JP6914548B2 - Dye-sensitized solar cells and their manufacturing methods - Google Patents

Dye-sensitized solar cells and their manufacturing methods Download PDF

Info

Publication number
JP6914548B2
JP6914548B2 JP2019182658A JP2019182658A JP6914548B2 JP 6914548 B2 JP6914548 B2 JP 6914548B2 JP 2019182658 A JP2019182658 A JP 2019182658A JP 2019182658 A JP2019182658 A JP 2019182658A JP 6914548 B2 JP6914548 B2 JP 6914548B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
cover
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019182658A
Other languages
Japanese (ja)
Other versions
JP2021061269A (en
Inventor
功二 田邊
功二 田邊
嘉一 吉川
嘉一 吉川
寛敏 渡邊
寛敏 渡邊
雄一郎 松田
雄一郎 松田
憲明 勝谷
憲明 勝谷
芳徳 久保
芳徳 久保
Original Assignee
株式会社プロセシオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロセシオ filed Critical 株式会社プロセシオ
Priority to JP2019182658A priority Critical patent/JP6914548B2/en
Publication of JP2021061269A publication Critical patent/JP2021061269A/en
Application granted granted Critical
Publication of JP6914548B2 publication Critical patent/JP6914548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、色素増感太陽電池およびその製造方法に関する。 The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same.

色素増感太陽電池(DSC)は、シリコン太陽電池に比べて、低照度で効率良く発電でき、また、低コスト、低エネルギーで生産できるので、低消費電力な独立型(スタンドアローン)の機器の電源などとして利用が始まっている。中でも、モノリシック型の色素増感太陽電池は、1枚の基板上に印刷パターンで形成でき、他の主要なW型やZ型などに比べて、コストと量産性に優れており、たとえば特許文献1で提案されている。 Compared to silicon solar cells, dye-sensitized solar cells (DSCs) can generate electricity more efficiently at low illuminance, and can be produced at low cost and with low energy, so they are stand-alone devices with low power consumption. It has begun to be used as a power source. Among them, the monolithic type dye-sensitized solar cell can be formed by a printing pattern on one substrate, and is superior in cost and mass productivity as compared with other major W type and Z type, for example, patent documents. Proposed in 1.

特開2010−15761号公報Japanese Unexamined Patent Publication No. 2010-15761

図5は、典型的な従来技術の色素増感太陽電池9のセル構造を示す断面図である。なお、この色素増感太陽電池9は、モノリシック型で、光入射側で、太陽電池の波長に対する透光性を有する平板のガラス基板91上に、少なくとも、透明電極92が形成され、その上に多孔質半導体に色素吸着された光電変換層93および多孔質絶縁層94が積層され、その上に背面電極95および触媒層96が積層され、周囲に接着性合成樹脂などによる封止材97が塗布されて、平板のカバーガラス98で封止され、内部空間内に電解液99が充填されて構成される。 FIG. 5 is a cross-sectional view showing a cell structure of a typical dye-sensitized solar cell 9 of the prior art. The dye-sensitized solar cell 9 is a monolithic type, and at least a transparent electrode 92 is formed on a flat glass substrate 91 having translucency with respect to the wavelength of the solar cell on the light incident side, and the transparent electrode 92 is formed on the flat glass substrate 91. A photoelectric conversion layer 93 and a porous insulating layer 94 dye-adsorbed on a porous semiconductor are laminated, a back electrode 95 and a catalyst layer 96 are laminated on the photoelectric conversion layer 93, and a sealing material 97 made of an adhesive synthetic resin or the like is applied around the layers. Then, it is sealed with a flat plate cover glass 98, and the internal space is filled with the electrolytic solution 99.

このように構成されるモノリシック型の色素増感太陽電池9は、電解液99に水分が侵入すると、効率劣化が進行する。そのため、封止材97による確実な封止が必要になる。一般的には、各種の封止材97による電解液99の溶媒の蒸発防止や、前記の水分の侵入防止性から、ガラス基板91とカバーガラス98との隙間H1に対して、封止幅W1のアスペクト比W1/H1は、少なくとも100倍以上が必要であった。 When water enters the electrolytic solution 99, the efficiency of the monolithic dye-sensitized solar cell 9 configured as described above progresses. Therefore, reliable sealing with the sealing material 97 is required. In general, the sealing width W1 is relative to the gap H1 between the glass substrate 91 and the cover glass 98 due to the prevention of evaporation of the solvent of the electrolytic solution 99 by the various sealing materials 97 and the invasion prevention property of the above-mentioned moisture. The aspect ratio W1 / H1 of was required to be at least 100 times or more.

ここで、光電変換層93および多孔質絶縁層94や背面電極95などは印刷で形成され、総厚は50〜70μmになる。そのため、封止幅Wは、少なくとも5〜7mmが必要になる。また、封止材97を前記の50〜70μm以上に厚く塗布することが必要なために、一般的にはディスペンサーで塗布することになるが、前記の5〜7mmもの幅を、しかも生産性を高めるために多数個取りする複数のセル分塗布しようとすると、長時間を要する。また、封止幅Wが広くなると、相対的に発電に供する面積が少なくなったり、必要な発電量を確保するためにはパネルが大きくなってしまうという問題がある。 Here, the photoelectric conversion layer 93, the porous insulating layer 94, the back electrode 95, and the like are formed by printing, and the total thickness is 50 to 70 μm. Therefore, the sealing width W needs to be at least 5 to 7 mm. Further, since it is necessary to apply the sealing material 97 thickly to the above-mentioned 50 to 70 μm or more, it is generally applied by a dispenser, but the above-mentioned width of 5 to 7 mm and productivity can be improved. It takes a long time to apply a large number of cells to increase the number of cells. Further, when the sealing width W becomes wide, there is a problem that the area used for power generation is relatively small and the panel becomes large in order to secure the required power generation amount.

本発明の目的は、封止材の幅を狭くして発電に供する面積を相対的に拡大しつつも、封止の信頼性をアップすることができるとともに、生産性の向上を実現することができる色素増感太陽電池およびその製造方法を提供することである。 An object of the present invention is to improve the reliability of sealing and improve the productivity while narrowing the width of the sealing material and relatively expanding the area to be used for power generation. It is an object of the present invention to provide a dye-sensitized solar cell capable of being produced and a method for producing the same.

