試験)
実験例I−2と同様に腐食しやすい環境における効果を評価するために、野木町水の脱塩素処理水に塩化物イオンと硫酸イオンを各々500mg/L添加した試験液300mg/Lに、上記の緑青テストピースを浸漬し、室温でスターラーによりゆるやかに撹拌した。ここへ、ジクロログリオキシム及び/又はベンゾトリアゾールを表4に示す濃度となるように添加して(No.5では薬剤添加せず。)、撹拌下に60分間処理した後、緑青テストピースの色変化を目視観察すると共に試験液の銅濃度を原子吸光分析により測定し、結果を表4に示した。
(Patina removal test)
In order to evaluate the effect in a corrosive environment as in Experimental Example I-2, the above was added to 300 mg / L of the test solution in which 500 mg / L of chloride ion and 500 mg / L of sulfate ion were added to the dechlorinated water of Nogi Town water. The patina test piece was soaked and gently stirred with a stirrer at room temperature. To this, dichloroglycime and / or benzotriazole was added so as to have the concentration shown in Table 4 (no drug was added in No. 5), and the mixture was treated with stirring for 60 minutes, and then the color of the patina test piece. The changes were visually observed and the copper concentration of the test solution was measured by atomic absorption spectrometry, and the results are shown in Table 4.

Figure 0006915235
Figure 0006915235

表4より次のことが分かる。
1)ジクロログリオキシムを添加しない系では緑青の褐変は認められず、緑青の改質は起こらないと考えられた(No.5,6)。
2)ジクロログリオキシムを50mg/L添加すると、緑青部分は茶色〜褐色に、母材部分は橙色を帯びた茶色(赤褐色)になる(No.1〜4)。
3)ベンゾトリアゾールが共存すると緑青部分も母材とほぼ同じ色になるので、より均質化していると考えられる(No.2〜4)。
4)ベンゾトリアゾールを添加してもジクロログリオキシムを添加しないと液中の銅濃度の上昇はおこらず、むしろ低下傾向が認められた(No.6)。
以上より、ジクロログリオキシムとアゾール系銅用防食剤の併用により、緑青除去効果に対する相乗効果が認められる。また、銅の溶出はアゾール系銅用防食剤無添加に比べて抑制傾向にあり、その点からもアゾール系銅用防食剤の併用が有効であることが分かる。
The following can be seen from Table 4.
1) No browning of patina was observed in the system to which dichloroglycime was not added, and it was considered that patina was not modified (Nos. 5 and 6).
2) When 50 mg / L of dichloromethane is added, the patina portion becomes brown to brown, and the base metal portion becomes orangeish brown (reddish brown) (Nos. 1 to 4).
3) When benzotriazole coexists, the patina part also becomes almost the same color as the base material, so it is considered that it is more homogenized (No. 2 to 4).
4) Even if benzotriazole was added, the copper concentration in the liquid did not increase unless dichloroglycime was added, but rather a tendency to decrease was observed (No. 6).
From the above, the synergistic effect on the patina removing effect is recognized by the combined use of dichloromethane and the anticorrosive agent for azole copper. Further, the elution of copper tends to be suppressed as compared with the case where no anticorrosive agent for azole copper is added, and from this point as well, it can be seen that the combined use of the anticorrosive agent for azole copper is effective.