本発明の色素増感太陽電池は、太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成るモノリシック型の色素増感太陽電池において、前記カバーが彫込まれることで前記内部空間を形成する凹部と、前記凹部の周縁部を前記基板との間で封止する封止材とを備え、1枚の前記基板上には複数のセルが形成され、それらのセル間および/または外周には前記封止材が塗布され、その塗布パターンのセル側および/または外周側には、前記封止材の余剰分が流入する凹溝が形成されていることを特徴とする。
In the dye-sensitized solar cell of the present invention, at least a transparent electrode layer, a porous semiconductor layer, a porous insulating layer, and a back electrode layer are sequentially laminated on a flat substrate having translucency with respect to the wavelength of the solar cell. The porous semiconductor layer is dye-adsorbed, and the cover is engraved in a monolithic dye-sensitized solar cell in which an electrolytic solution is sealed in an internal space formed between the cover and the substrate. A recess for forming the internal space and a sealing material for sealing the peripheral edge of the recess with the substrate are provided , and a plurality of cells are formed on one of the substrates, and these cells are formed. between and / or outer periphery the sealing material is applied, the cell side and / or outer peripheral side of the coating pattern, and wherein Rukoto excess of the sealing material are grooves for flowing formation do.

また、本発明の色素増感太陽電池の製造方法は、太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成るモノリシック型の色素増感太陽電池の製造方法において、前記カバーに、前記内部空間を形成する凹部を彫込む工程と、前記凹部の周縁部に封止材を形成する工程と、前記封止材を固化させて前記カバーと基板とを接合する工程とを含み、1枚の前記基板上には複数のセルが形成され、それらのセル間および/または外周には前記封止材が塗布され、その塗布パターンのセル側および/または外周側に、前記封止材の余剰分が流入するための凹溝を形成する工程をさらに備えることを特徴とする。
Further, in the method for manufacturing a dye-sensitized solar cell of the present invention, at least a transparent electrode layer, a porous semiconductor layer, a porous insulating layer and a back electrode layer are formed on a flat substrate having transparency with respect to the wavelength of the solar cell. In a method for manufacturing a monolithic dye-sensitized solar cell, which is sequentially laminated, the porous semiconductor layer is dye-adsorbed, and an electrolytic solution is sealed in an internal space formed between the cover and the substrate. , A step of engraving a recess forming the internal space in the cover, a step of forming a sealing material on the peripheral edge of the recess, and a step of solidifying the sealing material and joining the cover and the substrate. look including bets, a plurality of cells are formed on one of said substrate, between those cells and / or outer periphery the sealing material is applied to the cell side and / or outer peripheral side of the application pattern It is characterized by further comprising a step of forming a concave groove for the excess portion of the sealing material to flow in.

上記の構成によれば、光入射側となる太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成る色素増感太陽電池において、前記内部空間の形成を、従来の平板の一対の基板と、周縁部に形成する封止材の壁とによって形成するのではなく、カバーの側を彫込んで形成した凹部で実現する。 According to the above configuration, at least a transparent electrode layer, a porous semiconductor layer, a porous insulating layer, and a back electrode layer are sequentially laminated on a flat substrate having transparency with respect to the wavelength of the solar cell on the light incident side. In a dye-sensitized solar cell in which the porous semiconductor layer is dye-adsorbed and an electrolytic solution is sealed in an internal space formed between the cover and the substrate, the formation of the internal space has been conventionally performed. It is realized by a recess formed by engraving the side of the cover, instead of being formed by a pair of flat plates and a wall of a sealing material formed on the peripheral edge.

詳しくは、平面基板上に、少なくとも前記透明電極層、色素吸着された多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されるモノリシック型の色素増感太陽電池で、それらのパターンが形成されることのないカバーの側で、それらのパターンに対応する部分を、それらの合計膜厚以上の深さに、サンドブラストやエッチングなどで彫込んで、前記凹部を形成する。そして、基板とカバーとの周縁部を、封止材で接合して、前記凹部による内部空間を気密に封止する。 Specifically, it is a monolithic dye-sensitized solar cell in which at least the transparent electrode layer, the porous semiconductor layer on which the dye is adsorbed, the porous insulating layer, and the back electrode layer are sequentially laminated on a flat substrate, and the patterns thereof are formed. On the side of the cover that is not formed, the portions corresponding to those patterns are engraved to a depth equal to or more than the total thickness of them by sandblasting, etching, or the like to form the recesses. Then, the peripheral edge portion between the substrate and the cover is joined with a sealing material to airtightly seal the internal space formed by the recess.

したがって、前記内部空間の高さ、すなわち膜厚を、カバーの彫込み深さで確保するので、封止材の厚みを極めて薄くすることができる。これによって、封止材の幅も狭くすることができ、狭額縁化して、基板からの太陽電池パネルの取れ数を増やしたり、同じ基板面積当りの発電量を増やしたりすることができる。さらに、発電効率を上げるために、多孔質半導体層上にさらに多孔質光反射層などを形成するなど、印刷層の膜厚がさらに厚くなっても、それに合わせてカバーの凹部を彫込めばよい。また、封止材は、狭い幅で、薄く塗布すればよく、特に太陽電池セルを多面取り取り生産した場合、ボトルネックとなる封止材の塗布を、従来のディスペンスから、スクリーン印刷へ工法転換することができ、封止の信頼性アップとともに、大幅な生産性の向上を実現することができる。 Therefore, since the height of the internal space, that is, the film thickness is secured by the engraving depth of the cover, the thickness of the sealing material can be made extremely thin. As a result, the width of the encapsulant can be narrowed, the frame can be narrowed, the number of solar cell panels taken from the substrate can be increased, and the amount of power generation per the same substrate area can be increased. Further, in order to increase the power generation efficiency, even if the film thickness of the printing layer becomes thicker, such as forming a porous light reflecting layer on the porous semiconductor layer, the concave portion of the cover may be engraved accordingly. .. In addition, the encapsulant may be applied thinly with a narrow width. Especially when the solar cell is multi-chamfered and produced, the coating of the encapsulant, which becomes a bottleneck, is changed from the conventional dispense to screen printing. It is possible to improve the reliability of sealing and to realize a significant improvement in productivity.

また、相互に直列または並列に接続されたり、或いは同時に大量で生産できるように、1枚の基板上に複数のセルが形成される色素増感太陽電池のパネルにおいて、そのパネルのセル間および/または外周を、さらに封止材で封止するにあたって、その封止材の塗布パターンのセル側および/または外周側に凹溝を形成しておく。
Also , in a panel of a dye-sensitized solar cell in which a plurality of cells are formed on one substrate so that they can be connected in series or in parallel with each other or can be mass-produced at the same time, the cells of the panel and / or an outer periphery, when further sealed with a sealing material, previously formed a concave groove on the cell side and / or outer peripheral side of the coating pattern of the sealing material.

これによって、基板とカバーとを圧着させた際、余剰となった封止材は、この凹溝に流れ込み、該凹溝より内側に滲出しないので、不所望にセル内に封止材が滲出することを未然に防止することができる。さらに、封止材は薄膜化するので、内部応力が小さく、剥離強度が向上する。 As a result, when the substrate and the cover are crimped together, the excess encapsulant flows into the concave groove and does not exude to the inside of the concave groove, so that the encapsulant undesirably exudes into the cell. This can be prevented. Further, since the sealing material is thinned, the internal stress is small and the peel strength is improved.

また、本発明の色素増感太陽電池では、前記複数のセルは相互に切離して用いられ、前記凹溝部分には、カバーの外側からブレイクラインが形成されていることを特徴とする。 Further, in the dye-sensitized solar cell of the present invention, the plurality of cells are separated from each other and used, and a break line is formed in the concave groove portion from the outside of the cover.

さらにまた、本発明の色素増感太陽電池の製造方法では、前記複数のセルは相互に切離して用いられ、前記凹溝部分には、前記カバーの外側から、ブレイクラインを形成する工程をさらに備えることを特徴とする。 Furthermore, in the method for manufacturing a dye-sensitized solar cell of the present invention, the plurality of cells are separated from each other and used, and the recessed groove portion further includes a step of forming a break line from the outside of the cover. It is characterized by that.

上記の構成によれば、1枚の基板上に複数のセルが形成されて、セル間および/または外周に、余剰分の封止材が流れ込む凹溝を形成しておく場合に、カバーの反対側の面からは、ブレイクラインを形成しておく。 According to the above configuration, when a plurality of cells are formed on one substrate and a concave groove into which excess sealing material flows is formed between the cells and / or on the outer periphery, the opposite of the cover. A break line is formed from the side surface.

したがって、このブレイクラインと凹溝とによる薄肉部分を利用して、容易かつ確実に、個別のセルの切離しを行うことができる。また、ブレイクラインからセルを切離す際の衝撃に対しては、凹溝に流れ込んだ封止材の厚みのために、剥離などを防止することができる。 Therefore, it is possible to easily and surely separate the individual cells by utilizing the thin portion formed by the break line and the concave groove. Further, against an impact when the cell is separated from the break line, peeling or the like can be prevented due to the thickness of the sealing material that has flowed into the concave groove.

また、本発明の色素増感太陽電池では、前記セル間および/または外周における前記封止材として、ガラスフリットが用いられることを特徴とする。 Further, the dye-sensitized solar cell of the present invention is characterized in that a glass frit is used as the sealing material between the cells and / or on the outer periphery.

上記の構成によれば、ガラスカバーの封止接着部に、予めガラスフリットペーストをスクリーン印刷等で印刷形成しておき、このガラスカバーをガラス基板に貼合わせて、レーザ光を照射して、あるいは全体を300〜450℃に昇温して、前記ガラスフリットを溶融させて融着させることで、硬度が高くなり、強固な接着強度を得ることができる。これによって、完全な電解液溶媒飛散防止や水分封止の効果を得ることができるとともに、ブレイクも確実に行うことができる。 According to the above configuration, a glass frit paste is printed and formed in advance on the sealing and bonding portion of the glass cover by screen printing or the like, and this glass cover is attached to a glass substrate and irradiated with laser light, or By raising the temperature of the whole to 300 to 450 ° C. to melt and fuse the glass frit, the hardness is increased and strong adhesive strength can be obtained. As a result, it is possible to obtain the effects of completely preventing the electrolyte solvent from scattering and sealing the moisture, and it is also possible to reliably break.

この点、従来は、ガラス基板とカバーガラスとの間は、前述のように50〜70μmの隙間があるために、ガラスフリットペーストの塗布もスクリーン印刷で何回も重ね印刷したり、ディスペンサーで時間をかけて塗布することが必要であり、さらに昇温してガラスフリットを溶融させても、隙間が広いために気泡が入り易かったりして、良好な封止は困難であった。 In this regard, conventionally, since there is a gap of 50 to 70 μm between the glass substrate and the cover glass as described above, the application of the glass frit paste can be overprinted many times by screen printing, or the time required by the dispenser. Even if the temperature of the glass was further increased to melt the glass frit, air bubbles could easily enter due to the wide gap, and good sealing was difficult.

本発明の色素増感太陽電池およびその製造方法は、以上のように、光入射側となる太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成るモノリシック型の色素増感太陽電池において、前記内部空間の形成を、従来の平板の一対の基板と、周縁部に形成する封止材の壁とによって形成するのではなく、カバーの側を彫込んで形成した凹部で実現する。 As described above, the dye-sensitized solar cell of the present invention and the method for manufacturing the same include at least a transparent electrode layer and a porous semiconductor layer on a flat substrate having translucency with respect to the wavelength of the solar cell on the light incident side. A monolithic type in which a porous insulating layer and a back electrode layer are sequentially laminated, the porous semiconductor layer is dye-adsorbed, and an electrolytic solution is sealed in an internal space formed between the cover and the substrate. In the dye-sensitized solar cell, the formation of the internal space is not formed by a pair of conventional flat plate substrates and a wall of a sealing material formed at the peripheral portion, but is formed by engraving the side of the cover. Realized in the recess.