[実験例II:スライムコントロール及び防食]
<実験例II−1>
野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ500mg/L添加した試験液(試験開始時pH7.0)に、ジクロログリオキシム、Cl−MIT(5−クロロ−2−メチル−4−イソチアゾリン−3−オン)、又はNaClOをその添加濃度を変えて添加した液に、脱脂した銅テストピース(30mm×50mm×1mm)(面積31cm)を投入して30℃で146r.p.mの撹拌下に7日間浸漬処理した。試験前後のテストピースの重量(mg)から、1日当たり、テストピース面積1dm当たりの腐食減量(mdd)を算出し、薬剤添加濃度と腐食減量との関係を図1(a)〜(c)に示した。なお、ジクロログリオキシムの添加濃度は、0又は5mg/LのRUN1と、0、2、4又は10mg/LのRUN2とで、それぞれ試験を行った。
[Experimental Example II: Slime control and anticorrosion]
<Experimental Example II-1>
Dichloroglycime and Cl-MIT (5-chloro-2-methyl-) were added to a test solution (pH 7.0 at the start of the test) in which 500 mg / L of chloride ion and 500 mg / L of sulfate ion were added to the dechlorinated water of Nogi Town water. 4-Isothiazolin-3-one) or NaClO was added at different concentrations, and a degreased copper test piece (30 mm × 50 mm × 1 mm) (area 31 cm 2 ) was added to the solution at 30 ° C. for 146 r. p. It was immersed in m for 7 days under stirring. From the weight (mg) of the test piece before and after the test, the corrosion weight loss (mdd) per 1 dm 2 test piece area per day was calculated, and the relationship between the chemical addition concentration and the corrosion weight loss was shown in FIGS. 1 (a) to 1 (c). It was shown to. In addition, the addition concentration of dichloromethane was 0 or 5 mg / L of RUN1 and 0, 2, 4 or 10 mg / L of RUN2, respectively.

図1より明らかなように、Cl−MITは銅に対して十分な防食性を示さず、濃度が高くなると腐食を促進する傾向があり(図1(b))、NaClOは銅の腐食を促進する(図1(c))が、ジクロログリオキシムは銅に対して防食性を示す(図1(a))ことが分かる。 As is clear from FIG. 1, Cl-MIT does not show sufficient corrosion resistance to copper and tends to promote corrosion at high concentrations (FIG. 1 (b)), and NaClO promotes copper corrosion. (FIG. 1 (c)), but it can be seen that dichloromethane exhibits anticorrosive properties against copper (FIG. 1 (a)).

<実験例II−2>
実験例II−1において、銅テストピースの代りに、同一の大きさの鉄テストピースを用い、試験液にジクロログリオキシムを添加しない場合と、ジクロログリオキシムを5mg/L添加した場合について同様に浸漬試験を行って腐食減量を求め、結果を図2に示した。
図2より、ジクロログリオキシムは鉄の腐食を促進しないことが分かる。
<Experimental Example II-2>
In Experimental Example II-1, instead of the copper test piece, an iron test piece of the same size was used, and the same applies to the case where the dichloromethane was not added to the test solution and the case where the dichloromethane was added at 5 mg / L. An immersion test was performed to determine the amount of corrosion loss, and the results are shown in FIG.
From FIG. 2, it can be seen that dichloromethane does not promote iron corrosion.

<実験例II−3>
野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ500mg/L添加した試験液(試験開始時pH7.0)に、10%ジクロログリオキシムのDEGME(ジエチレングリコールモノメチルエーテル)溶液を40mg/L(ジクロログリオキシムとして4mg/L)、又は、DEGME(ジエチレングリコールモノメチルエーテル)40mg/Lを添加し、この液にベンゾトリアゾールをそれぞれ添加濃度を変えて添加した液に、脱脂した銅テストピース(30mm×50mm×1mm)(面積31cm)を投入して30℃で150r.p.mの撹拌下に7日間浸漬処理した。試験前後のテストピースの重量から実験例II−1と同様に腐食減量を求め、ベンゾトリアゾール濃度との関係を図3に示した。
<Experimental Example II-3>
To the test solution (pH 7.0 at the start of the test) in which 500 mg / L of chloride ion and 500 mg / L of sulfate ion were added to the dechlorinated water of Nogimachi water, 40 mg / L of 10% dichloroglioxime in DEGME (diethylene glycol monomethyl ether) solution was added. L (4 mg / L as dichloroglycime) or 40 mg / L of DEGME (diethylene glycol monomethyl ether) was added, and benzotriazole was added to this solution at different concentrations, and the degreased copper test piece (30 mm) was added. × 50 mm × 1 mm) (area 31 cm 2 ) was added and 150 r. p. It was immersed in m for 7 days under stirring. Corrosion loss was determined from the weight of the test piece before and after the test in the same manner as in Experimental Example II-1, and the relationship with the benzotriazole concentration is shown in FIG.

図3より、ベンゾトリアゾールを併用するとジクロログリオキシム単独よりも銅の腐食性が低下することが分かる。
特に、ベンゾトリアゾール濃度1mg/Lでは、ベンゾトリアゾール単独よりもジクロログリオキシム併用により腐食性はより低下した。
From FIG. 3, it can be seen that the combined use of benzotriazole reduces the corrosiveness of copper as compared with dichloroglycime alone.
In particular, at a benzotriazole concentration of 1 mg / L, the corrosiveness was further reduced by the combined use of dichloroglycime as compared with benzotriazole alone.

<実験例II−4>
野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ750mg/L添加した試験液(試験開始時pH7.0)に、ジクロログリオキシム4mg/L又はNaClO2mg/L as Clを添加し、この液にベンゾトリアゾールをそれぞれ添加濃度を変えて添加した液に、脱脂した銅テストピース(30mm×50mm×1mm)(面積31cm)を投入して30℃で150r.p.mの撹拌下に7日間浸漬処理した。試験前後のテストピースの重量から実験例II−1と同様に腐食減量を求め、ベンゾトリアゾール濃度との関係を図4に示した。
<Experimental Example II-4>
Dichlorogrioxym 4 mg / L or NaClO 2 mg / Las Cl 2 was added to a test solution (pH 7.0 at the start of the test) in which 750 mg / L of chloride ion and 750 mg / L of sulfate ion were added to the dechlorinated water of Nogi Town water. , A degreased copper test piece (30 mm × 50 mm × 1 mm) (area 31 cm 2 ) was added to the solution to which benzotriazole was added at different concentrations, and 150 r. p. It was immersed in m for 7 days under stirring. Corrosion loss was determined from the weight of the test piece before and after the test in the same manner as in Experimental Example II-1, and the relationship with the benzotriazole concentration is shown in FIG.

図4より、NaClO添加系はベンゾトリアゾール濃度0.1mg/Lでは防食性が不十分であるが、ジクロログリオキシム添加系では防食性を上げることができ、NaClOで効果が不十分な範囲でも、ベンゾトリアゾールとジクロログリオキシムの併用により十分な効果が得られることが分かる。 From FIG. 4, the NaClO-added system has insufficient anticorrosion property at a benzotriazole concentration of 0.1 mg / L, but the dichloroglycime-added system can improve the anticorrosion property, and even in the range where the effect of NaClO is insufficient. It can be seen that a sufficient effect can be obtained by the combined use of benzotriazole and dichloroglycime.

<実験例II−5>
以下の通り、有機系スライムコントロール剤として腐食性のあるジブロモニトロエタノール(DBNE)を用い、これにジクロログリオキシムを添加した際の腐食低減有無を明らかにする試験を行い、結果を図5に示した。
野木町水の脱塩素処理水に塩化物イオンと硫酸イオンをそれぞれ500mg/L添加した試験液(試験開始時pH8.0)に、75%ジブロモニトロエタノールのジエチレングリコール溶液をジブロモニトロエタノールの添加濃度が10mg/Lとなるように添加すると共に、10%ジクロログリオキシムのDEGME(ジエチレングリコールモノメチルエーテル)溶液をジクロログリオキシムの添加濃度が1、2、3、5又は10mg/Lとなるように添加した後(ただし、ブランクではジクロログリオキシムを添加せず。)、脱脂した銅テストピース(30mm×50mm×1mm)(面積31cm)を投入して30℃で150r.p.mの撹拌下に7日間浸漬処理した。試験前後のテストピースの重量から実験例II−1と同様に腐食減量を求めた(添加1)。
<Experimental Example II-5>
As shown below, a test was conducted to clarify the presence or absence of corrosion reduction when dibromonitroethanol (DBNE), which is corrosive, was used as an organic slime control agent and dichloroglycime was added thereto, and the results are shown in FIG. rice field.
A diethylene glycol solution of 75% dibromonitroethanol was added to a test solution (pH 8.0 at the start of the test) in which 500 mg / L of chloride ions and 500 mg / L of sulfate ions were added to the dechlorinated water of Nogimachi water, and the concentration of dibromonitroethanol added was high. After adding to 10 mg / L and adding a DEFME (diethylene glycol monomethyl ether) solution of 10% dichloroglycime so that the addition concentration of dichloroglycime is 1, 2, 3, 5 or 10 mg / L. (However, dichloroglycime was not added to the blank.), A degreased copper test piece (30 mm × 50 mm × 1 mm) (area 31 cm 2 ) was added, and 150 r. At 30 ° C. p. It was immersed in m for 7 days under stirring. From the weight of the test piece before and after the test, the corrosion weight loss was determined in the same manner as in Experimental Example II-1 (addition 1).