それゆえ、前記内部空間の高さ、すなわち各層の合計膜厚を、カバーの彫込み深さで確保するので、封止材の厚みを極めて薄くすることができる。これによって、封止材の幅も狭くすることができ、狭額縁化して、基板からの太陽電池パネルの取れ数を増やしたり、同じ基板面積当りの発電量を増やしたりすることができる。さらに、発電効率を上げるために、多孔質半導体層上にさらに多孔質光反射層などを形成するなど、印刷層の膜厚がさらに厚くなっても、それに合わせてカバーの凹部を彫込めばよい。また、封止材は、狭い幅で、薄く塗布すればよく、特に太陽電池セルを多面取り取り生産した場合、ボトルネックとなる封止材の塗布を、従来のディスペンスから、スクリーン印刷へ工法転換することができ、封止の信頼性アップとともに、大幅な生産性の向上を実現することができる。 Therefore, since the height of the internal space, that is, the total film thickness of each layer is secured by the engraving depth of the cover, the thickness of the sealing material can be made extremely thin. As a result, the width of the encapsulant can be narrowed, the frame can be narrowed, the number of solar cell panels taken from the substrate can be increased, and the amount of power generation per the same substrate area can be increased. Further, in order to increase the power generation efficiency, even if the film thickness of the printing layer becomes thicker, such as forming a porous light reflecting layer on the porous semiconductor layer, the concave portion of the cover may be engraved accordingly. .. In addition, the encapsulant may be applied thinly with a narrow width. Especially when the solar cell is multi-chamfered and produced, the coating of the encapsulant, which becomes a bottleneck, is changed from the conventional dispense to screen printing. It is possible to improve the reliability of sealing and to realize a significant improvement in productivity.

本発明の実施の一形態に係る色素増感太陽電池のセル構造を示す断面図である。It is sectional drawing which shows the cell structure of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 図1の一部分を拡大して示す断面図である。It is sectional drawing which shows the part of FIG. 1 enlarged. 図1および図2の色素増感太陽電池を備えて成る太陽電池パネルの正面図である。It is a front view of the solar cell panel including the dye-sensitized solar cell of FIG. 1 and FIG. 図3の一部分を拡大して示す断面図である。It is sectional drawing which shows the part of FIG. 3 enlarged. 典型的な従来技術の色素増感太陽電池のセル構造を示す断面図である。It is sectional drawing which shows the cell structure of the typical dye-sensitized solar cell of the prior art.

図1は、本発明の実施の一形態に係る色素増感太陽電池1のセル構造を示す断面図である。図1は、構造を理解し易くするために、厚み方向を強調して示している。この色素増感太陽電池1は、モノリシック型で、光入射側で、太陽電池の波長に対する透光性を有する平板の基板11上に、少なくとも、透明電極層12が形成され、その上に、色素吸着された多孔質半導体層および多孔質絶縁層13が積層され、その上にカーボンなどの背面電極層14が積層され、周囲に封止材15が塗布されて、カバー16で封止され、内部空間17内に電解液18が充填されて構成される。 FIG. 1 is a cross-sectional view showing a cell structure of a dye-sensitized solar cell 1 according to an embodiment of the present invention. FIG. 1 emphasizes the thickness direction in order to make the structure easier to understand. The dye-sensitized solar cell 1 is a monolithic type, and at least a transparent electrode layer 12 is formed on a flat plate substrate 11 having translucency with respect to the wavelength of the solar cell on the light incident side, and a dye is formed on the transparent electrode layer 12. The adsorbed porous semiconductor layer and the porous insulating layer 13 are laminated, and the back electrode layer 14 such as carbon is laminated on the laminated surface, the sealing material 15 is applied to the periphery, and the inside is sealed by the cover 16. The space 17 is filled with the electrolytic solution 18.

注目すべきは、本実施形態の色素増感太陽電池1およびその製造方法によれば、カバー16が彫込まれる工程を有し、その彫込みによって前記内部空間17を形成する凹部19が形成されていることである。彫込みの深さは、前記透明電極12の厚さに、スクリーン印刷などで形成される多孔質半導体層および多孔質絶縁層13ならびに背面電極層14の印刷厚さを加えた厚さより予め定める寸法だけ深く設定される。前記凹部19を彫込む工程は、カバー16がガラス板から成る場合、平板状のガラス板に、フッ化水素系のエッチング液でのエッチング、またはサンドブラスト処理を行うことで容易に行うことができる。このカバー16は、該色素増感太陽電池1の背面側となるので、凹部19が、前記サンドブラストによる粗面や、エッチングによる非平滑面でも、問題は無い。 It should be noted that according to the dye-sensitized solar cell 1 of the present embodiment and the method for manufacturing the same, the cover 16 is engraved, and the recess 19 forming the internal space 17 is formed by the engraving. That is. The engraving depth is a dimension predetermined from the thickness of the transparent electrode 12 plus the printing thickness of the porous semiconductor layer, the porous insulating layer 13, and the back electrode layer 14 formed by screen printing or the like. Only deeply set. When the cover 16 is made of a glass plate, the step of engraving the recess 19 can be easily performed by etching the flat glass plate with a hydrogen fluoride-based etching solution or sandblasting. Since the cover 16 is on the back side of the dye-sensitized solar cell 1, there is no problem even if the recess 19 is a rough surface due to sandblasting or a non-smooth surface due to etching.