別に、75%ジブロモニトロエタノールのジエチレングリコール溶液と10%ジクロログリオキシムのDEGME(ジエチレングリコールモノメチルエーテル)溶液を添加する代りに、あらかじめジブロモニトロエタノールとジクロログリオキシムをDEGMEに溶解した配合薬品を作成し、その配合薬品をジブロモニトロエタノール濃度が10mg/L、ジクロログリオキシム濃度が2.7mg/Lとなるように添加したこと以外は上記と同様に行って、銅テストピースの腐食減量を求めた(添加2)。 Separately, instead of adding a diethylene glycol solution of 75% dibromonitroethanol and a DEGME (diethylene glycol monomethyl ether) solution of 10% dichloroglycime, a compounding drug in which dibromonitroethanol and dichloroglioxime were dissolved in DEGME was prepared in advance, and the combination drug was prepared. The same procedure as above was carried out except that the compounding chemical was added so that the dibromonitroethanol concentration was 10 mg / L and the dichloroglycime concentration was 2.7 mg / L, and the corrosion reduction of the copper test piece was determined (addition 2). ).

ジクロログリオキシム添加濃度と腐食減量との関係を示す図5より、ジクロログリオキシムの添加でジブロモニトロエタノールの腐食性も低減することができることが分かる。また、その効果は、予め一剤化されたものでも、各々別々に添加する場合でも同等であることが分かる。 From FIG. 5, which shows the relationship between the concentration of dichloroglycime added and the reduction in corrosion, it can be seen that the corrosiveness of dibromonitroethanol can also be reduced by adding dichloroglycime. Further, it can be seen that the effect is the same whether it is pre-mixed or added separately.

<実験例II−6>
0.2Mリン酸緩衝液(pH7)に、菌(Pseudomonas ptida)懸濁液を添加し、30℃にて、90r.p.mで振とうし、0時間のコロニーフォミングユニット(CFU)測定後、ジクロログリオキシム、Cl−MIT又はNaClOを所定の濃度で添加し、同様の条件下で1分、30分、24時間後のCFUを計測した。
CFU計測用の培地には、ペプトンイーストエキストラクト培地を用い、30℃で培養した。
結果を図6(a),(b),(c)に示す。
<Experimental Example II-6>
A suspension of bacteria (Pseudomonas ptida) was added to 0.2 M phosphate buffer (pH 7), and at 30 ° C., 90 r. p. Shake at m, measure colony forming unit (CFU) for 0 hours, add dichloroglycime, Cl-MIT or NaClO at a predetermined concentration, and after 1 minute, 30 minutes and 24 hours under the same conditions. CFU was measured.
As a medium for CFU measurement, Peptone yeast extract medium was used and cultured at 30 ° C.
The results are shown in FIGS. 6 (a), 6 (b) and 6 (c).

図6(a)〜(c)から明らかなように、Cl−MITは即効性がなく(図6(b))、NaClOは1mg/L as Cl以上の添加で短時間で99%以上を殺菌できる(図6(c))が、NaClOは腐食の問題がある。これに対して、ジクロログリオキシムは、低濃度の添加でCl−MITよりも即効性があり、1時間以内に99%以上の殺菌性を示す(図6(a))。 As is clear from FIGS. 6 (a) to 6 (c), Cl-MIT has no immediate effect (FIG. 6 (b)), and NaClO is 99% or more in a short time by adding 1 mg / La as Cl 2 or more. Although it can be sterilized (FIG. 6 (c)), NaClO has a problem of corrosion. On the other hand, dichloromethane has a quicker effect than Cl-MIT when added at a low concentration, and exhibits 99% or more bactericidal activity within 1 hour (FIG. 6 (a)).

<実験例II−7>
以下の通り、レジオネラに対するジクロログリオキシムとCl−MITとの殺菌性の比較試験を行い、結果を図7に示した。
対象菌:Legionella pneumophyla GIFU 9246
A660 0.1を滅菌水道水で10倍希釈
評価薬剤:ジクロログリオキシム 1mg/L
Cl−MIT 1mg/L
試験方法: 対象菌をBCYEα寒天培地にて培養し、生育したコロニーを滅菌水に懸濁させて、660nm吸光度0.1の菌液を作成した。この菌液1mLを滅菌水9mLに添加して試験液とした。
試験液に評価薬剤を最終濃度1mg/Lになるよう100μL未満の容量で添加し(ブランクは無添加)、30℃で90r.p.m.で振とうした。
評価薬剤の添加直後、1時間後、24時間後に、試験液から100μLのサンプル液をそれぞれ採取し、BCYEα寒天培地に塗沫し、37℃で培養した。
3〜5日後CFUを計測し、1mL当たりに換算した。
<Experimental Example II-7>
As follows, a comparative test of the bactericidal properties of dichloromethane and Cl-MIT against Legionella was conducted, and the results are shown in FIG.
Target bacteria: Legionella pneumophylla GIFU 9246
A660 0.1 diluted 10-fold with sterile tap water Evaluation drug: Dichloroglycime 1 mg / L
Cl-MIT 1 mg / L
Test method: The target bacteria were cultured on BCYEα agar medium, and the grown colonies were suspended in sterile water to prepare a bacterial solution having a 660 nm absorbance of 0.1. 1 mL of this bacterial solution was added to 9 mL of sterilized water to prepare a test solution.
The evaluation drug was added to the test solution in a volume of less than 100 μL so as to have a final concentration of 1 mg / L (no blank was added), and 90 r. p. m. I shook it.
Immediately after the addition of the evaluation drug, 1 hour and 24 hours later, 100 μL of a sample solution was collected from the test solution, smeared on BCYEα agar medium, and cultured at 37 ° C.
After 3-5 days, CFU was measured and converted per mL.

図7より、ジクロログリオキシムは、レジオネラに対して殺菌力の即効性に優れることが分かる。 From FIG. 7, it can be seen that dichloromethane is excellent in the immediate effect of bactericidal activity against Legionella.

<実験例II−8>
0.2Mリン酸緩衝液(pH7)に胞子(Aspergillus niger)懸濁液を添加し、30℃にて、90r.p.mで振とうし、0時間のコロニーフォミングユニット(CFU)測定後、ジクロログリオキシム、Cl−MIT又はNaClOを所定の濃度で添加し、同様の条件下で1分、30分、24時間後のCFUを計測した。
CFU計測用の培地には、ポテトデキストロース培地を用い、30℃で培養した。
結果を図8(a),(b),(c)に示す。
<Experimental Example II-8>
A suspension of Aspergillus niger was added to 0.2 M phosphate buffer (pH 7), and at 30 ° C., 90 r. p. Shake at m, measure colony forming unit (CFU) for 0 hours, add dichloroglycime, Cl-MIT or NaClO at a predetermined concentration, and after 1 minute, 30 minutes and 24 hours under the same conditions. CFU was measured.
A potato dextrose medium was used as a medium for CFU measurement, and the cells were cultured at 30 ° C.
The results are shown in FIGS. 8 (a), 8 (b) and 8 (c).

図8(a)〜(c)から明らかなように、Cl−MITは即効性がなく(図8(b))、NaClOは2mg/L as Cl以上の添加で即効性を示すが、NaClOは腐食の問題がある。これに対して、ジクロログリオキシムは、4mg/Lの添加でCl−MITよりも即効性を示し、1時間以内に90%以上の防カビ性を示す(図8(a))。 As is clear from FIGS. 8 (a) to 8 (c), Cl-MIT has no immediate effect (FIG. 8 (b)), and NaClO shows an immediate effect when 2 mg / La as Cl 2 or more is added. Has a problem of corrosion. On the other hand, dichloromethane shows a quicker effect than Cl-MIT with the addition of 4 mg / L, and shows 90% or more antifungal property within 1 hour (FIG. 8 (a)).