具体的には、市販のFTO(フッソドープ酸化スズ)やITO(インジウムドープ酸化スズ)等をスパッタした透明電極層12が形成されたガラス等の基板11上に、微粒子酸化チタンペースト等により多孔質半導体層および微粒子ジルコニアペースト等により多孔質絶縁層13ならびに導電性カーボンペースト等により背面電極層14を順次スクリーン印刷形成する工程を行い、色素溶液に浸漬して前記多孔質半導体層に色素吸着させる一方、ガラス板等のカバー16に前記凹部19を彫込む工程および凹部19の周縁部20に封止材15をスクリーン印刷する工程が行われ、それぞれ終了すると、基板11の印刷面側とカバー16の凹面側を貼合わせ、接着性樹脂やガラスフリット等の封止材15を、紫外線、加熱、レーザ等で固化させて接合する工程が行われる。その後、内部空間17に電解液18が充填され、充填口が閉鎖される。 Specifically, a porous semiconductor is formed by using fine particle titanium oxide paste or the like on a substrate 11 such as glass on which a transparent electrode layer 12 sputtered with commercially available FTO (fluorine-doped tin oxide) or ITO (indium-doped tin oxide) is formed. A step of sequentially screen-printing the porous insulating layer 13 with a layer and fine particle zirconia paste and the back electrode layer 14 with a conductive carbon paste or the like is performed, and the back electrode layer 14 is immersed in a dye solution to adsorb the dye on the porous semiconductor layer. A step of engraving the recess 19 in the cover 16 of a glass plate or the like and a step of screen-printing the sealing material 15 on the peripheral edge 20 of the recess 19 are performed. A step of bonding the sides and solidifying the sealing material 15 such as an adhesive resin or glass frit with ultraviolet rays, heating, a laser or the like is performed. After that, the electrolytic solution 18 is filled in the internal space 17, and the filling port is closed.

前記封止材15としては、光硬化性のアクリレート樹脂、UV、熱併用硬化性のエポキシ変性アクリレート樹脂、具体的にはスリーボンド社製TB3035BやTB3118などの樹脂を硬化させ、あるいは低融点ガラスフリットを塗布してレーザ融着させることで実現することができる。前記色素吸着は、カルボキシル基を有するN719やN749ブラック色素などのルテニウム系色素、クマリン系色素、ポリフィン色素等を、ジメチルホルムアミドやメタノールなどの有機溶媒に溶解させた溶液に浸漬・乾燥して、微粒子チタニア表面にそれらの色素を吸着させて行うことができる。電解液18には、アセトニトリルやメトキシプロピオニトリル等の溶媒に、ヨウ化カリウムやジメチルプロピオイミダゾリウムヨウ素等を溶解し、さらにターシャリーブチルアミン等を添加したものを用いることができる。なお、ガラスフリットで高温封止する場合は、多孔質半導体層への色素吸着工程は、貼り合わせ工程後に行ってもよい。また、発電効率を向上させるために、多孔質半導体層上に、200〜1000nm程度の酸化チタンなどの反射性粒子を添加した反射層を印刷形成してもよい。 As the sealing material 15, a photocurable acrylate resin, UV, an epoxy-modified acrylate resin curable with heat, specifically, a resin such as TB3035B or TB3118 manufactured by ThreeBond Co., Ltd. is cured, or a low melting point glass frit is used. This can be achieved by applying and laser fusing. In the dye adsorption, fine particles are obtained by immersing and drying a ruthenium dye such as N719 or N749 black dye having a carboxyl group, a coumarin dye, a polyfin dye or the like in a solution in which an organic solvent such as dimethylformamide or methanol is dissolved. These dyes can be adsorbed on the surface of titania. As the electrolytic solution 18, a solvent such as acetonitrile or methoxypropionitrile in which potassium iodide, dimethylpropioimidazolium iodine or the like is dissolved, and tertiary butylamine or the like is added can be used. In the case of high-temperature sealing with glass frit, the dye adsorption step on the porous semiconductor layer may be performed after the bonding step. Further, in order to improve the power generation efficiency, a reflective layer to which reflective particles such as titanium oxide having a size of about 200 to 1000 nm is added may be printed and formed on the porous semiconductor layer.

以上のように、本実施形態の色素増感太陽電池1およびその製造方法によれば、モノリシック型の色素増感太陽電池で、基板11上には、少なくとも透明電極層12、色素吸着された多孔質半導体層および多孔質絶縁層13ならびに背面電極層14が形成されているが、それらが形成されることの無いカバー16の側で、それらのパターンに対応する部分を、各層の合計膜厚以上の深さに彫込んで凹部19を形成するので、封止材15の厚みを極めて薄くすることができる。 As described above, according to the dye-sensitized solar cell 1 of the present embodiment and the method for manufacturing the same, in the monolithic dye-sensitized solar cell, at least the transparent electrode layer 12 and the dye-adsorbed porous material are placed on the substrate 11. Quality The semiconductor layer, the porous insulating layer 13, and the back electrode layer 14 are formed, but on the side of the cover 16 where they are not formed, the portion corresponding to those patterns is equal to or greater than the total thickness of each layer. Since the recess 19 is formed by engraving to the depth of, the thickness of the sealing material 15 can be made extremely thin.

図2は、図1の色素増感太陽電池1のセル端縁部分を拡大して示す断面図である。図2で示すように、前記凹部19の彫込みによって、該凹部19の周縁部20と基板11との間の隙間H2を、極力0に近付けることができ、たとえば封止材15をスクリーン印刷で形成することができる最小限の膜厚、3〜5μm程度で管理することができる。具体的には、5μm程度のスペーサ粒子を封止材15に少量添加して、印刷・加圧貼り合わせすれば、隙間H2を、極めて安定的に、μm単位での管理が可能である。 FIG. 2 is an enlarged cross-sectional view showing a cell edge portion of the dye-sensitized solar cell 1 of FIG. As shown in FIG. 2, by engraving the recess 19, the gap H2 between the peripheral edge 20 of the recess 19 and the substrate 11 can be made as close to 0 as possible. For example, the sealing material 15 can be screen-printed. It can be controlled with the minimum film thickness that can be formed, about 3 to 5 μm. Specifically, if a small amount of spacer particles of about 5 μm is added to the sealing material 15 and then printed and pressure-bonded, the gap H2 can be managed in μm units in an extremely stable manner.