[実験例III:ジクロログリオキシムの分解性]
以下の通り、ジクロログリオキシムを純水に溶解させ、経時的にその溶液を高速液体クロマトグラフィー(HPLC)で分析して、ジクロログリオキシムの残存量を側定し、結果を図9に示した。
マグネチックスターラーと温度計とpH計を備える1Lのビーカーに、500mLの純水を入れ激しく撹拌した。ここへジクロログリオキシム粉末0.05g(濃度100mg/Lに相当する)を一度に投入した。経時的に、反応温度とpHを測定し、一定量をサンプリングしてHPLCで分析し、ジクロログリオキシムのピーク面積を測定した。検出には紫外検出器(波長220nm)を用いた。基準となる100mg/Lのジクロログリオキシム溶液は、ジクロログリオキシムをHPLCの溶離液でメスアップして調製した。そして反応液試料と同量をHPLCで分析してジクロログリオキシムのピーク面積を測定した。
残存率(%)は、各時間毎のジクロログリオキシムのピーク面積を、ジクロログリオキシム100mg/Lの溶液のピーク面積で割った値の百分率である。
[Experimental Example III: Degradability of dichloromethane]
As shown below, dichloroglycime was dissolved in pure water, and the solution was analyzed by high performance liquid chromatography (HPLC) over time to determine the residual amount of dichloroglycime, and the results are shown in FIG. ..
500 mL of pure water was placed in a 1 L beaker equipped with a magnetic stirrer, a thermometer and a pH meter, and the mixture was vigorously stirred. 0.05 g of dichloromethane powder (corresponding to a concentration of 100 mg / L) was added thereto at one time. Over time, the reaction temperature and pH were measured, a fixed amount was sampled and analyzed by HPLC, and the peak area of dichloroglycime was measured. An ultraviolet detector (wavelength 220 nm) was used for detection. The reference 100 mg / L dichloroglioxime solution was prepared by measuring up dichloroglycime with an HPLC eluent. Then, the same amount as the reaction solution sample was analyzed by HPLC to measure the peak area of dichloromethane.
The residual rate (%) is a percentage of the value obtained by dividing the peak area of dichloromethane for each hour by the peak area of a solution of dichloromethane 100 mg / L.

図9に示されるように、ジクロログリオキシムは15分でその95%が加水分解するため、後段処理に悪影響を及ぼしにくいことが分かる。 As shown in FIG. 9, 95% of the dichloromethane is hydrolyzed in 15 minutes, so it can be seen that it is unlikely to adversely affect the subsequent treatment.

[実験例IV:ジクロログリオキシムの殺菌効果の消失]
菌液として、供試菌(Ps.putida)を滅菌水に懸濁させて、660nm吸光度0.1の菌液を調製した。この菌液1mLを0.2Mリン酢緩衝液(pH7.0)9mLに添加して試験液とした。
この試験液を30℃に加温後、ジクロログリオキシムを表5に示す濃度で添加し(No.1では添加せず。)、30℃で90r.p.mで15分間振とう後CFUの測定を行い、殺菌率を算出した。さらに同じ菌液を再添加し、15分間振とう後CFU測定を行い、殺菌率を算出した。結果を表5に示す。
[Experimental Example IV: Disappearance of bactericidal effect of dichloromethane]
As the bacterial solution, the test bacterium (Ps. putida) was suspended in sterilized water to prepare a bacterial solution having an absorbance of 0.1 at 660 nm. 1 mL of this bacterial solution was added to 9 mL of 0.2 M phosphorus vinegar buffer (pH 7.0) to prepare a test solution.
After heating this test solution to 30 ° C., dichloromethane was added at the concentration shown in Table 5 (not added in No. 1), and 90r. At 30 ° C. p. After shaking at m for 15 minutes, CFU was measured and the sterilization rate was calculated. Further, the same bacterial solution was re-added, shaken for 15 minutes, and then CFU measurement was performed to calculate the sterilization rate. The results are shown in Table 5.

Figure 0006915235
Figure 0006915235

表5より、ジクロログリオキシムは15分接触で優れた殺菌効果を発揮したが、菌を再添加すると殺菌効果は大幅に低下することが分かる。この結果から、残留ジクロログリオキシムは、後段の生物処理に悪影響を及ぼしにくいことが分かる。 From Table 5, it can be seen that dichloromethane exhibited an excellent bactericidal effect after 15 minutes of contact, but the bactericidal effect was significantly reduced when the bacteria were re-added. From this result, it can be seen that the residual dichloromethane is unlikely to adversely affect the biological treatment in the subsequent stage.