したがって、接合部分(周縁部20)の幅W2とのアスペクト比W2/H2を、電解液18の溶媒の蒸発防止や、防湿性に充分な効果を得ることができる140倍としても、該幅W2は、0.7mmと狭くすることができる。これによって、狭額縁化して、基板11からの太陽電池(1)のパネルの取れ数を増やしたり、同じ基板面積当りの発電量を増やしたりすることができる。また、封止材15は、狭い幅W2で、薄く(H2)塗布すればよく(厚塗りする必要が無く)、特に太陽電池セル(1)を多面取り取り生産した場合、ボトルネックとなる封止材の塗布を、従来のディスペンスから、スクリーン印刷へ工法転換することができ、封止の信頼性アップとともに、大幅な生産性の向上を実現することができる。モノリシック型の色素増感太陽電池は、最もコストと量産性に優れており、本実施形態では、さらにそれの信頼性および生産性を向上することができ、好適である。 Therefore, even if the aspect ratio W2 / H2 with the width W2 of the joint portion (peripheral portion 20) is 140 times that can prevent evaporation of the solvent of the electrolytic solution 18 and obtain a sufficient effect on moisture resistance, the width W2 Can be as narrow as 0.7 mm. As a result, the frame can be narrowed to increase the number of panels of the solar cell (1) taken from the substrate 11, and the amount of power generation per the same substrate area can be increased. Further, the sealing material 15 may be applied thinly (H2) with a narrow width W2 (it is not necessary to apply a thick coating), and particularly when the solar cell (1) is multi-chamfered and produced, it becomes a bottleneck. The method of applying the stop material can be changed from the conventional dispense to screen printing, and it is possible to improve the reliability of sealing and greatly improve the productivity. The monolithic dye-sensitized solar cell has the highest cost and mass productivity, and in the present embodiment, the reliability and productivity of the monolithic dye-sensitized solar cell can be further improved, which is suitable.

また、注目すべきは、本実施形態の色素増感太陽電池1では、図2で拡大して示すように、凹部19の周縁部20に、粗面処理が施されていることである。特に、凹部19がサンドブラストで形成される場合、彫込みが終了すると、或いは彫込みの終半に、カバー16の全面にサンドブラスト処理を施す工程を行うだけでよい。そうすることで、封止材15に対する周縁部20の表面積(沿面距離)を増やすことができ、接合強度を高めることができるとともに、前記電解液18の溶媒の蒸発防止や、防湿性に、より高い効果を得ることができる。 Further, it should be noted that in the dye-sensitized solar cell 1 of the present embodiment, as shown in an enlarged manner in FIG. 2, the peripheral edge portion 20 of the recess 19 is roughened. In particular, when the recess 19 is formed by sandblasting, it is only necessary to perform a sandblasting process on the entire surface of the cover 16 when the engraving is completed or at the end of the engraving. By doing so, the surface area (creeping distance) of the peripheral edge portion 20 with respect to the sealing material 15 can be increased, the bonding strength can be increased, and the solvent of the electrolytic solution 18 can be prevented from evaporating and the moisture resistance can be improved. A high effect can be obtained.

図3は、上述の色素増感太陽電池1を備えて成る太陽電池パネル3の正面図である。図1および図2の色素増感太陽電池1は、単体セルで説明しているが、多くの場合、1枚の基板31(11)上に、複数のセル(1)が形成され、それらが直列および/または並列に接続されて使用される。一方、単体セル(1)で使用される場合も、たとえば400mm×300mmの基板31から、90mm×45mmのセル(1)が多面取り(24ケ取り)で生産される。 FIG. 3 is a front view of the solar cell panel 3 including the dye-sensitized solar cell 1 described above. Although the dye-sensitized solar cell 1 of FIGS. 1 and 2 is described as a single cell, in many cases, a plurality of cells (1) are formed on one substrate 31 (11), and these cells are formed. Used in series and / or connected in parallel. On the other hand, when used in a single cell (1), for example, a 90 mm × 45 mm cell (1) is produced by multi-chamfering (24 chamfering) from a substrate 31 having a size of 400 mm × 300 mm.

そして、1枚の基板31(11)上に、複数のセル(1)が形成されて、それらのセル(1)間および/または基板31(11)の外周に、封止材15が塗布される場合、注目すべきは、本実施形態では、その塗布パターン32のセル側および/または外周側には、前記封止材15の余剰分が流入する凹溝33,34が形成される工程が行われることである。図4は、図3の一部分を拡大して示す断面図である。図3の例では、セル(1)間には塗布パターン32は形成されておらず、基板31(11)の外周に形成されている。さらに、図3の例では、塗布パターン32の、内(セル)側には凹溝33が、外側には凹溝34が形成されているが、基板31(11)の大きさとセル(1)の大きさなどの兼ね合い、或いは外観や太陽電池としての性能上の問題などが無ければ、外側の凹溝34については、任意である。 Then, a plurality of cells (1) are formed on one substrate 31 (11), and the sealing material 15 is applied between the cells (1) and / or on the outer periphery of the substrate 31 (11). If this is the case, it should be noted that in the present embodiment, recessed grooves 33, 34 into which the surplus of the sealing material 15 flows are formed on the cell side and / or the outer peripheral side of the coating pattern 32. It is to be done. FIG. 4 is an enlarged cross-sectional view showing a part of FIG. In the example of FIG. 3, the coating pattern 32 is not formed between the cells (1), but is formed on the outer periphery of the substrate 31 (11). Further, in the example of FIG. 3, the concave groove 33 is formed on the inner (cell) side and the concave groove 34 is formed on the outer side of the coating pattern 32, but the size of the substrate 31 (11) and the cell (1) are formed. The outer concave groove 34 is optional as long as there is no balance between the size and the like, or problems in appearance and performance as a solar cell.

このように構成することで、基板31(11)とカバー16とを圧着させた際、余剰となった封止材(32)は、この凹溝33,34に流れ込み、該凹溝33,34より内側に滲出しないので、不所望にセル(1)内に封止材33,34が滲出することを未然に防止することができる。さらに、封止材(32)は薄膜化するので、内部応力が小さく、剥離強度が向上する。 With this configuration, when the substrate 31 (11) and the cover 16 are crimped together, the excess sealing material (32) flows into the recesses 33 and 34, and the recesses 33 and 34 flow into the recesses 33 and 34. Since it does not exude more inward, it is possible to prevent the sealing materials 33 and 34 from undesirably exuding into the cell (1). Further, since the sealing material (32) is thinned, the internal stress is small and the peel strength is improved.

一方、前述のようにこの図3のパネルが多面取りされる場合、複数のセル(1)は相互に切離して用いられるので、外側の凹溝34部分には、図4で示すように、カバー16の外側から、ブレイクライン35が形成されてもよい。このように構成することで、1枚の基板31(11)上に複数のセル(1)が形成されて、セル間および/または外周に、余剰分の封止材15,32が流れ込む凹溝33,34を形成しておく場合に、カバー16の反対側の面からのブレイクライン35と、凹溝34とによる薄肉部分を利用して、容易かつ確実に、個別のセル(1)の切離しを行うことができる。また、ブレイクライン35からセル(1)を切離す際の衝撃に対しては、凹溝34に流れ込んだ封止材32の厚みのために、剥離などを防止することができる。 On the other hand, when the panel of FIG. 3 is multi-chamfered as described above, since the plurality of cells (1) are separated from each other and used, the outer concave groove 34 portion is covered as shown in FIG. A break line 35 may be formed from the outside of 16. With this configuration, a plurality of cells (1) are formed on one substrate 31 (11), and a recessed groove into which excess sealing materials 15 and 32 flow into the cells and / or the outer periphery. When the 33 and 34 are formed, the individual cells (1) can be easily and surely separated by utilizing the thin portion formed by the break line 35 from the opposite surface of the cover 16 and the concave groove 34. It can be performed. Further, against an impact when the cell (1) is separated from the break line 35, peeling or the like can be prevented due to the thickness of the sealing material 32 flowing into the concave groove 34.

その場合、封止材32として、ガラスフリットを用い、それにレーザ光を照射して固化させることで封止を行うことができ、一方、ガラスフリットは固化すれば硬度が高く、前記ブレイクライン35でのブレイクを確実に行うことができる。 In that case, glass frit is used as the sealing material 32, and the glass frit can be sealed by irradiating it with a laser beam to solidify it. On the other hand, if the glass frit is solidified, the hardness is high, and the break line 35 You can surely make a break.

ここで、凹型に形成した基板を用いて封止を行う色素増感太陽電池が、特開2010−123556号公報や、特開2004−362793号公報に示されている。それらの従来技術によれば、多孔質酸化チタン、色素および電解液等を高分子吸収体でゴム状ゲル材としており、そのため厳密な封止(シール)に工夫したものではないが、凹部とリブ立てした壁との組合わせが示されている。 Here, a dye-sensitized solar cell that seals using a concavely formed substrate is shown in JP-A-2010-123556 and JP-A-2004-362793. According to these conventional techniques, porous titanium oxide, dye, electrolytic solution, etc. are made into a rubber-like gel material with a polymer absorber, and therefore, although strict sealing is not devised, recesses and ribs are used. The combination with the upright wall is shown.

しかしながら、この従来技術は、透明導電性基板を含めて、両方の基板を凹凸に成形して、双方を嵌合させる構成である。したがって、高価な成形金型が必要であるのみならず、高温で成形するので、素材の熱膨張収縮やヒケ等のために、量産レベルのバラツキを含めると、導電性基材とカバー基材とをμm単位で管理することは極めて困難である。つまり、これらの従来技術は、基板の隙間をほぼ0に近付けて額縁幅を狭くするというよりも、横の隙間を縦にすることで額縁幅を狭くするものと考えることができる。 However, in this conventional technique, both substrates including the transparent conductive substrate are formed into irregularities, and both are fitted to each other. Therefore, not only an expensive molding die is required, but also the molding is performed at a high temperature. Therefore, due to thermal expansion and contraction of the material, sink marks, etc. Is extremely difficult to manage in units of μm. That is, it can be considered that these conventional techniques narrow the frame width by making the horizontal gap vertical, rather than narrowing the frame width by making the gap between the substrates close to zero.

また、これらの従来技術では、凹型に成形した基材の凹部に透明電極や多孔質半導体層などをパターンで形成せねばならず、スクリーン印刷などの量産性の工法は使えず、きわめて特殊なマスキングをして、透明電極を、スパッタ形成や、多孔質半導体層のスプレーなどで形成しなければならず、量産性に乏しく、安価に製造することは困難である。したがって、カバー16を、エッチングやサンドブラストで彫込み形成する本実施形態とは、量産性やコストが全く異なることになる。 Further, in these conventional techniques, a transparent electrode, a porous semiconductor layer, or the like must be formed in a pattern in the concave portion of the concave base material, and a mass-producible method such as screen printing cannot be used, which is a very special masking. Therefore, the transparent electrode must be formed by spatter formation, spraying of a porous semiconductor layer, or the like, which is poor in mass productivity and difficult to manufacture at low cost. Therefore, the mass productivity and cost are completely different from those of the present embodiment in which the cover 16 is engraved and formed by etching or sandblasting.

1 色素増感太陽電池(セル)
11 基板
12 透明電極層
13 多孔質半導体層および多孔質絶縁層
14 背面電極層
15 封止材
16 カバー
17 内部空間
18 電解液
19 凹部
20 周縁部
3 太陽電池パネル
31 基板
32 塗布パターン
33,34 凹溝
35 ブレイクライン
1 Dye-sensitized solar cell (cell)
11 Substrate 12 Transparent electrode layer 13 Porous semiconductor layer and porous insulating layer 14 Back electrode layer 15 Encapsulant 16 Cover 17 Internal space 18 Electrolyte 19 Recession 20 Peripheral part 3 Solar cell panel 31 Substrate 32 Coating pattern 33, 34 Concave Groove 35 break line

Claims (5)