Claims (2)

水系に接する銅系部材に発生した緑青を除去する銅系部材の緑青処理方法において、ジクロログリオキシムを用いる緑青処理方法であって、該水系にジクロログリオキシムを10〜100mg/Lの濃度となるように添加することを特徴とする緑青処理方法。 In patinated processing method of a copper-based member to remove the patina generated in copper-based member in contact with the water, a patina processing method using a dichloro glyoxime, a concentration of 10-100 mg / L dichloro glyoxime in the aqueous A patina treatment method characterized by being added in such a manner. 請求項1において、前記水系に更にアゾール系銅用防食剤を0.1〜10mg/Lの濃度となるように添加することを特徴とする緑青処理方法。 The method for treating patina according to claim 1, wherein an azole-based anticorrosive agent for copper is further added to the water system so as to have a concentration of 0.1 to 10 mg / L.
JP2016125718A 2016-06-24 2016-06-24 Patina processing method Active JP6915235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125718A JP6915235B2 (en) 2016-06-24 2016-06-24 Patina processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125718A JP6915235B2 (en) 2016-06-24 2016-06-24 Patina processing method

Publications (2)

Publication Number Publication Date
JP2017226904A JP2017226904A (en) 2017-12-28
JP6915235B2 true JP6915235B2 (en) 2021-08-04

Family

ID=60890911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125718A Active JP6915235B2 (en) 2016-06-24 2016-06-24 Patina processing method

Country Status (1)

Country Link
JP (1) JP6915235B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717620B2 (en) * 1993-07-27 1998-02-18 純正化學株式会社 Method for producing organic solvent solution of dichloroglyoxime
JPH11236362A (en) * 1998-02-23 1999-08-31 Katayama Chem Works Co Ltd Production of dichloroglyoxime
JP2007255788A (en) * 2006-03-23 2007-10-04 Aquas Corp Management method for heat storage cold and hot water system
JP5842293B2 (en) * 2010-05-31 2016-01-13 ナルコジャパン合同会社 Anti-paining agent and anti-paining method

Also Published As

Publication number Publication date
JP2017226904A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
EP2173176B1 (en) Methods of and formulations for reducing and inhibiting the growth of the concentration of microbes in water-based fluids
SA516370626B1 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime Inhibition method for separation membrane
JP5141163B2 (en) Bactericidal and algae killing method
JP2003146817A (en) Antimicrobial algicidal agent composition, method for killing microbe and alga in water system and method for producing antimicrobial algicidal agent composition
KR20110129901A (en) Acidic oxidant-containing composition having aluminum corrosion-suppressing effect and use thereof
AU2011216044B2 (en) Process for preventing or mitigating biofouling
JP6691418B2 (en) Microbial inhibitor composition and method for inhibiting microorganisms
WO1991008981A2 (en) Solutions for stabilizing hydrogen peroxide containing solutions
JP5739533B2 (en) Composition of dibromomalonamide and its use as a biocide
US10174239B2 (en) Process for preventing or mitigating biofouling
JP6478455B2 (en) Water sterilization method
JP5753162B2 (en) Glutaraldehyde biocidal composition and method of use
JP5095308B2 (en) Disinfectant composition
JP6057526B2 (en) Treatment method for open circulating cooling water system
US6811747B2 (en) Corrosion inhibitor
JP5175583B2 (en) Biofilm release agent and biofilm release method
JP6915235B2 (en) Patina processing method
JP2009160505A (en) Method for controlling slime in water of water system
JP2013158670A (en) Treatment method for open-circulating cooling water system
JP4733851B2 (en) Amoeba disinfectant, amoeba control method and legionella eradication method
JP2020163354A (en) Method of cleaning aqueous water
JP2013158669A (en) Treatment method for open-circulating cooling water system
CN114557345A (en) Disinfectant and preparation method thereof
Bott The use of biocides in industry
JP2010090107A (en) Microbicidal and algicidal composition, microbicidal and algicidal method in water system, and method for producing microbicidal and algicidal composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150