太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成るモノリシック型の色素増感太陽電池において、
前記カバーが彫込まれることで前記内部空間を形成する凹部と、
前記凹部の周縁部を前記基板との間で封止する封止材とを備え
1枚の前記基板上には複数のセルが形成され、それらのセル間および/または外周には前記封止材が塗布され、その塗布パターンのセル側および/または外周側には、前記封止材の余剰分が流入する凹溝が形成されていることを特徴とする色素増感太陽電池。
At least a transparent electrode layer, a porous semiconductor layer, a porous insulating layer, and a back electrode layer are sequentially laminated on a flat substrate having translucency with respect to the wavelength of a solar cell, and the porous semiconductor layer is dye-adsorbed. Further, in a monolithic dye-sensitized solar cell in which an electrolytic solution is sealed in an internal space formed between the cover and the substrate.
A recess that forms the internal space by engraving the cover,
A sealing material for sealing the peripheral edge of the recess with the substrate is provided .
A plurality of cells are formed on one of the substrates, the sealing material is applied between the cells and / or the outer periphery thereof, and the sealing material is applied to the cell side and / or the outer peripheral side of the coating pattern. dye-sensitized solar cell surplus characterized that you have been recessed groove the inflowing formed of wood.
前記複数のセルは相互に切離して用いられ、前記凹溝部分には、カバーの外側からブレイクラインが形成されていることを特徴とする請求項記載の色素増感太陽電池。 Wherein the plurality of cells are used to disconnect each other, wherein the groove portion, the dye-sensitized solar cell of claim 1, wherein the break line from the outside of the cover is formed. 前記セル間および/または外周における前記封止材として、ガラスフリットが用いられることを特徴とする請求項または記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1 or 2 , wherein a glass frit is used as the sealing material between the cells and / or on the outer periphery. 太陽電池の波長に対する透光性を有する平面の基板上に、少なくとも透明電極層、多孔質半導体層、多孔質絶縁層および背面電極層が順次積層されて、前記多孔質半導体層は色素吸着され、さらにカバーと前記基板との間に形成された内部空間に電解液を封止して成るモノリシック型の色素増感太陽電池の製造方法において、
前記カバーに、前記内部空間を形成する凹部を彫込む工程と、
前記凹部の周縁部に封止材を形成する工程と、
前記封止材を固化させて前記カバーと基板とを接合する工程とを含み、
1枚の前記基板上には複数のセルが形成され、それらのセル間および/または外周には前記封止材が塗布され、その塗布パターンのセル側および/または外周側に、前記封止材の余剰分が流入するための凹溝を形成する工程をさらに備えることを特徴とする色素増感太陽電池の製造方法。
At least a transparent electrode layer, a porous semiconductor layer, a porous insulating layer, and a back electrode layer are sequentially laminated on a flat substrate having translucency with respect to the wavelength of a solar cell, and the porous semiconductor layer is dye-adsorbed. Further, in a method for manufacturing a monolithic dye-sensitized solar cell in which an electrolytic solution is sealed in an internal space formed between a cover and the substrate.
A step of engraving a recess forming the internal space in the cover,
The step of forming a sealing material on the peripheral edge of the recess and
Look including the step of bonding the cover and the substrate by solidifying the sealing material,
A plurality of cells are formed on one of the substrates, the encapsulant is applied between the cells and / or the outer periphery thereof, and the encapsulant is applied to the cell side and / or the outer periphery of the coating pattern. A method for manufacturing a dye-sensitized solar cell, which further comprises a step of forming a concave groove for the surplus of the above.
前記複数のセルは相互に切離して用いられ、前記凹溝部分には、前記カバーの外側から、ブレイクラインを形成する工程をさらに備えることを特徴とする請求項記載の色素増感太陽電池の製造方法。 The dye-sensitized solar cell according to claim 4, wherein the plurality of cells are used so as to be separated from each other, and the recessed groove portion further includes a step of forming a break line from the outside of the cover. Production method.
JP2019182658A 2019-10-03 2019-10-03 Dye-sensitized solar cells and their manufacturing methods Active JP6914548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019182658A JP6914548B2 (en) 2019-10-03 2019-10-03 Dye-sensitized solar cells and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019182658A JP6914548B2 (en) 2019-10-03 2019-10-03 Dye-sensitized solar cells and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2021061269A JP2021061269A (en) 2021-04-15
JP6914548B2 true JP6914548B2 (en) 2021-08-04

Family

ID=75380420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019182658A Active JP6914548B2 (en) 2019-10-03 2019-10-03 Dye-sensitized solar cells and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6914548B2 (en)

Also Published As

Publication number Publication date
JP2021061269A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
KR101518871B1 (en) Method of preparing the dye-sensitized solar cell
KR20100056552A (en) A method for manufacturing solar cells
JP4467879B2 (en) Manufacturing method of dye-sensitized solar cell
US20140124026A1 (en) Solar cell device
WO2009147888A1 (en) Charged particle movement-type display panel, method for producing charged particle movement-type display panel, and charged particle movement-type display device
JP2004292247A (en) Joining method of glass substrate
US20120118367A1 (en) Non-planar/curved dye-sensitized solar cell and a method of manufacturing the same
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
JP2011054553A (en) Sealing material, dye-sensitized solar cell equipped with the cell, and method for manufacturing the cell
JP5165253B2 (en) Dye-sensitized solar cell and method for producing the same
Sarwar et al. Scalable photoelectrochromic glass of high performance powered by ligand attached TiO2 photoactive layer
US20070122930A1 (en) Electrochemical cell structure and method of fabrication
JP5397585B2 (en) Dye-sensitized solar cell and partition forming method
JP6914548B2 (en) Dye-sensitized solar cells and their manufacturing methods
US20070120178A1 (en) Electrochemical cell structure and method of fabrication
López‐López et al. Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning
JP2009193854A (en) Dye-sensitized solar cell
JP2012048863A (en) Dye-sensitized solar cell and method of manufacturing dye-sensitized solar cell
KR102247086B1 (en) Structure and method for double junction sealing solar cells using fiber type sealing material, and Apparatus for manufacturing fiber type sealing material
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
JP6580147B2 (en) Photoelectric conversion element and photoelectric conversion module
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
KR20100005591A (en) A sealling for sub-moduledye of sensitized solar cell
KR20100005555A (en) Dye sensitized solar cell or sub-module
CN102084496A (en) Dye-sensitized solar cell or submodule and submodule packaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6914548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150